selinux: change the handling of unknown classes
[deliverable/linux.git] / security / selinux / ss / services.c
1 /*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Copyright (C) 2008, 2009 NEC Corporation
30 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
31 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
32 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
33 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
34 * This program is free software; you can redistribute it and/or modify
35 * it under the terms of the GNU General Public License as published by
36 * the Free Software Foundation, version 2.
37 */
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/errno.h>
44 #include <linux/in.h>
45 #include <linux/sched.h>
46 #include <linux/audit.h>
47 #include <linux/mutex.h>
48 #include <linux/selinux.h>
49 #include <net/netlabel.h>
50
51 #include "flask.h"
52 #include "avc.h"
53 #include "avc_ss.h"
54 #include "security.h"
55 #include "context.h"
56 #include "policydb.h"
57 #include "sidtab.h"
58 #include "services.h"
59 #include "conditional.h"
60 #include "mls.h"
61 #include "objsec.h"
62 #include "netlabel.h"
63 #include "xfrm.h"
64 #include "ebitmap.h"
65 #include "audit.h"
66
67 extern void selnl_notify_policyload(u32 seqno);
68
69 int selinux_policycap_netpeer;
70 int selinux_policycap_openperm;
71
72 static DEFINE_RWLOCK(policy_rwlock);
73
74 static struct sidtab sidtab;
75 struct policydb policydb;
76 int ss_initialized;
77
78 /*
79 * The largest sequence number that has been used when
80 * providing an access decision to the access vector cache.
81 * The sequence number only changes when a policy change
82 * occurs.
83 */
84 static u32 latest_granting;
85
86 /* Forward declaration. */
87 static int context_struct_to_string(struct context *context, char **scontext,
88 u32 *scontext_len);
89
90 static void context_struct_compute_av(struct context *scontext,
91 struct context *tcontext,
92 u16 tclass,
93 struct av_decision *avd);
94
95 struct selinux_mapping {
96 u16 value; /* policy value */
97 unsigned num_perms;
98 u32 perms[sizeof(u32) * 8];
99 };
100
101 static struct selinux_mapping *current_mapping;
102 static u16 current_mapping_size;
103
104 static int selinux_set_mapping(struct policydb *pol,
105 struct security_class_mapping *map,
106 struct selinux_mapping **out_map_p,
107 u16 *out_map_size)
108 {
109 struct selinux_mapping *out_map = NULL;
110 size_t size = sizeof(struct selinux_mapping);
111 u16 i, j;
112 unsigned k;
113 bool print_unknown_handle = false;
114
115 /* Find number of classes in the input mapping */
116 if (!map)
117 return -EINVAL;
118 i = 0;
119 while (map[i].name)
120 i++;
121
122 /* Allocate space for the class records, plus one for class zero */
123 out_map = kcalloc(++i, size, GFP_ATOMIC);
124 if (!out_map)
125 return -ENOMEM;
126
127 /* Store the raw class and permission values */
128 j = 0;
129 while (map[j].name) {
130 struct security_class_mapping *p_in = map + (j++);
131 struct selinux_mapping *p_out = out_map + j;
132
133 /* An empty class string skips ahead */
134 if (!strcmp(p_in->name, "")) {
135 p_out->num_perms = 0;
136 continue;
137 }
138
139 p_out->value = string_to_security_class(pol, p_in->name);
140 if (!p_out->value) {
141 printk(KERN_INFO
142 "SELinux: Class %s not defined in policy.\n",
143 p_in->name);
144 if (pol->reject_unknown)
145 goto err;
146 p_out->num_perms = 0;
147 print_unknown_handle = true;
148 continue;
149 }
150
151 k = 0;
152 while (p_in->perms && p_in->perms[k]) {
153 /* An empty permission string skips ahead */
154 if (!*p_in->perms[k]) {
155 k++;
156 continue;
157 }
158 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
159 p_in->perms[k]);
160 if (!p_out->perms[k]) {
161 printk(KERN_INFO
162 "SELinux: Permission %s in class %s not defined in policy.\n",
163 p_in->perms[k], p_in->name);
164 if (pol->reject_unknown)
165 goto err;
166 print_unknown_handle = true;
167 }
168
169 k++;
170 }
171 p_out->num_perms = k;
172 }
173
174 if (print_unknown_handle)
175 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
176 pol->allow_unknown ? "allowed" : "denied");
177
178 *out_map_p = out_map;
179 *out_map_size = i;
180 return 0;
181 err:
182 kfree(out_map);
183 return -EINVAL;
184 }
185
186 /*
187 * Get real, policy values from mapped values
188 */
189
190 static u16 unmap_class(u16 tclass)
191 {
192 if (tclass < current_mapping_size)
193 return current_mapping[tclass].value;
194
195 return tclass;
196 }
197
198 static void map_decision(u16 tclass, struct av_decision *avd,
199 int allow_unknown)
200 {
201 if (tclass < current_mapping_size) {
202 unsigned i, n = current_mapping[tclass].num_perms;
203 u32 result;
204
205 for (i = 0, result = 0; i < n; i++) {
206 if (avd->allowed & current_mapping[tclass].perms[i])
207 result |= 1<<i;
208 if (allow_unknown && !current_mapping[tclass].perms[i])
209 result |= 1<<i;
210 }
211 avd->allowed = result;
212
213 for (i = 0, result = 0; i < n; i++)
214 if (avd->auditallow & current_mapping[tclass].perms[i])
215 result |= 1<<i;
216 avd->auditallow = result;
217
218 for (i = 0, result = 0; i < n; i++) {
219 if (avd->auditdeny & current_mapping[tclass].perms[i])
220 result |= 1<<i;
221 if (!allow_unknown && !current_mapping[tclass].perms[i])
222 result |= 1<<i;
223 }
224 /*
225 * In case the kernel has a bug and requests a permission
226 * between num_perms and the maximum permission number, we
227 * should audit that denial
228 */
229 for (; i < (sizeof(u32)*8); i++)
230 result |= 1<<i;
231 avd->auditdeny = result;
232 }
233 }
234
235
236 /*
237 * Return the boolean value of a constraint expression
238 * when it is applied to the specified source and target
239 * security contexts.
240 *
241 * xcontext is a special beast... It is used by the validatetrans rules
242 * only. For these rules, scontext is the context before the transition,
243 * tcontext is the context after the transition, and xcontext is the context
244 * of the process performing the transition. All other callers of
245 * constraint_expr_eval should pass in NULL for xcontext.
246 */
247 static int constraint_expr_eval(struct context *scontext,
248 struct context *tcontext,
249 struct context *xcontext,
250 struct constraint_expr *cexpr)
251 {
252 u32 val1, val2;
253 struct context *c;
254 struct role_datum *r1, *r2;
255 struct mls_level *l1, *l2;
256 struct constraint_expr *e;
257 int s[CEXPR_MAXDEPTH];
258 int sp = -1;
259
260 for (e = cexpr; e; e = e->next) {
261 switch (e->expr_type) {
262 case CEXPR_NOT:
263 BUG_ON(sp < 0);
264 s[sp] = !s[sp];
265 break;
266 case CEXPR_AND:
267 BUG_ON(sp < 1);
268 sp--;
269 s[sp] &= s[sp+1];
270 break;
271 case CEXPR_OR:
272 BUG_ON(sp < 1);
273 sp--;
274 s[sp] |= s[sp+1];
275 break;
276 case CEXPR_ATTR:
277 if (sp == (CEXPR_MAXDEPTH-1))
278 return 0;
279 switch (e->attr) {
280 case CEXPR_USER:
281 val1 = scontext->user;
282 val2 = tcontext->user;
283 break;
284 case CEXPR_TYPE:
285 val1 = scontext->type;
286 val2 = tcontext->type;
287 break;
288 case CEXPR_ROLE:
289 val1 = scontext->role;
290 val2 = tcontext->role;
291 r1 = policydb.role_val_to_struct[val1 - 1];
292 r2 = policydb.role_val_to_struct[val2 - 1];
293 switch (e->op) {
294 case CEXPR_DOM:
295 s[++sp] = ebitmap_get_bit(&r1->dominates,
296 val2 - 1);
297 continue;
298 case CEXPR_DOMBY:
299 s[++sp] = ebitmap_get_bit(&r2->dominates,
300 val1 - 1);
301 continue;
302 case CEXPR_INCOMP:
303 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
304 val2 - 1) &&
305 !ebitmap_get_bit(&r2->dominates,
306 val1 - 1));
307 continue;
308 default:
309 break;
310 }
311 break;
312 case CEXPR_L1L2:
313 l1 = &(scontext->range.level[0]);
314 l2 = &(tcontext->range.level[0]);
315 goto mls_ops;
316 case CEXPR_L1H2:
317 l1 = &(scontext->range.level[0]);
318 l2 = &(tcontext->range.level[1]);
319 goto mls_ops;
320 case CEXPR_H1L2:
321 l1 = &(scontext->range.level[1]);
322 l2 = &(tcontext->range.level[0]);
323 goto mls_ops;
324 case CEXPR_H1H2:
325 l1 = &(scontext->range.level[1]);
326 l2 = &(tcontext->range.level[1]);
327 goto mls_ops;
328 case CEXPR_L1H1:
329 l1 = &(scontext->range.level[0]);
330 l2 = &(scontext->range.level[1]);
331 goto mls_ops;
332 case CEXPR_L2H2:
333 l1 = &(tcontext->range.level[0]);
334 l2 = &(tcontext->range.level[1]);
335 goto mls_ops;
336 mls_ops:
337 switch (e->op) {
338 case CEXPR_EQ:
339 s[++sp] = mls_level_eq(l1, l2);
340 continue;
341 case CEXPR_NEQ:
342 s[++sp] = !mls_level_eq(l1, l2);
343 continue;
344 case CEXPR_DOM:
345 s[++sp] = mls_level_dom(l1, l2);
346 continue;
347 case CEXPR_DOMBY:
348 s[++sp] = mls_level_dom(l2, l1);
349 continue;
350 case CEXPR_INCOMP:
351 s[++sp] = mls_level_incomp(l2, l1);
352 continue;
353 default:
354 BUG();
355 return 0;
356 }
357 break;
358 default:
359 BUG();
360 return 0;
361 }
362
363 switch (e->op) {
364 case CEXPR_EQ:
365 s[++sp] = (val1 == val2);
366 break;
367 case CEXPR_NEQ:
368 s[++sp] = (val1 != val2);
369 break;
370 default:
371 BUG();
372 return 0;
373 }
374 break;
375 case CEXPR_NAMES:
376 if (sp == (CEXPR_MAXDEPTH-1))
377 return 0;
378 c = scontext;
379 if (e->attr & CEXPR_TARGET)
380 c = tcontext;
381 else if (e->attr & CEXPR_XTARGET) {
382 c = xcontext;
383 if (!c) {
384 BUG();
385 return 0;
386 }
387 }
388 if (e->attr & CEXPR_USER)
389 val1 = c->user;
390 else if (e->attr & CEXPR_ROLE)
391 val1 = c->role;
392 else if (e->attr & CEXPR_TYPE)
393 val1 = c->type;
394 else {
395 BUG();
396 return 0;
397 }
398
399 switch (e->op) {
400 case CEXPR_EQ:
401 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
402 break;
403 case CEXPR_NEQ:
404 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
405 break;
406 default:
407 BUG();
408 return 0;
409 }
410 break;
411 default:
412 BUG();
413 return 0;
414 }
415 }
416
417 BUG_ON(sp != 0);
418 return s[0];
419 }
420
421 /*
422 * security_dump_masked_av - dumps masked permissions during
423 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
424 */
425 static int dump_masked_av_helper(void *k, void *d, void *args)
426 {
427 struct perm_datum *pdatum = d;
428 char **permission_names = args;
429
430 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
431
432 permission_names[pdatum->value - 1] = (char *)k;
433
434 return 0;
435 }
436
437 static void security_dump_masked_av(struct context *scontext,
438 struct context *tcontext,
439 u16 tclass,
440 u32 permissions,
441 const char *reason)
442 {
443 struct common_datum *common_dat;
444 struct class_datum *tclass_dat;
445 struct audit_buffer *ab;
446 char *tclass_name;
447 char *scontext_name = NULL;
448 char *tcontext_name = NULL;
449 char *permission_names[32];
450 int index, length;
451 bool need_comma = false;
452
453 if (!permissions)
454 return;
455
456 tclass_name = policydb.p_class_val_to_name[tclass - 1];
457 tclass_dat = policydb.class_val_to_struct[tclass - 1];
458 common_dat = tclass_dat->comdatum;
459
460 /* init permission_names */
461 if (common_dat &&
462 hashtab_map(common_dat->permissions.table,
463 dump_masked_av_helper, permission_names) < 0)
464 goto out;
465
466 if (hashtab_map(tclass_dat->permissions.table,
467 dump_masked_av_helper, permission_names) < 0)
468 goto out;
469
470 /* get scontext/tcontext in text form */
471 if (context_struct_to_string(scontext,
472 &scontext_name, &length) < 0)
473 goto out;
474
475 if (context_struct_to_string(tcontext,
476 &tcontext_name, &length) < 0)
477 goto out;
478
479 /* audit a message */
480 ab = audit_log_start(current->audit_context,
481 GFP_ATOMIC, AUDIT_SELINUX_ERR);
482 if (!ab)
483 goto out;
484
485 audit_log_format(ab, "op=security_compute_av reason=%s "
486 "scontext=%s tcontext=%s tclass=%s perms=",
487 reason, scontext_name, tcontext_name, tclass_name);
488
489 for (index = 0; index < 32; index++) {
490 u32 mask = (1 << index);
491
492 if ((mask & permissions) == 0)
493 continue;
494
495 audit_log_format(ab, "%s%s",
496 need_comma ? "," : "",
497 permission_names[index]
498 ? permission_names[index] : "????");
499 need_comma = true;
500 }
501 audit_log_end(ab);
502 out:
503 /* release scontext/tcontext */
504 kfree(tcontext_name);
505 kfree(scontext_name);
506
507 return;
508 }
509
510 /*
511 * security_boundary_permission - drops violated permissions
512 * on boundary constraint.
