Add Cirrus Maverick support to arm simulator
[deliverable/binutils-gdb.git] / sim / arm / armcopro.c
1 /* armcopro.c -- co-processor interface: ARM6 Instruction Emulator.
2 Copyright (C) 1994, 2000 Advanced RISC Machines Ltd.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
17
18 #include "armdefs.h"
19 #include "armos.h"
20 #include "armemu.h"
21 #include "ansidecl.h"
22
23 /* Dummy Co-processors. */
24
25 static unsigned
26 NoCoPro3R (ARMul_State * state ATTRIBUTE_UNUSED,
27 unsigned a ATTRIBUTE_UNUSED,
28 ARMword b ATTRIBUTE_UNUSED)
29 {
30 return ARMul_CANT;
31 }
32
33 static unsigned
34 NoCoPro4R (ARMul_State * state ATTRIBUTE_UNUSED,
35 unsigned a ATTRIBUTE_UNUSED,
36 ARMword b ATTRIBUTE_UNUSED,
37 ARMword c ATTRIBUTE_UNUSED)
38 {
39 return ARMul_CANT;
40 }
41
42 static unsigned
43 NoCoPro4W (ARMul_State * state ATTRIBUTE_UNUSED,
44 unsigned a ATTRIBUTE_UNUSED,
45 ARMword b ATTRIBUTE_UNUSED,
46 ARMword * c ATTRIBUTE_UNUSED)
47 {
48 return ARMul_CANT;
49 }
50
51 /* The XScale Co-processors. */
52
53 /* Coprocessor 15: System Control. */
54 static void write_cp14_reg (unsigned, ARMword);
55 static ARMword read_cp14_reg (unsigned);
56
57 /* There are two sets of registers for copro 15.
58 One set is available when opcode_2 is 0 and
59 the other set when opcode_2 >= 1. */
60 static ARMword XScale_cp15_opcode_2_is_0_Regs[16];
61 static ARMword XScale_cp15_opcode_2_is_not_0_Regs[16];
62 /* There are also a set of breakpoint registers
63 which are accessed via CRm instead of opcode_2. */
64 static ARMword XScale_cp15_DBR1;
65 static ARMword XScale_cp15_DBCON;
66 static ARMword XScale_cp15_IBCR0;
67 static ARMword XScale_cp15_IBCR1;
68
69 static unsigned
70 XScale_cp15_init (ARMul_State * state ATTRIBUTE_UNUSED)
71 {
72 int i;
73
74 for (i = 16; i--;)
75 {
76 XScale_cp15_opcode_2_is_0_Regs[i] = 0;
77 XScale_cp15_opcode_2_is_not_0_Regs[i] = 0;
78 }
79
80 /* Initialise the processor ID. */
81 XScale_cp15_opcode_2_is_0_Regs[0] = 0x69052000;
82
83 /* Initialise the cache type. */
84 XScale_cp15_opcode_2_is_not_0_Regs[0] = 0x0B1AA1AA;
85
86 /* Initialise the ARM Control Register. */
87 XScale_cp15_opcode_2_is_0_Regs[1] = 0x00000078;
88 }
89
90 /* Check an access to a register. */
91
92 static unsigned
93 check_cp15_access (ARMul_State * state,
94 unsigned reg,
95 unsigned CRm,
96 unsigned opcode_1,
97 unsigned opcode_2)
98 {
99 /* Do not allow access to these register in USER mode. */
100 if (state->Mode == USER26MODE || state->Mode == USER32MODE)
101 return ARMul_CANT;
102
103 /* Opcode_1should be zero. */
104 if (opcode_1 != 0)
105 return ARMul_CANT;
106
107 /* Different register have different access requirements. */
108 switch (reg)
109 {
110 case 0:
111 case 1:
112 /* CRm must be 0. Opcode_2 can be anything. */
113 if (CRm != 0)
114 return ARMul_CANT;
115 break;
116 case 2:
117 case 3:
118 /* CRm must be 0. Opcode_2 must be zero. */
119 if ((CRm != 0) || (opcode_2 != 0))
120 return ARMul_CANT;
121 break;
122 case 4:
123 /* Access not allowed. */
124 return ARMul_CANT;
125 case 5:
126 case 6:
127 /* Opcode_2 must be zero. CRm must be 0. */
128 if ((CRm != 0) || (opcode_2 != 0))
129 return ARMul_CANT;
130 break;
131 case 7:
132 /* Permissable combinations:
133 Opcode_2 CRm
134 0 5
135 0 6
136 0 7
137 1 5
138 1 6
139 1 10
140 4 10
141 5 2
142 6 5 */
143 switch (opcode_2)
144 {
145 default: return ARMul_CANT;
146 case 6: if (CRm != 5) return ARMul_CANT; break;
147 case 5: if (CRm != 2) return ARMul_CANT; break;
148 case 4: if (CRm != 10) return ARMul_CANT; break;
149 case 1: if ((CRm != 5) && (CRm != 6) && (CRm != 10)) return ARMul_CANT; break;
150 case 0: if ((CRm < 5) || (CRm > 7)) return ARMul_CANT; break;
151 }
152 break;
153
154 case 8:
155 /* Permissable combinations:
156 Opcode_2 CRm
157 0 5
158 0 6
159 0 7
160 1 5
161 1 6 */
162 if (opcode_2 > 1)
163 return ARMul_CANT;
164 if ((CRm < 5) || (CRm > 7))
165 return ARMul_CANT;
166 if (opcode_2 == 1 && CRm == 7)
167 return ARMul_CANT;
168 break;
169 case 9:
170 /* Opcode_2 must be zero or one. CRm must be 1 or 2. */
171 if ( ((CRm != 0) && (CRm != 1))
172 || ((opcode_2 != 1) && (opcode_2 != 2)))
173 return ARMul_CANT;
174 break;
175 case 10:
176 /* Opcode_2 must be zero or one. CRm must be 4 or 8. */
177 if ( ((CRm != 0) && (CRm != 1))
178 || ((opcode_2 != 4) && (opcode_2 != 8)))
179 return ARMul_CANT;
180 break;
181 case 11:
182 /* Access not allowed. */
183 return ARMul_CANT;
184 case 12:
185 /* Access not allowed. */
186 return ARMul_CANT;
187 case 13:
188 /* Opcode_2 must be zero. CRm must be 0. */
