Merge tag 'for-linus-4.3-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/lsm_hooks.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55 #include <net/inet_connection_sock.h>
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h> /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h> /* for Unix socket types */
70 #include <net/af_unix.h> /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 /* SECMARK reference count */
98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
103 static int __init enforcing_setup(char *str)
104 {
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /**
131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132 *
133 * Description:
134 * This function checks the SECMARK reference counter to see if any SECMARK
135 * targets are currently configured, if the reference counter is greater than
136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
137 * enabled, false (0) if SECMARK is disabled. If the always_check_network
138 * policy capability is enabled, SECMARK is always considered enabled.
139 *
140 */
141 static int selinux_secmark_enabled(void)
142 {
143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
144 }
145
146 /**
147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
148 *
149 * Description:
150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
151 * (1) if any are enabled or false (0) if neither are enabled. If the
152 * always_check_network policy capability is enabled, peer labeling
153 * is always considered enabled.
154 *
155 */
156 static int selinux_peerlbl_enabled(void)
157 {
158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
159 }
160
161 static int selinux_netcache_avc_callback(u32 event)
162 {
163 if (event == AVC_CALLBACK_RESET) {
164 sel_netif_flush();
165 sel_netnode_flush();
166 sel_netport_flush();
167 synchronize_net();
168 }
169 return 0;
170 }
171
172 /*
173 * initialise the security for the init task
174 */
175 static void cred_init_security(void)
176 {
177 struct cred *cred = (struct cred *) current->real_cred;
178 struct task_security_struct *tsec;
179
180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
181 if (!tsec)
182 panic("SELinux: Failed to initialize initial task.\n");
183
184 tsec->osid = tsec->sid = SECINITSID_KERNEL;
185 cred->security = tsec;
186 }
187
188 /*
189 * get the security ID of a set of credentials
190 */
191 static inline u32 cred_sid(const struct cred *cred)
192 {
193 const struct task_security_struct *tsec;
194
195 tsec = cred->security;
196 return tsec->sid;
197 }
198
199 /*
200 * get the objective security ID of a task
201 */
202 static inline u32 task_sid(const struct task_struct *task)
203 {
204 u32 sid;
205
206 rcu_read_lock();
207 sid = cred_sid(__task_cred(task));
208 rcu_read_unlock();
209 return sid;
210 }
211
212 /*
213 * get the subjective security ID of the current task
214 */
215 static inline u32 current_sid(void)
216 {
217 const struct task_security_struct *tsec = current_security();
218
219 return tsec->sid;
220 }
221
222 /* Allocate and free functions for each kind of security blob. */
223
224 static int inode_alloc_security(struct inode *inode)
225 {
226 struct inode_security_struct *isec;
227 u32 sid = current_sid();
228
229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
230 if (!isec)
231 return -ENOMEM;
232
233 mutex_init(&isec->lock);
234 INIT_LIST_HEAD(&isec->list);
235 isec->inode = inode;
236 isec->sid = SECINITSID_UNLABELED;
237 isec->sclass = SECCLASS_FILE;
238 isec->task_sid = sid;
239 inode->i_security = isec;
240
241 return 0;
242 }
243
244 static void inode_free_rcu(struct rcu_head *head)
245 {
246 struct inode_security_struct *isec;
247
248 isec = container_of(head, struct inode_security_struct, rcu);
249 kmem_cache_free(sel_inode_cache, isec);
250 }
251
252 static void inode_free_security(struct inode *inode)
253 {
254 struct inode_security_struct *isec = inode->i_security;
255 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
256
257 spin_lock(&sbsec->isec_lock);
258 if (!list_empty(&isec->list))
259 list_del_init(&isec->list);
260 spin_unlock(&sbsec->isec_lock);
261
262 /*
263 * The inode may still be referenced in a path walk and
264 * a call to selinux_inode_permission() can be made
265 * after inode_free_security() is called. Ideally, the VFS
266 * wouldn't do this, but fixing that is a much harder
267 * job. For now, simply free the i_security via RCU, and
268 * leave the current inode->i_security pointer intact.
269 * The inode will be freed after the RCU grace period too.
270 */
271 call_rcu(&isec->rcu, inode_free_rcu);
272 }
273
274 static int file_alloc_security(struct file *file)
275 {
276 struct file_security_struct *fsec;
277 u32 sid = current_sid();
278
279 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
280 if (!fsec)
281 return -ENOMEM;
282
283 fsec->sid = sid;
284 fsec->fown_sid = sid;
285 file->f_security = fsec;
286
287 return 0;
288 }
289
290 static void file_free_security(struct file *file)
291 {
292 struct file_security_struct *fsec = file->f_security;
293 file->f_security = NULL;
294 kfree(fsec);
295 }
296
297 static int superblock_alloc_security(struct super_block *sb)
298 {
299 struct superblock_security_struct *sbsec;
300
301 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
302 if (!sbsec)
303 return -ENOMEM;
304
305 mutex_init(&sbsec->lock);
306 INIT_LIST_HEAD(&sbsec->isec_head);
307 spin_lock_init(&sbsec->isec_lock);
308 sbsec->sb = sb;
309 sbsec->sid = SECINITSID_UNLABELED;
310 sbsec->def_sid = SECINITSID_FILE;
311 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
312 sb->s_security = sbsec;
313
314 return 0;
315 }
316
317 static void superblock_free_security(struct super_block *sb)
318 {
319 struct superblock_security_struct *sbsec = sb->s_security;
320 sb->s_security = NULL;
321 kfree(sbsec);
322 }
323
324 /* The file system's label must be initialized prior to use. */
325
326 static const char *labeling_behaviors[7] = {
327 "uses xattr",
328 "uses transition SIDs",
329 "uses task SIDs",
330 "uses genfs_contexts",
331 "not configured for labeling",
332 "uses mountpoint labeling",
333 "uses native labeling",
334 };
335
336 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
337
338 static inline int inode_doinit(struct inode *inode)
339 {
340 return inode_doinit_with_dentry(inode, NULL);
341 }
342
343 enum {
344 Opt_error = -1,
345 Opt_context = 1,
346 Opt_fscontext = 2,
347 Opt_defcontext = 3,
348 Opt_rootcontext = 4,
349 Opt_labelsupport = 5,
350 Opt_nextmntopt = 6,
351 };
352
353 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
354
355 static const match_table_t tokens = {
356 {Opt_context, CONTEXT_STR "%s"},
357 {Opt_fscontext, FSCONTEXT_STR "%s"},
358 {Opt_defcontext, DEFCONTEXT_STR "%s"},
359 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
360 {Opt_labelsupport, LABELSUPP_STR},
361 {Opt_error, NULL},
362 };
363
364 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
365
366 static int may_context_mount_sb_relabel(u32 sid,
367 struct superblock_security_struct *sbsec,
368 const struct cred *cred)
369 {
370 const struct task_security_struct *tsec = cred->security;
371 int rc;
372
373 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
374 FILESYSTEM__RELABELFROM, NULL);
375 if (rc)
376 return rc;
377
378 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
379 FILESYSTEM__RELABELTO, NULL);
380 return rc;
381 }
382
383 static int may_context_mount_inode_relabel(u32 sid,
384 struct superblock_security_struct *sbsec,
385 const struct cred *cred)
386 {
387 const struct task_security_struct *tsec = cred->security;
388 int rc;
389 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
390 FILESYSTEM__RELABELFROM, NULL);
391 if (rc)
392 return rc;
393
394 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
395 FILESYSTEM__ASSOCIATE, NULL);
396 return rc;
397 }
398
399 static int selinux_is_sblabel_mnt(struct super_block *sb)
400 {
401 struct superblock_security_struct *sbsec = sb->s_security;
402
403 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
404 sbsec->behavior == SECURITY_FS_USE_TRANS ||
405 sbsec->behavior == SECURITY_FS_USE_TASK ||
406 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
407 /* Special handling. Genfs but also in-core setxattr handler */
408 !strcmp(sb->s_type->name, "sysfs") ||
409 !strcmp(sb->s_type->name, "pstore") ||
410 !strcmp(sb->s_type->name, "debugfs") ||
411 !strcmp(sb->s_type->name, "rootfs");
412 }
413
414 static int sb_finish_set_opts(struct super_block *sb)
415 {
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = d_backing_inode(root);
419 int rc = 0;
420
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
430 rc = -EOPNOTSUPP;
431 goto out;
432 }
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
439 else
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
443 goto out;
444 }
445 }
446
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
450
451 sbsec->flags |= SE_SBINITIALIZED;
452 if (selinux_is_sblabel_mnt(sb))
453 sbsec->flags |= SBLABEL_MNT;
454
455 /* Initialize the root inode. */
456 rc = inode_doinit_with_dentry(root_inode, root);
457
458 /* Initialize any other inodes associated with the superblock, e.g.
459 inodes created prior to initial policy load or inodes created
460 during get_sb by a pseudo filesystem that directly
461 populates itself. */
462 spin_lock(&sbsec->isec_lock);
463 next_inode:
464 if (!list_empty(&sbsec->isec_head)) {
465 struct inode_security_struct *isec =
466 list_entry(sbsec->isec_head.next,
467 struct inode_security_struct, list);
468 struct inode *inode = isec->inode;
469 list_del_init(&isec->list);
470 spin_unlock(&sbsec->isec_lock);
471 inode = igrab(inode);
472 if (inode) {
473 if (!IS_PRIVATE(inode))
474 inode_doinit(inode);
475 iput(inode);
476 }
477 spin_lock(&sbsec->isec_lock);
478 goto next_inode;
479 }
480 spin_unlock(&sbsec->isec_lock);
481 out:
482 return rc;
483 }
484
485 /*
486 * This function should allow an FS to ask what it's mount security
487 * options were so it can use those later for submounts, displaying
488 * mount options, or whatever.
489 */
490 static int selinux_get_mnt_opts(const struct super_block *sb,
491 struct security_mnt_opts *opts)
492 {
493 int rc = 0, i;
494 struct superblock_security_struct *sbsec = sb->s_security;
495 char *context = NULL;
496 u32 len;
497 char tmp;
498
499 security_init_mnt_opts(opts);
500
501 if (!(sbsec->flags & SE_SBINITIALIZED))
502 return -EINVAL;
503
504 if (!ss_initialized)
505 return -EINVAL;
506
507 /* make sure we always check enough bits to cover the mask */
508 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
509
510 tmp = sbsec->flags & SE_MNTMASK;
511 /* count the number of mount options for this sb */
512 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
513 if (tmp & 0x01)
514 opts->num_mnt_opts++;
515 tmp >>= 1;
516 }
517 /* Check if the Label support flag is set */
518 if (sbsec->flags & SBLABEL_MNT)
519 opts->num_mnt_opts++;
520
521 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
522 if (!opts->mnt_opts) {
523 rc = -ENOMEM;
524 goto out_free;
525 }
526
527 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
528 if (!opts->mnt_opts_flags) {
529 rc = -ENOMEM;
530 goto out_free;
531 }
532
533 i = 0;
534 if (sbsec->flags & FSCONTEXT_MNT) {
535 rc = security_sid_to_context(sbsec->sid, &context, &len);
536 if (rc)
537 goto out_free;
538 opts->mnt_opts[i] = context;
539 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
540 }
541 if (sbsec->flags & CONTEXT_MNT) {
542 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
543 if (rc)
544 goto out_free;
545 opts->mnt_opts[i] = context;
546 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
547 }
548 if (sbsec->flags & DEFCONTEXT_MNT) {
549 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
550 if (rc)
551 goto out_free;
552 opts->mnt_opts[i] = context;
553 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
554 }
555 if (sbsec->flags & ROOTCONTEXT_MNT) {
556 struct inode *root = d_backing_inode(sbsec->sb->s_root);
557 struct inode_security_struct *isec = root->i_security;
558
559 rc = security_sid_to_context(isec->sid, &context, &len);
560 if (rc)
561 goto out_free;
562 opts->mnt_opts[i] = context;
563 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
564 }
565 if (sbsec->flags & SBLABEL_MNT) {
566 opts->mnt_opts[i] = NULL;
567 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
568 }
569
570 BUG_ON(i != opts->num_mnt_opts);
571
572 return 0;
573
574 out_free:
575 security_free_mnt_opts(opts);
576 return rc;
577 }
578
579 static int bad_option(struct superblock_security_struct *sbsec, char flag,
580 u32 old_sid, u32 new_sid)
581 {
582 char mnt_flags = sbsec->flags & SE_MNTMASK;
583
584 /* check if the old mount command had the same options */
585 if (sbsec->flags & SE_SBINITIALIZED)
586 if (!(sbsec->flags & flag) ||
587 (old_sid != new_sid))
588 return 1;
589
590 /* check if we were passed the same options twice,
591 * aka someone passed context=a,context=b
592 */
593 if (!(sbsec->flags & SE_SBINITIALIZED))
594 if (mnt_flags & flag)
595 return 1;
596 return 0;
597 }
598
599 /*
600 * Allow filesystems with binary mount data to explicitly set mount point
601 * labeling information.
602 */
603 static int selinux_set_mnt_opts(struct super_block *sb,
604 struct security_mnt_opts *opts,
605 unsigned long kern_flags,
606 unsigned long *set_kern_flags)
607 {
608 const struct cred *cred = current_cred();
609 int rc = 0, i;
610 struct superblock_security_struct *sbsec = sb->s_security;
611 const char *name = sb->s_type->name;
612 struct inode *inode = d_backing_inode(sbsec->sb->s_root);
613 struct inode_security_struct *root_isec = inode->i_security;
614 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
615 u32 defcontext_sid = 0;
616 char **mount_options = opts->mnt_opts;
617 int *flags = opts->mnt_opts_flags;
618 int num_opts = opts->num_mnt_opts;
619
620 mutex_lock(&sbsec->lock);
621
622 if (!ss_initialized) {
623 if (!num_opts) {
624 /* Defer initialization until selinux_complete_init,
625 after the initial policy is loaded and the security
626 server is ready to handle calls. */
627 goto out;
628 }
629 rc = -EINVAL;
630 printk(KERN_WARNING "SELinux: Unable to set superblock options "
631 "before the security server is initialized\n");
632 goto out;
633 }
634 if (kern_flags && !set_kern_flags) {
635 /* Specifying internal flags without providing a place to
636 * place the results is not allowed */
637 rc = -EINVAL;
638 goto out;
639 }
640
641 /*
642 * Binary mount data FS will come through this function twice. Once
643 * from an explicit call and once from the generic calls from the vfs.
644 * Since the generic VFS calls will not contain any security mount data
645 * we need to skip the double mount verification.
646 *
647 * This does open a hole in which we will not notice if the first
648 * mount using this sb set explict options and a second mount using
649 * this sb does not set any security options. (The first options
650 * will be used for both mounts)
651 */
652 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
653 && (num_opts == 0))
654 goto out;
655
656 /*
657 * parse the mount options, check if they are valid sids.
658 * also check if someone is trying to mount the same sb more
659 * than once with different security options.
660 */
661 for (i = 0; i < num_opts; i++) {
662 u32 sid;
663
664 if (flags[i] == SBLABEL_MNT)
665 continue;
666 rc = security_context_to_sid(mount_options[i],
667 strlen(mount_options[i]), &sid, GFP_KERNEL);
668 if (rc) {
669 printk(KERN_WARNING "SELinux: security_context_to_sid"
670 "(%s) failed for (dev %s, type %s) errno=%d\n",
671 mount_options[i], sb->s_id, name, rc);
672 goto out;
673 }
674 switch (flags[i]) {
675 case FSCONTEXT_MNT:
676 fscontext_sid = sid;
677
678 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
679 fscontext_sid))
680 goto out_double_mount;
681
682 sbsec->flags |= FSCONTEXT_MNT;
683 break;
684 case CONTEXT_MNT:
685 context_sid = sid;
686
687 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
688 context_sid))
689 goto out_double_mount;
690
691 sbsec->flags |= CONTEXT_MNT;
692 break;
693 case ROOTCONTEXT_MNT:
694 rootcontext_sid = sid;
695
696 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
697 rootcontext_sid))
698 goto out_double_mount;
699
700 sbsec->flags |= ROOTCONTEXT_MNT;
701
702 break;
703 case DEFCONTEXT_MNT:
704 defcontext_sid = sid;
705
706 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
707 defcontext_sid))
708 goto out_double_mount;
709
710 sbsec->flags |= DEFCONTEXT_MNT;
711
712 break;
713 default:
714 rc = -EINVAL;
715 goto out;
716 }
717 }
718
719 if (sbsec->flags & SE_SBINITIALIZED) {
720 /* previously mounted with options, but not on this attempt? */
721 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
722 goto out_double_mount;
723 rc = 0;
724 goto out;
725 }
726
727 if (strcmp(sb->s_type->name, "proc") == 0)
728 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
729
730 if (!strcmp(sb->s_type->name, "debugfs") ||
731 !strcmp(sb->s_type->name, "sysfs") ||
732 !strcmp(sb->s_type->name, "pstore"))
733 sbsec->flags |= SE_SBGENFS;
734
735 if (!sbsec->behavior) {
736 /*
737 * Determine the labeling behavior to use for this
738 * filesystem type.
739 */
740 rc = security_fs_use(sb);
741 if (rc) {
742 printk(KERN_WARNING
743 "%s: security_fs_use(%s) returned %d\n",
744 __func__, sb->s_type->name, rc);
745 goto out;
746 }
747 }
748 /* sets the context of the superblock for the fs being mounted. */
749 if (fscontext_sid) {
750 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
751 if (rc)
752 goto out;
753
754 sbsec->sid = fscontext_sid;
755 }
756
757 /*
758 * Switch to using mount point labeling behavior.
759 * sets the label used on all file below the mountpoint, and will set
760 * the superblock context if not already set.
