gas: run the hwcaps-bump tests with 64-bit sparc objects only.
[deliverable/binutils-gdb.git] / sim / arm / armsupp.c
1 /* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
2 Copyright (C) 1994 Advanced RISC Machines Ltd.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 3 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, see <http://www.gnu.org/licenses/>. */
16
17 #include "armdefs.h"
18 #include "armemu.h"
19 #include "ansidecl.h"
20 #include <math.h>
21
22 /* Definitions for the support routines. */
23
24 static ARMword ModeToBank (ARMword);
25 static void EnvokeList (ARMul_State *, unsigned long, unsigned long);
26
27 struct EventNode
28 { /* An event list node. */
29 unsigned (*func) (ARMul_State *); /* The function to call. */
30 struct EventNode *next;
31 };
32
33 /* This routine returns the value of a register from a mode. */
34
35 ARMword
36 ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg)
37 {
38 mode &= MODEBITS;
39 if (mode != state->Mode)
40 return (state->RegBank[ModeToBank ((ARMword) mode)][reg]);
41 else
42 return (state->Reg[reg]);
43 }
44
45 /* This routine sets the value of a register for a mode. */
46
47 void
48 ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value)
49 {
50 mode &= MODEBITS;
51 if (mode != state->Mode)
52 state->RegBank[ModeToBank ((ARMword) mode)][reg] = value;
53 else
54 state->Reg[reg] = value;
55 }
56
57 /* This routine returns the value of the PC, mode independently. */
58
59 ARMword
60 ARMul_GetPC (ARMul_State * state)
61 {
62 if (state->Mode > SVC26MODE)
63 return state->Reg[15];
64 else
65 return R15PC;
66 }
67
68 /* This routine returns the value of the PC, mode independently. */
69
70 ARMword
71 ARMul_GetNextPC (ARMul_State * state)
72 {
73 if (state->Mode > SVC26MODE)
74 return state->Reg[15] + isize;
75 else
76 return (state->Reg[15] + isize) & R15PCBITS;
77 }
78
79 /* This routine sets the value of the PC. */
80
81 void
82 ARMul_SetPC (ARMul_State * state, ARMword value)
83 {
84 if (ARMul_MODE32BIT)
85 state->Reg[15] = value & PCBITS;
86 else
87 state->Reg[15] = R15CCINTMODE | (value & R15PCBITS);
88 FLUSHPIPE;
89 }
90
91 /* This routine returns the value of register 15, mode independently. */
92
93 ARMword
94 ARMul_GetR15 (ARMul_State * state)
95 {
96 if (state->Mode > SVC26MODE)
97 return (state->Reg[15]);
98 else
99 return (R15PC | ECC | ER15INT | EMODE);
100 }
101
102 /* This routine sets the value of Register 15. */
103
104 void
105 ARMul_SetR15 (ARMul_State * state, ARMword value)
106 {
107 if (ARMul_MODE32BIT)
108 state->Reg[15] = value & PCBITS;
109 else
110 {
111 state->Reg[15] = value;
112 ARMul_R15Altered (state);
113 }
114 FLUSHPIPE;
115 }
116
117 /* This routine returns the value of the CPSR. */
118
119 ARMword
120 ARMul_GetCPSR (ARMul_State * state)
121 {
122 return (CPSR | state->Cpsr);
123 }
124
125 /* This routine sets the value of the CPSR. */
126
127 void
128 ARMul_SetCPSR (ARMul_State * state, ARMword value)
129 {
130 state->Cpsr = value;
131 ARMul_CPSRAltered (state);
132 }
133
134 /* This routine does all the nasty bits involved in a write to the CPSR,
135 including updating the register bank, given a MSR instruction. */
136
137 void
138 ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs)
139 {
140 state->Cpsr = ARMul_GetCPSR (state);
141
142 if (state->Mode != USER26MODE
143 && state->Mode != USER32MODE)
144 {
145 /* In user mode, only write flags. */
146 if (BIT (16))
147 SETPSR_C (state->Cpsr, rhs);
148 if (BIT (17))
149 SETPSR_X (state->Cpsr, rhs);
150 if (BIT (18))
151 SETPSR_S (state->Cpsr, rhs);
152 }
153 if (BIT (19))
154 SETPSR_F (state->Cpsr, rhs);