189 if ((CRm != 0) || (opcode_2 != 0))
190 return ARMul_CANT;
191 break;
192 case 14:
193 /* Opcode_2 must be 0. CRm must be 0, 3, 4, 8 or 9. */
194 if (opcode_2 != 0)
195 return ARMul_CANT;
196
197 if ((CRm != 0) && (CRm != 3) && (CRm != 4) && (CRm != 8) && (CRm != 9))
198 return ARMul_CANT;
199 break;
200 case 15:
201 /* Opcode_2 must be zero. CRm must be 1. */
202 if ((CRm != 1) || (opcode_2 != 0))
203 return ARMul_CANT;
204 break;
205 default:
206 /* Should never happen. */
207 return ARMul_CANT;
208 }
209
210 return ARMul_DONE;
211 }
212
213 /* Store a value into one of coprocessor 15's registers. */
214
215 static void
216 write_cp15_reg (ARMul_State * state,
217 unsigned reg,
218 unsigned opcode_2,
219 unsigned CRm,
220 ARMword value)
221 {
222 if (opcode_2)
223 {
224 switch (reg)
225 {
226 case 0: /* Cache Type. */
227 /* Writes are not allowed. */
228 return;
229
230 case 1: /* Auxillary Control. */
231 /* Only BITS (5, 4) and BITS (1, 0) can be written. */
232 value &= 0x33;
233 break;
234
235 default:
236 return;
237 }
238
239 XScale_cp15_opcode_2_is_not_0_Regs [reg] = value;
240 }
241 else
242 {
243 switch (reg)
244 {
245 case 0: /* ID. */
246 /* Writes are not allowed. */
247 return;
248
249 case 1: /* ARM Control. */
250 /* Only BITS (13, 11), BITS (9, 7) and BITS (2, 0) can be written.
251 BITS (31, 14) and BIT (10) write as zero, BITS (6, 3) write as one. */
252 value &= 0x00003b87;
253 value |= 0x00000078;
254
255 /* Change the endianness if necessary. */
256 if ((value & ARMul_CP15_R1_ENDIAN) !=
257 (XScale_cp15_opcode_2_is_0_Regs [reg] & ARMul_CP15_R1_ENDIAN))
258 {
259 state->bigendSig = value & ARMul_CP15_R1_ENDIAN;
260 /* Force ARMulator to notice these now. */
261 state->Emulate = CHANGEMODE;
262 }
263 break;
264
265 case 2: /* Translation Table Base. */
266 /* Only BITS (31, 14) can be written. */
267 value &= 0xffffc000;
268 break;
269
270 case 3: /* Domain Access Control. */
271 /* All bits writable. */
272 break;
273
274 case 5: /* Fault Status Register. */
275 /* BITS (10, 9) and BITS (7, 0) can be written. */
276 value &= 0x000006ff;
277 break;
278
279 case 6: /* Fault Address Register. */
280 /* All bits writable. */
281 break;
282
283 case 7: /* Cache Functions. */
284 case 8: /* TLB Operations. */
285 case 10: /* TLB Lock Down. */
286 /* Ignore writes. */
287 return;
288
289 case 9: /* Data Cache Lock. */
290 /* Only BIT (0) can be written. */
291 value &= 0x1;
292 break;
293
294 case 13: /* Process ID. */
295 /* Only BITS (31, 25) are writable. */
296 value &= 0xfe000000;
297 break;
298
299 case 14: /* DBR0, DBR1, DBCON, IBCR0, IBCR1 */
300 /* All bits can be written. Which register is accessed is
301 dependent upon CRm. */
302 switch (CRm)
303 {
304 case 0: /* DBR0 */
305 break;
306 case 3: /* DBR1 */
307 XScale_cp15_DBR1 = value;
308 break;
309 case 4: /* DBCON */
310 XScale_cp15_DBCON = value;
311 break;
312 case 8: /* IBCR0 */
313 XScale_cp15_IBCR0 = value;
314 break;
315 case 9: /* IBCR1 */
316 XScale_cp15_IBCR1 = value;
317 break;
318 default:
319 return;
320 }
321 break;
322
323 case 15: /* Coprpcessor Access Register. */
324 /* Access is only valid if CRm == 1. */
325 if (CRm != 1)
326 return;
327
328 /* Only BITS (13, 0) may be written. */
329 value &= 0x00003fff;
330 break;
331
332 default:
333 return;
334 }
335
336 XScale_cp15_opcode_2_is_0_Regs [reg] = value;
337 }
338
339 return;
340 }
341
342 /* Return the value in a cp15 register. */
343
344 ARMword
345 read_cp15_reg (unsigned reg, unsigned opcode_2, unsigned CRm)
346 {
347 if (opcode_2 == 0)
348 {
349 if (reg == 15 && CRm != 1)
350 return 0;
351
352 if (reg == 14)
353 {
354 switch (CRm)
355 {
356 case 3: return XScale_cp15_DBR1;
357 case 4: return XScale_cp15_DBCON;
358 case 8: return XScale_cp15_IBCR0;
359 case 9: return XScale_cp15_IBCR1;
360 default:
361 break;
362 }
363 }
364
365 return XScale_cp15_opcode_2_is_0_Regs [reg];
366 }
367 else
368 return XScale_cp15_opcode_2_is_not_0_Regs [reg];
369
370 return 0;
371 }
372
373 static unsigned
374 XScale_cp15_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data)
375 {
376 unsigned reg = BITS (12, 15);
377 unsigned result;
378
379 result = check_cp15_access (state, reg, 0, 0, 0);
380
381 if (result == ARMul_DONE && type == ARMul_DATA)
382 write_cp15_reg (state, reg, 0, 0, data);
383
384 return result;
385 }
386
387 static unsigned
388 XScale_cp15_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data)
389 {
390 unsigned reg = BITS (12, 15);
391 unsigned result;
392
393 result = check_cp15_access (state, reg, 0, 0, 0);