513 */
514 static void type_attribute_bounds_av(struct context *scontext,
515 struct context *tcontext,
516 u16 tclass,
517 struct av_decision *avd)
518 {
519 struct context lo_scontext;
520 struct context lo_tcontext;
521 struct av_decision lo_avd;
522 struct type_datum *source
523 = policydb.type_val_to_struct[scontext->type - 1];
524 struct type_datum *target
525 = policydb.type_val_to_struct[tcontext->type - 1];
526 u32 masked = 0;
527
528 if (source->bounds) {
529 memset(&lo_avd, 0, sizeof(lo_avd));
530
531 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
532 lo_scontext.type = source->bounds;
533
534 context_struct_compute_av(&lo_scontext,
535 tcontext,
536 tclass,
537 &lo_avd);
538 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
539 return; /* no masked permission */
540 masked = ~lo_avd.allowed & avd->allowed;
541 }
542
543 if (target->bounds) {
544 memset(&lo_avd, 0, sizeof(lo_avd));
545
546 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
547 lo_tcontext.type = target->bounds;
548
549 context_struct_compute_av(scontext,
550 &lo_tcontext,
551 tclass,
552 &lo_avd);
553 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
554 return; /* no masked permission */
555 masked = ~lo_avd.allowed & avd->allowed;
556 }
557
558 if (source->bounds && target->bounds) {
559 memset(&lo_avd, 0, sizeof(lo_avd));
560 /*
561 * lo_scontext and lo_tcontext are already
562 * set up.
563 */
564
565 context_struct_compute_av(&lo_scontext,
566 &lo_tcontext,
567 tclass,
568 &lo_avd);
569 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
570 return; /* no masked permission */
571 masked = ~lo_avd.allowed & avd->allowed;
572 }
573
574 if (masked) {
575 /* mask violated permissions */
576 avd->allowed &= ~masked;
577
578 /* audit masked permissions */
579 security_dump_masked_av(scontext, tcontext,
580 tclass, masked, "bounds");
581 }
582 }
583
584 /*
585 * Compute access vectors based on a context structure pair for
586 * the permissions in a particular class.
587 */
588 static void context_struct_compute_av(struct context *scontext,
589 struct context *tcontext,
590 u16 tclass,
591 struct av_decision *avd)
592 {
593 struct constraint_node *constraint;
594 struct role_allow *ra;
595 struct avtab_key avkey;
596 struct avtab_node *node;
597 struct class_datum *tclass_datum;
598 struct ebitmap *sattr, *tattr;
599 struct ebitmap_node *snode, *tnode;
600 unsigned int i, j;
601
602 avd->allowed = 0;
603 avd->auditallow = 0;
604 avd->auditdeny = 0xffffffff;
605
606 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
607 if (printk_ratelimit())
608 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
609 return;
610 }
611
612 tclass_datum = policydb.class_val_to_struct[tclass - 1];
613
614 /*
615 * If a specific type enforcement rule was defined for
616 * this permission check, then use it.
617 */
618 avkey.target_class = tclass;
619 avkey.specified = AVTAB_AV;
620 sattr = &policydb.type_attr_map[scontext->type - 1];
621 tattr = &policydb.type_attr_map[tcontext->type - 1];
622 ebitmap_for_each_positive_bit(sattr, snode, i) {
623 ebitmap_for_each_positive_bit(tattr, tnode, j) {
624 avkey.source_type = i + 1;
625 avkey.target_type = j + 1;
626 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
627 node;
628 node = avtab_search_node_next(node, avkey.specified)) {
629 if (node->key.specified == AVTAB_ALLOWED)
630 avd->allowed |= node->datum.data;
631 else if (node->key.specified == AVTAB_AUDITALLOW)
632 avd->auditallow |= node->datum.data;
633 else if (node->key.specified == AVTAB_AUDITDENY)
634 avd->auditdeny &= node->datum.data;
635 }
636
637 /* Check conditional av table for additional permissions */
638 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
639
640 }
641 }
642
643 /*
644 * Remove any permissions prohibited by a constraint (this includes
645 * the MLS policy).
646 */
647 constraint = tclass_datum->constraints;
648 while (constraint) {
649 if ((constraint->permissions & (avd->allowed)) &&
650 !constraint_expr_eval(scontext, tcontext, NULL,
651 constraint->expr)) {
652 avd->allowed &= ~(constraint->permissions);
653 }
654 constraint = constraint->next;
655 }
656
657 /*
658 * If checking process transition permission and the
659 * role is changing, then check the (current_role, new_role)
660 * pair.
661 */
662 if (tclass == policydb.process_class &&
663 (avd->allowed & policydb.process_trans_perms) &&
664 scontext->role != tcontext->role) {
665 for (ra = policydb.role_allow; ra; ra = ra->next) {
666 if (scontext->role == ra->role &&
667 tcontext->role == ra->new_role)
668 break;
669 }
670 if (!ra)
671 avd->allowed &= ~policydb.process_trans_perms;
672 }
673
674 /*
675 * If the given source and target types have boundary
676 * constraint, lazy checks have to mask any violated
677 * permission and notice it to userspace via audit.
678 */
679 type_attribute_bounds_av(scontext, tcontext,
680 tclass, avd);
681 }
682
683 static int security_validtrans_handle_fail(struct context *ocontext,
684 struct context *ncontext,
685 struct context *tcontext,
686 u16 tclass)
687 {
688 char *o = NULL, *n = NULL, *t = NULL;
689 u32 olen, nlen, tlen;
690
691 if (context_struct_to_string(ocontext, &o, &olen) < 0)
692 goto out;
693 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
694 goto out;
695 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
696 goto out;
697 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
698 "security_validate_transition: denied for"
699 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
700 o, n, t, policydb.p_class_val_to_name[tclass-1]);
701 out:
702 kfree(o);
703 kfree(n);
704 kfree(t);
705
706 if (!selinux_enforcing)
707 return 0;
708 return -EPERM;
709 }
710
711 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
712 u16 orig_tclass)
713 {
714 struct context *ocontext;
715 struct context *ncontext;
716 struct context *tcontext;
717 struct class_datum *tclass_datum;
718 struct constraint_node *constraint;
719 u16 tclass;
720 int rc = 0;
721
722 if (!ss_initialized)
723 return 0;
724
725 read_lock(&policy_rwlock);
726
727 tclass = unmap_class(orig_tclass);
728
729 if (!tclass || tclass > policydb.p_classes.nprim) {
730 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
731 __func__, tclass);
732 rc = -EINVAL;
733 goto out;
734 }
735 tclass_datum = policydb.class_val_to_struct[tclass - 1];
736
737 ocontext = sidtab_search(&sidtab, oldsid);
738 if (!ocontext) {
739 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
740 __func__, oldsid);
741 rc = -EINVAL;
742 goto out;
743 }
744
745 ncontext = sidtab_search(&sidtab, newsid);
746 if (!ncontext) {
747 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
748 __func__, newsid);
749 rc = -EINVAL;
750 goto out;
751 }
752
753 tcontext = sidtab_search(&sidtab, tasksid);
754 if (!tcontext) {
755 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
756 __func__, tasksid);
757 rc = -EINVAL;
758 goto out;
759 }
760
761 constraint = tclass_datum->validatetrans;
762 while (constraint) {
763 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
764 constraint->expr)) {
765 rc = security_validtrans_handle_fail(ocontext, ncontext,
766 tcontext, tclass);
767 goto out;
768 }
769 constraint = constraint->next;
770 }
771
772 out:
773 read_unlock(&policy_rwlock);
774 return rc;
775 }
776
777 /*
778 * security_bounded_transition - check whether the given
779 * transition is directed to bounded, or not.
780 * It returns 0, if @newsid is bounded by @oldsid.
781 * Otherwise, it returns error code.