761 */
762 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
763 sbsec->behavior = SECURITY_FS_USE_NATIVE;
764 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
765 }
766
767 if (context_sid) {
768 if (!fscontext_sid) {
769 rc = may_context_mount_sb_relabel(context_sid, sbsec,
770 cred);
771 if (rc)
772 goto out;
773 sbsec->sid = context_sid;
774 } else {
775 rc = may_context_mount_inode_relabel(context_sid, sbsec,
776 cred);
777 if (rc)
778 goto out;
779 }
780 if (!rootcontext_sid)
781 rootcontext_sid = context_sid;
782
783 sbsec->mntpoint_sid = context_sid;
784 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
785 }
786
787 if (rootcontext_sid) {
788 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
789 cred);
790 if (rc)
791 goto out;
792
793 root_isec->sid = rootcontext_sid;
794 root_isec->initialized = 1;
795 }
796
797 if (defcontext_sid) {
798 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
799 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
800 rc = -EINVAL;
801 printk(KERN_WARNING "SELinux: defcontext option is "
802 "invalid for this filesystem type\n");
803 goto out;
804 }
805
806 if (defcontext_sid != sbsec->def_sid) {
807 rc = may_context_mount_inode_relabel(defcontext_sid,
808 sbsec, cred);
809 if (rc)
810 goto out;
811 }
812
813 sbsec->def_sid = defcontext_sid;
814 }
815
816 rc = sb_finish_set_opts(sb);
817 out:
818 mutex_unlock(&sbsec->lock);
819 return rc;
820 out_double_mount:
821 rc = -EINVAL;
822 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
823 "security settings for (dev %s, type %s)\n", sb->s_id, name);
824 goto out;
825 }
826
827 static int selinux_cmp_sb_context(const struct super_block *oldsb,
828 const struct super_block *newsb)
829 {
830 struct superblock_security_struct *old = oldsb->s_security;
831 struct superblock_security_struct *new = newsb->s_security;
832 char oldflags = old->flags & SE_MNTMASK;
833 char newflags = new->flags & SE_MNTMASK;
834
835 if (oldflags != newflags)
836 goto mismatch;
837 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
838 goto mismatch;
839 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
840 goto mismatch;
841 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
842 goto mismatch;
843 if (oldflags & ROOTCONTEXT_MNT) {
844 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security;
845 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security;
846 if (oldroot->sid != newroot->sid)
847 goto mismatch;
848 }
849 return 0;
850 mismatch:
851 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
852 "different security settings for (dev %s, "
853 "type %s)\n", newsb->s_id, newsb->s_type->name);
854 return -EBUSY;
855 }
856
857 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
858 struct super_block *newsb)
859 {
860 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
861 struct superblock_security_struct *newsbsec = newsb->s_security;
862
863 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
864 int set_context = (oldsbsec->flags & CONTEXT_MNT);
865 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
866
867 /*
868 * if the parent was able to be mounted it clearly had no special lsm
869 * mount options. thus we can safely deal with this superblock later
870 */
871 if (!ss_initialized)
872 return 0;
873
874 /* how can we clone if the old one wasn't set up?? */
875 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
876
877 /* if fs is reusing a sb, make sure that the contexts match */
878 if (newsbsec->flags & SE_SBINITIALIZED)
879 return selinux_cmp_sb_context(oldsb, newsb);
880
881 mutex_lock(&newsbsec->lock);
882
883 newsbsec->flags = oldsbsec->flags;
884
885 newsbsec->sid = oldsbsec->sid;
886 newsbsec->def_sid = oldsbsec->def_sid;
887 newsbsec->behavior = oldsbsec->behavior;
888
889 if (set_context) {
890 u32 sid = oldsbsec->mntpoint_sid;
891
892 if (!set_fscontext)
893 newsbsec->sid = sid;
894 if (!set_rootcontext) {
895 struct inode *newinode = d_backing_inode(newsb->s_root);
896 struct inode_security_struct *newisec = newinode->i_security;
897 newisec->sid = sid;
898 }
899 newsbsec->mntpoint_sid = sid;
900 }
901 if (set_rootcontext) {
902 const struct inode *oldinode = d_backing_inode(oldsb->s_root);
903 const struct inode_security_struct *oldisec = oldinode->i_security;
904 struct inode *newinode = d_backing_inode(newsb->s_root);
905 struct inode_security_struct *newisec = newinode->i_security;
906
907 newisec->sid = oldisec->sid;
908 }
909
910 sb_finish_set_opts(newsb);
911 mutex_unlock(&newsbsec->lock);
912 return 0;
913 }
914
915 static int selinux_parse_opts_str(char *options,
916 struct security_mnt_opts *opts)
917 {
918 char *p;
919 char *context = NULL, *defcontext = NULL;
920 char *fscontext = NULL, *rootcontext = NULL;
921 int rc, num_mnt_opts = 0;
922
923 opts->num_mnt_opts = 0;
924
925 /* Standard string-based options. */
926 while ((p = strsep(&options, "|")) != NULL) {
927 int token;
928 substring_t args[MAX_OPT_ARGS];
929
930 if (!*p)
931 continue;
932
933 token = match_token(p, tokens, args);
934
935 switch (token) {
936 case Opt_context:
937 if (context || defcontext) {
938 rc = -EINVAL;
939 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
940 goto out_err;
941 }
942 context = match_strdup(&args[0]);
943 if (!context) {
944 rc = -ENOMEM;
945 goto out_err;
946 }
947 break;
948
949 case Opt_fscontext:
950 if (fscontext) {
951 rc = -EINVAL;
952 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
953 goto out_err;
954 }
955 fscontext = match_strdup(&args[0]);
956 if (!fscontext) {
957 rc = -ENOMEM;
958 goto out_err;
959 }
960 break;
961
962 case Opt_rootcontext:
963 if (rootcontext) {
964 rc = -EINVAL;
965 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
966 goto out_err;
967 }
968 rootcontext = match_strdup(&args[0]);
969 if (!rootcontext) {
970 rc = -ENOMEM;
971 goto out_err;
972 }
973 break;
974
975 case Opt_defcontext:
976 if (context || defcontext) {
977 rc = -EINVAL;
978 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
979 goto out_err;
980 }
981 defcontext = match_strdup(&args[0]);
982 if (!defcontext) {
983 rc = -ENOMEM;
984 goto out_err;
985 }
986 break;
987 case Opt_labelsupport:
988 break;
989 default:
990 rc = -EINVAL;
991 printk(KERN_WARNING "SELinux: unknown mount option\n");
992 goto out_err;
993
994 }
995 }
996
997 rc = -ENOMEM;
998 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
999 if (!opts->mnt_opts)
1000 goto out_err;
1001
1002 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1003 if (!opts->mnt_opts_flags) {
1004 kfree(opts->mnt_opts);
1005 goto out_err;
1006 }
1007
1008 if (fscontext) {
1009 opts->mnt_opts[num_mnt_opts] = fscontext;
1010 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1011 }
1012 if (context) {
1013 opts->mnt_opts[num_mnt_opts] = context;
1014 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1015 }
1016 if (rootcontext) {
1017 opts->mnt_opts[num_mnt_opts] = rootcontext;
1018 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1019 }
1020 if (defcontext) {
1021 opts->mnt_opts[num_mnt_opts] = defcontext;
1022 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1023 }
1024
1025 opts->num_mnt_opts = num_mnt_opts;
1026 return 0;
1027
1028 out_err:
1029 kfree(context);
1030 kfree(defcontext);
1031 kfree(fscontext);
1032 kfree(rootcontext);
1033 return rc;
1034 }
1035 /*
1036 * string mount options parsing and call set the sbsec
1037 */
1038 static int superblock_doinit(struct super_block *sb, void *data)
1039 {
1040 int rc = 0;
1041 char *options = data;
1042 struct security_mnt_opts opts;
1043
1044 security_init_mnt_opts(&opts);
1045
1046 if (!data)
1047 goto out;
1048
1049 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1050
1051 rc = selinux_parse_opts_str(options, &opts);
1052 if (rc)
1053 goto out_err;
1054
1055 out:
1056 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1057
1058 out_err:
1059 security_free_mnt_opts(&opts);
1060 return rc;
1061 }
1062
1063 static void selinux_write_opts(struct seq_file *m,
1064 struct security_mnt_opts *opts)
1065 {
1066 int i;
1067 char *prefix;
1068
1069 for (i = 0; i < opts->num_mnt_opts; i++) {
1070 char *has_comma;
1071
1072 if (opts->mnt_opts[i])
1073 has_comma = strchr(opts->mnt_opts[i], ',');
1074 else
1075 has_comma = NULL;
1076
1077 switch (opts->mnt_opts_flags[i]) {
1078 case CONTEXT_MNT:
1079 prefix = CONTEXT_STR;
1080 break;
1081 case FSCONTEXT_MNT:
1082 prefix = FSCONTEXT_STR;
1083 break;
1084 case ROOTCONTEXT_MNT:
1085 prefix = ROOTCONTEXT_STR;
1086 break;
1087 case DEFCONTEXT_MNT:
1088 prefix = DEFCONTEXT_STR;
1089 break;
1090 case SBLABEL_MNT:
1091 seq_putc(m, ',');
1092 seq_puts(m, LABELSUPP_STR);
1093 continue;
1094 default:
1095 BUG();
1096 return;
1097 };
1098 /* we need a comma before each option */
1099 seq_putc(m, ',');
1100 seq_puts(m, prefix);
1101 if (has_comma)
1102 seq_putc(m, '\"');
1103 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1104 if (has_comma)
1105 seq_putc(m, '\"');
1106 }
1107 }
1108
1109 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1110 {
1111 struct security_mnt_opts opts;
1112 int rc;
1113
1114 rc = selinux_get_mnt_opts(sb, &opts);
1115 if (rc) {
1116 /* before policy load we may get EINVAL, don't show anything */
1117 if (rc == -EINVAL)
1118 rc = 0;
1119 return rc;
1120 }
1121
1122 selinux_write_opts(m, &opts);
1123
1124 security_free_mnt_opts(&opts);
1125
1126 return rc;
1127 }
1128
1129 static inline u16 inode_mode_to_security_class(umode_t mode)
1130 {
1131 switch (mode & S_IFMT) {
1132 case S_IFSOCK:
1133 return SECCLASS_SOCK_FILE;
1134 case S_IFLNK:
1135 return SECCLASS_LNK_FILE;
1136 case S_IFREG:
1137 return SECCLASS_FILE;
1138 case S_IFBLK:
1139 return SECCLASS_BLK_FILE;
1140 case S_IFDIR:
1141 return SECCLASS_DIR;
1142 case S_IFCHR:
1143 return SECCLASS_CHR_FILE;
1144 case S_IFIFO:
1145 return SECCLASS_FIFO_FILE;
1146
1147 }
1148
1149 return SECCLASS_FILE;
1150 }
1151
1152 static inline int default_protocol_stream(int protocol)
1153 {
1154 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1155 }
1156
1157 static inline int default_protocol_dgram(int protocol)
1158 {
1159 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1160 }
1161
1162 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1163 {
1164 switch (family) {
1165 case PF_UNIX:
1166 switch (type) {
1167 case SOCK_STREAM:
1168 case SOCK_SEQPACKET:
1169 return SECCLASS_UNIX_STREAM_SOCKET;
1170 case SOCK_DGRAM:
1171 return SECCLASS_UNIX_DGRAM_SOCKET;
1172 }
1173 break;
1174 case PF_INET:
1175 case PF_INET6:
1176 switch (type) {
1177 case SOCK_STREAM:
1178 if (default_protocol_stream(protocol))
1179 return SECCLASS_TCP_SOCKET;
1180 else
1181 return SECCLASS_RAWIP_SOCKET;
1182 case SOCK_DGRAM:
1183 if (default_protocol_dgram(protocol))
1184 return SECCLASS_UDP_SOCKET;
1185 else
1186 return SECCLASS_RAWIP_SOCKET;
1187 case SOCK_DCCP:
1188 return SECCLASS_DCCP_SOCKET;
1189 default:
1190 return SECCLASS_RAWIP_SOCKET;
1191 }
1192 break;
1193 case PF_NETLINK:
1194 switch (protocol) {
1195 case NETLINK_ROUTE:
1196 return SECCLASS_NETLINK_ROUTE_SOCKET;
1197 case NETLINK_SOCK_DIAG:
1198 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1199 case NETLINK_NFLOG:
1200 return SECCLASS_NETLINK_NFLOG_SOCKET;
1201 case NETLINK_XFRM:
1202 return SECCLASS_NETLINK_XFRM_SOCKET;
1203 case NETLINK_SELINUX:
1204 return SECCLASS_NETLINK_SELINUX_SOCKET;
1205 case NETLINK_ISCSI:
1206 return SECCLASS_NETLINK_ISCSI_SOCKET;
1207 case NETLINK_AUDIT:
1208 return SECCLASS_NETLINK_AUDIT_SOCKET;
1209 case NETLINK_FIB_LOOKUP:
1210 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1211 case NETLINK_CONNECTOR:
1212 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1213 case NETLINK_NETFILTER:
1214 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1215 case NETLINK_DNRTMSG:
1216 return SECCLASS_NETLINK_DNRT_SOCKET;
1217 case NETLINK_KOBJECT_UEVENT:
1218 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1219 case NETLINK_GENERIC:
1220 return SECCLASS_NETLINK_GENERIC_SOCKET;
1221 case NETLINK_SCSITRANSPORT:
1222 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1223 case NETLINK_RDMA:
1224 return SECCLASS_NETLINK_RDMA_SOCKET;
1225 case NETLINK_CRYPTO:
1226 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1227 default:
1228 return SECCLASS_NETLINK_SOCKET;
1229 }
1230 case PF_PACKET:
1231 return SECCLASS_PACKET_SOCKET;
1232 case PF_KEY:
1233 return SECCLASS_KEY_SOCKET;
1234 case PF_APPLETALK:
1235 return SECCLASS_APPLETALK_SOCKET;
1236 }
1237
1238 return SECCLASS_SOCKET;
1239 }
1240
1241 static int selinux_genfs_get_sid(struct dentry *dentry,
1242 u16 tclass,
1243 u16 flags,
1244 u32 *sid)
1245 {
1246 int rc;
1247 struct super_block *sb = dentry->d_inode->i_sb;
1248 char *buffer, *path;
1249
1250 buffer = (char *)__get_free_page(GFP_KERNEL);
1251 if (!buffer)
1252 return -ENOMEM;
1253
1254 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1255 if (IS_ERR(path))
1256 rc = PTR_ERR(path);
1257 else {
1258 if (flags & SE_SBPROC) {
1259 /* each process gets a /proc/PID/ entry. Strip off the
1260 * PID part to get a valid selinux labeling.
1261 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1262 while (path[1] >= '0' && path[1] <= '9') {
1263 path[1] = '/';
1264 path++;
1265 }
1266 }
1267 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1268 }
1269 free_page((unsigned long)buffer);
1270 return rc;
1271 }
1272
1273 /* The inode's security attributes must be initialized before first use. */
1274 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1275 {
1276 struct superblock_security_struct *sbsec = NULL;
1277 struct inode_security_struct *isec = inode->i_security;
1278 u32 sid;
1279 struct dentry *dentry;
1280 #define INITCONTEXTLEN 255
1281 char *context = NULL;
1282 unsigned len = 0;
1283 int rc = 0;
1284
1285 if (isec->initialized)
1286 goto out;
1287
1288 mutex_lock(&isec->lock);
1289 if (isec->initialized)
1290 goto out_unlock;
1291
1292 sbsec = inode->i_sb->s_security;
1293 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1294 /* Defer initialization until selinux_complete_init,
1295 after the initial policy is loaded and the security
1296 server is ready to handle calls. */
1297 spin_lock(&sbsec->isec_lock);
1298 if (list_empty(&isec->list))
1299 list_add(&isec->list, &sbsec->isec_head);
1300 spin_unlock(&sbsec->isec_lock);
1301 goto out_unlock;
1302 }
1303
1304 switch (sbsec->behavior) {
1305 case SECURITY_FS_USE_NATIVE:
1306 break;
1307 case SECURITY_FS_USE_XATTR:
1308 if (!inode->i_op->getxattr) {
1309 isec->sid = sbsec->def_sid;
1310 break;
1311 }
1312
1313 /* Need a dentry, since the xattr API requires one.
1314 Life would be simpler if we could just pass the inode. */
1315 if (opt_dentry) {
1316 /* Called from d_instantiate or d_splice_alias. */
1317 dentry = dget(opt_dentry);
1318 } else {
1319 /* Called from selinux_complete_init, try to find a dentry. */
1320 dentry = d_find_alias(inode);
1321 }
1322 if (!dentry) {
1323 /*
1324 * this is can be hit on boot when a file is accessed
1325 * before the policy is loaded. When we load policy we
1326 * may find inodes that have no dentry on the
1327 * sbsec->isec_head list. No reason to complain as these
1328 * will get fixed up the next time we go through
1329 * inode_doinit with a dentry, before these inodes could
1330 * be used again by userspace.
1331 */
1332 goto out_unlock;
1333 }
1334
1335 len = INITCONTEXTLEN;
1336 context = kmalloc(len+1, GFP_NOFS);
1337 if (!context) {
1338 rc = -ENOMEM;
1339 dput(dentry);
1340 goto out_unlock;
1341 }
1342 context[len] = '\0';
1343 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1344 context, len);
1345 if (rc == -ERANGE) {
1346 kfree(context);
1347
1348 /* Need a larger buffer. Query for the right size. */
1349 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1350 NULL, 0);
1351 if (rc < 0) {
1352 dput(dentry);
1353 goto out_unlock;
1354 }
1355 len = rc;
1356 context = kmalloc(len+1, GFP_NOFS);
1357 if (!context) {
1358 rc = -ENOMEM;
1359 dput(dentry);
1360 goto out_unlock;
1361 }
1362 context[len] = '\0';
1363 rc = inode->i_op->getxattr(dentry,
1364 XATTR_NAME_SELINUX,
1365 context, len);
1366 }
1367 dput(dentry);
1368 if (rc < 0) {
1369 if (rc != -ENODATA) {
1370 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1371 "%d for dev=%s ino=%ld\n", __func__,
1372 -rc, inode->i_sb->s_id, inode->i_ino);
1373 kfree(context);
1374 goto out_unlock;
1375 }
1376 /* Map ENODATA to the default file SID */
1377 sid = sbsec->def_sid;
1378 rc = 0;
1379 } else {
1380 rc = security_context_to_sid_default(context, rc, &sid,
1381 sbsec->def_sid,
1382 GFP_NOFS);
1383 if (rc) {
1384 char *dev = inode->i_sb->s_id;
1385 unsigned long ino = inode->i_ino;
1386
1387 if (rc == -EINVAL) {
1388 if (printk_ratelimit())
1389 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1390 "context=%s. This indicates you may need to relabel the inode or the "
1391 "filesystem in question.\n", ino, dev, context);
1392 } else {
1393 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1394 "returned %d for dev=%s ino=%ld\n",
1395 __func__, context, -rc, dev, ino);
1396 }
1397 kfree(context);
1398 /* Leave with the unlabeled SID */
1399 rc = 0;
1400 break;
1401 }
1402 }
1403 kfree(context);
1404 isec->sid = sid;
1405 break;
1406 case SECURITY_FS_USE_TASK:
1407 isec->sid = isec->task_sid;
1408 break;
1409 case SECURITY_FS_USE_TRANS:
1410 /* Default to the fs SID. */
1411 isec->sid = sbsec->sid;
1412
1413 /* Try to obtain a transition SID. */
1414 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1415 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1416 isec->sclass, NULL, &sid);
1417 if (rc)
1418 goto out_unlock;
1419 isec->sid = sid;
1420 break;
1421 case SECURITY_FS_USE_MNTPOINT:
1422 isec->sid = sbsec->mntpoint_sid;
1423 break;
1424 default:
1425 /* Default to the fs superblock SID. */
1426 isec->sid = sbsec->sid;
1427
1428 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1429 /* We must have a dentry to determine the label on
1430 * procfs inodes */
1431 if (opt_dentry)
1432 /* Called from d_instantiate or
1433 * d_splice_alias. */
1434 dentry = dget(opt_dentry);
1435 else
1436 /* Called from selinux_complete_init, try to
1437 * find a dentry. */
1438 dentry = d_find_alias(inode);
1439 /*
1440 * This can be hit on boot when a file is accessed
1441 * before the policy is loaded. When we load policy we
1442 * may find inodes that have no dentry on the
1443 * sbsec->isec_head list. No reason to complain as
1444 * these will get fixed up the next time we go through
1445 * inode_doinit() with a dentry, before these inodes
1446 * could be used again by userspace.
1447 */
1448 if (!dentry)
1449 goto out_unlock;
1450 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1451 rc = selinux_genfs_get_sid(dentry, isec->sclass,
1452 sbsec->flags, &sid);
1453 dput(dentry);
1454 if (rc)
1455 goto out_unlock;
1456 isec->sid = sid;
1457 }
1458 break;
1459 }
1460
1461 isec->initialized = 1;
1462
1463 out_unlock:
1464 mutex_unlock(&isec->lock);
1465 out:
1466 if (isec->sclass == SECCLASS_FILE)
1467 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1468 return rc;
1469 }
1470
1471 /* Convert a Linux signal to an access vector. */
1472 static inline u32 signal_to_av(int sig)
1473 {
1474 u32 perm = 0;
1475
1476 switch (sig) {
1477 case SIGCHLD:
1478 /* Commonly granted from child to parent. */
1479 perm = PROCESS__SIGCHLD;
1480 break;
1481 case SIGKILL:
1482 /* Cannot be caught or ignored */
1483 perm = PROCESS__SIGKILL;
1484 break;
1485 case SIGSTOP:
1486 /* Cannot be caught or ignored */
1487 perm = PROCESS__SIGSTOP;
1488 break;
1489 default:
1490 /* All other signals. */
1491 perm = PROCESS__SIGNAL;
1492 break;
1493 }
1494
1495 return perm;
1496 }
1497
1498 /*
1499 * Check permission between a pair of credentials
1500 * fork check, ptrace check, etc.
1501 */
1502 static int cred_has_perm(const struct cred *actor,
1503 const struct cred *target,
1504 u32 perms)
1505 {
1506 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1507
1508 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1509 }
1510
1511 /*
1512 * Check permission between a pair of tasks, e.g. signal checks,
1513 * fork check, ptrace check, etc.
1514 * tsk1 is the actor and tsk2 is the target
1515 * - this uses the default subjective creds of tsk1
1516 */
1517 static int task_has_perm(const struct task_struct *tsk1,
1518 const struct task_struct *tsk2,
1519 u32 perms)
1520 {
1521 const struct task_security_struct *__tsec1, *__tsec2;
1522 u32 sid1, sid2;
1523
1524 rcu_read_lock();
1525 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1526 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1527 rcu_read_unlock();
1528 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1529 }
1530
1531 /*
1532 * Check permission between current and another task, e.g. signal checks,
1533 * fork check, ptrace check, etc.
1534 * current is the actor and tsk2 is the target
1535 * - this uses current's subjective creds
1536 */
1537 static int current_has_perm(const struct task_struct *tsk,
1538 u32 perms)
1539 {
1540 u32 sid, tsid;
1541
1542 sid = current_sid();
1543 tsid = task_sid(tsk);
1544 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1545 }
1546
1547 #if CAP_LAST_CAP > 63
1548 #error Fix SELinux to handle capabilities > 63.
1549 #endif
1550
1551 /* Check whether a task is allowed to use a capability. */
1552 static int cred_has_capability(const struct cred *cred,
1553 int cap, int audit)
1554 {
1555 struct common_audit_data ad;
1556 struct av_decision avd;
1557 u16 sclass;
1558 u32 sid = cred_sid(cred);
1559 u32 av = CAP_TO_MASK(cap);
1560 int rc;
1561
1562 ad.type = LSM_AUDIT_DATA_CAP;
1563 ad.u.cap = cap;
1564
1565 switch (CAP_TO_INDEX(cap)) {
1566 case 0:
1567 sclass = SECCLASS_CAPABILITY;
1568 break;
1569 case 1:
1570 sclass = SECCLASS_CAPABILITY2;
1571 break;
1572 default:
1573 printk(KERN_ERR
1574 "SELinux: out of range capability %d\n", cap);
1575 BUG();
1576 return -EINVAL;
1577 }
1578
1579 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1580 if (audit == SECURITY_CAP_AUDIT) {
1581 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1582 if (rc2)
1583 return rc2;
1584 }
1585 return rc;
1586 }
1587
1588 /* Check whether a task is allowed to use a system operation. */
1589 static int task_has_system(struct task_struct *tsk,
1590 u32 perms)
1591 {
1592 u32 sid = task_sid(tsk);
1593
1594 return avc_has_perm(sid, SECINITSID_KERNEL,
1595 SECCLASS_SYSTEM, perms, NULL);
1596 }
1597
1598 /* Check whether a task has a particular permission to an inode.