394
395 if (result == ARMul_DONE && type == ARMul_DATA)
396 * data = read_cp15_reg (reg, 0, 0);
397
398 return result;
399 }
400
401 static unsigned
402 XScale_cp15_MRC (ARMul_State * state,
403 unsigned type ATTRIBUTE_UNUSED,
404 ARMword instr,
405 ARMword * value)
406 {
407 unsigned opcode_2 = BITS (5, 7);
408 unsigned CRm = BITS (0, 3);
409 unsigned reg = BITS (16, 19);
410 unsigned result;
411
412 result = check_cp15_access (state, reg, CRm, BITS (21, 23), opcode_2);
413
414 if (result == ARMul_DONE)
415 * value = read_cp15_reg (reg, opcode_2, CRm);
416
417 return result;
418 }
419
420 static unsigned
421 XScale_cp15_MCR (ARMul_State * state,
422 unsigned type ATTRIBUTE_UNUSED,
423 ARMword instr,
424 ARMword value)
425 {
426 unsigned opcode_2 = BITS (5, 7);
427 unsigned CRm = BITS (0, 3);
428 unsigned reg = BITS (16, 19);
429 unsigned result;
430
431 result = check_cp15_access (state, reg, CRm, BITS (21, 23), opcode_2);
432
433 if (result == ARMul_DONE)
434 write_cp15_reg (state, reg, opcode_2, CRm, value);
435
436 return result;
437 }
438
439 static unsigned
440 XScale_cp15_read_reg (ARMul_State * state ATTRIBUTE_UNUSED,
441 unsigned reg,
442 ARMword * value)
443 {
444 /* FIXME: Not sure what to do about the alternative register set
445 here. For now default to just accessing CRm == 0 registers. */
446 * value = read_cp15_reg (reg, 0, 0);
447
448 return TRUE;
449 }
450
451 static unsigned
452 XScale_cp15_write_reg (ARMul_State * state ATTRIBUTE_UNUSED,
453 unsigned reg,
454 ARMword value)
455 {
456 /* FIXME: Not sure what to do about the alternative register set
457 here. For now default to just accessing CRm == 0 registers. */
458 write_cp15_reg (state, reg, 0, 0, value);
459
460 return TRUE;
461 }
462
463 /* Check for special XScale memory access features. */
464
465 void
466 XScale_check_memacc (ARMul_State * state, ARMword * address, int store)
467 {
468 ARMword dbcon, r0, r1;
469 int e1, e0;
470
471 if (!state->is_XScale)
472 return;
473
474 /* Check for PID-ification.
475 XXX BTB access support will require this test failing. */
476 r0 = (read_cp15_reg (13, 0, 0) & 0xfe000000);
477 if (r0 && (* address & 0xfe000000) == 0)
478 * address |= r0;
479
480 /* Check alignment fault enable/disable. */
481 if ((read_cp15_reg (1, 0, 0) & ARMul_CP15_R1_ALIGN) && (* address & 3))
482 {
483 /* Set the FSR and FAR.
484 Do not use XScale_set_fsr_far as this checks the DCSR register. */
485 write_cp15_reg (state, 5, 0, 0, ARMul_CP15_R5_MMU_EXCPT);
486 write_cp15_reg (state, 6, 0, 0, * address);
487
488 ARMul_Abort (state, ARMul_DataAbortV);
489 }
490
491 if (XScale_debug_moe (state, -1))
492 return;
493
494 /* Check the data breakpoint registers. */
495 dbcon = read_cp15_reg (14, 0, 4);
496 r0 = read_cp15_reg (14, 0, 0);
497 r1 = read_cp15_reg (14, 0, 3);
498 e0 = dbcon & ARMul_CP15_DBCON_E0;
499
500 if (dbcon & ARMul_CP15_DBCON_M)
501 {
502 /* r1 is a inverse mask. */
503 if (e0 != 0 && ((store && e0 != 3) || (!store && e0 != 1))
504 && ((* address & ~r1) == (r0 & ~r1)))
505 {
506 XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
507 ARMul_OSHandleSWI (state, SWI_Breakpoint);
508 }
509 }
510 else
511 {
512 if (e0 != 0 && ((store && e0 != 3) || (!store && e0 != 1))
513 && ((* address & ~3) == (r0 & ~3)))
514 {
515 XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
516 ARMul_OSHandleSWI (state, SWI_Breakpoint);
517 }
518
519 e1 = (dbcon & ARMul_CP15_DBCON_E1) >> 2;
520 if (e1 != 0 && ((store && e1 != 3) || (!store && e1 != 1))
521 && ((* address & ~3) == (r1 & ~3)))
522 {
523 XScale_debug_moe (state, ARMul_CP14_R10_MOE_DB);
524 ARMul_OSHandleSWI (state, SWI_Breakpoint);
525 }
526 }
527 }
528
529 /* Set the XScale FSR and FAR registers. */
530
531 void
532 XScale_set_fsr_far (ARMul_State * state, ARMword fsr, ARMword far)
533 {
534 if (!state->is_XScale || (read_cp14_reg (10) & (1UL << 31)) == 0)
535 return;
536
537 write_cp15_reg (state, 5, 0, 0, fsr);
538 write_cp15_reg (state, 6, 0, 0, far);
539 }
540
541 /* Set the XScale debug `method of entry' if it is enabled. */
542
543 int
544 XScale_debug_moe (ARMul_State * state, int moe)
545 {
546 ARMword value;
547
548 if (!state->is_XScale)
549 return 1;
550
551 value = read_cp14_reg (10);
552 if (value & (1UL << 31))
553 {
554 if (moe != -1)
555 {
556 value &= ~0x1c;
557 value |= moe;
558
559 write_cp14_reg (10, value);
560 }
561 return 1;
562 }
563 return 0;
564 }
565
566 /* Coprocessor 13: Interrupt Controller and Bus Controller. */
567
568 /* There are two sets of registers for copro 13.