155 ARMul_CPSRAltered (state);
156 }
157
158 /* Get an SPSR from the specified mode. */
159
160 ARMword
161 ARMul_GetSPSR (ARMul_State * state, ARMword mode)
162 {
163 ARMword bank = ModeToBank (mode & MODEBITS);
164
165 if (! BANK_CAN_ACCESS_SPSR (bank))
166 return ARMul_GetCPSR (state);
167
168 return state->Spsr[bank];
169 }
170
171 /* This routine does a write to an SPSR. */
172
173 void
174 ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value)
175 {
176 ARMword bank = ModeToBank (mode & MODEBITS);
177
178 if (BANK_CAN_ACCESS_SPSR (bank))
179 state->Spsr[bank] = value;
180 }
181
182 /* This routine does a write to the current SPSR, given an MSR instruction. */
183
184 void
185 ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs)
186 {
187 if (BANK_CAN_ACCESS_SPSR (state->Bank))
188 {
189 if (BIT (16))
190 SETPSR_C (state->Spsr[state->Bank], rhs);
191 if (BIT (17))
192 SETPSR_X (state->Spsr[state->Bank], rhs);
193 if (BIT (18))
194 SETPSR_S (state->Spsr[state->Bank], rhs);
195 if (BIT (19))
196 SETPSR_F (state->Spsr[state->Bank], rhs);
197 }
198 }
199
200 /* This routine updates the state of the emulator after the Cpsr has been
201 changed. Both the processor flags and register bank are updated. */
202
203 void
204 ARMul_CPSRAltered (ARMul_State * state)
205 {
206 ARMword oldmode;
207
208 if (state->prog32Sig == LOW)
209 state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS);
210
211 oldmode = state->Mode;
212
213 if (state->Mode != (state->Cpsr & MODEBITS))
214 {
215 state->Mode =
216 ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS);
217
218 state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
219 }
220 state->Cpsr &= ~MODEBITS;
221
222 ASSIGNINT (state->Cpsr & INTBITS);
223 state->Cpsr &= ~INTBITS;
224 ASSIGNN ((state->Cpsr & NBIT) != 0);
225 state->Cpsr &= ~NBIT;
226 ASSIGNZ ((state->Cpsr & ZBIT) != 0);
227 state->Cpsr &= ~ZBIT;
228 ASSIGNC ((state->Cpsr & CBIT) != 0);
229 state->Cpsr &= ~CBIT;
230 ASSIGNV ((state->Cpsr & VBIT) != 0);
231 state->Cpsr &= ~VBIT;
232 ASSIGNS ((state->Cpsr & SBIT) != 0);
233 state->Cpsr &= ~SBIT;
234 #ifdef MODET
235 ASSIGNT ((state->Cpsr & TBIT) != 0);
236 state->Cpsr &= ~TBIT;
237 #endif
238
239 if (oldmode > SVC26MODE)
240 {
241 if (state->Mode <= SVC26MODE)
242 {
243 state->Emulate = CHANGEMODE;
244 state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
245 }
246 }
247 else
248 {
249 if (state->Mode > SVC26MODE)
250 {
251 state->Emulate = CHANGEMODE;
252 state->Reg[15] = R15PC;
253 }
254 else
255 state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
256 }
257 }
258
259 /* This routine updates the state of the emulator after register 15 has
260 been changed. Both the processor flags and register bank are updated.
261 This routine should only be called from a 26 bit mode. */
262
263 void
264 ARMul_R15Altered (ARMul_State * state)
265 {
266 if (state->Mode != R15MODE)
267 {
268 state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE);
269 state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
270 }
271
272 if (state->Mode > SVC26MODE)
273 state->Emulate = CHANGEMODE;
274
275 ASSIGNR15INT (R15INT);
276
277 ASSIGNN ((state->Reg[15] & NBIT) != 0);
278 ASSIGNZ ((state->Reg[15] & ZBIT) != 0);
279 ASSIGNC ((state->Reg[15] & CBIT) != 0);
280 ASSIGNV ((state->Reg[15] & VBIT) != 0);
281 }
282
283 /* This routine controls the saving and restoring of registers across mode
284 changes. The regbank matrix is largely unused, only rows 13 and 14 are
285 used across all modes, 8 to 14 are used for FIQ, all others use the USER
286 column. It's easier this way. old and new parameter are modes numbers.