782 *
783 * @oldsid : current security identifier
784 * @newsid : destinated security identifier
785 */
786 int security_bounded_transition(u32 old_sid, u32 new_sid)
787 {
788 struct context *old_context, *new_context;
789 struct type_datum *type;
790 int index;
791 int rc = -EINVAL;
792
793 read_lock(&policy_rwlock);
794
795 old_context = sidtab_search(&sidtab, old_sid);
796 if (!old_context) {
797 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
798 __func__, old_sid);
799 goto out;
800 }
801
802 new_context = sidtab_search(&sidtab, new_sid);
803 if (!new_context) {
804 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
805 __func__, new_sid);
806 goto out;
807 }
808
809 /* type/domain unchaned */
810 if (old_context->type == new_context->type) {
811 rc = 0;
812 goto out;
813 }
814
815 index = new_context->type;
816 while (true) {
817 type = policydb.type_val_to_struct[index - 1];
818 BUG_ON(!type);
819
820 /* not bounded anymore */
821 if (!type->bounds) {
822 rc = -EPERM;
823 break;
824 }
825
826 /* @newsid is bounded by @oldsid */
827 if (type->bounds == old_context->type) {
828 rc = 0;
829 break;
830 }
831 index = type->bounds;
832 }
833
834 if (rc) {
835 char *old_name = NULL;
836 char *new_name = NULL;
837 int length;
838
839 if (!context_struct_to_string(old_context,
840 &old_name, &length) &&
841 !context_struct_to_string(new_context,
842 &new_name, &length)) {
843 audit_log(current->audit_context,
844 GFP_ATOMIC, AUDIT_SELINUX_ERR,
845 "op=security_bounded_transition "
846 "result=denied "
847 "oldcontext=%s newcontext=%s",
848 old_name, new_name);
849 }
850 kfree(new_name);
851 kfree(old_name);
852 }
853 out:
854 read_unlock(&policy_rwlock);
855
856 return rc;
857 }
858
859 static void avd_init(struct av_decision *avd)
860 {
861 avd->allowed = 0;
862 avd->auditallow = 0;
863 avd->auditdeny = 0xffffffff;
864 avd->seqno = latest_granting;
865 avd->flags = 0;
866 }
867
868
869 /**
870 * security_compute_av - Compute access vector decisions.
871 * @ssid: source security identifier
872 * @tsid: target security identifier
873 * @tclass: target security class
874 * @avd: access vector decisions
875 *
876 * Compute a set of access vector decisions based on the
877 * SID pair (@ssid, @tsid) for the permissions in @tclass.
878 */
879 void security_compute_av(u32 ssid,
880 u32 tsid,
881 u16 orig_tclass,
882 struct av_decision *avd)
883 {
884 u16 tclass;
885 struct context *scontext = NULL, *tcontext = NULL;
886
887 read_lock(&policy_rwlock);
888 avd_init(avd);
889 if (!ss_initialized)
890 goto allow;
891
892 scontext = sidtab_search(&sidtab, ssid);
893 if (!scontext) {
894 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
895 __func__, ssid);
896 goto out;
897 }
898
899 /* permissive domain? */
900 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
901 avd->flags |= AVD_FLAGS_PERMISSIVE;
902
903 tcontext = sidtab_search(&sidtab, tsid);
904 if (!tcontext) {
905 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
906 __func__, tsid);
907 goto out;
908 }
909
910 tclass = unmap_class(orig_tclass);
911 if (unlikely(orig_tclass && !tclass)) {
912 if (policydb.allow_unknown)
913 goto allow;
914 goto out;
915 }
916 context_struct_compute_av(scontext, tcontext, tclass, avd);
917 map_decision(orig_tclass, avd, policydb.allow_unknown);
918 out:
919 read_unlock(&policy_rwlock);
920 return;
921 allow:
922 avd->allowed = 0xffffffff;
923 goto out;
924 }
925
926 void security_compute_av_user(u32 ssid,
927 u32 tsid,
928 u16 tclass,
929 struct av_decision *avd)
930 {
931 struct context *scontext = NULL, *tcontext = NULL;
932
933 read_lock(&policy_rwlock);
934 avd_init(avd);
935 if (!ss_initialized)
936 goto allow;
937
938 scontext = sidtab_search(&sidtab, ssid);
939 if (!scontext) {
940 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
941 __func__, ssid);
942 goto out;
943 }
944
945 /* permissive domain? */
946 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
947 avd->flags |= AVD_FLAGS_PERMISSIVE;
948
949 tcontext = sidtab_search(&sidtab, tsid);
950 if (!tcontext) {
951 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
952 __func__, tsid);
953 goto out;
954 }
955
956 if (unlikely(!tclass)) {
957 if (policydb.allow_unknown)
958 goto allow;
959 goto out;
960 }
961
962 context_struct_compute_av(scontext, tcontext, tclass, avd);
963 out:
964 read_unlock(&policy_rwlock);
965 return;
966 allow:
967 avd->allowed = 0xffffffff;
968 goto out;
969 }
970
971 /*
972 * Write the security context string representation of
973 * the context structure `context' into a dynamically
974 * allocated string of the correct size. Set `*scontext'
975 * to point to this string and set `*scontext_len' to
976 * the length of the string.
977 */
978 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
979 {
980 char *scontextp;
981
982 *scontext = NULL;
983 *scontext_len = 0;
984
985 if (context->len) {
986 *scontext_len = context->len;
987 *scontext = kstrdup(context->str, GFP_ATOMIC);
988 if (!(*scontext))
989 return -ENOMEM;
990 return 0;
991 }
992
993 /* Compute the size of the context. */
994 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
995 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
996 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
997 *scontext_len += mls_compute_context_len(context);
998
999 /* Allocate space for the context; caller must free this space. */
1000 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1001 if (!scontextp)
1002 return -ENOMEM;
1003 *scontext = scontextp;
1004
1005 /*
1006 * Copy the user name, role name and type name into the context.
1007 */
1008 sprintf(scontextp, "%s:%s:%s",
1009 policydb.p_user_val_to_name[context->user - 1],
1010 policydb.p_role_val_to_name[context->role - 1],
1011 policydb.p_type_val_to_name[context->type - 1]);
1012 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
1013 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1014 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1015
1016 mls_sid_to_context(context, &scontextp);
1017
1018 *scontextp = 0;
1019
1020 return 0;
1021 }
1022
1023 #include "initial_sid_to_string.h"
1024
1025 const char *security_get_initial_sid_context(u32 sid)
1026 {
1027 if (unlikely(sid > SECINITSID_NUM))
1028 return NULL;
1029 return initial_sid_to_string[sid];
1030 }
1031
1032 static int security_sid_to_context_core(u32 sid, char **scontext,
1033 u32 *scontext_len, int force)
1034 {
1035 struct context *context;
1036 int rc = 0;
1037
1038 *scontext = NULL;
1039 *scontext_len = 0;
1040
1041 if (!ss_initialized) {
1042 if (sid <= SECINITSID_NUM) {
1043 char *scontextp;
1044
1045 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1046 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1047 if (!scontextp) {
1048 rc = -ENOMEM;
1049 goto out;
1050 }
1051 strcpy(scontextp, initial_sid_to_string[sid]);
1052 *scontext = scontextp;
1053 goto out;
1054 }
1055 printk(KERN_ERR "SELinux: %s: called before initial "
1056 "load_policy on unknown SID %d\n", __func__, sid);
1057 rc = -EINVAL;
1058 goto out;
1059 }
1060 read_lock(&policy_rwlock);
1061 if (force)
1062 context = sidtab_search_force(&sidtab, sid);
1063 else
1064 context = sidtab_search(&sidtab, sid);
1065 if (!context) {
1066 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1067 __func__, sid);
1068 rc = -EINVAL;
1069 goto out_unlock;
1070 }
1071 rc = context_struct_to_string(context, scontext, scontext_len);
1072 out_unlock:
1073 read_unlock(&policy_rwlock);
1074 out:
1075 return rc;
1076
1077 }
1078
1079 /**
1080 * security_sid_to_context - Obtain a context for a given SID.
1081 * @sid: security identifier, SID
1082 * @scontext: security context
1083 * @scontext_len: length in bytes
1084 *
1085 * Write the string representation of the context associated with @sid
1086 * into a dynamically allocated string of the correct size. Set @scontext
1087 * to point to this string and set @scontext_len to the length of the string.
1088 */
1089 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1090 {
1091 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1092 }
1093
1094 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1095 {
1096 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1097 }
1098
1099 /*
1100 * Caveat: Mutates scontext.
1101 */
1102 static int string_to_context_struct(struct policydb *pol,
1103 struct sidtab *sidtabp,
1104 char *scontext,
1105 u32 scontext_len,
1106 struct context *ctx,
1107 u32 def_sid)
1108 {
1109 struct role_datum *role;
1110 struct type_datum *typdatum;
1111 struct user_datum *usrdatum;
1112 char *scontextp, *p, oldc;
1113 int rc = 0;
1114
1115 context_init(ctx);
1116
1117 /* Parse the security context. */
1118
1119 rc = -EINVAL;
1120 scontextp = (char *) scontext;
1121
1122 /* Extract the user. */
1123 p = scontextp;
1124 while (*p && *p != ':')
1125 p++;
1126
1127 if (*p == 0)
1128 goto out;
1129
1130 *p++ = 0;
1131
1132 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1133 if (!usrdatum)
1134 goto out;
1135
1136 ctx->user = usrdatum->value;
1137
1138 /* Extract role. */
1139 scontextp = p;
1140 while (*p && *p != ':')
1141 p++;
1142
1143 if (*p == 0)
1144 goto out;
1145
1146 *p++ = 0;
1147
1148 role = hashtab_search(pol->p_roles.table, scontextp);
1149 if (!role)
1150 goto out;
1151 ctx->role = role->value;
1152
1153 /* Extract type. */
1154 scontextp = p;
1155 while (*p && *p != ':')
1156 p++;
1157 oldc = *p;
1158 *p++ = 0;
1159
1160 typdatum = hashtab_search(pol->p_types.table, scontextp);
1161 if (!typdatum || typdatum->attribute)
1162 goto out;
1163
1164 ctx->type = typdatum->value;
1165
1166 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1167 if (rc)
1168 goto out;
1169
1170 if ((p - scontext) < scontext_len) {
1171 rc = -EINVAL;
1172 goto out;
1173 }
1174
1175 /* Check the validity of the new context. */
1176 if (!policydb_context_isvalid(pol, ctx)) {
1177 rc = -EINVAL;
1178 goto out;
1179 }
1180 rc = 0;
1181 out:
1182 if (rc)
1183 context_destroy(ctx);
1184 return rc;
1185 }
1186
1187 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1188 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1189 int force)
1190 {
1191 char *scontext2, *str = NULL;
1192 struct context context;
1193 int rc = 0;
1194
1195 if (!ss_initialized) {
1196 int i;
1197
1198 for (i = 1; i < SECINITSID_NUM; i++) {
1199 if (!strcmp(initial_sid_to_string[i], scontext)) {
1200 *sid = i;
1201 return 0;
1202 }
1203 }
1204 *sid = SECINITSID_KERNEL;
1205 return 0;
1206 }
1207 *sid = SECSID_NULL;
1208
1209 /* Copy the string so that we can modify the copy as we parse it. */
1210 scontext2 = kmalloc(scontext_len+1, gfp_flags);
1211 if (!scontext2)
1212 return -ENOMEM;
1213 memcpy(scontext2, scontext, scontext_len);
1214 scontext2[scontext_len] = 0;
1215
1216 if (force) {
1217 /* Save another copy for storing in uninterpreted form */
1218 str = kstrdup(scontext2, gfp_flags);
1219 if (!str) {
1220 kfree(scontext2);
1221 return -ENOMEM;
1222 }
1223 }
1224
1225 read_lock(&policy_rwlock);
1226 rc = string_to_context_struct(&policydb, &sidtab,
1227 scontext2, scontext_len,
1228 &context, def_sid);
1229 if (rc == -EINVAL && force) {
1230 context.str = str;
1231 context.len = scontext_len;
1232 str = NULL;
1233 } else if (rc)
1234 goto out;
1235 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1236 context_destroy(&context);
1237 out:
1238 read_unlock(&policy_rwlock);
1239 kfree(scontext2);
1240 kfree(str);
1241 return rc;
1242 }
1243
1244 /**
1245 * security_context_to_sid - Obtain a SID for a given security context.