569 One set (of three registers) is available when CRm is 0
570 and the other set (of six registers) when CRm is 1. */
571
572 static ARMword XScale_cp13_CR0_Regs[16];
573 static ARMword XScale_cp13_CR1_Regs[16];
574
575 static unsigned
576 XScale_cp13_init (ARMul_State * state ATTRIBUTE_UNUSED)
577 {
578 int i;
579
580 for (i = 16; i--;)
581 {
582 XScale_cp13_CR0_Regs[i] = 0;
583 XScale_cp13_CR1_Regs[i] = 0;
584 }
585 }
586
587 /* Check an access to a register. */
588
589 static unsigned
590 check_cp13_access (ARMul_State * state,
591 unsigned reg,
592 unsigned CRm,
593 unsigned opcode_1,
594 unsigned opcode_2)
595 {
596 /* Do not allow access to these registers in USER mode. */
597 if (state->Mode == USER26MODE || state->Mode == USER32MODE)
598 return ARMul_CANT;
599
600 /* The opcodes should be zero. */
601 if ((opcode_1 != 0) || (opcode_2 != 0))
602 return ARMul_CANT;
603
604 /* Do not allow access to these register if bit
605 13 of coprocessor 15's register 15 is zero. */
606 if (! CP_ACCESS_ALLOWED (state, 13))
607 return ARMul_CANT;
608
609 /* Registers 0, 4 and 8 are defined when CRm == 0.
610 Registers 0, 1, 4, 5, 6, 7, 8 are defined when CRm == 1.
611 For all other CRm values undefined behaviour results. */
612 if (CRm == 0)
613 {
614 if (reg == 0 || reg == 4 || reg == 8)
615 return ARMul_DONE;
616 }
617 else if (CRm == 1)
618 {
619 if (reg == 0 || reg == 1 || (reg >= 4 && reg <= 8))
620 return ARMul_DONE;
621 }
622
623 return ARMul_CANT;
624 }
625
626 /* Store a value into one of coprocessor 13's registers. */
627
628 static void
629 write_cp13_reg (unsigned reg, unsigned CRm, ARMword value)
630 {
631 switch (CRm)
632 {
633 case 0:
634 switch (reg)
635 {
636 case 0: /* INTCTL */
637 /* Only BITS (3:0) can be written. */
638 value &= 0xf;
639 break;
640
641 case 4: /* INTSRC */
642 /* No bits may be written. */
643 return;
644
645 case 8: /* INTSTR */
646 /* Only BITS (1:0) can be written. */
647 value &= 0x3;
648 break;
649
650 default:
651 /* Should not happen. Ignore any writes to unimplemented registers. */
652 return;
653 }
654
655 XScale_cp13_CR0_Regs [reg] = value;
656 break;
657
658 case 1:
659 switch (reg)
660 {
661 case 0: /* BCUCTL */
662 /* Only BITS (30:28) and BITS (3:0) can be written.
663 BIT(31) is write ignored. */
664 value &= 0x7000000f;
665 value |= XScale_cp13_CR1_Regs[0] & (1UL << 31);
666 break;
667
668 case 1: /* BCUMOD */
669 /* Only bit 0 is accecssible. */
670 value &= 1;
671 value |= XScale_cp13_CR1_Regs[1] & ~ 1;
672 break;
673
674 case 4: /* ELOG0 */
675 case 5: /* ELOG1 */
676 case 6: /* ECAR0 */
677 case 7: /* ECAR1 */
678 /* No bits can be written. */
679 return;
680
681 case 8: /* ECTST */
682 /* Only BITS (7:0) can be written. */
683 value &= 0xff;
684 break;
685
686 default:
687 /* Should not happen. Ignore any writes to unimplemented registers. */
688 return;
689 }
690
691 XScale_cp13_CR1_Regs [reg] = value;
692 break;
693
694 default:
695 /* Should not happen. */
696 break;
697 }
698
699 return;
700 }
701
702 /* Return the value in a cp13 register. */
703
704 static ARMword
705 read_cp13_reg (unsigned reg, unsigned CRm)
706 {
707 if (CRm == 0)
708 return XScale_cp13_CR0_Regs [reg];
709 else if (CRm == 1)
710 return XScale_cp13_CR1_Regs [reg];
711
712 return 0;
713 }
714
715 static unsigned
716 XScale_cp13_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data)
717 {
718 unsigned reg = BITS (12, 15);
719 unsigned result;
720
721 result = check_cp13_access (state, reg, 0, 0, 0);
722
723 if (result == ARMul_DONE && type == ARMul_DATA)
724 write_cp13_reg (reg, 0, data);