1599 The 'adp' parameter is optional and allows other audit
1600 data to be passed (e.g. the dentry). */
1601 static int inode_has_perm(const struct cred *cred,
1602 struct inode *inode,
1603 u32 perms,
1604 struct common_audit_data *adp)
1605 {
1606 struct inode_security_struct *isec;
1607 u32 sid;
1608
1609 validate_creds(cred);
1610
1611 if (unlikely(IS_PRIVATE(inode)))
1612 return 0;
1613
1614 sid = cred_sid(cred);
1615 isec = inode->i_security;
1616
1617 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1618 }
1619
1620 /* Same as inode_has_perm, but pass explicit audit data containing
1621 the dentry to help the auditing code to more easily generate the
1622 pathname if needed. */
1623 static inline int dentry_has_perm(const struct cred *cred,
1624 struct dentry *dentry,
1625 u32 av)
1626 {
1627 struct inode *inode = d_backing_inode(dentry);
1628 struct common_audit_data ad;
1629
1630 ad.type = LSM_AUDIT_DATA_DENTRY;
1631 ad.u.dentry = dentry;
1632 return inode_has_perm(cred, inode, av, &ad);
1633 }
1634
1635 /* Same as inode_has_perm, but pass explicit audit data containing
1636 the path to help the auditing code to more easily generate the
1637 pathname if needed. */
1638 static inline int path_has_perm(const struct cred *cred,
1639 const struct path *path,
1640 u32 av)
1641 {
1642 struct inode *inode = d_backing_inode(path->dentry);
1643 struct common_audit_data ad;
1644
1645 ad.type = LSM_AUDIT_DATA_PATH;
1646 ad.u.path = *path;
1647 return inode_has_perm(cred, inode, av, &ad);
1648 }
1649
1650 /* Same as path_has_perm, but uses the inode from the file struct. */
1651 static inline int file_path_has_perm(const struct cred *cred,
1652 struct file *file,
1653 u32 av)
1654 {
1655 struct common_audit_data ad;
1656
1657 ad.type = LSM_AUDIT_DATA_PATH;
1658 ad.u.path = file->f_path;
1659 return inode_has_perm(cred, file_inode(file), av, &ad);
1660 }
1661
1662 /* Check whether a task can use an open file descriptor to
1663 access an inode in a given way. Check access to the
1664 descriptor itself, and then use dentry_has_perm to
1665 check a particular permission to the file.
1666 Access to the descriptor is implicitly granted if it
1667 has the same SID as the process. If av is zero, then
1668 access to the file is not checked, e.g. for cases
1669 where only the descriptor is affected like seek. */
1670 static int file_has_perm(const struct cred *cred,
1671 struct file *file,
1672 u32 av)
1673 {
1674 struct file_security_struct *fsec = file->f_security;
1675 struct inode *inode = file_inode(file);
1676 struct common_audit_data ad;
1677 u32 sid = cred_sid(cred);
1678 int rc;
1679
1680 ad.type = LSM_AUDIT_DATA_PATH;
1681 ad.u.path = file->f_path;
1682
1683 if (sid != fsec->sid) {
1684 rc = avc_has_perm(sid, fsec->sid,
1685 SECCLASS_FD,
1686 FD__USE,
1687 &ad);
1688 if (rc)
1689 goto out;
1690 }
1691
1692 /* av is zero if only checking access to the descriptor. */
1693 rc = 0;
1694 if (av)
1695 rc = inode_has_perm(cred, inode, av, &ad);
1696
1697 out:
1698 return rc;
1699 }
1700
1701 /* Check whether a task can create a file. */
1702 static int may_create(struct inode *dir,
1703 struct dentry *dentry,
1704 u16 tclass)
1705 {
1706 const struct task_security_struct *tsec = current_security();
1707 struct inode_security_struct *dsec;
1708 struct superblock_security_struct *sbsec;
1709 u32 sid, newsid;
1710 struct common_audit_data ad;
1711 int rc;
1712
1713 dsec = dir->i_security;
1714 sbsec = dir->i_sb->s_security;
1715
1716 sid = tsec->sid;
1717 newsid = tsec->create_sid;
1718
1719 ad.type = LSM_AUDIT_DATA_DENTRY;
1720 ad.u.dentry = dentry;
1721
1722 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1723 DIR__ADD_NAME | DIR__SEARCH,
1724 &ad);
1725 if (rc)
1726 return rc;
1727
1728 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1729 rc = security_transition_sid(sid, dsec->sid, tclass,
1730 &dentry->d_name, &newsid);
1731 if (rc)
1732 return rc;
1733 }
1734
1735 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1736 if (rc)
1737 return rc;
1738
1739 return avc_has_perm(newsid, sbsec->sid,
1740 SECCLASS_FILESYSTEM,
1741 FILESYSTEM__ASSOCIATE, &ad);
1742 }
1743
1744 /* Check whether a task can create a key. */
1745 static int may_create_key(u32 ksid,
1746 struct task_struct *ctx)
1747 {
1748 u32 sid = task_sid(ctx);
1749
1750 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1751 }
1752
1753 #define MAY_LINK 0
1754 #define MAY_UNLINK 1
1755 #define MAY_RMDIR 2
1756
1757 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1758 static int may_link(struct inode *dir,
1759 struct dentry *dentry,
1760 int kind)
1761
1762 {
1763 struct inode_security_struct *dsec, *isec;
1764 struct common_audit_data ad;
1765 u32 sid = current_sid();
1766 u32 av;
1767 int rc;
1768
1769 dsec = dir->i_security;
1770 isec = d_backing_inode(dentry)->i_security;
1771
1772 ad.type = LSM_AUDIT_DATA_DENTRY;
1773 ad.u.dentry = dentry;
1774
1775 av = DIR__SEARCH;
1776 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1777 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1778 if (rc)
1779 return rc;
1780
1781 switch (kind) {
1782 case MAY_LINK:
1783 av = FILE__LINK;
1784 break;
1785 case MAY_UNLINK:
1786 av = FILE__UNLINK;
1787 break;
1788 case MAY_RMDIR:
1789 av = DIR__RMDIR;
1790 break;
1791 default:
1792 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1793 __func__, kind);
1794 return 0;
1795 }
1796
1797 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1798 return rc;
1799 }
1800
1801 static inline int may_rename(struct inode *old_dir,
1802 struct dentry *old_dentry,
1803 struct inode *new_dir,
1804 struct dentry *new_dentry)
1805 {
1806 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1807 struct common_audit_data ad;
1808 u32 sid = current_sid();
1809 u32 av;
1810 int old_is_dir, new_is_dir;
1811 int rc;
1812
1813 old_dsec = old_dir->i_security;
1814 old_isec = d_backing_inode(old_dentry)->i_security;
1815 old_is_dir = d_is_dir(old_dentry);
1816 new_dsec = new_dir->i_security;
1817
1818 ad.type = LSM_AUDIT_DATA_DENTRY;
1819
1820 ad.u.dentry = old_dentry;
1821 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1822 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1823 if (rc)
1824 return rc;
1825 rc = avc_has_perm(sid, old_isec->sid,
1826 old_isec->sclass, FILE__RENAME, &ad);
1827 if (rc)
1828 return rc;
1829 if (old_is_dir && new_dir != old_dir) {
1830 rc = avc_has_perm(sid, old_isec->sid,
1831 old_isec->sclass, DIR__REPARENT, &ad);
1832 if (rc)
1833 return rc;
1834 }
1835
1836 ad.u.dentry = new_dentry;
1837 av = DIR__ADD_NAME | DIR__SEARCH;
1838 if (d_is_positive(new_dentry))
1839 av |= DIR__REMOVE_NAME;
1840 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1841 if (rc)
1842 return rc;
1843 if (d_is_positive(new_dentry)) {
1844 new_isec = d_backing_inode(new_dentry)->i_security;
1845 new_is_dir = d_is_dir(new_dentry);
1846 rc = avc_has_perm(sid, new_isec->sid,
1847 new_isec->sclass,
1848 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1849 if (rc)
1850 return rc;
1851 }
1852
1853 return 0;
1854 }
1855
1856 /* Check whether a task can perform a filesystem operation. */
1857 static int superblock_has_perm(const struct cred *cred,
1858 struct super_block *sb,
1859 u32 perms,
1860 struct common_audit_data *ad)
1861 {
1862 struct superblock_security_struct *sbsec;
1863 u32 sid = cred_sid(cred);
1864
1865 sbsec = sb->s_security;
1866 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1867 }
1868
1869 /* Convert a Linux mode and permission mask to an access vector. */
1870 static inline u32 file_mask_to_av(int mode, int mask)
1871 {
1872 u32 av = 0;
1873
1874 if (!S_ISDIR(mode)) {
1875 if (mask & MAY_EXEC)
1876 av |= FILE__EXECUTE;
1877 if (mask & MAY_READ)
1878 av |= FILE__READ;
1879
1880 if (mask & MAY_APPEND)
1881 av |= FILE__APPEND;
1882 else if (mask & MAY_WRITE)
1883 av |= FILE__WRITE;
1884
1885 } else {
1886 if (mask & MAY_EXEC)
1887 av |= DIR__SEARCH;
1888 if (mask & MAY_WRITE)
1889 av |= DIR__WRITE;
1890 if (mask & MAY_READ)
1891 av |= DIR__READ;
1892 }
1893
1894 return av;
1895 }
1896
1897 /* Convert a Linux file to an access vector. */
1898 static inline u32 file_to_av(struct file *file)
1899 {
1900 u32 av = 0;
1901
1902 if (file->f_mode & FMODE_READ)
1903 av |= FILE__READ;
1904 if (file->f_mode & FMODE_WRITE) {
1905 if (file->f_flags & O_APPEND)
1906 av |= FILE__APPEND;
1907 else
1908 av |= FILE__WRITE;
1909 }
1910 if (!av) {
1911 /*
1912 * Special file opened with flags 3 for ioctl-only use.
1913 */
1914 av = FILE__IOCTL;
1915 }
1916
1917 return av;
1918 }
1919
1920 /*
1921 * Convert a file to an access vector and include the correct open
1922 * open permission.
1923 */
1924 static inline u32 open_file_to_av(struct file *file)
1925 {
1926 u32 av = file_to_av(file);
1927
1928 if (selinux_policycap_openperm)
1929 av |= FILE__OPEN;
1930
1931 return av;
1932 }
1933
1934 /* Hook functions begin here. */
1935
1936 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1937 {
1938 u32 mysid = current_sid();
1939 u32 mgrsid = task_sid(mgr);
1940
1941 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
1942 BINDER__SET_CONTEXT_MGR, NULL);
1943 }
1944
1945 static int selinux_binder_transaction(struct task_struct *from,
1946 struct task_struct *to)
1947 {
1948 u32 mysid = current_sid();
1949 u32 fromsid = task_sid(from);
1950 u32 tosid = task_sid(to);
1951 int rc;
1952
1953 if (mysid != fromsid) {
1954 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
1955 BINDER__IMPERSONATE, NULL);
1956 if (rc)
1957 return rc;
1958 }
1959
1960 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
1961 NULL);
1962 }
1963
1964 static int selinux_binder_transfer_binder(struct task_struct *from,
1965 struct task_struct *to)
1966 {
1967 u32 fromsid = task_sid(from);
1968 u32 tosid = task_sid(to);
1969
1970 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
1971 NULL);
1972 }
1973
1974 static int selinux_binder_transfer_file(struct task_struct *from,
1975 struct task_struct *to,
1976 struct file *file)
1977 {
1978 u32 sid = task_sid(to);
1979 struct file_security_struct *fsec = file->f_security;
1980 struct inode *inode = d_backing_inode(file->f_path.dentry);
1981 struct inode_security_struct *isec = inode->i_security;
1982 struct common_audit_data ad;
1983 int rc;
1984
1985 ad.type = LSM_AUDIT_DATA_PATH;
1986 ad.u.path = file->f_path;
1987
1988 if (sid != fsec->sid) {
1989 rc = avc_has_perm(sid, fsec->sid,
1990 SECCLASS_FD,
1991 FD__USE,
1992 &ad);
1993 if (rc)
1994 return rc;
1995 }
1996
1997 if (unlikely(IS_PRIVATE(inode)))
1998 return 0;
1999
2000 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2001 &ad);
2002 }
2003
2004 static int selinux_ptrace_access_check(struct task_struct *child,
2005 unsigned int mode)
2006 {
2007 if (mode & PTRACE_MODE_READ) {
2008 u32 sid = current_sid();
2009 u32 csid = task_sid(child);
2010 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2011 }
2012
2013 return current_has_perm(child, PROCESS__PTRACE);
2014 }
2015
2016 static int selinux_ptrace_traceme(struct task_struct *parent)
2017 {
2018 return task_has_perm(parent, current, PROCESS__PTRACE);
2019 }
2020
2021 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2022 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2023 {
2024 return current_has_perm(target, PROCESS__GETCAP);
2025 }
2026
2027 static int selinux_capset(struct cred *new, const struct cred *old,
2028 const kernel_cap_t *effective,
2029 const kernel_cap_t *inheritable,
2030 const kernel_cap_t *permitted)
2031 {
2032 return cred_has_perm(old, new, PROCESS__SETCAP);
2033 }
2034
2035 /*
2036 * (This comment used to live with the selinux_task_setuid hook,
2037 * which was removed).
2038 *
2039 * Since setuid only affects the current process, and since the SELinux
2040 * controls are not based on the Linux identity attributes, SELinux does not
2041 * need to control this operation. However, SELinux does control the use of
2042 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2043 */
2044
2045 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2046 int cap, int audit)
2047 {
2048 return cred_has_capability(cred, cap, audit);
2049 }
2050
2051 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2052 {
2053 const struct cred *cred = current_cred();
2054 int rc = 0;
2055
2056 if (!sb)
2057 return 0;
2058
2059 switch (cmds) {
2060 case Q_SYNC:
2061 case Q_QUOTAON:
2062 case Q_QUOTAOFF:
2063 case Q_SETINFO:
2064 case Q_SETQUOTA:
2065 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2066 break;
2067 case Q_GETFMT:
2068 case Q_GETINFO:
2069 case Q_GETQUOTA:
2070 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2071 break;
2072 default:
2073 rc = 0; /* let the kernel handle invalid cmds */
2074 break;
2075 }
2076 return rc;
2077 }
2078
2079 static int selinux_quota_on(struct dentry *dentry)
2080 {
2081 const struct cred *cred = current_cred();
2082
2083 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2084 }
2085
2086 static int selinux_syslog(int type)
2087 {
2088 int rc;
2089
2090 switch (type) {
2091 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2092 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2093 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2094 break;
2095 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2096 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2097 /* Set level of messages printed to console */
2098 case SYSLOG_ACTION_CONSOLE_LEVEL:
2099 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2100 break;
2101 case SYSLOG_ACTION_CLOSE: /* Close log */
2102 case SYSLOG_ACTION_OPEN: /* Open log */
2103 case SYSLOG_ACTION_READ: /* Read from log */
2104 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2105 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2106 default:
2107 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2108 break;
2109 }
2110 return rc;
2111 }
2112
2113 /*
2114 * Check that a process has enough memory to allocate a new virtual
2115 * mapping. 0 means there is enough memory for the allocation to
2116 * succeed and -ENOMEM implies there is not.
2117 *
2118 * Do not audit the selinux permission check, as this is applied to all
2119 * processes that allocate mappings.
2120 */
2121 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2122 {
2123 int rc, cap_sys_admin = 0;
2124
2125 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2126 SECURITY_CAP_NOAUDIT);
2127 if (rc == 0)
2128 cap_sys_admin = 1;
2129
2130 return cap_sys_admin;
2131 }
2132
2133 /* binprm security operations */
2134
2135 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2136 const struct task_security_struct *old_tsec,
2137 const struct task_security_struct *new_tsec)
2138 {
2139 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2140 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2141 int rc;
2142
2143 if (!nnp && !nosuid)
2144 return 0; /* neither NNP nor nosuid */
2145
2146 if (new_tsec->sid == old_tsec->sid)
2147 return 0; /* No change in credentials */
2148
2149 /*
2150 * The only transitions we permit under NNP or nosuid
2151 * are transitions to bounded SIDs, i.e. SIDs that are
2152 * guaranteed to only be allowed a subset of the permissions
2153 * of the current SID.
2154 */
2155 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2156 if (rc) {
2157 /*
2158 * On failure, preserve the errno values for NNP vs nosuid.
2159 * NNP: Operation not permitted for caller.
2160 * nosuid: Permission denied to file.
2161 */
2162 if (nnp)
2163 return -EPERM;
2164 else
2165 return -EACCES;
2166 }
2167 return 0;
2168 }
2169
2170 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2171 {
2172 const struct task_security_struct *old_tsec;
2173 struct task_security_struct *new_tsec;
2174 struct inode_security_struct *isec;
2175 struct common_audit_data ad;
2176 struct inode *inode = file_inode(bprm->file);
2177 int rc;
2178
2179 /* SELinux context only depends on initial program or script and not
2180 * the script interpreter */
2181 if (bprm->cred_prepared)
2182 return 0;
2183
2184 old_tsec = current_security();
2185 new_tsec = bprm->cred->security;
2186 isec = inode->i_security;
2187
2188 /* Default to the current task SID. */
2189 new_tsec->sid = old_tsec->sid;
2190 new_tsec->osid = old_tsec->sid;
2191
2192 /* Reset fs, key, and sock SIDs on execve. */
2193 new_tsec->create_sid = 0;
2194 new_tsec->keycreate_sid = 0;
2195 new_tsec->sockcreate_sid = 0;
2196
2197 if (old_tsec->exec_sid) {
2198 new_tsec->sid = old_tsec->exec_sid;
2199 /* Reset exec SID on execve. */
2200 new_tsec->exec_sid = 0;
2201
2202 /* Fail on NNP or nosuid if not an allowed transition. */
2203 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2204 if (rc)
2205 return rc;
2206 } else {
2207 /* Check for a default transition on this program. */
2208 rc = security_transition_sid(old_tsec->sid, isec->sid,
2209 SECCLASS_PROCESS, NULL,
2210 &new_tsec->sid);
2211 if (rc)
2212 return rc;
2213
2214 /*
2215 * Fallback to old SID on NNP or nosuid if not an allowed
2216 * transition.
2217 */
2218 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2219 if (rc)
2220 new_tsec->sid = old_tsec->sid;
2221 }
2222
2223 ad.type = LSM_AUDIT_DATA_PATH;
2224 ad.u.path = bprm->file->f_path;
2225
2226 if (new_tsec->sid == old_tsec->sid) {
2227 rc = avc_has_perm(old_tsec->sid, isec->sid,
2228 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2229 if (rc)
2230 return rc;
2231 } else {
2232 /* Check permissions for the transition. */
2233 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2234 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2235 if (rc)
2236 return rc;
2237
2238 rc = avc_has_perm(new_tsec->sid, isec->sid,
2239 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2240 if (rc)
2241 return rc;
2242
2243 /* Check for shared state */
2244 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2245 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2246 SECCLASS_PROCESS, PROCESS__SHARE,
2247 NULL);
2248 if (rc)
2249 return -EPERM;
2250 }
2251
2252 /* Make sure that anyone attempting to ptrace over a task that
2253 * changes its SID has the appropriate permit */
2254 if (bprm->unsafe &
2255 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2256 struct task_struct *tracer;
2257 struct task_security_struct *sec;
2258 u32 ptsid = 0;
2259
2260 rcu_read_lock();
2261 tracer = ptrace_parent(current);
2262 if (likely(tracer != NULL)) {
2263 sec = __task_cred(tracer)->security;
2264 ptsid = sec->sid;
2265 }
2266 rcu_read_unlock();
2267
2268 if (ptsid != 0) {
2269 rc = avc_has_perm(ptsid, new_tsec->sid,
2270 SECCLASS_PROCESS,
2271 PROCESS__PTRACE, NULL);
2272 if (rc)
2273 return -EPERM;
2274 }
2275 }
2276
2277 /* Clear any possibly unsafe personality bits on exec: */
2278 bprm->per_clear |= PER_CLEAR_ON_SETID;
2279 }
2280
2281 return 0;
2282 }
2283
2284 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2285 {
2286 const struct task_security_struct *tsec = current_security();
2287 u32 sid, osid;
2288 int atsecure = 0;
2289
2290 sid = tsec->sid;
2291 osid = tsec->osid;
2292
2293 if (osid != sid) {
2294 /* Enable secure mode for SIDs transitions unless
2295 the noatsecure permission is granted between
2296 the two SIDs, i.e. ahp returns 0. */
2297 atsecure = avc_has_perm(osid, sid,
2298 SECCLASS_PROCESS,
2299 PROCESS__NOATSECURE, NULL);
2300 }
2301
2302 return !!atsecure;
2303 }
2304
2305 static int match_file(const void *p, struct file *file, unsigned fd)
2306 {
2307 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2308 }
2309
2310 /* Derived from fs/exec.c:flush_old_files. */
2311 static inline void flush_unauthorized_files(const struct cred *cred,
2312 struct files_struct *files)
2313 {
2314 struct file *file, *devnull = NULL;
2315 struct tty_struct *tty;
2316 int drop_tty = 0;
2317 unsigned n;
2318
2319 tty = get_current_tty();
2320 if (tty) {
2321 spin_lock(&tty_files_lock);
2322 if (!list_empty(&tty->tty_files)) {
2323 struct tty_file_private *file_priv;
2324
2325 /* Revalidate access to controlling tty.