1246 * @scontext: security context
1247 * @scontext_len: length in bytes
1248 * @sid: security identifier, SID
1249 *
1250 * Obtains a SID associated with the security context that
1251 * has the string representation specified by @scontext.
1252 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1253 * memory is available, or 0 on success.
1254 */
1255 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1256 {
1257 return security_context_to_sid_core(scontext, scontext_len,
1258 sid, SECSID_NULL, GFP_KERNEL, 0);
1259 }
1260
1261 /**
1262 * security_context_to_sid_default - Obtain a SID for a given security context,
1263 * falling back to specified default if needed.
1264 *
1265 * @scontext: security context
1266 * @scontext_len: length in bytes
1267 * @sid: security identifier, SID
1268 * @def_sid: default SID to assign on error
1269 *
1270 * Obtains a SID associated with the security context that
1271 * has the string representation specified by @scontext.
1272 * The default SID is passed to the MLS layer to be used to allow
1273 * kernel labeling of the MLS field if the MLS field is not present
1274 * (for upgrading to MLS without full relabel).
1275 * Implicitly forces adding of the context even if it cannot be mapped yet.
1276 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1277 * memory is available, or 0 on success.
1278 */
1279 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1280 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1281 {
1282 return security_context_to_sid_core(scontext, scontext_len,
1283 sid, def_sid, gfp_flags, 1);
1284 }
1285
1286 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1287 u32 *sid)
1288 {
1289 return security_context_to_sid_core(scontext, scontext_len,
1290 sid, SECSID_NULL, GFP_KERNEL, 1);
1291 }
1292
1293 static int compute_sid_handle_invalid_context(
1294 struct context *scontext,
1295 struct context *tcontext,
1296 u16 tclass,
1297 struct context *newcontext)
1298 {
1299 char *s = NULL, *t = NULL, *n = NULL;
1300 u32 slen, tlen, nlen;
1301
1302 if (context_struct_to_string(scontext, &s, &slen) < 0)
1303 goto out;
1304 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1305 goto out;
1306 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1307 goto out;
1308 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1309 "security_compute_sid: invalid context %s"
1310 " for scontext=%s"
1311 " tcontext=%s"
1312 " tclass=%s",
1313 n, s, t, policydb.p_class_val_to_name[tclass-1]);
1314 out:
1315 kfree(s);
1316 kfree(t);
1317 kfree(n);
1318 if (!selinux_enforcing)
1319 return 0;
1320 return -EACCES;
1321 }
1322
1323 static int security_compute_sid(u32 ssid,
1324 u32 tsid,
1325 u16 orig_tclass,
1326 u32 specified,
1327 u32 *out_sid,
1328 bool kern)
1329 {
1330 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1331 struct role_trans *roletr = NULL;
1332 struct avtab_key avkey;
1333 struct avtab_datum *avdatum;
1334 struct avtab_node *node;
1335 u16 tclass;
1336 int rc = 0;
1337
1338 if (!ss_initialized) {
1339 switch (orig_tclass) {
1340 case SECCLASS_PROCESS: /* kernel value */
1341 *out_sid = ssid;
1342 break;
1343 default:
1344 *out_sid = tsid;
1345 break;
1346 }
1347 goto out;
1348 }
1349
1350 context_init(&newcontext);
1351
1352 read_lock(&policy_rwlock);
1353
1354 if (kern)
1355 tclass = unmap_class(orig_tclass);
1356 else
1357 tclass = orig_tclass;
1358
1359 scontext = sidtab_search(&sidtab, ssid);
1360 if (!scontext) {
1361 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1362 __func__, ssid);
1363 rc = -EINVAL;
1364 goto out_unlock;
1365 }
1366 tcontext = sidtab_search(&sidtab, tsid);
1367 if (!tcontext) {
1368 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1369 __func__, tsid);
1370 rc = -EINVAL;
1371 goto out_unlock;
1372 }
1373
1374 /* Set the user identity. */
1375 switch (specified) {
1376 case AVTAB_TRANSITION:
1377 case AVTAB_CHANGE:
1378 /* Use the process user identity. */
1379 newcontext.user = scontext->user;
1380 break;
1381 case AVTAB_MEMBER:
1382 /* Use the related object owner. */
1383 newcontext.user = tcontext->user;
1384 break;
1385 }
1386
1387 /* Set the role and type to default values. */
1388 if (tclass == policydb.process_class) {
1389 /* Use the current role and type of process. */
1390 newcontext.role = scontext->role;
1391 newcontext.type = scontext->type;
1392 } else {
1393 /* Use the well-defined object role. */
1394 newcontext.role = OBJECT_R_VAL;
1395 /* Use the type of the related object. */
1396 newcontext.type = tcontext->type;
1397 }
1398
1399 /* Look for a type transition/member/change rule. */
1400 avkey.source_type = scontext->type;
1401 avkey.target_type = tcontext->type;
1402 avkey.target_class = tclass;
1403 avkey.specified = specified;
1404 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1405
1406 /* If no permanent rule, also check for enabled conditional rules */
1407 if (!avdatum) {
1408 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1409 for (; node; node = avtab_search_node_next(node, specified)) {
1410 if (node->key.specified & AVTAB_ENABLED) {
1411 avdatum = &node->datum;
1412 break;
1413 }
1414 }
1415 }
1416
1417 if (avdatum) {
1418 /* Use the type from the type transition/member/change rule. */
1419 newcontext.type = avdatum->data;
1420 }
1421
1422 /* Check for class-specific changes. */
1423 if (tclass == policydb.process_class) {
1424 if (specified & AVTAB_TRANSITION) {
1425 /* Look for a role transition rule. */
1426 for (roletr = policydb.role_tr; roletr;
1427 roletr = roletr->next) {
1428 if (roletr->role == scontext->role &&
1429 roletr->type == tcontext->type) {
1430 /* Use the role transition rule. */
1431 newcontext.role = roletr->new_role;
1432 break;
1433 }
1434 }
1435 }
1436 }
1437
1438 /* Set the MLS attributes.
1439 This is done last because it may allocate memory. */
1440 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1441 if (rc)
1442 goto out_unlock;
1443
1444 /* Check the validity of the context. */
1445 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1446 rc = compute_sid_handle_invalid_context(scontext,
1447 tcontext,
1448 tclass,
1449 &newcontext);
1450 if (rc)
1451 goto out_unlock;
1452 }
1453 /* Obtain the sid for the context. */
1454 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1455 out_unlock:
1456 read_unlock(&policy_rwlock);
1457 context_destroy(&newcontext);
1458 out:
1459 return rc;
1460 }
1461
1462 /**
1463 * security_transition_sid - Compute the SID for a new subject/object.
1464 * @ssid: source security identifier
1465 * @tsid: target security identifier
1466 * @tclass: target security class
1467 * @out_sid: security identifier for new subject/object
1468 *
1469 * Compute a SID to use for labeling a new subject or object in the
1470 * class @tclass based on a SID pair (@ssid, @tsid).
1471 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1472 * if insufficient memory is available, or %0 if the new SID was
1473 * computed successfully.
1474 */
1475 int security_transition_sid(u32 ssid,
1476 u32 tsid,
1477 u16 tclass,
1478 u32 *out_sid)
1479 {
1480 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1481 out_sid, true);
1482 }
1483
1484 int security_transition_sid_user(u32 ssid,
1485 u32 tsid,
1486 u16 tclass,
1487 u32 *out_sid)
1488 {
1489 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1490 out_sid, false);
1491 }
1492
1493 /**
1494 * security_member_sid - Compute the SID for member selection.
1495 * @ssid: source security identifier
1496 * @tsid: target security identifier
1497 * @tclass: target security class
1498 * @out_sid: security identifier for selected member
1499 *
1500 * Compute a SID to use when selecting a member of a polyinstantiated
1501 * object of class @tclass based on a SID pair (@ssid, @tsid).
1502 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1503 * if insufficient memory is available, or %0 if the SID was
1504 * computed successfully.
1505 */
1506 int security_member_sid(u32 ssid,
1507 u32 tsid,
1508 u16 tclass,
1509 u32 *out_sid)
1510 {
1511 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1512 false);
1513 }
1514
1515 /**
1516 * security_change_sid - Compute the SID for object relabeling.
1517 * @ssid: source security identifier
1518 * @tsid: target security identifier
1519 * @tclass: target security class
1520 * @out_sid: security identifier for selected member
1521 *
1522 * Compute a SID to use for relabeling an object of class @tclass
1523 * based on a SID pair (@ssid, @tsid).
1524 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1525 * if insufficient memory is available, or %0 if the SID was
1526 * computed successfully.
1527 */
1528 int security_change_sid(u32 ssid,
1529 u32 tsid,
1530 u16 tclass,
1531 u32 *out_sid)
1532 {
1533 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1534 false);
1535 }
1536
1537 /* Clone the SID into the new SID table. */
1538 static int clone_sid(u32 sid,
1539 struct context *context,
1540 void *arg)
1541 {
1542 struct sidtab *s = arg;
1543
1544 return sidtab_insert(s, sid, context);
1545 }
1546
1547 static inline int convert_context_handle_invalid_context(struct context *context)
1548 {
1549 int rc = 0;
1550
1551 if (selinux_enforcing) {
1552 rc = -EINVAL;
1553 } else {
1554 char *s;
1555 u32 len;
1556
1557 if (!context_struct_to_string(context, &s, &len)) {
1558 printk(KERN_WARNING
1559 "SELinux: Context %s would be invalid if enforcing\n",
1560 s);
1561 kfree(s);
1562 }
1563 }
1564 return rc;
1565 }
1566
1567 struct convert_context_args {
1568 struct policydb *oldp;
1569 struct policydb *newp;
1570 };
1571
1572 /*
1573 * Convert the values in the security context
1574 * structure `c' from the values specified
1575 * in the policy `p->oldp' to the values specified
1576 * in the policy `p->newp'. Verify that the
1577 * context is valid under the new policy.