725
726 return result;
727 }
728
729 static unsigned
730 XScale_cp13_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data)
731 {
732 unsigned reg = BITS (12, 15);
733 unsigned result;
734
735 result = check_cp13_access (state, reg, 0, 0, 0);
736
737 if (result == ARMul_DONE && type == ARMul_DATA)
738 * data = read_cp13_reg (reg, 0);
739
740 return result;
741 }
742
743 static unsigned
744 XScale_cp13_MRC (ARMul_State * state,
745 unsigned type ATTRIBUTE_UNUSED,
746 ARMword instr,
747 ARMword * value)
748 {
749 unsigned CRm = BITS (0, 3);
750 unsigned reg = BITS (16, 19);
751 unsigned result;
752
753 result = check_cp13_access (state, reg, CRm, BITS (21, 23), BITS (5, 7));
754
755 if (result == ARMul_DONE)
756 * value = read_cp13_reg (reg, CRm);
757
758 return result;
759 }
760
761 static unsigned
762 XScale_cp13_MCR (ARMul_State * state,
763 unsigned type ATTRIBUTE_UNUSED,
764 ARMword instr,
765 ARMword value)
766 {
767 unsigned CRm = BITS (0, 3);
768 unsigned reg = BITS (16, 19);
769 unsigned result;
770
771 result = check_cp13_access (state, reg, CRm, BITS (21, 23), BITS (5, 7));
772
773 if (result == ARMul_DONE)
774 write_cp13_reg (reg, CRm, value);
775
776 return result;
777 }
778
779 static unsigned
780 XScale_cp13_read_reg (ARMul_State * state ATTRIBUTE_UNUSED,
781 unsigned reg,
782 ARMword * value)
783 {
784 /* FIXME: Not sure what to do about the alternative register set
785 here. For now default to just accessing CRm == 0 registers. */
786 * value = read_cp13_reg (reg, 0);
787
788 return TRUE;
789 }
790
791 static unsigned
792 XScale_cp13_write_reg (ARMul_State * state ATTRIBUTE_UNUSED,
793 unsigned reg,
794 ARMword value)
795 {
796 /* FIXME: Not sure what to do about the alternative register set
797 here. For now default to just accessing CRm == 0 registers. */
798 write_cp13_reg (reg, 0, value);
799
800 return TRUE;
801 }
802
803 /* Coprocessor 14: Performance Monitoring, Clock and Power management,
804 Software Debug. */
805
806 static ARMword XScale_cp14_Regs[16];
807
808 static unsigned
809 XScale_cp14_init (ARMul_State * state ATTRIBUTE_UNUSED)
810 {
811 int i;
812
813 for (i = 16; i--;)
814 XScale_cp14_Regs[i] = 0;
815 }
816
817 /* Check an access to a register. */
818
819 static unsigned
820 check_cp14_access (ARMul_State * state,
821 unsigned reg,
822 unsigned CRm,
823 unsigned opcode1,
824 unsigned opcode2)
825 {
826 /* Not allowed to access these register in USER mode. */
827 if (state->Mode == USER26MODE || state->Mode == USER32MODE)
828 return ARMul_CANT;
829
830 /* CRm should be zero. */
831 if (CRm != 0)
832 return ARMul_CANT;
833
834 /* OPcodes should be zero. */
835 if (opcode1 != 0 || opcode2 != 0)
836 return ARMul_CANT;
837
838 /* Accessing registers 4 or 5 has unpredicatable results. */
839 if (reg >= 4 && reg <= 5)
840 return ARMul_CANT;
841
842 return ARMul_DONE;
843 }
844
845 /* Store a value into one of coprocessor 14's registers. */
846
847 static void
848 write_cp14_reg (unsigned reg, ARMword value)
849 {
850 switch (reg)
851 {
852 case 0: /* PMNC */
853 /* Only BITS (27:12), BITS (10:8) and BITS (6:0) can be written. */
854 value &= 0x0ffff77f;
855
856 /* Reset the clock counter if necessary. */
857 if (value & ARMul_CP14_R0_CLKRST)
858 XScale_cp14_Regs [1] = 0;
859 break;
860
861 case 4:
862 case 5:
863 /* We should not normally reach this code. The debugger interface
864 can bypass the normal checks though, so it could happen. */
865 value = 0;
866 break;
867
868 case 6: /* CCLKCFG */
869 /* Only BITS (3:0) can be written. */
870 value &= 0xf;
871 break;