2326 Use file_path_has_perm on the tty path directly
2327 rather than using file_has_perm, as this particular
2328 open file may belong to another process and we are
2329 only interested in the inode-based check here. */
2330 file_priv = list_first_entry(&tty->tty_files,
2331 struct tty_file_private, list);
2332 file = file_priv->file;
2333 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2334 drop_tty = 1;
2335 }
2336 spin_unlock(&tty_files_lock);
2337 tty_kref_put(tty);
2338 }
2339 /* Reset controlling tty. */
2340 if (drop_tty)
2341 no_tty();
2342
2343 /* Revalidate access to inherited open files. */
2344 n = iterate_fd(files, 0, match_file, cred);
2345 if (!n) /* none found? */
2346 return;
2347
2348 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2349 if (IS_ERR(devnull))
2350 devnull = NULL;
2351 /* replace all the matching ones with this */
2352 do {
2353 replace_fd(n - 1, devnull, 0);
2354 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2355 if (devnull)
2356 fput(devnull);
2357 }
2358
2359 /*
2360 * Prepare a process for imminent new credential changes due to exec
2361 */
2362 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2363 {
2364 struct task_security_struct *new_tsec;
2365 struct rlimit *rlim, *initrlim;
2366 int rc, i;
2367
2368 new_tsec = bprm->cred->security;
2369 if (new_tsec->sid == new_tsec->osid)
2370 return;
2371
2372 /* Close files for which the new task SID is not authorized. */
2373 flush_unauthorized_files(bprm->cred, current->files);
2374
2375 /* Always clear parent death signal on SID transitions. */
2376 current->pdeath_signal = 0;
2377
2378 /* Check whether the new SID can inherit resource limits from the old
2379 * SID. If not, reset all soft limits to the lower of the current
2380 * task's hard limit and the init task's soft limit.
2381 *
2382 * Note that the setting of hard limits (even to lower them) can be
2383 * controlled by the setrlimit check. The inclusion of the init task's
2384 * soft limit into the computation is to avoid resetting soft limits
2385 * higher than the default soft limit for cases where the default is
2386 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2387 */
2388 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2389 PROCESS__RLIMITINH, NULL);
2390 if (rc) {
2391 /* protect against do_prlimit() */
2392 task_lock(current);
2393 for (i = 0; i < RLIM_NLIMITS; i++) {
2394 rlim = current->signal->rlim + i;
2395 initrlim = init_task.signal->rlim + i;
2396 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2397 }
2398 task_unlock(current);
2399 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2400 }
2401 }
2402
2403 /*
2404 * Clean up the process immediately after the installation of new credentials
2405 * due to exec
2406 */
2407 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2408 {
2409 const struct task_security_struct *tsec = current_security();
2410 struct itimerval itimer;
2411 u32 osid, sid;
2412 int rc, i;
2413
2414 osid = tsec->osid;
2415 sid = tsec->sid;
2416
2417 if (sid == osid)
2418 return;
2419
2420 /* Check whether the new SID can inherit signal state from the old SID.
2421 * If not, clear itimers to avoid subsequent signal generation and
2422 * flush and unblock signals.
2423 *
2424 * This must occur _after_ the task SID has been updated so that any
2425 * kill done after the flush will be checked against the new SID.
2426 */
2427 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2428 if (rc) {
2429 memset(&itimer, 0, sizeof itimer);
2430 for (i = 0; i < 3; i++)
2431 do_setitimer(i, &itimer, NULL);
2432 spin_lock_irq(&current->sighand->siglock);
2433 if (!fatal_signal_pending(current)) {
2434 flush_sigqueue(&current->pending);
2435 flush_sigqueue(&current->signal->shared_pending);
2436 flush_signal_handlers(current, 1);
2437 sigemptyset(&current->blocked);
2438 recalc_sigpending();
2439 }
2440 spin_unlock_irq(&current->sighand->siglock);
2441 }
2442
2443 /* Wake up the parent if it is waiting so that it can recheck
2444 * wait permission to the new task SID. */
2445 read_lock(&tasklist_lock);
2446 __wake_up_parent(current, current->real_parent);
2447 read_unlock(&tasklist_lock);
2448 }
2449
2450 /* superblock security operations */
2451
2452 static int selinux_sb_alloc_security(struct super_block *sb)
2453 {
2454 return superblock_alloc_security(sb);
2455 }
2456
2457 static void selinux_sb_free_security(struct super_block *sb)
2458 {
2459 superblock_free_security(sb);
2460 }
2461
2462 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2463 {
2464 if (plen > olen)
2465 return 0;
2466
2467 return !memcmp(prefix, option, plen);
2468 }
2469
2470 static inline int selinux_option(char *option, int len)
2471 {
2472 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2473 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2474 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2475 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2476 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2477 }
2478
2479 static inline void take_option(char **to, char *from, int *first, int len)
2480 {
2481 if (!*first) {
2482 **to = ',';
2483 *to += 1;
2484 } else
2485 *first = 0;
2486 memcpy(*to, from, len);
2487 *to += len;
2488 }
2489
2490 static inline void take_selinux_option(char **to, char *from, int *first,
2491 int len)
2492 {
2493 int current_size = 0;
2494
2495 if (!*first) {
2496 **to = '|';
2497 *to += 1;
2498 } else
2499 *first = 0;
2500
2501 while (current_size < len) {
2502 if (*from != '"') {
2503 **to = *from;
2504 *to += 1;
2505 }
2506 from += 1;
2507 current_size += 1;
2508 }
2509 }
2510
2511 static int selinux_sb_copy_data(char *orig, char *copy)
2512 {
2513 int fnosec, fsec, rc = 0;
2514 char *in_save, *in_curr, *in_end;
2515 char *sec_curr, *nosec_save, *nosec;
2516 int open_quote = 0;
2517
2518 in_curr = orig;
2519 sec_curr = copy;
2520
2521 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2522 if (!nosec) {
2523 rc = -ENOMEM;
2524 goto out;
2525 }
2526
2527 nosec_save = nosec;
2528 fnosec = fsec = 1;
2529 in_save = in_end = orig;
2530
2531 do {
2532 if (*in_end == '"')
2533 open_quote = !open_quote;
2534 if ((*in_end == ',' && open_quote == 0) ||
2535 *in_end == '\0') {
2536 int len = in_end - in_curr;
2537
2538 if (selinux_option(in_curr, len))
2539 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2540 else
2541 take_option(&nosec, in_curr, &fnosec, len);
2542
2543 in_curr = in_end + 1;
2544 }
2545 } while (*in_end++);
2546
2547 strcpy(in_save, nosec_save);
2548 free_page((unsigned long)nosec_save);
2549 out:
2550 return rc;
2551 }
2552
2553 static int selinux_sb_remount(struct super_block *sb, void *data)
2554 {
2555 int rc, i, *flags;
2556 struct security_mnt_opts opts;
2557 char *secdata, **mount_options;
2558 struct superblock_security_struct *sbsec = sb->s_security;
2559
2560 if (!(sbsec->flags & SE_SBINITIALIZED))
2561 return 0;
2562
2563 if (!data)
2564 return 0;
2565
2566 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2567 return 0;
2568
2569 security_init_mnt_opts(&opts);
2570 secdata = alloc_secdata();
2571 if (!secdata)
2572 return -ENOMEM;
2573 rc = selinux_sb_copy_data(data, secdata);
2574 if (rc)
2575 goto out_free_secdata;
2576
2577 rc = selinux_parse_opts_str(secdata, &opts);
2578 if (rc)
2579 goto out_free_secdata;
2580
2581 mount_options = opts.mnt_opts;
2582 flags = opts.mnt_opts_flags;
2583
2584 for (i = 0; i < opts.num_mnt_opts; i++) {
2585 u32 sid;
2586 size_t len;
2587
2588 if (flags[i] == SBLABEL_MNT)
2589 continue;
2590 len = strlen(mount_options[i]);
2591 rc = security_context_to_sid(mount_options[i], len, &sid,
2592 GFP_KERNEL);
2593 if (rc) {
2594 printk(KERN_WARNING "SELinux: security_context_to_sid"
2595 "(%s) failed for (dev %s, type %s) errno=%d\n",
2596 mount_options[i], sb->s_id, sb->s_type->name, rc);
2597 goto out_free_opts;
2598 }
2599 rc = -EINVAL;
2600 switch (flags[i]) {
2601 case FSCONTEXT_MNT:
2602 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2603 goto out_bad_option;
2604 break;
2605 case CONTEXT_MNT:
2606 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2607 goto out_bad_option;
2608 break;
2609 case ROOTCONTEXT_MNT: {
2610 struct inode_security_struct *root_isec;
2611 root_isec = d_backing_inode(sb->s_root)->i_security;
2612
2613 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2614 goto out_bad_option;
2615 break;
2616 }
2617 case DEFCONTEXT_MNT:
2618 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2619 goto out_bad_option;
2620 break;
2621 default:
2622 goto out_free_opts;
2623 }
2624 }
2625
2626 rc = 0;
2627 out_free_opts:
2628 security_free_mnt_opts(&opts);
2629 out_free_secdata:
2630 free_secdata(secdata);
2631 return rc;
2632 out_bad_option:
2633 printk(KERN_WARNING "SELinux: unable to change security options "
2634 "during remount (dev %s, type=%s)\n", sb->s_id,
2635 sb->s_type->name);
2636 goto out_free_opts;
2637 }
2638
2639 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2640 {
2641 const struct cred *cred = current_cred();
2642 struct common_audit_data ad;
2643 int rc;
2644
2645 rc = superblock_doinit(sb, data);
2646 if (rc)
2647 return rc;
2648
2649 /* Allow all mounts performed by the kernel */
2650 if (flags & MS_KERNMOUNT)
2651 return 0;
2652
2653 ad.type = LSM_AUDIT_DATA_DENTRY;
2654 ad.u.dentry = sb->s_root;
2655 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2656 }
2657
2658 static int selinux_sb_statfs(struct dentry *dentry)
2659 {
2660 const struct cred *cred = current_cred();
2661 struct common_audit_data ad;
2662
2663 ad.type = LSM_AUDIT_DATA_DENTRY;
2664 ad.u.dentry = dentry->d_sb->s_root;
2665 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2666 }
2667
2668 static int selinux_mount(const char *dev_name,
2669 struct path *path,
2670 const char *type,
2671 unsigned long flags,
2672 void *data)
2673 {
2674 const struct cred *cred = current_cred();
2675
2676 if (flags & MS_REMOUNT)
2677 return superblock_has_perm(cred, path->dentry->d_sb,
2678 FILESYSTEM__REMOUNT, NULL);
2679 else
2680 return path_has_perm(cred, path, FILE__MOUNTON);
2681 }
2682
2683 static int selinux_umount(struct vfsmount *mnt, int flags)
2684 {
2685 const struct cred *cred = current_cred();
2686
2687 return superblock_has_perm(cred, mnt->mnt_sb,
2688 FILESYSTEM__UNMOUNT, NULL);
2689 }
2690
2691 /* inode security operations */
2692
2693 static int selinux_inode_alloc_security(struct inode *inode)
2694 {
2695 return inode_alloc_security(inode);
2696 }
2697
2698 static void selinux_inode_free_security(struct inode *inode)
2699 {
2700 inode_free_security(inode);
2701 }
2702
2703 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2704 struct qstr *name, void **ctx,
2705 u32 *ctxlen)
2706 {
2707 const struct cred *cred = current_cred();
2708 struct task_security_struct *tsec;
2709 struct inode_security_struct *dsec;
2710 struct superblock_security_struct *sbsec;
2711 struct inode *dir = d_backing_inode(dentry->d_parent);
2712 u32 newsid;
2713 int rc;
2714
2715 tsec = cred->security;
2716 dsec = dir->i_security;
2717 sbsec = dir->i_sb->s_security;
2718
2719 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2720 newsid = tsec->create_sid;
2721 } else {
2722 rc = security_transition_sid(tsec->sid, dsec->sid,
2723 inode_mode_to_security_class(mode),
2724 name,
2725 &newsid);
2726 if (rc) {
2727 printk(KERN_WARNING
2728 "%s: security_transition_sid failed, rc=%d\n",
2729 __func__, -rc);
2730 return rc;
2731 }
2732 }
2733
2734 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2735 }
2736
2737 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2738 const struct qstr *qstr,
2739 const char **name,
2740 void **value, size_t *len)
2741 {
2742 const struct task_security_struct *tsec = current_security();
2743 struct inode_security_struct *dsec;
2744 struct superblock_security_struct *sbsec;
2745 u32 sid, newsid, clen;
2746 int rc;
2747 char *context;
2748
2749 dsec = dir->i_security;
2750 sbsec = dir->i_sb->s_security;
2751
2752 sid = tsec->sid;
2753 newsid = tsec->create_sid;
2754
2755 if ((sbsec->flags & SE_SBINITIALIZED) &&
2756 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2757 newsid = sbsec->mntpoint_sid;
2758 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2759 rc = security_transition_sid(sid, dsec->sid,
2760 inode_mode_to_security_class(inode->i_mode),
2761 qstr, &newsid);
2762 if (rc) {
2763 printk(KERN_WARNING "%s: "
2764 "security_transition_sid failed, rc=%d (dev=%s "
2765 "ino=%ld)\n",
2766 __func__,
2767 -rc, inode->i_sb->s_id, inode->i_ino);
2768 return rc;
2769 }
2770 }
2771
2772 /* Possibly defer initialization to selinux_complete_init. */
2773 if (sbsec->flags & SE_SBINITIALIZED) {
2774 struct inode_security_struct *isec = inode->i_security;
2775 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2776 isec->sid = newsid;
2777 isec->initialized = 1;
2778 }
2779
2780 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2781 return -EOPNOTSUPP;
2782
2783 if (name)
2784 *name = XATTR_SELINUX_SUFFIX;
2785
2786 if (value && len) {
2787 rc = security_sid_to_context_force(newsid, &context, &clen);
2788 if (rc)
2789 return rc;
2790 *value = context;
2791 *len = clen;
2792 }
2793
2794 return 0;
2795 }
2796
2797 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2798 {
2799 return may_create(dir, dentry, SECCLASS_FILE);
2800 }
2801
2802 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2803 {
2804 return may_link(dir, old_dentry, MAY_LINK);
2805 }
2806
2807 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2808 {
2809 return may_link(dir, dentry, MAY_UNLINK);
2810 }
2811
2812 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2813 {
2814 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2815 }
2816
2817 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2818 {
2819 return may_create(dir, dentry, SECCLASS_DIR);
2820 }
2821
2822 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2823 {
2824 return may_link(dir, dentry, MAY_RMDIR);
2825 }
2826
2827 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2828 {
2829 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2830 }
2831
2832 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2833 struct inode *new_inode, struct dentry *new_dentry)
2834 {
2835 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2836 }
2837
2838 static int selinux_inode_readlink(struct dentry *dentry)
2839 {
2840 const struct cred *cred = current_cred();
2841
2842 return dentry_has_perm(cred, dentry, FILE__READ);
2843 }
2844
2845 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2846 bool rcu)
2847 {
2848 const struct cred *cred = current_cred();
2849 struct common_audit_data ad;
2850 struct inode_security_struct *isec;
2851 u32 sid;
2852
2853 validate_creds(cred);
2854
2855 ad.type = LSM_AUDIT_DATA_DENTRY;
2856 ad.u.dentry = dentry;
2857 sid = cred_sid(cred);
2858 isec = inode->i_security;
2859
2860 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2861 rcu ? MAY_NOT_BLOCK : 0);
2862 }
2863
2864 static noinline int audit_inode_permission(struct inode *inode,
2865 u32 perms, u32 audited, u32 denied,
2866 int result,
2867 unsigned flags)
2868 {
2869 struct common_audit_data ad;
2870 struct inode_security_struct *isec = inode->i_security;
2871 int rc;
2872
2873 ad.type = LSM_AUDIT_DATA_INODE;
2874 ad.u.inode = inode;
2875
2876 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2877 audited, denied, result, &ad, flags);
2878 if (rc)
2879 return rc;
2880 return 0;
2881 }
2882
2883 static int selinux_inode_permission(struct inode *inode, int mask)
2884 {
2885 const struct cred *cred = current_cred();
2886 u32 perms;
2887 bool from_access;
2888 unsigned flags = mask & MAY_NOT_BLOCK;
2889 struct inode_security_struct *isec;
2890 u32 sid;
2891 struct av_decision avd;
2892 int rc, rc2;
2893 u32 audited, denied;
2894
2895 from_access = mask & MAY_ACCESS;
2896 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2897
2898 /* No permission to check. Existence test. */
2899 if (!mask)
2900 return 0;
2901
2902 validate_creds(cred);
2903
2904 if (unlikely(IS_PRIVATE(inode)))
2905 return 0;
2906
2907 perms = file_mask_to_av(inode->i_mode, mask);
2908
2909 sid = cred_sid(cred);
2910 isec = inode->i_security;
2911
2912 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2913 audited = avc_audit_required(perms, &avd, rc,
2914 from_access ? FILE__AUDIT_ACCESS : 0,
2915 &denied);
2916 if (likely(!audited))
2917 return rc;
2918
2919 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2920 if (rc2)
2921 return rc2;
2922 return rc;
2923 }
2924
2925 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2926 {
2927 const struct cred *cred = current_cred();
2928 unsigned int ia_valid = iattr->ia_valid;
2929 __u32 av = FILE__WRITE;
2930
2931 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2932 if (ia_valid & ATTR_FORCE) {
2933 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2934 ATTR_FORCE);
2935 if (!ia_valid)
2936 return 0;
2937 }
2938
2939 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2940 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2941 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2942
2943 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2944 av |= FILE__OPEN;
2945
2946 return dentry_has_perm(cred, dentry, av);
2947 }
2948
2949 static int selinux_inode_getattr(const struct path *path)
2950 {
2951 return path_has_perm(current_cred(), path, FILE__GETATTR);
2952 }
2953
2954 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2955 {
2956 const struct cred *cred = current_cred();
2957
2958 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2959 sizeof XATTR_SECURITY_PREFIX - 1)) {
2960 if (!strcmp(name, XATTR_NAME_CAPS)) {
2961 if (!capable(CAP_SETFCAP))
2962 return -EPERM;
2963 } else if (!capable(CAP_SYS_ADMIN)) {
2964 /* A different attribute in the security namespace.
2965 Restrict to administrator. */
2966 return -EPERM;
2967 }
2968 }
2969
2970 /* Not an attribute we recognize, so just check the
2971 ordinary setattr permission. */
2972 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2973 }
2974
2975 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2976 const void *value, size_t size, int flags)
2977 {
2978 struct inode *inode = d_backing_inode(dentry);
2979 struct inode_security_struct *isec = inode->i_security;
2980 struct superblock_security_struct *sbsec;
2981 struct common_audit_data ad;
2982 u32 newsid, sid = current_sid();
2983 int rc = 0;
2984
2985 if (strcmp(name, XATTR_NAME_SELINUX))
2986 return selinux_inode_setotherxattr(dentry, name);
2987
2988 sbsec = inode->i_sb->s_security;
2989 if (!(sbsec->flags & SBLABEL_MNT))
2990 return -EOPNOTSUPP;
2991
2992 if (!inode_owner_or_capable(inode))
2993 return -EPERM;
2994
2995 ad.type = LSM_AUDIT_DATA_DENTRY;
2996 ad.u.dentry = dentry;
2997
2998 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2999 FILE__RELABELFROM, &ad);
3000 if (rc)
3001 return rc;
3002
3003 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3004 if (rc == -EINVAL) {
3005 if (!capable(CAP_MAC_ADMIN)) {
3006 struct audit_buffer *ab;
3007 size_t audit_size;
3008 const char *str;
3009
3010 /* We strip a nul only if it is at the end, otherwise the
3011 * context contains a nul and we should audit that */
3012 if (value) {
3013 str = value;
3014 if (str[size - 1] == '\0')
3015 audit_size = size - 1;
3016 else
3017 audit_size = size;
3018 } else {
3019 str = "";
3020 audit_size = 0;
3021 }
3022 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3023 audit_log_format(ab, "op=setxattr invalid_context=");
3024 audit_log_n_untrustedstring(ab, value, audit_size);
3025 audit_log_end(ab);
3026
3027 return rc;
3028 }
3029 rc = security_context_to_sid_force(value, size, &newsid);
3030 }
3031 if (rc)
3032 return rc;
3033
3034 rc = avc_has_perm(sid, newsid, isec->sclass,
3035 FILE__RELABELTO, &ad);
3036 if (rc)
3037 return rc;
3038
3039 rc = security_validate_transition(isec->sid, newsid, sid,
3040 isec->sclass);
3041 if (rc)
3042 return rc;
3043
3044 return avc_has_perm(newsid,
3045 sbsec->sid,
3046 SECCLASS_FILESYSTEM,
3047 FILESYSTEM__ASSOCIATE,
3048 &ad);
3049 }
3050
3051 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3052 const void *value, size_t size,
3053 int flags)
3054 {
3055 struct inode *inode = d_backing_inode(dentry);
3056 struct inode_security_struct *isec = inode->i_security;
3057 u32 newsid;
3058 int rc;
3059
3060 if (strcmp(name, XATTR_NAME_SELINUX)) {
3061 /* Not an attribute we recognize, so nothing to do. */
3062 return;
3063 }
3064
3065 rc = security_context_to_sid_force(value, size, &newsid);
3066 if (rc) {
3067 printk(KERN_ERR "SELinux: unable to map context to SID"
3068 "for (%s, %lu), rc=%d\n",
3069 inode->i_sb->s_id, inode->i_ino, -rc);
3070 return;
3071 }
3072
3073 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3074 isec->sid = newsid;
3075 isec->initialized = 1;
3076
3077 return;
3078 }
3079
3080 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3081 {
3082 const struct cred *cred = current_cred();
3083
3084 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3085 }
3086
3087 static int selinux_inode_listxattr(struct dentry *dentry)
3088 {
3089 const struct cred *cred = current_cred();
3090
3091 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3092 }
3093
3094 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3095 {
3096 if (strcmp(name, XATTR_NAME_SELINUX))
3097 return selinux_inode_setotherxattr(dentry, name);
3098
3099 /* No one is allowed to remove a SELinux security label.