1578 */
1579 static int convert_context(u32 key,
1580 struct context *c,
1581 void *p)
1582 {
1583 struct convert_context_args *args;
1584 struct context oldc;
1585 struct role_datum *role;
1586 struct type_datum *typdatum;
1587 struct user_datum *usrdatum;
1588 char *s;
1589 u32 len;
1590 int rc;
1591
1592 args = p;
1593
1594 if (c->str) {
1595 struct context ctx;
1596 s = kstrdup(c->str, GFP_KERNEL);
1597 if (!s) {
1598 rc = -ENOMEM;
1599 goto out;
1600 }
1601 rc = string_to_context_struct(args->newp, NULL, s,
1602 c->len, &ctx, SECSID_NULL);
1603 kfree(s);
1604 if (!rc) {
1605 printk(KERN_INFO
1606 "SELinux: Context %s became valid (mapped).\n",
1607 c->str);
1608 /* Replace string with mapped representation. */
1609 kfree(c->str);
1610 memcpy(c, &ctx, sizeof(*c));
1611 goto out;
1612 } else if (rc == -EINVAL) {
1613 /* Retain string representation for later mapping. */
1614 rc = 0;
1615 goto out;
1616 } else {
1617 /* Other error condition, e.g. ENOMEM. */
1618 printk(KERN_ERR
1619 "SELinux: Unable to map context %s, rc = %d.\n",
1620 c->str, -rc);
1621 goto out;
1622 }
1623 }
1624
1625 rc = context_cpy(&oldc, c);
1626 if (rc)
1627 goto out;
1628
1629 rc = -EINVAL;
1630
1631 /* Convert the user. */
1632 usrdatum = hashtab_search(args->newp->p_users.table,
1633 args->oldp->p_user_val_to_name[c->user - 1]);
1634 if (!usrdatum)
1635 goto bad;
1636 c->user = usrdatum->value;
1637
1638 /* Convert the role. */
1639 role = hashtab_search(args->newp->p_roles.table,
1640 args->oldp->p_role_val_to_name[c->role - 1]);
1641 if (!role)
1642 goto bad;
1643 c->role = role->value;
1644
1645 /* Convert the type. */
1646 typdatum = hashtab_search(args->newp->p_types.table,
1647 args->oldp->p_type_val_to_name[c->type - 1]);
1648 if (!typdatum)
1649 goto bad;
1650 c->type = typdatum->value;
1651
1652 rc = mls_convert_context(args->oldp, args->newp, c);
1653 if (rc)
1654 goto bad;
1655
1656 /* Check the validity of the new context. */
1657 if (!policydb_context_isvalid(args->newp, c)) {
1658 rc = convert_context_handle_invalid_context(&oldc);
1659 if (rc)
1660 goto bad;
1661 }
1662
1663 context_destroy(&oldc);
1664 rc = 0;
1665 out:
1666 return rc;
1667 bad:
1668 /* Map old representation to string and save it. */
1669 if (context_struct_to_string(&oldc, &s, &len))
1670 return -ENOMEM;
1671 context_destroy(&oldc);
1672 context_destroy(c);
1673 c->str = s;
1674 c->len = len;
1675 printk(KERN_INFO
1676 "SELinux: Context %s became invalid (unmapped).\n",
1677 c->str);
1678 rc = 0;
1679 goto out;
1680 }
1681
1682 static void security_load_policycaps(void)
1683 {
1684 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1685 POLICYDB_CAPABILITY_NETPEER);
1686 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1687 POLICYDB_CAPABILITY_OPENPERM);
1688 }
1689
1690 extern void selinux_complete_init(void);
1691 static int security_preserve_bools(struct policydb *p);
1692
1693 /**
1694 * security_load_policy - Load a security policy configuration.
1695 * @data: binary policy data
1696 * @len: length of data in bytes
1697 *
1698 * Load a new set of security policy configuration data,
1699 * validate it and convert the SID table as necessary.
1700 * This function will flush the access vector cache after
1701 * loading the new policy.
1702 */
1703 int security_load_policy(void *data, size_t len)
1704 {
1705 struct policydb oldpolicydb, newpolicydb;
1706 struct sidtab oldsidtab, newsidtab;
1707 struct selinux_mapping *oldmap, *map = NULL;
1708 struct convert_context_args args;
1709 u32 seqno;
1710 u16 map_size;
1711 int rc = 0;
1712 struct policy_file file = { data, len }, *fp = &file;
1713
1714 if (!ss_initialized) {
1715 avtab_cache_init();
1716 if (policydb_read(&policydb, fp)) {
1717 avtab_cache_destroy();
1718 return -EINVAL;
1719 }
1720 if (selinux_set_mapping(&policydb, secclass_map,
1721 &current_mapping,
1722 &current_mapping_size)) {
1723 policydb_destroy(&policydb);
1724 avtab_cache_destroy();
1725 return -EINVAL;
1726 }
1727 if (policydb_load_isids(&policydb, &sidtab)) {
1728 policydb_destroy(&policydb);
1729 avtab_cache_destroy();
1730 return -EINVAL;
1731 }
1732 security_load_policycaps();
1733 ss_initialized = 1;
1734 seqno = ++latest_granting;
1735 selinux_complete_init();
1736 avc_ss_reset(seqno);
1737 selnl_notify_policyload(seqno);
1738 selinux_netlbl_cache_invalidate();
1739 selinux_xfrm_notify_policyload();
1740 return 0;
1741 }
1742
1743 #if 0
1744 sidtab_hash_eval(&sidtab, "sids");
1745 #endif
1746
1747 if (policydb_read(&newpolicydb, fp))
1748 return -EINVAL;
1749
1750 if (sidtab_init(&newsidtab)) {
1751 policydb_destroy(&newpolicydb);
1752 return -ENOMEM;
1753 }
1754
1755 if (selinux_set_mapping(&newpolicydb, secclass_map,
1756 &map, &map_size))
1757 goto err;
1758
1759 rc = security_preserve_bools(&newpolicydb);
1760 if (rc) {
1761 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
1762 goto err;
1763 }
1764
1765 /* Clone the SID table. */
1766 sidtab_shutdown(&sidtab);
1767 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1768 rc = -ENOMEM;
1769 goto err;
1770 }
1771
1772 /*
1773 * Convert the internal representations of contexts
1774 * in the new SID table.
1775 */
1776 args.oldp = &policydb;
1777 args.newp = &newpolicydb;
1778 rc = sidtab_map(&newsidtab, convert_context, &args);
1779 if (rc)
1780 goto err;
1781
1782 /* Save the old policydb and SID table to free later. */
1783 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1784 sidtab_set(&oldsidtab, &sidtab);
1785
1786 /* Install the new policydb and SID table. */
1787 write_lock_irq(&policy_rwlock);
1788 memcpy(&policydb, &newpolicydb, sizeof policydb);
1789 sidtab_set(&sidtab, &newsidtab);
1790 security_load_policycaps();
1791 oldmap = current_mapping;
1792 current_mapping = map;
1793 current_mapping_size = map_size;
1794 seqno = ++latest_granting;
1795 write_unlock_irq(&policy_rwlock);
1796
1797 /* Free the old policydb and SID table. */
1798 policydb_destroy(&oldpolicydb);
1799 sidtab_destroy(&oldsidtab);
1800 kfree(oldmap);
1801
1802 avc_ss_reset(seqno);
1803 selnl_notify_policyload(seqno);
1804 selinux_netlbl_cache_invalidate();
1805 selinux_xfrm_notify_policyload();
1806
1807 return 0;
1808
1809 err:
1810 kfree(map);
1811 sidtab_destroy(&newsidtab);
1812 policydb_destroy(&newpolicydb);
1813 return rc;
1814
1815 }
1816
1817 /**
1818 * security_port_sid - Obtain the SID for a port.
1819 * @protocol: protocol number
1820 * @port: port number
1821 * @out_sid: security identifier
1822 */
1823 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1824 {
1825 struct ocontext *c;
1826 int rc = 0;
1827
1828 read_lock(&policy_rwlock);
1829
1830 c = policydb.ocontexts[OCON_PORT];
1831 while (c) {
1832 if (c->u.port.protocol == protocol &&
1833 c->u.port.low_port <= port &&
1834 c->u.port.high_port >= port)
1835 break;
1836 c = c->next;
1837 }
1838
1839 if (c) {
1840 if (!c->sid[0]) {
1841 rc = sidtab_context_to_sid(&sidtab,
1842 &c->context[0],
1843 &c->sid[0]);
1844 if (rc)
1845 goto out;
1846 }
1847 *out_sid = c->sid[0];
1848 } else {
1849 *out_sid = SECINITSID_PORT;
1850 }
1851
1852 out:
1853 read_unlock(&policy_rwlock);
1854 return rc;
1855 }
1856
1857 /**
1858 * security_netif_sid - Obtain the SID for a network interface.
1859 * @name: interface name
1860 * @if_sid: interface SID
1861 */
1862 int security_netif_sid(char *name, u32 *if_sid)
1863 {
1864 int rc = 0;
1865 struct ocontext *c;
1866
1867 read_lock(&policy_rwlock);
1868
1869 c = policydb.ocontexts[OCON_NETIF];
1870 while (c) {
1871 if (strcmp(name, c->u.name) == 0)
1872 break;
1873 c = c->next;
1874 }
1875
1876 if (c) {
1877 if (!c->sid[0] || !c->sid[1]) {
1878 rc = sidtab_context_to_sid(&sidtab,
1879 &c->context[0],
1880 &c->sid[0]);
1881 if (rc)
1882 goto out;
1883 rc = sidtab_context_to_sid(&sidtab,
1884 &c->context[1],
1885 &c->sid[1]);
1886 if (rc)
1887 goto out;
1888 }
1889 *if_sid = c->sid[0];
1890 } else
1891 *if_sid = SECINITSID_NETIF;
1892
1893 out:
1894 read_unlock(&policy_rwlock);
1895 return rc;
1896 }
1897
1898 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1899 {
1900 int i, fail = 0;
1901
1902 for (i = 0; i < 4; i++)
1903 if (addr[i] != (input[i] & mask[i])) {
1904 fail = 1;
1905 break;
1906 }
1907
1908 return !fail;
1909 }
1910
1911 /**
1912 * security_node_sid - Obtain the SID for a node (host).