872
873 case 7: /* PWRMODE */
874 /* Although BITS (1:0) can be written with non-zero values, this would
875 have the side effect of putting the processor to sleep. Thus in
876 order for the register to be read again, it would have to go into
877 ACTIVE mode, which means that any read will see these bits as zero.
878
879 Rather than trying to implement complex reset-to-zero-upon-read logic
880 we just override the write value with zero. */
881 value = 0;
882 break;
883
884 case 10: /* DCSR */
885 /* Only BITS (31:30), BITS (23:22), BITS (20:16) and BITS (5:0) can
886 be written. */
887 value &= 0xc0df003f;
888 break;
889
890 case 11: /* TBREG */
891 /* No writes are permitted. */
892 value = 0;
893 break;
894
895 case 14: /* TXRXCTRL */
896 /* Only BITS (31:30) can be written. */
897 value &= 0xc0000000;
898 break;
899
900 default:
901 /* All bits can be written. */
902 break;
903 }
904
905 XScale_cp14_Regs [reg] = value;
906 }
907
908 /* Return the value in a cp14 register. Not a static function since
909 it is used by the code to emulate the BKPT instruction in armemu.c. */
910
911 ARMword
912 read_cp14_reg (unsigned reg)
913 {
914 return XScale_cp14_Regs [reg];
915 }
916
917 static unsigned
918 XScale_cp14_LDC (ARMul_State * state, unsigned type, ARMword instr, ARMword data)
919 {
920 unsigned reg = BITS (12, 15);
921 unsigned result;
922
923 result = check_cp14_access (state, reg, 0, 0, 0);
924
925 if (result == ARMul_DONE && type == ARMul_DATA)
926 write_cp14_reg (reg, data);
927
928 return result;
929 }
930
931 static unsigned
932 XScale_cp14_STC (ARMul_State * state, unsigned type, ARMword instr, ARMword * data)
933 {
934 unsigned reg = BITS (12, 15);
935 unsigned result;
936
937 result = check_cp14_access (state, reg, 0, 0, 0);
938
939 if (result == ARMul_DONE && type == ARMul_DATA)
940 * data = read_cp14_reg (reg);
941
942 return result;
943 }
944
945 static unsigned
946 XScale_cp14_MRC
947 (
948 ARMul_State * state,
949 unsigned type ATTRIBUTE_UNUSED,
950 ARMword instr,
951 ARMword * value
952 )
953 {
954 unsigned reg = BITS (16, 19);
955 unsigned result;
956
957 result = check_cp14_access (state, reg, BITS (0, 3), BITS (21, 23), BITS (5, 7));
958
959 if (result == ARMul_DONE)
960 * value = read_cp14_reg (reg);
961
962 return result;
963 }
964
965 static unsigned
966 XScale_cp14_MCR
967 (
968 ARMul_State * state,
969 unsigned type ATTRIBUTE_UNUSED,
970 ARMword instr,
971 ARMword value
972 )
973 {
974 unsigned reg = BITS (16, 19);
975 unsigned result;
976
977 result = check_cp14_access (state, reg, BITS (0, 3), BITS (21, 23), BITS (5, 7));
978
979 if (result == ARMul_DONE)
980 write_cp14_reg (reg, value);
981
982 return result;
983 }
984
985 static unsigned
986 XScale_cp14_read_reg
987 (
988 ARMul_State * state ATTRIBUTE_UNUSED,
989 unsigned reg,
990 ARMword * value
991 )
992 {
993 * value = read_cp14_reg (reg);
994
995 return TRUE;
996 }
997
998 static unsigned
999 XScale_cp14_write_reg
1000 (
1001 ARMul_State * state ATTRIBUTE_UNUSED,
1002 unsigned reg,
1003 ARMword value
1004 )
1005 {
1006 write_cp14_reg (reg, value);
1007
1008 return TRUE;
1009 }
1010
1011 /* Here's ARMulator's MMU definition. A few things to note:
1012 1) It has eight registers, but only two are defined.
1013 2) You can only access its registers with MCR and MRC.
1014 3) MMU Register 0 (ID) returns 0x41440110
1015 4) Register 1 only has 4 bits defined. Bits 0 to 3 are unused, bit 4
1016 controls 32/26 bit program space, bit 5 controls 32/26 bit data space,
1017 bit 6 controls late abort timimg and bit 7 controls big/little endian. */
1018
1019 static ARMword MMUReg[8];
1020
1021 static unsigned
1022 MMUInit (ARMul_State * state)
1023 {
1024 MMUReg[1] = state->prog32Sig << 4 |
1025 state->data32Sig << 5 | state->lateabtSig << 6 | state->bigendSig << 7;
1026
1027 ARMul_ConsolePrint (state, ", MMU present");
1028
1029 return TRUE;
1030 }
1031
1032 static unsigned
1033 MMUMRC (ARMul_State * state ATTRIBUTE_UNUSED,
1034 unsigned type ATTRIBUTE_UNUSED,
1035 ARMword instr,
1036 ARMword * value)
1037 {
1038 int reg = BITS (16, 19) & 7;
1039
1040 if (reg == 0)
1041 *value = 0x41440110;
1042 else
1043 *value = MMUReg[reg];
1044
1045 return ARMul_DONE;
1046 }
1047
1048 static unsigned
1049 MMUMCR (ARMul_State * state,
1050 unsigned type ATTRIBUTE_UNUSED,
1051 ARMword instr,
1052 ARMword value)
1053 {
1054 int reg = BITS (16, 19) & 7;
1055
1056 MMUReg[reg] = value;
1057
1058 if (reg == 1)
1059 {
1060 ARMword p,d,l,b;
1061
1062 p = state->prog32Sig;
1063 d = state->data32Sig;
1064 l = state->lateabtSig;
1065 b = state->bigendSig;
1066
1067 state->prog32Sig = value >> 4 & 1;
1068 state->data32Sig = value >> 5 & 1;
1069 state->lateabtSig = value >> 6 & 1;
1070 state->bigendSig = value >> 7 & 1;
1071
1072 if ( p != state->prog32Sig
1073 || d != state->data32Sig
1074 || l != state->lateabtSig
1075 || b != state->bigendSig)
1076 /* Force ARMulator to notice these now. */
1077 state->Emulate = CHANGEMODE;
1078 }
1079
1080 return ARMul_DONE;
1081 }
1082
1083 static unsigned
1084 MMURead (ARMul_State * state ATTRIBUTE_UNUSED, unsigned reg, ARMword * value)
1085 {
1086 if (reg == 0)
1087 *value = 0x41440110;
1088 else if (reg < 8)
1089 *value = MMUReg[reg];
1090
1091 return TRUE;
1092 }
1093
1094 static unsigned
1095 MMUWrite (ARMul_State * state, unsigned reg, ARMword value)
1096 {
1097 if (reg < 8)
1098 MMUReg[reg] = value;
1099
1100 if (reg == 1)
1101 {
1102 ARMword p,d,l,b;
1103
1104 p = state->prog32Sig;
1105 d = state->data32Sig;
1106 l = state->lateabtSig;
1107 b = state->bigendSig;
1108
1109 state->prog32Sig = value >> 4 & 1;
1110 state->data32Sig = value >> 5 & 1;
1111 state->lateabtSig = value >> 6 & 1;
1112 state->bigendSig = value >> 7 & 1;
1113
1114 if ( p != state->prog32Sig
1115 || d != state->data32Sig
1116 || l != state->lateabtSig
1117 || b != state->bigendSig)
1118 /* Force ARMulator to notice these now. */
1119 state->Emulate = CHANGEMODE;
1120 }
1121
1122 return TRUE;
1123 }
1124
1125
1126 /* What follows is the Validation Suite Coprocessor. It uses two
1127 co-processor numbers (4 and 5) and has the follwing functionality.