3100 You can change the label, but all data must be labeled. */
3101 return -EACCES;
3102 }
3103
3104 /*
3105 * Copy the inode security context value to the user.
3106 *
3107 * Permission check is handled by selinux_inode_getxattr hook.
3108 */
3109 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3110 {
3111 u32 size;
3112 int error;
3113 char *context = NULL;
3114 struct inode_security_struct *isec = inode->i_security;
3115
3116 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3117 return -EOPNOTSUPP;
3118
3119 /*
3120 * If the caller has CAP_MAC_ADMIN, then get the raw context
3121 * value even if it is not defined by current policy; otherwise,
3122 * use the in-core value under current policy.
3123 * Use the non-auditing forms of the permission checks since
3124 * getxattr may be called by unprivileged processes commonly
3125 * and lack of permission just means that we fall back to the
3126 * in-core context value, not a denial.
3127 */
3128 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3129 SECURITY_CAP_NOAUDIT);
3130 if (!error)
3131 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3132 SECURITY_CAP_NOAUDIT);
3133 if (!error)
3134 error = security_sid_to_context_force(isec->sid, &context,
3135 &size);
3136 else
3137 error = security_sid_to_context(isec->sid, &context, &size);
3138 if (error)
3139 return error;
3140 error = size;
3141 if (alloc) {
3142 *buffer = context;
3143 goto out_nofree;
3144 }
3145 kfree(context);
3146 out_nofree:
3147 return error;
3148 }
3149
3150 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3151 const void *value, size_t size, int flags)
3152 {
3153 struct inode_security_struct *isec = inode->i_security;
3154 u32 newsid;
3155 int rc;
3156
3157 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3158 return -EOPNOTSUPP;
3159
3160 if (!value || !size)
3161 return -EACCES;
3162
3163 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3164 if (rc)
3165 return rc;
3166
3167 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3168 isec->sid = newsid;
3169 isec->initialized = 1;
3170 return 0;
3171 }
3172
3173 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3174 {
3175 const int len = sizeof(XATTR_NAME_SELINUX);
3176 if (buffer && len <= buffer_size)
3177 memcpy(buffer, XATTR_NAME_SELINUX, len);
3178 return len;
3179 }
3180
3181 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3182 {
3183 struct inode_security_struct *isec = inode->i_security;
3184 *secid = isec->sid;
3185 }
3186
3187 /* file security operations */
3188
3189 static int selinux_revalidate_file_permission(struct file *file, int mask)
3190 {
3191 const struct cred *cred = current_cred();
3192 struct inode *inode = file_inode(file);
3193
3194 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3195 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3196 mask |= MAY_APPEND;
3197
3198 return file_has_perm(cred, file,
3199 file_mask_to_av(inode->i_mode, mask));
3200 }
3201
3202 static int selinux_file_permission(struct file *file, int mask)
3203 {
3204 struct inode *inode = file_inode(file);
3205 struct file_security_struct *fsec = file->f_security;
3206 struct inode_security_struct *isec = inode->i_security;
3207 u32 sid = current_sid();
3208
3209 if (!mask)
3210 /* No permission to check. Existence test. */
3211 return 0;
3212
3213 if (sid == fsec->sid && fsec->isid == isec->sid &&
3214 fsec->pseqno == avc_policy_seqno())
3215 /* No change since file_open check. */
3216 return 0;
3217
3218 return selinux_revalidate_file_permission(file, mask);
3219 }
3220
3221 static int selinux_file_alloc_security(struct file *file)
3222 {
3223 return file_alloc_security(file);
3224 }
3225
3226 static void selinux_file_free_security(struct file *file)
3227 {
3228 file_free_security(file);
3229 }
3230
3231 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3232 unsigned long arg)
3233 {
3234 const struct cred *cred = current_cred();
3235 int error = 0;
3236
3237 switch (cmd) {
3238 case FIONREAD:
3239 /* fall through */
3240 case FIBMAP:
3241 /* fall through */
3242 case FIGETBSZ:
3243 /* fall through */
3244 case FS_IOC_GETFLAGS:
3245 /* fall through */
3246 case FS_IOC_GETVERSION:
3247 error = file_has_perm(cred, file, FILE__GETATTR);
3248 break;
3249
3250 case FS_IOC_SETFLAGS:
3251 /* fall through */
3252 case FS_IOC_SETVERSION:
3253 error = file_has_perm(cred, file, FILE__SETATTR);
3254 break;
3255
3256 /* sys_ioctl() checks */
3257 case FIONBIO:
3258 /* fall through */
3259 case FIOASYNC:
3260 error = file_has_perm(cred, file, 0);
3261 break;
3262
3263 case KDSKBENT:
3264 case KDSKBSENT:
3265 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3266 SECURITY_CAP_AUDIT);
3267 break;
3268
3269 /* default case assumes that the command will go
3270 * to the file's ioctl() function.
3271 */
3272 default:
3273 error = file_has_perm(cred, file, FILE__IOCTL);
3274 }
3275 return error;
3276 }
3277
3278 static int default_noexec;
3279
3280 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3281 {
3282 const struct cred *cred = current_cred();
3283 int rc = 0;
3284
3285 if (default_noexec &&
3286 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3287 (!shared && (prot & PROT_WRITE)))) {
3288 /*
3289 * We are making executable an anonymous mapping or a
3290 * private file mapping that will also be writable.
3291 * This has an additional check.
3292 */
3293 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3294 if (rc)
3295 goto error;
3296 }
3297
3298 if (file) {
3299 /* read access is always possible with a mapping */
3300 u32 av = FILE__READ;
3301
3302 /* write access only matters if the mapping is shared */
3303 if (shared && (prot & PROT_WRITE))
3304 av |= FILE__WRITE;
3305
3306 if (prot & PROT_EXEC)
3307 av |= FILE__EXECUTE;
3308
3309 return file_has_perm(cred, file, av);
3310 }
3311
3312 error:
3313 return rc;
3314 }
3315
3316 static int selinux_mmap_addr(unsigned long addr)
3317 {
3318 int rc = 0;
3319
3320 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3321 u32 sid = current_sid();
3322 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3323 MEMPROTECT__MMAP_ZERO, NULL);
3324 }
3325
3326 return rc;
3327 }
3328
3329 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3330 unsigned long prot, unsigned long flags)
3331 {
3332 if (selinux_checkreqprot)
3333 prot = reqprot;
3334
3335 return file_map_prot_check(file, prot,
3336 (flags & MAP_TYPE) == MAP_SHARED);
3337 }
3338
3339 static int selinux_file_mprotect(struct vm_area_struct *vma,
3340 unsigned long reqprot,
3341 unsigned long prot)
3342 {
3343 const struct cred *cred = current_cred();
3344
3345 if (selinux_checkreqprot)
3346 prot = reqprot;
3347
3348 if (default_noexec &&
3349 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3350 int rc = 0;
3351 if (vma->vm_start >= vma->vm_mm->start_brk &&
3352 vma->vm_end <= vma->vm_mm->brk) {
3353 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3354 } else if (!vma->vm_file &&
3355 vma->vm_start <= vma->vm_mm->start_stack &&
3356 vma->vm_end >= vma->vm_mm->start_stack) {
3357 rc = current_has_perm(current, PROCESS__EXECSTACK);
3358 } else if (vma->vm_file && vma->anon_vma) {
3359 /*
3360 * We are making executable a file mapping that has
3361 * had some COW done. Since pages might have been
3362 * written, check ability to execute the possibly
3363 * modified content. This typically should only
3364 * occur for text relocations.
3365 */
3366 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3367 }
3368 if (rc)
3369 return rc;
3370 }
3371
3372 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3373 }
3374
3375 static int selinux_file_lock(struct file *file, unsigned int cmd)
3376 {
3377 const struct cred *cred = current_cred();
3378
3379 return file_has_perm(cred, file, FILE__LOCK);
3380 }
3381
3382 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3383 unsigned long arg)
3384 {
3385 const struct cred *cred = current_cred();
3386 int err = 0;
3387
3388 switch (cmd) {
3389 case F_SETFL:
3390 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3391 err = file_has_perm(cred, file, FILE__WRITE);
3392 break;
3393 }
3394 /* fall through */
3395 case F_SETOWN:
3396 case F_SETSIG:
3397 case F_GETFL:
3398 case F_GETOWN:
3399 case F_GETSIG:
3400 case F_GETOWNER_UIDS:
3401 /* Just check FD__USE permission */
3402 err = file_has_perm(cred, file, 0);
3403 break;
3404 case F_GETLK:
3405 case F_SETLK:
3406 case F_SETLKW:
3407 case F_OFD_GETLK:
3408 case F_OFD_SETLK:
3409 case F_OFD_SETLKW:
3410 #if BITS_PER_LONG == 32
3411 case F_GETLK64:
3412 case F_SETLK64:
3413 case F_SETLKW64:
3414 #endif
3415 err = file_has_perm(cred, file, FILE__LOCK);
3416 break;
3417 }
3418
3419 return err;
3420 }
3421
3422 static void selinux_file_set_fowner(struct file *file)
3423 {
3424 struct file_security_struct *fsec;
3425
3426 fsec = file->f_security;
3427 fsec->fown_sid = current_sid();
3428 }
3429
3430 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3431 struct fown_struct *fown, int signum)
3432 {
3433 struct file *file;
3434 u32 sid = task_sid(tsk);
3435 u32 perm;
3436 struct file_security_struct *fsec;
3437
3438 /* struct fown_struct is never outside the context of a struct file */
3439 file = container_of(fown, struct file, f_owner);
3440
3441 fsec = file->f_security;
3442
3443 if (!signum)
3444 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3445 else
3446 perm = signal_to_av(signum);
3447
3448 return avc_has_perm(fsec->fown_sid, sid,
3449 SECCLASS_PROCESS, perm, NULL);
3450 }
3451
3452 static int selinux_file_receive(struct file *file)
3453 {
3454 const struct cred *cred = current_cred();
3455
3456 return file_has_perm(cred, file, file_to_av(file));
3457 }
3458
3459 static int selinux_file_open(struct file *file, const struct cred *cred)
3460 {
3461 struct file_security_struct *fsec;
3462 struct inode_security_struct *isec;
3463
3464 fsec = file->f_security;
3465 isec = file_inode(file)->i_security;
3466 /*
3467 * Save inode label and policy sequence number
3468 * at open-time so that selinux_file_permission
3469 * can determine whether revalidation is necessary.
3470 * Task label is already saved in the file security
3471 * struct as its SID.
3472 */
3473 fsec->isid = isec->sid;
3474 fsec->pseqno = avc_policy_seqno();
3475 /*
3476 * Since the inode label or policy seqno may have changed
3477 * between the selinux_inode_permission check and the saving
3478 * of state above, recheck that access is still permitted.
3479 * Otherwise, access might never be revalidated against the
3480 * new inode label or new policy.
3481 * This check is not redundant - do not remove.
3482 */
3483 return file_path_has_perm(cred, file, open_file_to_av(file));
3484 }
3485
3486 /* task security operations */
3487
3488 static int selinux_task_create(unsigned long clone_flags)
3489 {
3490 return current_has_perm(current, PROCESS__FORK);
3491 }
3492
3493 /*
3494 * allocate the SELinux part of blank credentials
3495 */
3496 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3497 {
3498 struct task_security_struct *tsec;
3499
3500 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3501 if (!tsec)
3502 return -ENOMEM;
3503
3504 cred->security = tsec;
3505 return 0;
3506 }
3507
3508 /*
3509 * detach and free the LSM part of a set of credentials
3510 */
3511 static void selinux_cred_free(struct cred *cred)
3512 {
3513 struct task_security_struct *tsec = cred->security;
3514
3515 /*
3516 * cred->security == NULL if security_cred_alloc_blank() or
3517 * security_prepare_creds() returned an error.
3518 */
3519 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3520 cred->security = (void *) 0x7UL;
3521 kfree(tsec);
3522 }
3523
3524 /*
3525 * prepare a new set of credentials for modification
3526 */
3527 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3528 gfp_t gfp)
3529 {
3530 const struct task_security_struct *old_tsec;
3531 struct task_security_struct *tsec;
3532
3533 old_tsec = old->security;
3534
3535 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3536 if (!tsec)
3537 return -ENOMEM;
3538
3539 new->security = tsec;
3540 return 0;
3541 }
3542
3543 /*
3544 * transfer the SELinux data to a blank set of creds
3545 */
3546 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3547 {
3548 const struct task_security_struct *old_tsec = old->security;
3549 struct task_security_struct *tsec = new->security;
3550
3551 *tsec = *old_tsec;
3552 }
3553
3554 /*
3555 * set the security data for a kernel service
3556 * - all the creation contexts are set to unlabelled
3557 */
3558 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3559 {
3560 struct task_security_struct *tsec = new->security;
3561 u32 sid = current_sid();
3562 int ret;
3563
3564 ret = avc_has_perm(sid, secid,
3565 SECCLASS_KERNEL_SERVICE,
3566 KERNEL_SERVICE__USE_AS_OVERRIDE,
3567 NULL);
3568 if (ret == 0) {
3569 tsec->sid = secid;
3570 tsec->create_sid = 0;
3571 tsec->keycreate_sid = 0;
3572 tsec->sockcreate_sid = 0;
3573 }
3574 return ret;
3575 }
3576
3577 /*
3578 * set the file creation context in a security record to the same as the
3579 * objective context of the specified inode
3580 */
3581 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3582 {
3583 struct inode_security_struct *isec = inode->i_security;
3584 struct task_security_struct *tsec = new->security;
3585 u32 sid = current_sid();
3586 int ret;
3587
3588 ret = avc_has_perm(sid, isec->sid,
3589 SECCLASS_KERNEL_SERVICE,
3590 KERNEL_SERVICE__CREATE_FILES_AS,
3591 NULL);
3592
3593 if (ret == 0)
3594 tsec->create_sid = isec->sid;
3595 return ret;
3596 }
3597
3598 static int selinux_kernel_module_request(char *kmod_name)
3599 {
3600 u32 sid;
3601 struct common_audit_data ad;
3602
3603 sid = task_sid(current);
3604
3605 ad.type = LSM_AUDIT_DATA_KMOD;
3606 ad.u.kmod_name = kmod_name;
3607
3608 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3609 SYSTEM__MODULE_REQUEST, &ad);
3610 }
3611
3612 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3613 {
3614 return current_has_perm(p, PROCESS__SETPGID);
3615 }
3616
3617 static int selinux_task_getpgid(struct task_struct *p)
3618 {
3619 return current_has_perm(p, PROCESS__GETPGID);
3620 }
3621
3622 static int selinux_task_getsid(struct task_struct *p)
3623 {
3624 return current_has_perm(p, PROCESS__GETSESSION);
3625 }
3626
3627 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3628 {
3629 *secid = task_sid(p);
3630 }
3631
3632 static int selinux_task_setnice(struct task_struct *p, int nice)
3633 {
3634 return current_has_perm(p, PROCESS__SETSCHED);
3635 }
3636
3637 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3638 {
3639 return current_has_perm(p, PROCESS__SETSCHED);
3640 }
3641
3642 static int selinux_task_getioprio(struct task_struct *p)
3643 {
3644 return current_has_perm(p, PROCESS__GETSCHED);
3645 }
3646
3647 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3648 struct rlimit *new_rlim)
3649 {
3650 struct rlimit *old_rlim = p->signal->rlim + resource;
3651
3652 /* Control the ability to change the hard limit (whether
3653 lowering or raising it), so that the hard limit can
3654 later be used as a safe reset point for the soft limit
3655 upon context transitions. See selinux_bprm_committing_creds. */
3656 if (old_rlim->rlim_max != new_rlim->rlim_max)
3657 return current_has_perm(p, PROCESS__SETRLIMIT);
3658
3659 return 0;
3660 }
3661
3662 static int selinux_task_setscheduler(struct task_struct *p)
3663 {
3664 return current_has_perm(p, PROCESS__SETSCHED);
3665 }
3666
3667 static int selinux_task_getscheduler(struct task_struct *p)
3668 {
3669 return current_has_perm(p, PROCESS__GETSCHED);
3670 }
3671
3672 static int selinux_task_movememory(struct task_struct *p)
3673 {
3674 return current_has_perm(p, PROCESS__SETSCHED);
3675 }
3676
3677 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3678 int sig, u32 secid)
3679 {
3680 u32 perm;
3681 int rc;
3682
3683 if (!sig)
3684 perm = PROCESS__SIGNULL; /* null signal; existence test */
3685 else
3686 perm = signal_to_av(sig);
3687 if (secid)
3688 rc = avc_has_perm(secid, task_sid(p),
3689 SECCLASS_PROCESS, perm, NULL);
3690 else
3691 rc = current_has_perm(p, perm);
3692 return rc;
3693 }
3694
3695 static int selinux_task_wait(struct task_struct *p)
3696 {
3697 return task_has_perm(p, current, PROCESS__SIGCHLD);
3698 }
3699
3700 static void selinux_task_to_inode(struct task_struct *p,
3701 struct inode *inode)
3702 {
3703 struct inode_security_struct *isec = inode->i_security;
3704 u32 sid = task_sid(p);
3705
3706 isec->sid = sid;
3707 isec->initialized = 1;
3708 }
3709
3710 /* Returns error only if unable to parse addresses */
3711 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3712 struct common_audit_data *ad, u8 *proto)
3713 {
3714 int offset, ihlen, ret = -EINVAL;
3715 struct iphdr _iph, *ih;
3716
3717 offset = skb_network_offset(skb);
3718 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3719 if (ih == NULL)
3720 goto out;
3721
3722 ihlen = ih->ihl * 4;
3723 if (ihlen < sizeof(_iph))
3724 goto out;
3725
3726 ad->u.net->v4info.saddr = ih->saddr;
3727 ad->u.net->v4info.daddr = ih->daddr;
3728 ret = 0;
3729
3730 if (proto)
3731 *proto = ih->protocol;
3732
3733 switch (ih->protocol) {
3734 case IPPROTO_TCP: {
3735 struct tcphdr _tcph, *th;
3736
3737 if (ntohs(ih->frag_off) & IP_OFFSET)
3738 break;
3739
3740 offset += ihlen;
3741 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3742 if (th == NULL)
3743 break;
3744
3745 ad->u.net->sport = th->source;
3746 ad->u.net->dport = th->dest;
3747 break;
3748 }
3749
3750 case IPPROTO_UDP: {
3751 struct udphdr _udph, *uh;
3752
3753 if (ntohs(ih->frag_off) & IP_OFFSET)
3754 break;
3755
3756 offset += ihlen;
3757 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3758 if (uh == NULL)
3759 break;
3760
3761 ad->u.net->sport = uh->source;
3762 ad->u.net->dport = uh->dest;
3763 break;
3764 }
3765
3766 case IPPROTO_DCCP: {
3767 struct dccp_hdr _dccph, *dh;
3768
3769 if (ntohs(ih->frag_off) & IP_OFFSET)
3770 break;
3771
3772 offset += ihlen;
3773 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3774 if (dh == NULL)
3775 break;
3776
3777 ad->u.net->sport = dh->dccph_sport;
3778 ad->u.net->dport = dh->dccph_dport;
3779 break;
3780 }
3781
3782 default:
3783 break;
3784 }
3785 out:
3786 return ret;
3787 }
3788
3789 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3790
3791 /* Returns error only if unable to parse addresses */
3792 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3793 struct common_audit_data *ad, u8 *proto)
3794 {
3795 u8 nexthdr;
3796 int ret = -EINVAL, offset;
3797 struct ipv6hdr _ipv6h, *ip6;
3798 __be16 frag_off;
3799
3800 offset = skb_network_offset(skb);
3801 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3802 if (ip6 == NULL)
3803 goto out;
3804
3805 ad->u.net->v6info.saddr = ip6->saddr;
3806 ad->u.net->v6info.daddr = ip6->daddr;
3807 ret = 0;
3808
3809 nexthdr = ip6->nexthdr;
3810 offset += sizeof(_ipv6h);
3811 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3812 if (offset < 0)
3813 goto out;
3814
3815 if (proto)
3816 *proto = nexthdr;
3817
3818 switch (nexthdr) {
3819 case IPPROTO_TCP: {
3820 struct tcphdr _tcph, *th;
3821
3822 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3823 if (th == NULL)
3824 break;
3825
3826 ad->u.net->sport = th->source;
3827 ad->u.net->dport = th->dest;
3828 break;
3829 }
3830
3831 case IPPROTO_UDP: {
3832 struct udphdr _udph, *uh;
3833
3834 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3835 if (uh == NULL)
3836 break;
3837
3838 ad->u.net->sport = uh->source;
3839 ad->u.net->dport = uh->dest;
3840 break;
3841 }
3842
3843 case IPPROTO_DCCP: {
3844 struct dccp_hdr _dccph, *dh;
3845
3846 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3847 if (dh == NULL)
3848 break;
3849
3850 ad->u.net->sport = dh->dccph_sport;
3851 ad->u.net->dport = dh->dccph_dport;
3852 break;
3853 }
3854
3855 /* includes fragments */
3856 default:
3857 break;
3858 }
3859 out:
3860 return ret;
3861 }
3862
3863 #endif /* IPV6 */
3864
3865 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3866 char **_addrp, int src, u8 *proto)
3867 {
3868 char *addrp;
3869 int ret;
3870
3871 switch (ad->u.net->family) {
3872 case PF_INET:
3873 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3874 if (ret)
3875 goto parse_error;
3876 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3877 &ad->u.net->v4info.daddr);
3878 goto okay;
3879
3880 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3881 case PF_INET6:
3882 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3883 if (ret)
3884 goto parse_error;
3885 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3886 &ad->u.net->v6info.daddr);
3887 goto okay;
3888 #endif /* IPV6 */
3889 default:
3890 addrp = NULL;
3891 goto okay;
3892 }
3893
3894 parse_error:
3895 printk(KERN_WARNING
3896 "SELinux: failure in selinux_parse_skb(),"
3897 " unable to parse packet\n");
3898 return ret;
3899
3900 okay:
3901 if (_addrp)
3902 *_addrp = addrp;
3903 return 0;
3904 }
3905
3906 /**
3907 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3908 * @skb: the packet
3909 * @family: protocol family
3910 * @sid: the packet's peer label SID
3911 *
3912 * Description:
3913 * Check the various different forms of network peer labeling and determine
3914 * the peer label/SID for the packet; most of the magic actually occurs in
3915 * the security server function security_net_peersid_cmp(). The function
3916 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3917 * or -EACCES if @sid is invalid due to inconsistencies with the different
3918 * peer labels.