1913 * @domain: communication domain aka address family
1914 * @addrp: address
1915 * @addrlen: address length in bytes
1916 * @out_sid: security identifier
1917 */
1918 int security_node_sid(u16 domain,
1919 void *addrp,
1920 u32 addrlen,
1921 u32 *out_sid)
1922 {
1923 int rc = 0;
1924 struct ocontext *c;
1925
1926 read_lock(&policy_rwlock);
1927
1928 switch (domain) {
1929 case AF_INET: {
1930 u32 addr;
1931
1932 if (addrlen != sizeof(u32)) {
1933 rc = -EINVAL;
1934 goto out;
1935 }
1936
1937 addr = *((u32 *)addrp);
1938
1939 c = policydb.ocontexts[OCON_NODE];
1940 while (c) {
1941 if (c->u.node.addr == (addr & c->u.node.mask))
1942 break;
1943 c = c->next;
1944 }
1945 break;
1946 }
1947
1948 case AF_INET6:
1949 if (addrlen != sizeof(u64) * 2) {
1950 rc = -EINVAL;
1951 goto out;
1952 }
1953 c = policydb.ocontexts[OCON_NODE6];
1954 while (c) {
1955 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1956 c->u.node6.mask))
1957 break;
1958 c = c->next;
1959 }
1960 break;
1961
1962 default:
1963 *out_sid = SECINITSID_NODE;
1964 goto out;
1965 }
1966
1967 if (c) {
1968 if (!c->sid[0]) {
1969 rc = sidtab_context_to_sid(&sidtab,
1970 &c->context[0],
1971 &c->sid[0]);
1972 if (rc)
1973 goto out;
1974 }
1975 *out_sid = c->sid[0];
1976 } else {
1977 *out_sid = SECINITSID_NODE;
1978 }
1979
1980 out:
1981 read_unlock(&policy_rwlock);
1982 return rc;
1983 }
1984
1985 #define SIDS_NEL 25
1986
1987 /**
1988 * security_get_user_sids - Obtain reachable SIDs for a user.
1989 * @fromsid: starting SID
1990 * @username: username
1991 * @sids: array of reachable SIDs for user
1992 * @nel: number of elements in @sids
1993 *
1994 * Generate the set of SIDs for legal security contexts
1995 * for a given user that can be reached by @fromsid.
1996 * Set *@sids to point to a dynamically allocated
1997 * array containing the set of SIDs. Set *@nel to the
1998 * number of elements in the array.
1999 */
2000
2001 int security_get_user_sids(u32 fromsid,
2002 char *username,
2003 u32 **sids,
2004 u32 *nel)
2005 {
2006 struct context *fromcon, usercon;
2007 u32 *mysids = NULL, *mysids2, sid;
2008 u32 mynel = 0, maxnel = SIDS_NEL;
2009 struct user_datum *user;
2010 struct role_datum *role;
2011 struct ebitmap_node *rnode, *tnode;
2012 int rc = 0, i, j;
2013
2014 *sids = NULL;
2015 *nel = 0;
2016
2017 if (!ss_initialized)
2018 goto out;
2019
2020 read_lock(&policy_rwlock);
2021
2022 context_init(&usercon);
2023
2024 fromcon = sidtab_search(&sidtab, fromsid);
2025 if (!fromcon) {
2026 rc = -EINVAL;
2027 goto out_unlock;
2028 }
2029
2030 user = hashtab_search(policydb.p_users.table, username);
2031 if (!user) {
2032 rc = -EINVAL;
2033 goto out_unlock;
2034 }
2035 usercon.user = user->value;
2036
2037 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2038 if (!mysids) {
2039 rc = -ENOMEM;
2040 goto out_unlock;
2041 }
2042
2043 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2044 role = policydb.role_val_to_struct[i];
2045 usercon.role = i+1;
2046 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2047 usercon.type = j+1;
2048
2049 if (mls_setup_user_range(fromcon, user, &usercon))
2050 continue;
2051
2052 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2053 if (rc)
2054 goto out_unlock;
2055 if (mynel < maxnel) {
2056 mysids[mynel++] = sid;
2057 } else {
2058 maxnel += SIDS_NEL;
2059 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2060 if (!mysids2) {
2061 rc = -ENOMEM;
2062 goto out_unlock;
2063 }
2064 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2065 kfree(mysids);
2066 mysids = mysids2;
2067 mysids[mynel++] = sid;
2068 }
2069 }
2070 }
2071
2072 out_unlock:
2073 read_unlock(&policy_rwlock);
2074 if (rc || !mynel) {
2075 kfree(mysids);
2076 goto out;
2077 }
2078
2079 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2080 if (!mysids2) {
2081 rc = -ENOMEM;
2082 kfree(mysids);
2083 goto out;
2084 }
2085 for (i = 0, j = 0; i < mynel; i++) {
2086 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2087 SECCLASS_PROCESS, /* kernel value */
2088 PROCESS__TRANSITION, AVC_STRICT,
2089 NULL);
2090 if (!rc)
2091 mysids2[j++] = mysids[i];
2092 cond_resched();
2093 }
2094 rc = 0;
2095 kfree(mysids);
2096 *sids = mysids2;
2097 *nel = j;
2098 out:
2099 return rc;
2100 }
2101
2102 /**
2103 * security_genfs_sid - Obtain a SID for a file in a filesystem
2104 * @fstype: filesystem type
2105 * @path: path from root of mount
2106 * @sclass: file security class
2107 * @sid: SID for path
2108 *
2109 * Obtain a SID to use for a file in a filesystem that
2110 * cannot support xattr or use a fixed labeling behavior like
2111 * transition SIDs or task SIDs.
2112 */
2113 int security_genfs_sid(const char *fstype,
2114 char *path,
2115 u16 orig_sclass,
2116 u32 *sid)
2117 {
2118 int len;
2119 u16 sclass;
2120 struct genfs *genfs;
2121 struct ocontext *c;
2122 int rc = 0, cmp = 0;
2123
2124 while (path[0] == '/' && path[1] == '/')
2125 path++;
2126
2127 read_lock(&policy_rwlock);
2128
2129 sclass = unmap_class(orig_sclass);
2130
2131 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2132 cmp = strcmp(fstype, genfs->fstype);
2133 if (cmp <= 0)
2134 break;
2135 }
2136
2137 if (!genfs || cmp) {
2138 *sid = SECINITSID_UNLABELED;
2139 rc = -ENOENT;
2140 goto out;
2141 }
2142
2143 for (c = genfs->head; c; c = c->next) {
2144 len = strlen(c->u.name);
2145 if ((!c->v.sclass || sclass == c->v.sclass) &&
2146 (strncmp(c->u.name, path, len) == 0))
2147 break;
2148 }
2149
2150 if (!c) {
2151 *sid = SECINITSID_UNLABELED;
2152 rc = -ENOENT;
2153 goto out;
2154 }
2155
2156 if (!c->sid[0]) {
2157 rc = sidtab_context_to_sid(&sidtab,
2158 &c->context[0],
2159 &c->sid[0]);
2160 if (rc)
2161 goto out;
2162 }
2163
2164 *sid = c->sid[0];
2165 out:
2166 read_unlock(&policy_rwlock);
2167 return rc;
2168 }
2169
2170 /**
2171 * security_fs_use - Determine how to handle labeling for a filesystem.
2172 * @fstype: filesystem type
2173 * @behavior: labeling behavior
2174 * @sid: SID for filesystem (superblock)
2175 */
2176 int security_fs_use(
2177 const char *fstype,
2178 unsigned int *behavior,
2179 u32 *sid)
2180 {
2181 int rc = 0;
2182 struct ocontext *c;
2183
2184 read_lock(&policy_rwlock);
2185
2186 c = policydb.ocontexts[OCON_FSUSE];
2187 while (c) {
2188 if (strcmp(fstype, c->u.name) == 0)
2189 break;
2190 c = c->next;
2191 }
2192
2193 if (c) {
2194 *behavior = c->v.behavior;
2195 if (!c->sid[0]) {
2196 rc = sidtab_context_to_sid(&sidtab,
2197 &c->context[0],
2198 &c->sid[0]);
2199 if (rc)
2200 goto out;
2201 }
2202 *sid = c->sid[0];
2203 } else {
2204 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2205 if (rc) {
2206 *behavior = SECURITY_FS_USE_NONE;
2207 rc = 0;
2208 } else {
2209 *behavior = SECURITY_FS_USE_GENFS;
2210 }
2211 }
2212
2213 out:
2214 read_unlock(&policy_rwlock);
2215 return rc;
2216 }
2217
2218 int security_get_bools(int *len, char ***names, int **values)
2219 {
2220 int i, rc = -ENOMEM;
2221
2222 read_lock(&policy_rwlock);
2223 *names = NULL;
2224 *values = NULL;
2225
2226 *len = policydb.p_bools.nprim;
2227 if (!*len) {
2228 rc = 0;
2229 goto out;
2230 }
2231
2232 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2233 if (!*names)
2234 goto err;
2235
2236 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2237 if (!*values)
2238 goto err;
2239
2240 for (i = 0; i < *len; i++) {
2241 size_t name_len;
2242 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2243 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2244 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2245 if (!(*names)[i])
2246 goto err;
2247 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2248 (*names)[i][name_len - 1] = 0;
2249 }
2250 rc = 0;
2251 out:
2252 read_unlock(&policy_rwlock);
2253 return rc;
2254 err:
2255 if (*names) {
2256 for (i = 0; i < *len; i++)
2257 kfree((*names)[i]);
2258 }
2259 kfree(*values);
2260 goto out;
2261 }
2262
2263
2264 int security_set_bools(int len, int *values)
2265 {
2266 int i, rc = 0;
2267 int lenp, seqno = 0;
2268 struct cond_node *cur;
2269
2270 write_lock_irq(&policy_rwlock);
2271
2272 lenp = policydb.p_bools.nprim;
2273 if (len != lenp) {
2274 rc = -EFAULT;
2275 goto out;
2276 }
2277
2278 for (i = 0; i < len; i++) {
2279 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2280 audit_log(current->audit_context, GFP_ATOMIC,
2281 AUDIT_MAC_CONFIG_CHANGE,
2282 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2283 policydb.p_bool_val_to_name[i],
2284 !!values[i],
2285 policydb.bool_val_to_struct[i]->state,
2286 audit_get_loginuid(current),
2287 audit_get_sessionid(current));
2288 }
2289 if (values[i])
2290 policydb.bool_val_to_struct[i]->state = 1;
2291 else
2292 policydb.bool_val_to_struct[i]->state = 0;
2293 }
2294
2295 for (cur = policydb.cond_list; cur; cur = cur->next) {
2296 rc = evaluate_cond_node(&policydb, cur);
2297 if (rc)
2298 goto out;
2299 }
2300
2301 seqno = ++latest_granting;
2302
2303 out:
2304 write_unlock_irq(&policy_rwlock);
2305 if (!rc) {
2306 avc_ss_reset(seqno);
2307 selnl_notify_policyload(seqno);
2308 selinux_xfrm_notify_policyload();
2309 }
2310 return rc;
2311 }
2312
2313 int security_get_bool_value(int bool)
2314 {
2315 int rc = 0;
2316 int len;
2317
2318 read_lock(&policy_rwlock);
2319
2320 len = policydb.p_bools.nprim;
2321 if (bool >= len) {
2322 rc = -EFAULT;
2323 goto out;
2324 }
2325
2326 rc = policydb.bool_val_to_struct[bool]->state;
2327 out:
2328 read_unlock(&policy_rwlock);
2329 return rc;
2330 }
2331
2332 static int security_preserve_bools(struct policydb *p)
2333 {
2334 int rc, nbools = 0, *bvalues = NULL, i;
2335 char **bnames = NULL;
2336 struct cond_bool_datum *booldatum;
2337 struct cond_node *cur;
2338
2339 rc = security_get_bools(&nbools, &bnames, &bvalues);
2340 if (rc)
2341 goto out;
2342 for (i = 0; i < nbools; i++) {
2343 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2344 if (booldatum)
2345 booldatum->state = bvalues[i];
2346 }
2347 for (cur = p->cond_list; cur; cur = cur->next) {
2348 rc = evaluate_cond_node(p, cur);
2349 if (rc)
2350 goto out;
2351 }
2352
2353 out:
2354 if (bnames) {
2355 for (i = 0; i < nbools; i++)
2356 kfree(bnames[i]);
2357 }
2358 kfree(bnames);
2359 kfree(bvalues);
2360 return rc;
2361 }
2362
2363 /*
2364 * security_sid_mls_copy() - computes a new sid based on the given
2365 * sid and the mls portion of mls_sid.