1128 Sixteen registers. Both co-processor nuimbers can be used in an MCR
1129 and MRC to access these registers. CP 4 can LDC and STC to and from
1130 the registers. CP 4 and CP 5 CDP 0 will busy wait for the number of
1131 cycles specified by a CP register. CP 5 CDP 1 issues a FIQ after a
1132 number of cycles (specified in a CP register), CDP 2 issues an IRQW
1133 in the same way, CDP 3 and 4 turn of the FIQ and IRQ source, and CDP 5
1134 stores a 32 bit time value in a CP register (actually it's the total
1135 number of N, S, I, C and F cyles). */
1136
1137 static ARMword ValReg[16];
1138
1139 static unsigned
1140 ValLDC (ARMul_State * state ATTRIBUTE_UNUSED,
1141 unsigned type,
1142 ARMword instr,
1143 ARMword data)
1144 {
1145 static unsigned words;
1146
1147 if (type != ARMul_DATA)
1148 words = 0;
1149 else
1150 {
1151 ValReg[BITS (12, 15)] = data;
1152
1153 if (BIT (22))
1154 /* It's a long access, get two words. */
1155 if (words++ != 4)
1156 return ARMul_INC;
1157 }
1158
1159 return ARMul_DONE;
1160 }
1161
1162 static unsigned
1163 ValSTC (ARMul_State * state ATTRIBUTE_UNUSED,
1164 unsigned type,
1165 ARMword instr,
1166 ARMword * data)
1167 {
1168 static unsigned words;
1169
1170 if (type != ARMul_DATA)
1171 words = 0;
1172 else
1173 {
1174 * data = ValReg[BITS (12, 15)];
1175
1176 if (BIT (22))
1177 /* It's a long access, get two words. */
1178 if (words++ != 4)
1179 return ARMul_INC;
1180 }
1181
1182 return ARMul_DONE;
1183 }
1184
1185 static unsigned
1186 ValMRC (ARMul_State * state ATTRIBUTE_UNUSED,
1187 unsigned type ATTRIBUTE_UNUSED,
1188 ARMword instr,
1189 ARMword * value)
1190 {
1191 *value = ValReg[BITS (16, 19)];
1192
1193 return ARMul_DONE;
1194 }
1195
1196 static unsigned
1197 ValMCR (ARMul_State * state ATTRIBUTE_UNUSED,
1198 unsigned type ATTRIBUTE_UNUSED,
1199 ARMword instr,
1200 ARMword value)
1201 {
1202 ValReg[BITS (16, 19)] = value;
1203
1204 return ARMul_DONE;
1205 }
1206
1207 static unsigned
1208 ValCDP (ARMul_State * state, unsigned type, ARMword instr)
1209 {
1210 static unsigned long finish = 0;
1211
1212 if (BITS (20, 23) != 0)
1213 return ARMul_CANT;
1214
1215 if (type == ARMul_FIRST)
1216 {
1217 ARMword howlong;
1218
1219 howlong = ValReg[BITS (0, 3)];
1220
1221 /* First cycle of a busy wait. */
1222 finish = ARMul_Time (state) + howlong;
1223
1224 return howlong == 0 ? ARMul_DONE : ARMul_BUSY;
1225 }
1226 else if (type == ARMul_BUSY)
1227 {
1228 if (ARMul_Time (state) >= finish)
1229 return ARMul_DONE;
1230 else
1231 return ARMul_BUSY;
1232 }
1233
1234 return ARMul_CANT;
1235 }
1236
1237 static unsigned
1238 DoAFIQ (ARMul_State * state)
1239 {
1240 state->NfiqSig = LOW;
1241 state->Exception++;
1242 return 0;
1243 }
1244
1245 static unsigned
1246 DoAIRQ (ARMul_State * state)
1247 {
1248 state->NirqSig = LOW;
1249 state->Exception++;
1250 return 0;
1251 }
1252
1253 static unsigned
1254 IntCDP (ARMul_State * state, unsigned type, ARMword instr)
1255 {
1256 static unsigned long finish;
1257 ARMword howlong;
1258
1259 howlong = ValReg[BITS (0, 3)];
1260
1261 switch ((int) BITS (20, 23))
1262 {
1263 case 0:
1264 if (type == ARMul_FIRST)
1265 {
1266 /* First cycle of a busy wait. */
1267 finish = ARMul_Time (state) + howlong;
1268
1269 return howlong == 0 ? ARMul_DONE : ARMul_BUSY;
1270 }
1271 else if (type == ARMul_BUSY)
1272 {
1273 if (ARMul_Time (state) >= finish)
1274 return ARMul_DONE;
1275 else
1276 return ARMul_BUSY;
1277 }
1278 return ARMul_DONE;
1279
1280 case 1:
1281 if (howlong == 0)
1282 ARMul_Abort (state, ARMul_FIQV);
1283 else
1284 ARMul_ScheduleEvent (state, howlong, DoAFIQ);
1285 return ARMul_DONE;
1286
1287 case 2:
1288 if (howlong == 0)
1289 ARMul_Abort (state, ARMul_IRQV);
1290 else
1291 ARMul_ScheduleEvent (state, howlong, DoAIRQ);
1292 return ARMul_DONE;
1293
1294 case 3:
1295 state->NfiqSig = HIGH;
1296 state->Exception--;
1297 return ARMul_DONE;
1298
1299 case 4:
1300 state->NirqSig = HIGH;
1301 state->Exception--;
1302 return ARMul_DONE;
1303
1304 case 5:
1305 ValReg[BITS (0, 3)] = ARMul_Time (state);
1306 return ARMul_DONE;
1307 }
1308
1309 return ARMul_CANT;
1310 }
1311
1312 /* Install co-processor instruction handlers in this routine. */
1313
1314 unsigned
1315 ARMul_CoProInit (ARMul_State * state)
1316 {
1317 unsigned int i;
1318
1319 /* Initialise tham all first. */
1320 for (i = 0; i < 16; i++)
1321 ARMul_CoProDetach (state, i);
1322
1323 /* Install CoPro Instruction handlers here.