3919 *
3920 */
3921 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3922 {
3923 int err;
3924 u32 xfrm_sid;
3925 u32 nlbl_sid;
3926 u32 nlbl_type;
3927
3928 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3929 if (unlikely(err))
3930 return -EACCES;
3931 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3932 if (unlikely(err))
3933 return -EACCES;
3934
3935 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3936 if (unlikely(err)) {
3937 printk(KERN_WARNING
3938 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3939 " unable to determine packet's peer label\n");
3940 return -EACCES;
3941 }
3942
3943 return 0;
3944 }
3945
3946 /**
3947 * selinux_conn_sid - Determine the child socket label for a connection
3948 * @sk_sid: the parent socket's SID
3949 * @skb_sid: the packet's SID
3950 * @conn_sid: the resulting connection SID
3951 *
3952 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3953 * combined with the MLS information from @skb_sid in order to create
3954 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3955 * of @sk_sid. Returns zero on success, negative values on failure.
3956 *
3957 */
3958 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3959 {
3960 int err = 0;
3961
3962 if (skb_sid != SECSID_NULL)
3963 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3964 else
3965 *conn_sid = sk_sid;
3966
3967 return err;
3968 }
3969
3970 /* socket security operations */
3971
3972 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3973 u16 secclass, u32 *socksid)
3974 {
3975 if (tsec->sockcreate_sid > SECSID_NULL) {
3976 *socksid = tsec->sockcreate_sid;
3977 return 0;
3978 }
3979
3980 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3981 socksid);
3982 }
3983
3984 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3985 {
3986 struct sk_security_struct *sksec = sk->sk_security;
3987 struct common_audit_data ad;
3988 struct lsm_network_audit net = {0,};
3989 u32 tsid = task_sid(task);
3990
3991 if (sksec->sid == SECINITSID_KERNEL)
3992 return 0;
3993
3994 ad.type = LSM_AUDIT_DATA_NET;
3995 ad.u.net = &net;
3996 ad.u.net->sk = sk;
3997
3998 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3999 }
4000
4001 static int selinux_socket_create(int family, int type,
4002 int protocol, int kern)
4003 {
4004 const struct task_security_struct *tsec = current_security();
4005 u32 newsid;
4006 u16 secclass;
4007 int rc;
4008
4009 if (kern)
4010 return 0;
4011
4012 secclass = socket_type_to_security_class(family, type, protocol);
4013 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4014 if (rc)
4015 return rc;
4016
4017 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4018 }
4019
4020 static int selinux_socket_post_create(struct socket *sock, int family,
4021 int type, int protocol, int kern)
4022 {
4023 const struct task_security_struct *tsec = current_security();
4024 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4025 struct sk_security_struct *sksec;
4026 int err = 0;
4027
4028 isec->sclass = socket_type_to_security_class(family, type, protocol);
4029
4030 if (kern)
4031 isec->sid = SECINITSID_KERNEL;
4032 else {
4033 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4034 if (err)
4035 return err;
4036 }
4037
4038 isec->initialized = 1;
4039
4040 if (sock->sk) {
4041 sksec = sock->sk->sk_security;
4042 sksec->sid = isec->sid;
4043 sksec->sclass = isec->sclass;
4044 err = selinux_netlbl_socket_post_create(sock->sk, family);
4045 }
4046
4047 return err;
4048 }
4049
4050 /* Range of port numbers used to automatically bind.
4051 Need to determine whether we should perform a name_bind
4052 permission check between the socket and the port number. */
4053
4054 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4055 {
4056 struct sock *sk = sock->sk;
4057 u16 family;
4058 int err;
4059
4060 err = sock_has_perm(current, sk, SOCKET__BIND);
4061 if (err)
4062 goto out;
4063
4064 /*
4065 * If PF_INET or PF_INET6, check name_bind permission for the port.
4066 * Multiple address binding for SCTP is not supported yet: we just
4067 * check the first address now.
4068 */
4069 family = sk->sk_family;
4070 if (family == PF_INET || family == PF_INET6) {
4071 char *addrp;
4072 struct sk_security_struct *sksec = sk->sk_security;
4073 struct common_audit_data ad;
4074 struct lsm_network_audit net = {0,};
4075 struct sockaddr_in *addr4 = NULL;
4076 struct sockaddr_in6 *addr6 = NULL;
4077 unsigned short snum;
4078 u32 sid, node_perm;
4079
4080 if (family == PF_INET) {
4081 addr4 = (struct sockaddr_in *)address;
4082 snum = ntohs(addr4->sin_port);
4083 addrp = (char *)&addr4->sin_addr.s_addr;
4084 } else {
4085 addr6 = (struct sockaddr_in6 *)address;
4086 snum = ntohs(addr6->sin6_port);
4087 addrp = (char *)&addr6->sin6_addr.s6_addr;
4088 }
4089
4090 if (snum) {
4091 int low, high;
4092
4093 inet_get_local_port_range(sock_net(sk), &low, &high);
4094
4095 if (snum < max(PROT_SOCK, low) || snum > high) {
4096 err = sel_netport_sid(sk->sk_protocol,
4097 snum, &sid);
4098 if (err)
4099 goto out;
4100 ad.type = LSM_AUDIT_DATA_NET;
4101 ad.u.net = &net;
4102 ad.u.net->sport = htons(snum);
4103 ad.u.net->family = family;
4104 err = avc_has_perm(sksec->sid, sid,
4105 sksec->sclass,
4106 SOCKET__NAME_BIND, &ad);
4107 if (err)
4108 goto out;
4109 }
4110 }
4111
4112 switch (sksec->sclass) {
4113 case SECCLASS_TCP_SOCKET:
4114 node_perm = TCP_SOCKET__NODE_BIND;
4115 break;
4116
4117 case SECCLASS_UDP_SOCKET:
4118 node_perm = UDP_SOCKET__NODE_BIND;
4119 break;
4120
4121 case SECCLASS_DCCP_SOCKET:
4122 node_perm = DCCP_SOCKET__NODE_BIND;
4123 break;
4124
4125 default:
4126 node_perm = RAWIP_SOCKET__NODE_BIND;
4127 break;
4128 }
4129
4130 err = sel_netnode_sid(addrp, family, &sid);
4131 if (err)
4132 goto out;
4133
4134 ad.type = LSM_AUDIT_DATA_NET;
4135 ad.u.net = &net;
4136 ad.u.net->sport = htons(snum);
4137 ad.u.net->family = family;
4138
4139 if (family == PF_INET)
4140 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4141 else
4142 ad.u.net->v6info.saddr = addr6->sin6_addr;
4143
4144 err = avc_has_perm(sksec->sid, sid,
4145 sksec->sclass, node_perm, &ad);
4146 if (err)
4147 goto out;
4148 }
4149 out:
4150 return err;
4151 }
4152
4153 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4154 {
4155 struct sock *sk = sock->sk;
4156 struct sk_security_struct *sksec = sk->sk_security;
4157 int err;
4158
4159 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4160 if (err)
4161 return err;
4162
4163 /*
4164 * If a TCP or DCCP socket, check name_connect permission for the port.
4165 */
4166 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4167 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4168 struct common_audit_data ad;
4169 struct lsm_network_audit net = {0,};
4170 struct sockaddr_in *addr4 = NULL;
4171 struct sockaddr_in6 *addr6 = NULL;
4172 unsigned short snum;
4173 u32 sid, perm;
4174
4175 if (sk->sk_family == PF_INET) {
4176 addr4 = (struct sockaddr_in *)address;
4177 if (addrlen < sizeof(struct sockaddr_in))
4178 return -EINVAL;
4179 snum = ntohs(addr4->sin_port);
4180 } else {
4181 addr6 = (struct sockaddr_in6 *)address;
4182 if (addrlen < SIN6_LEN_RFC2133)
4183 return -EINVAL;
4184 snum = ntohs(addr6->sin6_port);
4185 }
4186
4187 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4188 if (err)
4189 goto out;
4190
4191 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4192 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4193
4194 ad.type = LSM_AUDIT_DATA_NET;
4195 ad.u.net = &net;
4196 ad.u.net->dport = htons(snum);
4197 ad.u.net->family = sk->sk_family;
4198 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4199 if (err)
4200 goto out;
4201 }
4202
4203 err = selinux_netlbl_socket_connect(sk, address);
4204
4205 out:
4206 return err;
4207 }
4208
4209 static int selinux_socket_listen(struct socket *sock, int backlog)
4210 {
4211 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4212 }
4213
4214 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4215 {
4216 int err;
4217 struct inode_security_struct *isec;
4218 struct inode_security_struct *newisec;
4219
4220 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4221 if (err)
4222 return err;
4223
4224 newisec = SOCK_INODE(newsock)->i_security;
4225
4226 isec = SOCK_INODE(sock)->i_security;
4227 newisec->sclass = isec->sclass;
4228 newisec->sid = isec->sid;
4229 newisec->initialized = 1;
4230
4231 return 0;
4232 }
4233
4234 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4235 int size)
4236 {
4237 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4238 }
4239
4240 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4241 int size, int flags)
4242 {
4243 return sock_has_perm(current, sock->sk, SOCKET__READ);
4244 }
4245
4246 static int selinux_socket_getsockname(struct socket *sock)
4247 {
4248 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4249 }
4250
4251 static int selinux_socket_getpeername(struct socket *sock)
4252 {
4253 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4254 }
4255
4256 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4257 {
4258 int err;
4259
4260 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4261 if (err)
4262 return err;
4263
4264 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4265 }
4266
4267 static int selinux_socket_getsockopt(struct socket *sock, int level,
4268 int optname)
4269 {
4270 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4271 }
4272
4273 static int selinux_socket_shutdown(struct socket *sock, int how)
4274 {
4275 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4276 }
4277
4278 static int selinux_socket_unix_stream_connect(struct sock *sock,
4279 struct sock *other,
4280 struct sock *newsk)
4281 {
4282 struct sk_security_struct *sksec_sock = sock->sk_security;
4283 struct sk_security_struct *sksec_other = other->sk_security;
4284 struct sk_security_struct *sksec_new = newsk->sk_security;
4285 struct common_audit_data ad;
4286 struct lsm_network_audit net = {0,};
4287 int err;
4288
4289 ad.type = LSM_AUDIT_DATA_NET;
4290 ad.u.net = &net;
4291 ad.u.net->sk = other;
4292
4293 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4294 sksec_other->sclass,
4295 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4296 if (err)
4297 return err;
4298
4299 /* server child socket */
4300 sksec_new->peer_sid = sksec_sock->sid;
4301 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4302 &sksec_new->sid);
4303 if (err)
4304 return err;
4305
4306 /* connecting socket */
4307 sksec_sock->peer_sid = sksec_new->sid;
4308
4309 return 0;
4310 }
4311
4312 static int selinux_socket_unix_may_send(struct socket *sock,
4313 struct socket *other)
4314 {
4315 struct sk_security_struct *ssec = sock->sk->sk_security;
4316 struct sk_security_struct *osec = other->sk->sk_security;
4317 struct common_audit_data ad;
4318 struct lsm_network_audit net = {0,};
4319
4320 ad.type = LSM_AUDIT_DATA_NET;
4321 ad.u.net = &net;
4322 ad.u.net->sk = other->sk;
4323
4324 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4325 &ad);
4326 }
4327
4328 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4329 char *addrp, u16 family, u32 peer_sid,
4330 struct common_audit_data *ad)
4331 {
4332 int err;
4333 u32 if_sid;
4334 u32 node_sid;
4335
4336 err = sel_netif_sid(ns, ifindex, &if_sid);
4337 if (err)
4338 return err;
4339 err = avc_has_perm(peer_sid, if_sid,
4340 SECCLASS_NETIF, NETIF__INGRESS, ad);
4341 if (err)
4342 return err;
4343
4344 err = sel_netnode_sid(addrp, family, &node_sid);
4345 if (err)
4346 return err;
4347 return avc_has_perm(peer_sid, node_sid,
4348 SECCLASS_NODE, NODE__RECVFROM, ad);
4349 }
4350
4351 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4352 u16 family)
4353 {
4354 int err = 0;
4355 struct sk_security_struct *sksec = sk->sk_security;
4356 u32 sk_sid = sksec->sid;
4357 struct common_audit_data ad;
4358 struct lsm_network_audit net = {0,};
4359 char *addrp;
4360
4361 ad.type = LSM_AUDIT_DATA_NET;
4362 ad.u.net = &net;
4363 ad.u.net->netif = skb->skb_iif;
4364 ad.u.net->family = family;
4365 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4366 if (err)
4367 return err;
4368
4369 if (selinux_secmark_enabled()) {
4370 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4371 PACKET__RECV, &ad);
4372 if (err)
4373 return err;
4374 }
4375
4376 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4377 if (err)
4378 return err;
4379 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4380
4381 return err;
4382 }
4383
4384 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4385 {
4386 int err;
4387 struct sk_security_struct *sksec = sk->sk_security;
4388 u16 family = sk->sk_family;
4389 u32 sk_sid = sksec->sid;
4390 struct common_audit_data ad;
4391 struct lsm_network_audit net = {0,};
4392 char *addrp;
4393 u8 secmark_active;
4394 u8 peerlbl_active;
4395
4396 if (family != PF_INET && family != PF_INET6)
4397 return 0;
4398
4399 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4400 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4401 family = PF_INET;
4402
4403 /* If any sort of compatibility mode is enabled then handoff processing
4404 * to the selinux_sock_rcv_skb_compat() function to deal with the
4405 * special handling. We do this in an attempt to keep this function
4406 * as fast and as clean as possible. */
4407 if (!selinux_policycap_netpeer)
4408 return selinux_sock_rcv_skb_compat(sk, skb, family);
4409
4410 secmark_active = selinux_secmark_enabled();
4411 peerlbl_active = selinux_peerlbl_enabled();
4412 if (!secmark_active && !peerlbl_active)
4413 return 0;
4414
4415 ad.type = LSM_AUDIT_DATA_NET;
4416 ad.u.net = &net;
4417 ad.u.net->netif = skb->skb_iif;
4418 ad.u.net->family = family;
4419 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4420 if (err)
4421 return err;
4422
4423 if (peerlbl_active) {
4424 u32 peer_sid;
4425
4426 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4427 if (err)
4428 return err;
4429 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4430 addrp, family, peer_sid, &ad);
4431 if (err) {
4432 selinux_netlbl_err(skb, err, 0);
4433 return err;
4434 }
4435 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4436 PEER__RECV, &ad);
4437 if (err) {
4438 selinux_netlbl_err(skb, err, 0);
4439 return err;
4440 }
4441 }
4442
4443 if (secmark_active) {
4444 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4445 PACKET__RECV, &ad);
4446 if (err)
4447 return err;
4448 }
4449
4450 return err;
4451 }
4452
4453 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4454 int __user *optlen, unsigned len)
4455 {
4456 int err = 0;
4457 char *scontext;
4458 u32 scontext_len;
4459 struct sk_security_struct *sksec = sock->sk->sk_security;
4460 u32 peer_sid = SECSID_NULL;
4461
4462 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4463 sksec->sclass == SECCLASS_TCP_SOCKET)
4464 peer_sid = sksec->peer_sid;
4465 if (peer_sid == SECSID_NULL)
4466 return -ENOPROTOOPT;
4467
4468 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4469 if (err)
4470 return err;
4471
4472 if (scontext_len > len) {
4473 err = -ERANGE;
4474 goto out_len;
4475 }
4476
4477 if (copy_to_user(optval, scontext, scontext_len))
4478 err = -EFAULT;
4479
4480 out_len:
4481 if (put_user(scontext_len, optlen))
4482 err = -EFAULT;
4483 kfree(scontext);
4484 return err;
4485 }
4486
4487 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4488 {
4489 u32 peer_secid = SECSID_NULL;
4490 u16 family;
4491
4492 if (skb && skb->protocol == htons(ETH_P_IP))
4493 family = PF_INET;
4494 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4495 family = PF_INET6;
4496 else if (sock)
4497 family = sock->sk->sk_family;
4498 else
4499 goto out;
4500
4501 if (sock && family == PF_UNIX)
4502 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4503 else if (skb)
4504 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4505
4506 out:
4507 *secid = peer_secid;
4508 if (peer_secid == SECSID_NULL)
4509 return -EINVAL;
4510 return 0;
4511 }
4512
4513 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4514 {
4515 struct sk_security_struct *sksec;
4516
4517 sksec = kzalloc(sizeof(*sksec), priority);
4518 if (!sksec)
4519 return -ENOMEM;
4520
4521 sksec->peer_sid = SECINITSID_UNLABELED;
4522 sksec->sid = SECINITSID_UNLABELED;
4523 selinux_netlbl_sk_security_reset(sksec);
4524 sk->sk_security = sksec;
4525
4526 return 0;
4527 }
4528
4529 static void selinux_sk_free_security(struct sock *sk)
4530 {
4531 struct sk_security_struct *sksec = sk->sk_security;
4532
4533 sk->sk_security = NULL;
4534 selinux_netlbl_sk_security_free(sksec);
4535 kfree(sksec);
4536 }
4537
4538 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4539 {
4540 struct sk_security_struct *sksec = sk->sk_security;
4541 struct sk_security_struct *newsksec = newsk->sk_security;
4542
4543 newsksec->sid = sksec->sid;
4544 newsksec->peer_sid = sksec->peer_sid;
4545 newsksec->sclass = sksec->sclass;
4546
4547 selinux_netlbl_sk_security_reset(newsksec);
4548 }
4549
4550 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4551 {
4552 if (!sk)
4553 *secid = SECINITSID_ANY_SOCKET;
4554 else {
4555 struct sk_security_struct *sksec = sk->sk_security;
4556
4557 *secid = sksec->sid;
4558 }
4559 }
4560
4561 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4562 {
4563 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4564 struct sk_security_struct *sksec = sk->sk_security;
4565
4566 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4567 sk->sk_family == PF_UNIX)
4568 isec->sid = sksec->sid;
4569 sksec->sclass = isec->sclass;
4570 }
4571
4572 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4573 struct request_sock *req)
4574 {
4575 struct sk_security_struct *sksec = sk->sk_security;
4576 int err;
4577 u16 family = req->rsk_ops->family;
4578 u32 connsid;
4579 u32 peersid;
4580
4581 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4582 if (err)
4583 return err;
4584 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4585 if (err)
4586 return err;
4587 req->secid = connsid;
4588 req->peer_secid = peersid;
4589
4590 return selinux_netlbl_inet_conn_request(req, family);
4591 }
4592
4593 static void selinux_inet_csk_clone(struct sock *newsk,
4594 const struct request_sock *req)
4595 {
4596 struct sk_security_struct *newsksec = newsk->sk_security;
4597
4598 newsksec->sid = req->secid;
4599 newsksec->peer_sid = req->peer_secid;
4600 /* NOTE: Ideally, we should also get the isec->sid for the
4601 new socket in sync, but we don't have the isec available yet.