2366 */
2367 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2368 {
2369 struct context *context1;
2370 struct context *context2;
2371 struct context newcon;
2372 char *s;
2373 u32 len;
2374 int rc = 0;
2375
2376 if (!ss_initialized || !selinux_mls_enabled) {
2377 *new_sid = sid;
2378 goto out;
2379 }
2380
2381 context_init(&newcon);
2382
2383 read_lock(&policy_rwlock);
2384 context1 = sidtab_search(&sidtab, sid);
2385 if (!context1) {
2386 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2387 __func__, sid);
2388 rc = -EINVAL;
2389 goto out_unlock;
2390 }
2391
2392 context2 = sidtab_search(&sidtab, mls_sid);
2393 if (!context2) {
2394 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2395 __func__, mls_sid);
2396 rc = -EINVAL;
2397 goto out_unlock;
2398 }
2399
2400 newcon.user = context1->user;
2401 newcon.role = context1->role;
2402 newcon.type = context1->type;
2403 rc = mls_context_cpy(&newcon, context2);
2404 if (rc)
2405 goto out_unlock;
2406
2407 /* Check the validity of the new context. */
2408 if (!policydb_context_isvalid(&policydb, &newcon)) {
2409 rc = convert_context_handle_invalid_context(&newcon);
2410 if (rc)
2411 goto bad;
2412 }
2413
2414 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2415 goto out_unlock;
2416
2417 bad:
2418 if (!context_struct_to_string(&newcon, &s, &len)) {
2419 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2420 "security_sid_mls_copy: invalid context %s", s);
2421 kfree(s);
2422 }
2423
2424 out_unlock:
2425 read_unlock(&policy_rwlock);
2426 context_destroy(&newcon);
2427 out:
2428 return rc;
2429 }
2430
2431 /**
2432 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2433 * @nlbl_sid: NetLabel SID
2434 * @nlbl_type: NetLabel labeling protocol type
2435 * @xfrm_sid: XFRM SID
2436 *
2437 * Description:
2438 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2439 * resolved into a single SID it is returned via @peer_sid and the function
2440 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2441 * returns a negative value. A table summarizing the behavior is below:
2442 *
2443 * | function return | @sid
2444 * ------------------------------+-----------------+-----------------
2445 * no peer labels | 0 | SECSID_NULL
2446 * single peer label | 0 | <peer_label>
2447 * multiple, consistent labels | 0 | <peer_label>
2448 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2449 *
2450 */
2451 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2452 u32 xfrm_sid,
2453 u32 *peer_sid)
2454 {
2455 int rc;
2456 struct context *nlbl_ctx;
2457 struct context *xfrm_ctx;
2458
2459 /* handle the common (which also happens to be the set of easy) cases
2460 * right away, these two if statements catch everything involving a
2461 * single or absent peer SID/label */
2462 if (xfrm_sid == SECSID_NULL) {
2463 *peer_sid = nlbl_sid;
2464 return 0;
2465 }
2466 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2467 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2468 * is present */
2469 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2470 *peer_sid = xfrm_sid;
2471 return 0;
2472 }
2473
2474 /* we don't need to check ss_initialized here since the only way both
2475 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2476 * security server was initialized and ss_initialized was true */
2477 if (!selinux_mls_enabled) {
2478 *peer_sid = SECSID_NULL;
2479 return 0;
2480 }
2481
2482 read_lock(&policy_rwlock);
2483
2484 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2485 if (!nlbl_ctx) {
2486 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2487 __func__, nlbl_sid);
2488 rc = -EINVAL;
2489 goto out_slowpath;
2490 }
2491 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2492 if (!xfrm_ctx) {
2493 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2494 __func__, xfrm_sid);
2495 rc = -EINVAL;
2496 goto out_slowpath;
2497 }
2498 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2499
2500 out_slowpath:
2501 read_unlock(&policy_rwlock);
2502 if (rc == 0)
2503 /* at present NetLabel SIDs/labels really only carry MLS
2504 * information so if the MLS portion of the NetLabel SID
2505 * matches the MLS portion of the labeled XFRM SID/label
2506 * then pass along the XFRM SID as it is the most
2507 * expressive */
2508 *peer_sid = xfrm_sid;
2509 else
2510 *peer_sid = SECSID_NULL;
2511 return rc;
2512 }
2513
2514 static int get_classes_callback(void *k, void *d, void *args)
2515 {
2516 struct class_datum *datum = d;
2517 char *name = k, **classes = args;
2518 int value = datum->value - 1;
2519
2520 classes[value] = kstrdup(name, GFP_ATOMIC);
2521 if (!classes[value])
2522 return -ENOMEM;
2523
2524 return 0;
2525 }
2526
2527 int security_get_classes(char ***classes, int *nclasses)
2528 {
2529 int rc = -ENOMEM;
2530
2531 read_lock(&policy_rwlock);
2532
2533 *nclasses = policydb.p_classes.nprim;
2534 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2535 if (!*classes)
2536 goto out;
2537
2538 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2539 *classes);
2540 if (rc < 0) {
2541 int i;
2542 for (i = 0; i < *nclasses; i++)
2543 kfree((*classes)[i]);
2544 kfree(*classes);
2545 }
2546
2547 out:
2548 read_unlock(&policy_rwlock);
2549 return rc;
2550 }
2551
2552 static int get_permissions_callback(void *k, void *d, void *args)
2553 {
2554 struct perm_datum *datum = d;
2555 char *name = k, **perms = args;
2556 int value = datum->value - 1;
2557
2558 perms[value] = kstrdup(name, GFP_ATOMIC);
2559 if (!perms[value])
2560 return -ENOMEM;
2561
2562 return 0;
2563 }
2564
2565 int security_get_permissions(char *class, char ***perms, int *nperms)
2566 {
2567 int rc = -ENOMEM, i;
2568 struct class_datum *match;
2569
2570 read_lock(&policy_rwlock);
2571
2572 match = hashtab_search(policydb.p_classes.table, class);
2573 if (!match) {
2574 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2575 __func__, class);
2576 rc = -EINVAL;
2577 goto out;
2578 }
2579
2580 *nperms = match->permissions.nprim;
2581 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2582 if (!*perms)
2583 goto out;
2584
2585 if (match->comdatum) {
2586 rc = hashtab_map(match->comdatum->permissions.table,
2587 get_permissions_callback, *perms);
2588 if (rc < 0)
2589 goto err;
2590 }
2591
2592 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2593 *perms);
2594 if (rc < 0)
2595 goto err;
2596
2597 out:
2598 read_unlock(&policy_rwlock);
2599 return rc;
2600
2601 err:
2602 read_unlock(&policy_rwlock);
2603 for (i = 0; i < *nperms; i++)
2604 kfree((*perms)[i]);
2605 kfree(*perms);
2606 return rc;
2607 }
2608
2609 int security_get_reject_unknown(void)
2610 {
2611 return policydb.reject_unknown;
2612 }
2613
2614 int security_get_allow_unknown(void)
2615 {
2616 return policydb.allow_unknown;
2617 }
2618
2619 /**
2620 * security_policycap_supported - Check for a specific policy capability
2621 * @req_cap: capability
2622 *
2623 * Description:
2624 * This function queries the currently loaded policy to see if it supports the
2625 * capability specified by @req_cap. Returns true (1) if the capability is
2626 * supported, false (0) if it isn't supported.