1324 The format is:
1325 ARMul_CoProAttach (state, CP Number, Init routine, Exit routine
1326 LDC routine, STC routine, MRC routine, MCR routine,
1327 CDP routine, Read Reg routine, Write Reg routine). */
1328 if (state->is_ep9312)
1329 {
1330 ARMul_CoProAttach (state, 4, NULL, NULL, DSPLDC4, DSPSTC4,
1331 DSPMRC4, DSPMCR4, DSPCDP4, NULL, NULL);
1332 ARMul_CoProAttach (state, 5, NULL, NULL, DSPLDC5, DSPSTC5,
1333 DSPMRC5, DSPMCR5, DSPCDP5, NULL, NULL);
1334 ARMul_CoProAttach (state, 6, NULL, NULL, NULL, NULL,
1335 DSPMRC6, DSPMCR6, DSPCDP6, NULL, NULL);
1336 }
1337 else
1338 {
1339 ARMul_CoProAttach (state, 4, NULL, NULL, ValLDC, ValSTC,
1340 ValMRC, ValMCR, ValCDP, NULL, NULL);
1341
1342 ARMul_CoProAttach (state, 5, NULL, NULL, NULL, NULL,
1343 ValMRC, ValMCR, IntCDP, NULL, NULL);
1344 }
1345
1346 if (state->is_XScale)
1347 {
1348 ARMul_CoProAttach (state, 13, XScale_cp13_init, NULL,
1349 XScale_cp13_LDC, XScale_cp13_STC, XScale_cp13_MRC,
1350 XScale_cp13_MCR, NULL, XScale_cp13_read_reg,
1351 XScale_cp13_write_reg);
1352
1353 ARMul_CoProAttach (state, 14, XScale_cp14_init, NULL,
1354 XScale_cp14_LDC, XScale_cp14_STC, XScale_cp14_MRC,
1355 XScale_cp14_MCR, NULL, XScale_cp14_read_reg,
1356 XScale_cp14_write_reg);
1357
1358 ARMul_CoProAttach (state, 15, XScale_cp15_init, NULL,
1359 NULL, NULL, XScale_cp15_MRC, XScale_cp15_MCR,
1360 NULL, XScale_cp15_read_reg, XScale_cp15_write_reg);
1361 }
1362 else
1363 {
1364 ARMul_CoProAttach (state, 15, MMUInit, NULL, NULL, NULL,
1365 MMUMRC, MMUMCR, NULL, MMURead, MMUWrite);
1366 }
1367
1368 /* No handlers below here. */
1369
1370 /* Call all the initialisation routines. */
1371 for (i = 0; i < 16; i++)
1372 if (state->CPInit[i])
1373 (state->CPInit[i]) (state);
1374
1375 return TRUE;
1376 }
1377
1378 /* Install co-processor finalisation routines in this routine. */
1379
1380 void
1381 ARMul_CoProExit (ARMul_State * state)
1382 {
1383 register unsigned i;
1384
1385 for (i = 0; i < 16; i++)
1386 if (state->CPExit[i])
1387 (state->CPExit[i]) (state);
1388
1389 for (i = 0; i < 16; i++) /* Detach all handlers. */
1390 ARMul_CoProDetach (state, i);
1391 }
1392
1393 /* Routines to hook Co-processors into ARMulator. */
1394
1395 void
1396 ARMul_CoProAttach (ARMul_State * state,
1397 unsigned number,
1398 ARMul_CPInits * init,
1399 ARMul_CPExits * exit,
1400 ARMul_LDCs * ldc,
1401 ARMul_STCs * stc,
1402 ARMul_MRCs * mrc,
1403 ARMul_MCRs * mcr,
1404 ARMul_CDPs * cdp,
1405 ARMul_CPReads * read,
1406 ARMul_CPWrites * write)
1407 {
1408 if (init != NULL)
1409 state->CPInit[number] = init;
1410 if (exit != NULL)
1411 state->CPExit[number] = exit;
1412 if (ldc != NULL)
1413 state->LDC[number] = ldc;
1414 if (stc != NULL)
1415 state->STC[number] = stc;
1416 if (mrc != NULL)
1417 state->MRC[number] = mrc;
1418 if (mcr != NULL)
1419 state->MCR[number] = mcr;
1420 if (cdp != NULL)
1421 state->CDP[number] = cdp;
1422 if (read != NULL)
1423 state->CPRead[number] = read;
1424 if (write != NULL)
1425 state->CPWrite[number] = write;
1426 }
1427
1428 void
1429 ARMul_CoProDetach (ARMul_State * state, unsigned number)
1430 {
1431 ARMul_CoProAttach (state, number, NULL, NULL,
1432 NoCoPro4R, NoCoPro4W, NoCoPro4W, NoCoPro4R,
1433 NoCoPro3R, NULL, NULL);
1434
1435 state->CPInit[number] = NULL;
1436 state->CPExit[number] = NULL;
1437 state->CPRead[number] = NULL;
1438 state->CPWrite[number] = NULL;
1439 }
This page took 0.076643 seconds and 5 git commands to generate.