4602 So we will wait until sock_graft to do it, by which
4603 time it will have been created and available. */
4604
4605 /* We don't need to take any sort of lock here as we are the only
4606 * thread with access to newsksec */
4607 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4608 }
4609
4610 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4611 {
4612 u16 family = sk->sk_family;
4613 struct sk_security_struct *sksec = sk->sk_security;
4614
4615 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4616 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4617 family = PF_INET;
4618
4619 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4620 }
4621
4622 static int selinux_secmark_relabel_packet(u32 sid)
4623 {
4624 const struct task_security_struct *__tsec;
4625 u32 tsid;
4626
4627 __tsec = current_security();
4628 tsid = __tsec->sid;
4629
4630 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4631 }
4632
4633 static void selinux_secmark_refcount_inc(void)
4634 {
4635 atomic_inc(&selinux_secmark_refcount);
4636 }
4637
4638 static void selinux_secmark_refcount_dec(void)
4639 {
4640 atomic_dec(&selinux_secmark_refcount);
4641 }
4642
4643 static void selinux_req_classify_flow(const struct request_sock *req,
4644 struct flowi *fl)
4645 {
4646 fl->flowi_secid = req->secid;
4647 }
4648
4649 static int selinux_tun_dev_alloc_security(void **security)
4650 {
4651 struct tun_security_struct *tunsec;
4652
4653 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4654 if (!tunsec)
4655 return -ENOMEM;
4656 tunsec->sid = current_sid();
4657
4658 *security = tunsec;
4659 return 0;
4660 }
4661
4662 static void selinux_tun_dev_free_security(void *security)
4663 {
4664 kfree(security);
4665 }
4666
4667 static int selinux_tun_dev_create(void)
4668 {
4669 u32 sid = current_sid();
4670
4671 /* we aren't taking into account the "sockcreate" SID since the socket
4672 * that is being created here is not a socket in the traditional sense,
4673 * instead it is a private sock, accessible only to the kernel, and
4674 * representing a wide range of network traffic spanning multiple
4675 * connections unlike traditional sockets - check the TUN driver to
4676 * get a better understanding of why this socket is special */
4677
4678 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4679 NULL);
4680 }
4681
4682 static int selinux_tun_dev_attach_queue(void *security)
4683 {
4684 struct tun_security_struct *tunsec = security;
4685
4686 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4687 TUN_SOCKET__ATTACH_QUEUE, NULL);
4688 }
4689
4690 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4691 {
4692 struct tun_security_struct *tunsec = security;
4693 struct sk_security_struct *sksec = sk->sk_security;
4694
4695 /* we don't currently perform any NetLabel based labeling here and it
4696 * isn't clear that we would want to do so anyway; while we could apply
4697 * labeling without the support of the TUN user the resulting labeled
4698 * traffic from the other end of the connection would almost certainly
4699 * cause confusion to the TUN user that had no idea network labeling
4700 * protocols were being used */
4701
4702 sksec->sid = tunsec->sid;
4703 sksec->sclass = SECCLASS_TUN_SOCKET;
4704
4705 return 0;
4706 }
4707
4708 static int selinux_tun_dev_open(void *security)
4709 {
4710 struct tun_security_struct *tunsec = security;
4711 u32 sid = current_sid();
4712 int err;
4713
4714 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4715 TUN_SOCKET__RELABELFROM, NULL);
4716 if (err)
4717 return err;
4718 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4719 TUN_SOCKET__RELABELTO, NULL);
4720 if (err)
4721 return err;
4722 tunsec->sid = sid;
4723
4724 return 0;
4725 }
4726
4727 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4728 {
4729 int err = 0;
4730 u32 perm;
4731 struct nlmsghdr *nlh;
4732 struct sk_security_struct *sksec = sk->sk_security;
4733
4734 if (skb->len < NLMSG_HDRLEN) {
4735 err = -EINVAL;
4736 goto out;
4737 }
4738 nlh = nlmsg_hdr(skb);
4739
4740 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4741 if (err) {
4742 if (err == -EINVAL) {
4743 printk(KERN_WARNING
4744 "SELinux: unrecognized netlink message:"
4745 " protocol=%hu nlmsg_type=%hu sclass=%s\n",
4746 sk->sk_protocol, nlh->nlmsg_type,
4747 secclass_map[sksec->sclass - 1].name);
4748 if (!selinux_enforcing || security_get_allow_unknown())
4749 err = 0;
4750 }
4751
4752 /* Ignore */
4753 if (err == -ENOENT)
4754 err = 0;
4755 goto out;
4756 }
4757
4758 err = sock_has_perm(current, sk, perm);
4759 out:
4760 return err;
4761 }
4762
4763 #ifdef CONFIG_NETFILTER
4764
4765 static unsigned int selinux_ip_forward(struct sk_buff *skb,
4766 const struct net_device *indev,
4767 u16 family)
4768 {
4769 int err;
4770 char *addrp;
4771 u32 peer_sid;
4772 struct common_audit_data ad;
4773 struct lsm_network_audit net = {0,};
4774 u8 secmark_active;
4775 u8 netlbl_active;
4776 u8 peerlbl_active;
4777
4778 if (!selinux_policycap_netpeer)
4779 return NF_ACCEPT;
4780
4781 secmark_active = selinux_secmark_enabled();
4782 netlbl_active = netlbl_enabled();
4783 peerlbl_active = selinux_peerlbl_enabled();
4784 if (!secmark_active && !peerlbl_active)
4785 return NF_ACCEPT;
4786
4787 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4788 return NF_DROP;
4789
4790 ad.type = LSM_AUDIT_DATA_NET;
4791 ad.u.net = &net;
4792 ad.u.net->netif = indev->ifindex;
4793 ad.u.net->family = family;
4794 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4795 return NF_DROP;
4796
4797 if (peerlbl_active) {
4798 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4799 addrp, family, peer_sid, &ad);
4800 if (err) {
4801 selinux_netlbl_err(skb, err, 1);
4802 return NF_DROP;
4803 }
4804 }
4805
4806 if (secmark_active)
4807 if (avc_has_perm(peer_sid, skb->secmark,
4808 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4809 return NF_DROP;
4810
4811 if (netlbl_active)
4812 /* we do this in the FORWARD path and not the POST_ROUTING
4813 * path because we want to make sure we apply the necessary
4814 * labeling before IPsec is applied so we can leverage AH
4815 * protection */
4816 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4817 return NF_DROP;
4818
4819 return NF_ACCEPT;
4820 }
4821
4822 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4823 struct sk_buff *skb,
4824 const struct nf_hook_state *state)
4825 {
4826 return selinux_ip_forward(skb, state->in, PF_INET);
4827 }
4828
4829 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4830 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4831 struct sk_buff *skb,
4832 const struct nf_hook_state *state)
4833 {
4834 return selinux_ip_forward(skb, state->in, PF_INET6);
4835 }
4836 #endif /* IPV6 */
4837
4838 static unsigned int selinux_ip_output(struct sk_buff *skb,
4839 u16 family)
4840 {
4841 struct sock *sk;
4842 u32 sid;
4843
4844 if (!netlbl_enabled())
4845 return NF_ACCEPT;
4846
4847 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4848 * because we want to make sure we apply the necessary labeling
4849 * before IPsec is applied so we can leverage AH protection */
4850 sk = skb->sk;
4851 if (sk) {
4852 struct sk_security_struct *sksec;
4853
4854 if (sk->sk_state == TCP_LISTEN)
4855 /* if the socket is the listening state then this
4856 * packet is a SYN-ACK packet which means it needs to
4857 * be labeled based on the connection/request_sock and
4858 * not the parent socket. unfortunately, we can't
4859 * lookup the request_sock yet as it isn't queued on
4860 * the parent socket until after the SYN-ACK is sent.
4861 * the "solution" is to simply pass the packet as-is
4862 * as any IP option based labeling should be copied
4863 * from the initial connection request (in the IP
4864 * layer). it is far from ideal, but until we get a
4865 * security label in the packet itself this is the
4866 * best we can do. */
4867 return NF_ACCEPT;
4868
4869 /* standard practice, label using the parent socket */
4870 sksec = sk->sk_security;
4871 sid = sksec->sid;
4872 } else
4873 sid = SECINITSID_KERNEL;
4874 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4875 return NF_DROP;
4876
4877 return NF_ACCEPT;
4878 }
4879
4880 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4881 struct sk_buff *skb,
4882 const struct nf_hook_state *state)
4883 {
4884 return selinux_ip_output(skb, PF_INET);
4885 }
4886
4887 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4888 int ifindex,
4889 u16 family)
4890 {
4891 struct sock *sk = skb->sk;
4892 struct sk_security_struct *sksec;
4893 struct common_audit_data ad;
4894 struct lsm_network_audit net = {0,};
4895 char *addrp;
4896 u8 proto;
4897
4898 if (sk == NULL)
4899 return NF_ACCEPT;
4900 sksec = sk->sk_security;
4901
4902 ad.type = LSM_AUDIT_DATA_NET;
4903 ad.u.net = &net;
4904 ad.u.net->netif = ifindex;
4905 ad.u.net->family = family;
4906 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4907 return NF_DROP;
4908
4909 if (selinux_secmark_enabled())
4910 if (avc_has_perm(sksec->sid, skb->secmark,
4911 SECCLASS_PACKET, PACKET__SEND, &ad))
4912 return NF_DROP_ERR(-ECONNREFUSED);
4913
4914 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4915 return NF_DROP_ERR(-ECONNREFUSED);
4916
4917 return NF_ACCEPT;
4918 }
4919
4920 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
4921 const struct net_device *outdev,
4922 u16 family)
4923 {
4924 u32 secmark_perm;
4925 u32 peer_sid;
4926 int ifindex = outdev->ifindex;
4927 struct sock *sk;
4928 struct common_audit_data ad;
4929 struct lsm_network_audit net = {0,};
4930 char *addrp;
4931 u8 secmark_active;
4932 u8 peerlbl_active;
4933
4934 /* If any sort of compatibility mode is enabled then handoff processing
4935 * to the selinux_ip_postroute_compat() function to deal with the
4936 * special handling. We do this in an attempt to keep this function
4937 * as fast and as clean as possible. */
4938 if (!selinux_policycap_netpeer)
4939 return selinux_ip_postroute_compat(skb, ifindex, family);
4940
4941 secmark_active = selinux_secmark_enabled();
4942 peerlbl_active = selinux_peerlbl_enabled();
4943 if (!secmark_active && !peerlbl_active)
4944 return NF_ACCEPT;
4945
4946 sk = skb->sk;
4947
4948 #ifdef CONFIG_XFRM
4949 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4950 * packet transformation so allow the packet to pass without any checks
4951 * since we'll have another chance to perform access control checks
4952 * when the packet is on it's final way out.
4953 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4954 * is NULL, in this case go ahead and apply access control.
4955 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4956 * TCP listening state we cannot wait until the XFRM processing
4957 * is done as we will miss out on the SA label if we do;
4958 * unfortunately, this means more work, but it is only once per
4959 * connection. */
4960 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4961 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4962 return NF_ACCEPT;
4963 #endif
4964
4965 if (sk == NULL) {
4966 /* Without an associated socket the packet is either coming
4967 * from the kernel or it is being forwarded; check the packet
4968 * to determine which and if the packet is being forwarded
4969 * query the packet directly to determine the security label. */
4970 if (skb->skb_iif) {
4971 secmark_perm = PACKET__FORWARD_OUT;
4972 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4973 return NF_DROP;
4974 } else {
4975 secmark_perm = PACKET__SEND;
4976 peer_sid = SECINITSID_KERNEL;
4977 }
4978 } else if (sk->sk_state == TCP_LISTEN) {
4979 /* Locally generated packet but the associated socket is in the
4980 * listening state which means this is a SYN-ACK packet. In
4981 * this particular case the correct security label is assigned
4982 * to the connection/request_sock but unfortunately we can't
4983 * query the request_sock as it isn't queued on the parent
4984 * socket until after the SYN-ACK packet is sent; the only
4985 * viable choice is to regenerate the label like we do in
4986 * selinux_inet_conn_request(). See also selinux_ip_output()
4987 * for similar problems. */
4988 u32 skb_sid;
4989 struct sk_security_struct *sksec = sk->sk_security;
4990 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4991 return NF_DROP;
4992 /* At this point, if the returned skb peerlbl is SECSID_NULL
4993 * and the packet has been through at least one XFRM
4994 * transformation then we must be dealing with the "final"
4995 * form of labeled IPsec packet; since we've already applied
4996 * all of our access controls on this packet we can safely
4997 * pass the packet. */
4998 if (skb_sid == SECSID_NULL) {
4999 switch (family) {
5000 case PF_INET:
5001 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5002 return NF_ACCEPT;
5003 break;
5004 case PF_INET6:
5005 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5006 return NF_ACCEPT;
5007 break;
5008 default:
5009 return NF_DROP_ERR(-ECONNREFUSED);
5010 }
5011 }
5012 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5013 return NF_DROP;
5014 secmark_perm = PACKET__SEND;
5015 } else {
5016 /* Locally generated packet, fetch the security label from the
5017 * associated socket. */
5018 struct sk_security_struct *sksec = sk->sk_security;
5019 peer_sid = sksec->sid;
5020 secmark_perm = PACKET__SEND;
5021 }
5022
5023 ad.type = LSM_AUDIT_DATA_NET;
5024 ad.u.net = &net;
5025 ad.u.net->netif = ifindex;
5026 ad.u.net->family = family;
5027 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5028 return NF_DROP;
5029
5030 if (secmark_active)
5031 if (avc_has_perm(peer_sid, skb->secmark,
5032 SECCLASS_PACKET, secmark_perm, &ad))
5033 return NF_DROP_ERR(-ECONNREFUSED);
5034
5035 if (peerlbl_active) {
5036 u32 if_sid;
5037 u32 node_sid;
5038
5039 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5040 return NF_DROP;
5041 if (avc_has_perm(peer_sid, if_sid,
5042 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5043 return NF_DROP_ERR(-ECONNREFUSED);
5044
5045 if (sel_netnode_sid(addrp, family, &node_sid))
5046 return NF_DROP;
5047 if (avc_has_perm(peer_sid, node_sid,
5048 SECCLASS_NODE, NODE__SENDTO, &ad))
5049 return NF_DROP_ERR(-ECONNREFUSED);
5050 }
5051
5052 return NF_ACCEPT;
5053 }
5054
5055 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5056 struct sk_buff *skb,
5057 const struct nf_hook_state *state)
5058 {
5059 return selinux_ip_postroute(skb, state->out, PF_INET);
5060 }
5061
5062 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5063 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5064 struct sk_buff *skb,
5065 const struct nf_hook_state *state)
5066 {
5067 return selinux_ip_postroute(skb, state->out, PF_INET6);
5068 }
5069 #endif /* IPV6 */
5070
5071 #endif /* CONFIG_NETFILTER */
5072
5073 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5074 {
5075 return selinux_nlmsg_perm(sk, skb);
5076 }
5077
5078 static int ipc_alloc_security(struct task_struct *task,
5079 struct kern_ipc_perm *perm,
5080 u16 sclass)
5081 {
5082 struct ipc_security_struct *isec;
5083 u32 sid;
5084
5085 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5086 if (!isec)
5087 return -ENOMEM;
5088
5089 sid = task_sid(task);
5090 isec->sclass = sclass;
5091 isec->sid = sid;
5092 perm->security = isec;
5093
5094 return 0;
5095 }
5096
5097 static void ipc_free_security(struct kern_ipc_perm *perm)
5098 {
5099 struct ipc_security_struct *isec = perm->security;
5100 perm->security = NULL;
5101 kfree(isec);
5102 }
5103
5104 static int msg_msg_alloc_security(struct msg_msg *msg)
5105 {
5106 struct msg_security_struct *msec;
5107
5108 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5109 if (!msec)
5110 return -ENOMEM;
5111
5112 msec->sid = SECINITSID_UNLABELED;
5113 msg->security = msec;
5114
5115 return 0;
5116 }
5117
5118 static void msg_msg_free_security(struct msg_msg *msg)
5119 {
5120 struct msg_security_struct *msec = msg->security;
5121
5122 msg->security = NULL;
5123 kfree(msec);
5124 }
5125
5126 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5127 u32 perms)
5128 {
5129 struct ipc_security_struct *isec;
5130 struct common_audit_data ad;
5131 u32 sid = current_sid();
5132
5133 isec = ipc_perms->security;
5134
5135 ad.type = LSM_AUDIT_DATA_IPC;
5136 ad.u.ipc_id = ipc_perms->key;
5137
5138 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5139 }
5140
5141 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5142 {
5143 return msg_msg_alloc_security(msg);
5144 }
5145
5146 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5147 {
5148 msg_msg_free_security(msg);
5149 }
5150
5151 /* message queue security operations */
5152 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5153 {
5154 struct ipc_security_struct *isec;
5155 struct common_audit_data ad;
5156 u32 sid = current_sid();
5157 int rc;
5158
5159 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5160 if (rc)
5161 return rc;
5162
5163 isec = msq->q_perm.security;
5164
5165 ad.type = LSM_AUDIT_DATA_IPC;
5166 ad.u.ipc_id = msq->q_perm.key;
5167
5168 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5169 MSGQ__CREATE, &ad);
5170 if (rc) {
5171 ipc_free_security(&msq->q_perm);
5172 return rc;
5173 }
5174 return 0;
5175 }
5176
5177 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5178 {
5179 ipc_free_security(&msq->q_perm);
5180 }
5181
5182 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5183 {
5184 struct ipc_security_struct *isec;
5185 struct common_audit_data ad;
5186 u32 sid = current_sid();
5187
5188 isec = msq->q_perm.security;
5189
5190 ad.type = LSM_AUDIT_DATA_IPC;
5191 ad.u.ipc_id = msq->q_perm.key;
5192
5193 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5194 MSGQ__ASSOCIATE, &ad);
5195 }
5196
5197 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5198 {
5199 int err;
5200 int perms;
5201
5202 switch (cmd) {
5203 case IPC_INFO:
5204 case MSG_INFO:
5205 /* No specific object, just general system-wide information. */
5206 return task_has_system(current, SYSTEM__IPC_INFO);
5207 case IPC_STAT:
5208 case MSG_STAT:
5209 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5210 break;
5211 case IPC_SET:
5212 perms = MSGQ__SETATTR;
5213 break;
5214 case IPC_RMID:
5215 perms = MSGQ__DESTROY;
5216 break;
5217 default:
5218 return 0;
5219 }
5220
5221 err = ipc_has_perm(&msq->q_perm, perms);
5222 return err;
5223 }
5224
5225 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5226 {
5227 struct ipc_security_struct *isec;
5228 struct msg_security_struct *msec;
5229 struct common_audit_data ad;
5230 u32 sid = current_sid();
5231 int rc;
5232
5233 isec = msq->q_perm.security;
5234 msec = msg->security;
5235
5236 /*
5237 * First time through, need to assign label to the message
5238 */
5239 if (msec->sid == SECINITSID_UNLABELED) {
5240 /*
5241 * Compute new sid based on current process and
5242 * message queue this message will be stored in
5243 */
5244 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5245 NULL, &msec->sid);
5246 if (rc)
5247 return rc;
5248 }
5249
5250 ad.type = LSM_AUDIT_DATA_IPC;
5251 ad.u.ipc_id = msq->q_perm.key;
5252
5253 /* Can this process write to the queue? */
5254 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5255 MSGQ__WRITE, &ad);
5256 if (!rc)
5257 /* Can this process send the message */
5258 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5259 MSG__SEND, &ad);
5260 if (!rc)
5261 /* Can the message be put in the queue? */
5262 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5263 MSGQ__ENQUEUE, &ad);
5264
5265 return rc;
5266 }
5267
5268 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5269 struct task_struct *target,
5270 long type, int mode)
5271 {
5272 struct ipc_security_struct *isec;
5273 struct msg_security_struct *msec;
5274 struct common_audit_data ad;
5275 u32 sid = task_sid(target);
5276 int rc;
5277
5278 isec = msq->q_perm.security;
5279 msec = msg->security;
5280
5281 ad.type = LSM_AUDIT_DATA_IPC;
5282 ad.u.ipc_id = msq->q_perm.key;
5283
5284 rc = avc_has_perm(sid, isec->sid,
5285 SECCLASS_MSGQ, MSGQ__READ, &ad);
5286 if (!rc)
5287 rc = avc_has_perm(sid, msec->sid,
5288 SECCLASS_MSG, MSG__RECEIVE, &ad);
5289 return rc;
5290 }
5291
5292 /* Shared Memory security operations */
5293 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5294 {
5295 struct ipc_security_struct *isec;
5296 struct common_audit_data ad;
5297 u32 sid = current_sid();
5298 int rc;
5299
5300 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5301 if (rc)
5302 return rc;
5303
5304 isec = shp->shm_perm.security;
5305
5306 ad.type = LSM_AUDIT_DATA_IPC;
5307 ad.u.ipc_id = shp->shm_perm.key;
5308
5309 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5310 SHM__CREATE, &ad);
5311 if (rc) {
5312 ipc_free_security(&shp->shm_perm);
5313 return rc;
5314 }
5315 return 0;
5316 }
5317
5318 static void selinux_shm_free_security(struct shmid_kernel *shp)
5319 {
5320 ipc_free_security(&shp->shm_perm);
5321 }
5322
5323 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5324 {
5325 struct ipc_security_struct *isec;
5326 struct common_audit_data ad;
5327 u32 sid = current_sid();
5328
5329 isec = shp->shm_perm.security;
5330
5331 ad.type = LSM_AUDIT_DATA_IPC;
5332 ad.u.ipc_id = shp->shm_perm.key;
5333
5334 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5335 SHM__ASSOCIATE, &ad);
5336 }
5337
5338 /* Note, at this point, shp is locked down */
5339 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5340 {
5341 int perms;
5342 int err;
5343
5344 switch (cmd) {
5345 case IPC_INFO:
5346 case SHM_INFO:
5347 /* No specific object, just general system-wide information. */
5348 return task_has_system(current, SYSTEM__IPC_INFO);
5349 case IPC_STAT:
5350 case SHM_STAT:
5351 perms = SHM__GETATTR | SHM__ASSOCIATE;
5352 break;
5353 case IPC_SET:
5354 perms = SHM__SETATTR;
5355 break;
5356 case SHM_LOCK:
5357 case SHM_UNLOCK:
5358 perms = SHM__LOCK;
5359 break;
5360 case IPC_RMID:
5361 perms = SHM__DESTROY;
5362 break;
5363 default:
5364 return 0;
5365 }
5366
5367 err = ipc_has_perm(&shp->shm_perm, perms);
5368 return err;
5369 }
5370
5371 static int selinux_shm_shmat(struct shmid_kernel *shp,
5372 char __user *shmaddr, int shmflg)
5373 {
5374 u32 perms;
5375
5376 if (shmflg & SHM_RDONLY)
5377 perms = SHM__READ;
5378 else
5379 perms = SHM__READ | SHM__WRITE;
5380
5381 return ipc_has_perm(&shp->shm_perm, perms);
5382 }
5383
5384 /* Semaphore security operations */
5385 static int selinux_sem_alloc_security(struct sem_array *sma)
5386 {
5387 struct ipc_security_struct *isec;
5388 struct common_audit_data ad;
5389 u32 sid = current_sid();
5390 int rc;
5391
5392 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5393 if (rc)
5394 return rc;
5395
5396 isec = sma->sem_perm.security;
5397
5398 ad.type = LSM_AUDIT_DATA_IPC;
5399 ad.u.ipc_id = sma->sem_perm.key;
5400
5401 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5402 SEM__CREATE, &ad);
5403 if (rc) {
5404 ipc_free_security(&sma->sem_perm);
5405 return rc;
5406 }
5407 return 0;
5408 }
5409
5410 static void selinux_sem_free_security(struct sem_array *sma)
5411 {
5412 ipc_free_security(&sma->sem_perm);
5413 }
5414
5415 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5416 {
5417 struct ipc_security_struct *isec;
5418 struct common_audit_data ad;
5419 u32 sid = current_sid();
5420
5421 isec = sma->sem_perm.security;
5422
5423 ad.type = LSM_AUDIT_DATA_IPC;
5424 ad.u.ipc_id = sma->sem_perm.key;
5425
5426 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5427 SEM__ASSOCIATE, &ad);
5428 }
5429
5430 /* Note, at this point, sma is locked down */
5431 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5432 {
5433 int err;
5434 u32 perms;
5435
5436 switch (cmd) {
5437 case IPC_INFO:
5438 case SEM_INFO:
5439 /* No specific object, just general system-wide information. */
5440 return task_has_system(current, SYSTEM__IPC_INFO);
5441 case GETPID:
5442 case GETNCNT:
5443 case GETZCNT:
5444 perms = SEM__GETATTR;
5445 break;
5446 case GETVAL:
5447 case GETALL:
5448 perms = SEM__READ;
5449 break;
5450 case SETVAL:
5451 case SETALL:
5452 perms = SEM__WRITE;
5453 break;