2627 *
2628 */
2629 int security_policycap_supported(unsigned int req_cap)
2630 {
2631 int rc;
2632
2633 read_lock(&policy_rwlock);
2634 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2635 read_unlock(&policy_rwlock);
2636
2637 return rc;
2638 }
2639
2640 struct selinux_audit_rule {
2641 u32 au_seqno;
2642 struct context au_ctxt;
2643 };
2644
2645 void selinux_audit_rule_free(void *vrule)
2646 {
2647 struct selinux_audit_rule *rule = vrule;
2648
2649 if (rule) {
2650 context_destroy(&rule->au_ctxt);
2651 kfree(rule);
2652 }
2653 }
2654
2655 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2656 {
2657 struct selinux_audit_rule *tmprule;
2658 struct role_datum *roledatum;
2659 struct type_datum *typedatum;
2660 struct user_datum *userdatum;
2661 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2662 int rc = 0;
2663
2664 *rule = NULL;
2665
2666 if (!ss_initialized)
2667 return -EOPNOTSUPP;
2668
2669 switch (field) {
2670 case AUDIT_SUBJ_USER:
2671 case AUDIT_SUBJ_ROLE:
2672 case AUDIT_SUBJ_TYPE:
2673 case AUDIT_OBJ_USER:
2674 case AUDIT_OBJ_ROLE:
2675 case AUDIT_OBJ_TYPE:
2676 /* only 'equals' and 'not equals' fit user, role, and type */
2677 if (op != Audit_equal && op != Audit_not_equal)
2678 return -EINVAL;
2679 break;
2680 case AUDIT_SUBJ_SEN:
2681 case AUDIT_SUBJ_CLR:
2682 case AUDIT_OBJ_LEV_LOW:
2683 case AUDIT_OBJ_LEV_HIGH:
2684 /* we do not allow a range, indicated by the presense of '-' */
2685 if (strchr(rulestr, '-'))
2686 return -EINVAL;
2687 break;
2688 default:
2689 /* only the above fields are valid */
2690 return -EINVAL;
2691 }
2692
2693 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2694 if (!tmprule)
2695 return -ENOMEM;
2696
2697 context_init(&tmprule->au_ctxt);
2698
2699 read_lock(&policy_rwlock);
2700
2701 tmprule->au_seqno = latest_granting;
2702
2703 switch (field) {
2704 case AUDIT_SUBJ_USER:
2705 case AUDIT_OBJ_USER:
2706 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2707 if (!userdatum)
2708 rc = -EINVAL;
2709 else
2710 tmprule->au_ctxt.user = userdatum->value;
2711 break;
2712 case AUDIT_SUBJ_ROLE:
2713 case AUDIT_OBJ_ROLE:
2714 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2715 if (!roledatum)
2716 rc = -EINVAL;
2717 else
2718 tmprule->au_ctxt.role = roledatum->value;
2719 break;
2720 case AUDIT_SUBJ_TYPE:
2721 case AUDIT_OBJ_TYPE:
2722 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2723 if (!typedatum)
2724 rc = -EINVAL;
2725 else
2726 tmprule->au_ctxt.type = typedatum->value;
2727 break;
2728 case AUDIT_SUBJ_SEN:
2729 case AUDIT_SUBJ_CLR:
2730 case AUDIT_OBJ_LEV_LOW:
2731 case AUDIT_OBJ_LEV_HIGH:
2732 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2733 break;
2734 }
2735
2736 read_unlock(&policy_rwlock);
2737
2738 if (rc) {
2739 selinux_audit_rule_free(tmprule);
2740 tmprule = NULL;
2741 }
2742
2743 *rule = tmprule;
2744
2745 return rc;
2746 }
2747
2748 /* Check to see if the rule contains any selinux fields */
2749 int selinux_audit_rule_known(struct audit_krule *rule)
2750 {
2751 int i;
2752
2753 for (i = 0; i < rule->field_count; i++) {
2754 struct audit_field *f = &rule->fields[i];
2755 switch (f->type) {
2756 case AUDIT_SUBJ_USER:
2757 case AUDIT_SUBJ_ROLE:
2758 case AUDIT_SUBJ_TYPE:
2759 case AUDIT_SUBJ_SEN:
2760 case AUDIT_SUBJ_CLR:
2761 case AUDIT_OBJ_USER:
2762 case AUDIT_OBJ_ROLE:
2763 case AUDIT_OBJ_TYPE:
2764 case AUDIT_OBJ_LEV_LOW:
2765 case AUDIT_OBJ_LEV_HIGH:
2766 return 1;
2767 }
2768 }
2769
2770 return 0;
2771 }
2772
2773 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2774 struct audit_context *actx)
2775 {
2776 struct context *ctxt;
2777 struct mls_level *level;
2778 struct selinux_audit_rule *rule = vrule;
2779 int match = 0;
2780
2781 if (!rule) {
2782 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2783 "selinux_audit_rule_match: missing rule\n");
2784 return -ENOENT;
2785 }
2786
2787 read_lock(&policy_rwlock);
2788
2789 if (rule->au_seqno < latest_granting) {
2790 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2791 "selinux_audit_rule_match: stale rule\n");
2792 match = -ESTALE;
2793 goto out;
2794 }
2795
2796 ctxt = sidtab_search(&sidtab, sid);
2797 if (!ctxt) {
2798 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2799 "selinux_audit_rule_match: unrecognized SID %d\n",
2800 sid);
2801 match = -ENOENT;
2802 goto out;
2803 }
2804
2805 /* a field/op pair that is not caught here will simply fall through
2806 without a match */
2807 switch (field) {
2808 case AUDIT_SUBJ_USER:
2809 case AUDIT_OBJ_USER:
2810 switch (op) {
2811 case Audit_equal:
2812 match = (ctxt->user == rule->au_ctxt.user);
2813 break;
2814 case Audit_not_equal:
2815 match = (ctxt->user != rule->au_ctxt.user);
2816 break;
2817 }
2818 break;
2819 case AUDIT_SUBJ_ROLE:
2820 case AUDIT_OBJ_ROLE:
2821 switch (op) {
2822 case Audit_equal:
2823 match = (ctxt->role == rule->au_ctxt.role);
2824 break;
2825 case Audit_not_equal:
2826 match = (ctxt->role != rule->au_ctxt.role);
2827 break;
2828 }
2829 break;
2830 case AUDIT_SUBJ_TYPE:
2831 case AUDIT_OBJ_TYPE:
2832 switch (op) {
2833 case Audit_equal:
2834 match = (ctxt->type == rule->au_ctxt.type);
2835 break;
2836 case Audit_not_equal:
2837 match = (ctxt->type != rule->au_ctxt.type);
2838 break;
2839 }
2840 break;
2841 case AUDIT_SUBJ_SEN:
2842 case AUDIT_SUBJ_CLR:
2843 case AUDIT_OBJ_LEV_LOW:
2844 case AUDIT_OBJ_LEV_HIGH:
2845 level = ((field == AUDIT_SUBJ_SEN ||
2846 field == AUDIT_OBJ_LEV_LOW) ?
2847 &ctxt->range.level[0] : &ctxt->range.level[1]);
2848 switch (op) {
2849 case Audit_equal:
2850 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2851 level);
2852 break;
2853 case Audit_not_equal:
2854 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2855 level);
2856 break;
2857 case Audit_lt:
2858 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2859 level) &&
2860 !mls_level_eq(&rule->au_ctxt.range.level[0],
2861 level));
2862 break;
2863 case Audit_le:
2864 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2865 level);
2866 break;
2867 case Audit_gt:
2868 match = (mls_level_dom(level,
2869 &rule->au_ctxt.range.level[0]) &&
2870 !mls_level_eq(level,
2871 &rule->au_ctxt.range.level[0]));
2872 break;
2873 case Audit_ge:
2874 match = mls_level_dom(level,
2875 &rule->au_ctxt.range.level[0]);
2876 break;
2877 }
2878 }
2879
2880 out:
2881 read_unlock(&policy_rwlock);
2882 return match;
2883 }
2884
2885 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2886
2887 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2888 u16 class, u32 perms, u32 *retained)
2889 {
2890 int err = 0;
2891
2892 if (event == AVC_CALLBACK_RESET && aurule_callback)
2893 err = aurule_callback();
2894 return err;
2895 }
2896
2897 static int __init aurule_init(void)
2898 {
2899 int err;
2900
2901 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2902 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2903 if (err)
2904 panic("avc_add_callback() failed, error %d\n", err);
2905
2906 return err;
2907 }
2908 __initcall(aurule_init);
2909
2910 #ifdef CONFIG_NETLABEL
2911 /**
2912 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2913 * @secattr: the NetLabel packet security attributes
2914 * @sid: the SELinux SID
2915 *
2916 * Description:
2917 * Attempt to cache the context in @ctx, which was derived from the packet in
2918 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2919 * already been initialized.
2920 *
2921 */
2922 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2923 u32 sid)
2924 {
2925 u32 *sid_cache;
2926
2927 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2928 if (sid_cache == NULL)
2929 return;
2930 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2931 if (secattr->cache == NULL) {
2932 kfree(sid_cache);
2933 return;
2934 }
2935
2936 *sid_cache = sid;
2937 secattr->cache->free = kfree;
2938 secattr->cache->data = sid_cache;
2939 secattr->flags |= NETLBL_SECATTR_CACHE;
2940 }
2941
2942 /**
2943 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2944 * @secattr: the NetLabel packet security attributes
2945 * @sid: the SELinux SID
2946 *
2947 * Description:
2948 * Convert the given NetLabel security attributes in @secattr into a
2949 * SELinux SID. If the @secattr field does not contain a full SELinux
2950 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2951 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2952 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2953 * conversion for future lookups. Returns zero on success, negative values on
2954 * failure.
2955 *
2956 */
2957 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2958 u32 *sid)
2959 {
2960 int rc = -EIDRM;
2961 struct context *ctx;
2962 struct context ctx_new;
2963
2964 if (!ss_initialized) {
2965 *sid = SECSID_NULL;
2966 return 0;
2967 }
2968
2969 read_lock(&policy_rwlock);
2970
2971 if (secattr->flags & NETLBL_SECATTR_CACHE) {
2972 *sid = *(u32 *)secattr->cache->data;
2973 rc = 0;
2974 } else if (secattr->flags & NETLBL_SECATTR_SECID) {
2975 *sid = secattr->attr.secid;
2976 rc = 0;
2977 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2978 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2979 if (ctx == NULL)
2980 goto netlbl_secattr_to_sid_return;
2981
2982 context_init(&ctx_new);
2983 ctx_new.user = ctx->user;
2984 ctx_new.role = ctx->role;
2985 ctx_new.type = ctx->type;
2986 mls_import_netlbl_lvl(&ctx_new, secattr);
2987 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2988 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2989 secattr->attr.mls.cat) != 0)
2990 goto netlbl_secattr_to_sid_return;
2991 memcpy(&ctx_new.range.level[1].cat,
2992 &ctx_new.range.level[0].cat,
2993 sizeof(ctx_new.range.level[0].cat));
2994 }
2995 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2996 goto netlbl_secattr_to_sid_return_cleanup;
2997
2998 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2999 if (rc != 0)
3000 goto netlbl_secattr_to_sid_return_cleanup;
3001
3002 security_netlbl_cache_add(secattr, *sid);
3003
3004 ebitmap_destroy(&ctx_new.range.level[0].cat);
3005 } else {
3006 *sid = SECSID_NULL;
3007 rc = 0;
3008 }
3009
3010 netlbl_secattr_to_sid_return:
3011 read_unlock(&policy_rwlock);
3012 return rc;
3013 netlbl_secattr_to_sid_return_cleanup:
3014 ebitmap_destroy(&ctx_new.range.level[0].cat);
3015 goto netlbl_secattr_to_sid_return;
3016 }
3017
3018 /**
3019 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3020 * @sid: the SELinux SID
3021 * @secattr: the NetLabel packet security attributes
3022 *
3023 * Description:
3024 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3025 * Returns zero on success, negative values on failure.
3026 *
3027 */
3028 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3029 {
3030 int rc;
3031 struct context *ctx;
3032
3033 if (!ss_initialized)
3034 return 0;
3035
3036 read_lock(&policy_rwlock);
3037 ctx = sidtab_search(&sidtab, sid);
3038 if (ctx == NULL) {
3039 rc = -ENOENT;
3040 goto netlbl_sid_to_secattr_failure;
3041 }
3042 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3043 GFP_ATOMIC);
3044 if (secattr->domain == NULL) {
3045 rc = -ENOMEM;
3046 goto netlbl_sid_to_secattr_failure;
3047 }
3048 secattr->attr.secid = sid;
3049 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3050 mls_export_netlbl_lvl(ctx, secattr);
3051 rc = mls_export_netlbl_cat(ctx, secattr);
3052 if (rc != 0)
3053 goto netlbl_sid_to_secattr_failure;
3054 read_unlock(&policy_rwlock);
3055
3056 return 0;
3057
3058 netlbl_sid_to_secattr_failure:
3059 read_unlock(&policy_rwlock);
3060 return rc;
3061 }
3062 #endif /* CONFIG_NETLABEL */
This page took 0.383686 seconds and 5 git commands to generate.