5454 case IPC_RMID:
5455 perms = SEM__DESTROY;
5456 break;
5457 case IPC_SET:
5458 perms = SEM__SETATTR;
5459 break;
5460 case IPC_STAT:
5461 case SEM_STAT:
5462 perms = SEM__GETATTR | SEM__ASSOCIATE;
5463 break;
5464 default:
5465 return 0;
5466 }
5467
5468 err = ipc_has_perm(&sma->sem_perm, perms);
5469 return err;
5470 }
5471
5472 static int selinux_sem_semop(struct sem_array *sma,
5473 struct sembuf *sops, unsigned nsops, int alter)
5474 {
5475 u32 perms;
5476
5477 if (alter)
5478 perms = SEM__READ | SEM__WRITE;
5479 else
5480 perms = SEM__READ;
5481
5482 return ipc_has_perm(&sma->sem_perm, perms);
5483 }
5484
5485 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5486 {
5487 u32 av = 0;
5488
5489 av = 0;
5490 if (flag & S_IRUGO)
5491 av |= IPC__UNIX_READ;
5492 if (flag & S_IWUGO)
5493 av |= IPC__UNIX_WRITE;
5494
5495 if (av == 0)
5496 return 0;
5497
5498 return ipc_has_perm(ipcp, av);
5499 }
5500
5501 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5502 {
5503 struct ipc_security_struct *isec = ipcp->security;
5504 *secid = isec->sid;
5505 }
5506
5507 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5508 {
5509 if (inode)
5510 inode_doinit_with_dentry(inode, dentry);
5511 }
5512
5513 static int selinux_getprocattr(struct task_struct *p,
5514 char *name, char **value)
5515 {
5516 const struct task_security_struct *__tsec;
5517 u32 sid;
5518 int error;
5519 unsigned len;
5520
5521 if (current != p) {
5522 error = current_has_perm(p, PROCESS__GETATTR);
5523 if (error)
5524 return error;
5525 }
5526
5527 rcu_read_lock();
5528 __tsec = __task_cred(p)->security;
5529
5530 if (!strcmp(name, "current"))
5531 sid = __tsec->sid;
5532 else if (!strcmp(name, "prev"))
5533 sid = __tsec->osid;
5534 else if (!strcmp(name, "exec"))
5535 sid = __tsec->exec_sid;
5536 else if (!strcmp(name, "fscreate"))
5537 sid = __tsec->create_sid;
5538 else if (!strcmp(name, "keycreate"))
5539 sid = __tsec->keycreate_sid;
5540 else if (!strcmp(name, "sockcreate"))
5541 sid = __tsec->sockcreate_sid;
5542 else
5543 goto invalid;
5544 rcu_read_unlock();
5545
5546 if (!sid)
5547 return 0;
5548
5549 error = security_sid_to_context(sid, value, &len);
5550 if (error)
5551 return error;
5552 return len;
5553
5554 invalid:
5555 rcu_read_unlock();
5556 return -EINVAL;
5557 }
5558
5559 static int selinux_setprocattr(struct task_struct *p,
5560 char *name, void *value, size_t size)
5561 {
5562 struct task_security_struct *tsec;
5563 struct task_struct *tracer;
5564 struct cred *new;
5565 u32 sid = 0, ptsid;
5566 int error;
5567 char *str = value;
5568
5569 if (current != p) {
5570 /* SELinux only allows a process to change its own
5571 security attributes. */
5572 return -EACCES;
5573 }
5574
5575 /*
5576 * Basic control over ability to set these attributes at all.
5577 * current == p, but we'll pass them separately in case the
5578 * above restriction is ever removed.
5579 */
5580 if (!strcmp(name, "exec"))
5581 error = current_has_perm(p, PROCESS__SETEXEC);
5582 else if (!strcmp(name, "fscreate"))
5583 error = current_has_perm(p, PROCESS__SETFSCREATE);
5584 else if (!strcmp(name, "keycreate"))
5585 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5586 else if (!strcmp(name, "sockcreate"))
5587 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5588 else if (!strcmp(name, "current"))
5589 error = current_has_perm(p, PROCESS__SETCURRENT);
5590 else
5591 error = -EINVAL;
5592 if (error)
5593 return error;
5594
5595 /* Obtain a SID for the context, if one was specified. */
5596 if (size && str[1] && str[1] != '\n') {
5597 if (str[size-1] == '\n') {
5598 str[size-1] = 0;
5599 size--;
5600 }
5601 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5602 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5603 if (!capable(CAP_MAC_ADMIN)) {
5604 struct audit_buffer *ab;
5605 size_t audit_size;
5606
5607 /* We strip a nul only if it is at the end, otherwise the
5608 * context contains a nul and we should audit that */
5609 if (str[size - 1] == '\0')
5610 audit_size = size - 1;
5611 else
5612 audit_size = size;
5613 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5614 audit_log_format(ab, "op=fscreate invalid_context=");
5615 audit_log_n_untrustedstring(ab, value, audit_size);
5616 audit_log_end(ab);
5617
5618 return error;
5619 }
5620 error = security_context_to_sid_force(value, size,
5621 &sid);
5622 }
5623 if (error)
5624 return error;
5625 }
5626
5627 new = prepare_creds();
5628 if (!new)
5629 return -ENOMEM;
5630
5631 /* Permission checking based on the specified context is
5632 performed during the actual operation (execve,
5633 open/mkdir/...), when we know the full context of the
5634 operation. See selinux_bprm_set_creds for the execve
5635 checks and may_create for the file creation checks. The
5636 operation will then fail if the context is not permitted. */
5637 tsec = new->security;
5638 if (!strcmp(name, "exec")) {
5639 tsec->exec_sid = sid;
5640 } else if (!strcmp(name, "fscreate")) {
5641 tsec->create_sid = sid;
5642 } else if (!strcmp(name, "keycreate")) {
5643 error = may_create_key(sid, p);
5644 if (error)
5645 goto abort_change;
5646 tsec->keycreate_sid = sid;
5647 } else if (!strcmp(name, "sockcreate")) {
5648 tsec->sockcreate_sid = sid;
5649 } else if (!strcmp(name, "current")) {
5650 error = -EINVAL;
5651 if (sid == 0)
5652 goto abort_change;
5653
5654 /* Only allow single threaded processes to change context */
5655 error = -EPERM;
5656 if (!current_is_single_threaded()) {
5657 error = security_bounded_transition(tsec->sid, sid);
5658 if (error)
5659 goto abort_change;
5660 }
5661
5662 /* Check permissions for the transition. */
5663 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5664 PROCESS__DYNTRANSITION, NULL);
5665 if (error)
5666 goto abort_change;
5667
5668 /* Check for ptracing, and update the task SID if ok.
5669 Otherwise, leave SID unchanged and fail. */
5670 ptsid = 0;
5671 rcu_read_lock();
5672 tracer = ptrace_parent(p);
5673 if (tracer)
5674 ptsid = task_sid(tracer);
5675 rcu_read_unlock();
5676
5677 if (tracer) {
5678 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5679 PROCESS__PTRACE, NULL);
5680 if (error)
5681 goto abort_change;
5682 }
5683
5684 tsec->sid = sid;
5685 } else {
5686 error = -EINVAL;
5687 goto abort_change;
5688 }
5689
5690 commit_creds(new);
5691 return size;
5692
5693 abort_change:
5694 abort_creds(new);
5695 return error;
5696 }
5697
5698 static int selinux_ismaclabel(const char *name)
5699 {
5700 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5701 }
5702
5703 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5704 {
5705 return security_sid_to_context(secid, secdata, seclen);
5706 }
5707
5708 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5709 {
5710 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5711 }
5712
5713 static void selinux_release_secctx(char *secdata, u32 seclen)
5714 {
5715 kfree(secdata);
5716 }
5717
5718 /*
5719 * called with inode->i_mutex locked
5720 */
5721 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5722 {
5723 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5724 }
5725
5726 /*
5727 * called with inode->i_mutex locked
5728 */
5729 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5730 {
5731 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5732 }
5733
5734 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5735 {
5736 int len = 0;
5737 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5738 ctx, true);
5739 if (len < 0)
5740 return len;
5741 *ctxlen = len;
5742 return 0;
5743 }
5744 #ifdef CONFIG_KEYS
5745
5746 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5747 unsigned long flags)
5748 {
5749 const struct task_security_struct *tsec;
5750 struct key_security_struct *ksec;
5751
5752 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5753 if (!ksec)
5754 return -ENOMEM;
5755
5756 tsec = cred->security;
5757 if (tsec->keycreate_sid)
5758 ksec->sid = tsec->keycreate_sid;
5759 else
5760 ksec->sid = tsec->sid;
5761
5762 k->security = ksec;
5763 return 0;
5764 }
5765
5766 static void selinux_key_free(struct key *k)
5767 {
5768 struct key_security_struct *ksec = k->security;
5769
5770 k->security = NULL;
5771 kfree(ksec);
5772 }
5773
5774 static int selinux_key_permission(key_ref_t key_ref,
5775 const struct cred *cred,
5776 unsigned perm)
5777 {
5778 struct key *key;
5779 struct key_security_struct *ksec;
5780 u32 sid;
5781
5782 /* if no specific permissions are requested, we skip the
5783 permission check. No serious, additional covert channels
5784 appear to be created. */
5785 if (perm == 0)
5786 return 0;
5787
5788 sid = cred_sid(cred);
5789
5790 key = key_ref_to_ptr(key_ref);
5791 ksec = key->security;
5792
5793 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5794 }
5795
5796 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5797 {
5798 struct key_security_struct *ksec = key->security;
5799 char *context = NULL;
5800 unsigned len;
5801 int rc;
5802
5803 rc = security_sid_to_context(ksec->sid, &context, &len);
5804 if (!rc)
5805 rc = len;
5806 *_buffer = context;
5807 return rc;
5808 }
5809
5810 #endif
5811
5812 static struct security_hook_list selinux_hooks[] = {
5813 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5814 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5815 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5816 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5817
5818 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5819 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5820 LSM_HOOK_INIT(capget, selinux_capget),
5821 LSM_HOOK_INIT(capset, selinux_capset),
5822 LSM_HOOK_INIT(capable, selinux_capable),
5823 LSM_HOOK_INIT(quotactl, selinux_quotactl),
5824 LSM_HOOK_INIT(quota_on, selinux_quota_on),
5825 LSM_HOOK_INIT(syslog, selinux_syslog),
5826 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5827
5828 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5829
5830 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5831 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5832 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5833 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5834
5835 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5836 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5837 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5838 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5839 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5840 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5841 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5842 LSM_HOOK_INIT(sb_mount, selinux_mount),
5843 LSM_HOOK_INIT(sb_umount, selinux_umount),
5844 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5845 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5846 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5847
5848 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5849
5850 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5851 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5852 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5853 LSM_HOOK_INIT(inode_create, selinux_inode_create),
5854 LSM_HOOK_INIT(inode_link, selinux_inode_link),
5855 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5856 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5857 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5858 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5859 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5860 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5861 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5862 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5863 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5864 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5865 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5866 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5867 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5868 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5869 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5870 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5871 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5872 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5873 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5874 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5875
5876 LSM_HOOK_INIT(file_permission, selinux_file_permission),
5877 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
5878 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
5879 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
5880 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
5881 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
5882 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
5883 LSM_HOOK_INIT(file_lock, selinux_file_lock),
5884 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
5885 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
5886 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
5887 LSM_HOOK_INIT(file_receive, selinux_file_receive),
5888
5889 LSM_HOOK_INIT(file_open, selinux_file_open),
5890
5891 LSM_HOOK_INIT(task_create, selinux_task_create),
5892 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
5893 LSM_HOOK_INIT(cred_free, selinux_cred_free),
5894 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
5895 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
5896 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
5897 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
5898 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
5899 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
5900 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
5901 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
5902 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
5903 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
5904 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
5905 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
5906 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
5907 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
5908 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
5909 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
5910 LSM_HOOK_INIT(task_kill, selinux_task_kill),
5911 LSM_HOOK_INIT(task_wait, selinux_task_wait),
5912 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
5913
5914 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
5915 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
5916
5917 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
5918 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
5919
5920 LSM_HOOK_INIT(msg_queue_alloc_security,
5921 selinux_msg_queue_alloc_security),
5922 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
5923 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
5924 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
5925 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
5926 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
5927
5928 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
5929 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
5930 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
5931 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
5932 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
5933
5934 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
5935 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
5936 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
5937 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
5938 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
5939
5940 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
5941
5942 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
5943 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
5944
5945 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
5946 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
5947 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
5948 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
5949 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
5950 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
5951 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
5952
5953 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
5954 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
5955
5956 LSM_HOOK_INIT(socket_create, selinux_socket_create),
5957 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
5958 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
5959 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
5960 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
5961 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
5962 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
5963 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
5964 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
5965 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
5966 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
5967 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
5968 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
5969 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
5970 LSM_HOOK_INIT(socket_getpeersec_stream,
5971 selinux_socket_getpeersec_stream),
5972 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
5973 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
5974 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
5975 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
5976 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
5977 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
5978 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
5979 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
5980 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
5981 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
5982 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
5983 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
5984 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
5985 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
5986 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
5987 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
5988 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
5989 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
5990 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
5991
5992 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5993 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
5994 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
5995 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
5996 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
5997 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
5998 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
5999 selinux_xfrm_state_alloc_acquire),
6000 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6001 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6002 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6003 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6004 selinux_xfrm_state_pol_flow_match),
6005 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6006 #endif
6007
6008 #ifdef CONFIG_KEYS
6009 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6010 LSM_HOOK_INIT(key_free, selinux_key_free),
6011 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6012 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6013 #endif
6014
6015 #ifdef CONFIG_AUDIT
6016 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6017 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6018 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6019 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6020 #endif
6021 };
6022
6023 static __init int selinux_init(void)
6024 {
6025 if (!security_module_enable("selinux")) {
6026 selinux_enabled = 0;
6027 return 0;
6028 }
6029
6030 if (!selinux_enabled) {
6031 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6032 return 0;
6033 }
6034
6035 printk(KERN_INFO "SELinux: Initializing.\n");
6036
6037 /* Set the security state for the initial task. */
6038 cred_init_security();
6039
6040 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6041
6042 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6043 sizeof(struct inode_security_struct),
6044 0, SLAB_PANIC, NULL);
6045 avc_init();
6046
6047 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6048
6049 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6050 panic("SELinux: Unable to register AVC netcache callback\n");
6051
6052 if (selinux_enforcing)
6053 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6054 else
6055 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6056
6057 return 0;
6058 }
6059
6060 static void delayed_superblock_init(struct super_block *sb, void *unused)
6061 {
6062 superblock_doinit(sb, NULL);
6063 }
6064
6065 void selinux_complete_init(void)
6066 {
6067 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6068
6069 /* Set up any superblocks initialized prior to the policy load. */
6070 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6071 iterate_supers(delayed_superblock_init, NULL);
6072 }
6073
6074 /* SELinux requires early initialization in order to label
6075 all processes and objects when they are created. */
6076 security_initcall(selinux_init);
6077
6078 #if defined(CONFIG_NETFILTER)
6079
6080 static struct nf_hook_ops selinux_nf_ops[] = {
6081 {
6082 .hook = selinux_ipv4_postroute,
6083 .owner = THIS_MODULE,
6084 .pf = NFPROTO_IPV4,
6085 .hooknum = NF_INET_POST_ROUTING,
6086 .priority = NF_IP_PRI_SELINUX_LAST,
6087 },
6088 {
6089 .hook = selinux_ipv4_forward,
6090 .owner = THIS_MODULE,
6091 .pf = NFPROTO_IPV4,
6092 .hooknum = NF_INET_FORWARD,
6093 .priority = NF_IP_PRI_SELINUX_FIRST,
6094 },
6095 {
6096 .hook = selinux_ipv4_output,
6097 .owner = THIS_MODULE,
6098 .pf = NFPROTO_IPV4,
6099 .hooknum = NF_INET_LOCAL_OUT,
6100 .priority = NF_IP_PRI_SELINUX_FIRST,
6101 },
6102 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6103 {
6104 .hook = selinux_ipv6_postroute,
6105 .owner = THIS_MODULE,
6106 .pf = NFPROTO_IPV6,
6107 .hooknum = NF_INET_POST_ROUTING,
6108 .priority = NF_IP6_PRI_SELINUX_LAST,
6109 },
6110 {
6111 .hook = selinux_ipv6_forward,
6112 .owner = THIS_MODULE,
6113 .pf = NFPROTO_IPV6,
6114 .hooknum = NF_INET_FORWARD,
6115 .priority = NF_IP6_PRI_SELINUX_FIRST,
6116 },
6117 #endif /* IPV6 */
6118 };
6119
6120 static int __init selinux_nf_ip_init(void)
6121 {
6122 int err;
6123
6124 if (!selinux_enabled)
6125 return 0;
6126
6127 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6128
6129 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6130 if (err)
6131 panic("SELinux: nf_register_hooks: error %d\n", err);
6132
6133 return 0;
6134 }
6135
6136 __initcall(selinux_nf_ip_init);
6137
6138 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6139 static void selinux_nf_ip_exit(void)
6140 {
6141 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6142
6143 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6144 }
6145 #endif
6146
6147 #else /* CONFIG_NETFILTER */
6148
6149 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6150 #define selinux_nf_ip_exit()
6151 #endif
6152
6153 #endif /* CONFIG_NETFILTER */
6154
6155 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6156 static int selinux_disabled;
6157
6158 int selinux_disable(void)
6159 {
6160 if (ss_initialized) {
6161 /* Not permitted after initial policy load. */
6162 return -EINVAL;
6163 }
6164
6165 if (selinux_disabled) {
6166 /* Only do this once. */
6167 return -EINVAL;
6168 }
6169
6170 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6171
6172 selinux_disabled = 1;
6173 selinux_enabled = 0;
6174
6175 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6176
6177 /* Try to destroy the avc node cache */
6178 avc_disable();
6179
6180 /* Unregister netfilter hooks. */
6181 selinux_nf_ip_exit();
6182
6183 /* Unregister selinuxfs. */
6184 exit_sel_fs();
6185
6186 return 0;
6187 }
6188 #endif
This page took 0.228473 seconds and 5 git commands to generate.