287 Notice the side effect of changing the Bank variable. */
288
289 ARMword
290 ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode)
291 {
292 unsigned i;
293 ARMword oldbank;
294 ARMword newbank;
295
296 oldbank = ModeToBank (oldmode);
297 newbank = state->Bank = ModeToBank (newmode);
298
299 /* Do we really need to do it? */
300 if (oldbank != newbank)
301 {
302 /* Save away the old registers. */
303 switch (oldbank)
304 {
305 case USERBANK:
306 case IRQBANK:
307 case SVCBANK:
308 case ABORTBANK:
309 case UNDEFBANK:
310 if (newbank == FIQBANK)
311 for (i = 8; i < 13; i++)
312 state->RegBank[USERBANK][i] = state->Reg[i];
313 state->RegBank[oldbank][13] = state->Reg[13];
314 state->RegBank[oldbank][14] = state->Reg[14];
315 break;
316 case FIQBANK:
317 for (i = 8; i < 15; i++)
318 state->RegBank[FIQBANK][i] = state->Reg[i];
319 break;
320 case DUMMYBANK:
321 for (i = 8; i < 15; i++)
322 state->RegBank[DUMMYBANK][i] = 0;
323 break;
324 default:
325 abort ();
326 }
327
328 /* Restore the new registers. */
329 switch (newbank)
330 {
331 case USERBANK:
332 case IRQBANK:
333 case SVCBANK:
334 case ABORTBANK:
335 case UNDEFBANK:
336 if (oldbank == FIQBANK)
337 for (i = 8; i < 13; i++)
338 state->Reg[i] = state->RegBank[USERBANK][i];
339 state->Reg[13] = state->RegBank[newbank][13];
340 state->Reg[14] = state->RegBank[newbank][14];
341 break;
342 case FIQBANK:
343 for (i = 8; i < 15; i++)
344 state->Reg[i] = state->RegBank[FIQBANK][i];
345 break;
346 case DUMMYBANK:
347 for (i = 8; i < 15; i++)
348 state->Reg[i] = 0;
349 break;
350 default:
351 abort ();
352 }
353 }
354
355 return newmode;
356 }
357
358 /* Given a processor mode, this routine returns the
359 register bank that will be accessed in that mode. */
360
361 static ARMword
362 ModeToBank (ARMword mode)
363 {
364 static ARMword bankofmode[] =
365 {
366 USERBANK, FIQBANK, IRQBANK, SVCBANK,
367 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
368 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
369 DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
370 USERBANK, FIQBANK, IRQBANK, SVCBANK,
371 DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
372 DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK,
373 DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK
374 };
375
376 if (mode >= (sizeof (bankofmode) / sizeof (bankofmode[0])))
377 return DUMMYBANK;
378
379 return bankofmode[mode];
380 }
381
382 /* Returns the register number of the nth register in a reg list. */
383
384 unsigned
385 ARMul_NthReg (ARMword instr, unsigned number)
386 {
387 unsigned bit, upto;
388
389 for (bit = 0, upto = 0; upto <= number; bit ++)
390 if (BIT (bit))
391 upto ++;
392
393 return (bit - 1);
394 }
395
396 /* Assigns the N and Z flags depending on the value of result. */
397
398 void
399 ARMul_NegZero (ARMul_State * state, ARMword result)
400 {
401 if (NEG (result))
402 {
403 SETN;
404 CLEARZ;
405 }
406 else if (result == 0)
407 {
408 CLEARN;
409 SETZ;
410 }
411 else
412 {
413 CLEARN;
414 CLEARZ;
415 }
416 }
417
418 /* Compute whether an addition of A and B, giving RESULT, overflowed. */
419
420 int
421 AddOverflow (ARMword a, ARMword b, ARMword result)
422 {
423 return ((NEG (a) && NEG (b) && POS (result))
424 || (POS (a) && POS (b) && NEG (result)));
425 }
426
427 /* Compute whether a subtraction of A and B, giving RESULT, overflowed. */
428
429 int
430 SubOverflow (ARMword a, ARMword b, ARMword result)
431 {
432 return ((NEG (a) && POS (b) && POS (result))
433 || (POS (a) && NEG (b) && NEG (result)));
434 }
435
436 /* Assigns the C flag after an addition of a and b to give result. */
437
438 void
439 ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
440 {
441 ASSIGNC ((NEG (a) && NEG (b)) ||
442 (NEG (a) && POS (result)) || (NEG (b) && POS (result)));
443 }
444
445 /* Assigns the V flag after an addition of a and b to give result. */
446
447 void
448 ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
449 {
450 ASSIGNV (AddOverflow (a, b, result));
451 }
452
453 /* Assigns the C flag after an subtraction of a and b to give result. */
454
455 void
456 ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
457 {
458 ASSIGNC ((NEG (a) && POS (b)) ||
459 (NEG (a) && POS (result)) || (POS (b) && POS (result)));
460 }
461
462 /* Assigns the V flag after an subtraction of a and b to give result. */
463
464 void
465 ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
466 {
467 ASSIGNV (SubOverflow (a, b, result));
468 }
469
470 static void
471 handle_VFP_xfer (ARMul_State * state, ARMword instr)
472 {
473 if (TOPBITS (28) == NV)
474 {
475 fprintf (stderr, "SIM: UNDEFINED VFP instruction\n");
476 return;
477 }
478
479 if (BITS (25, 27) != 0x6)
480 {
481 fprintf (stderr, "SIM: ISE: VFP handler called incorrectly\n");
482 return;
483 }
484
485 switch (BITS (20, 24))
486 {
487 case 0x04:
488 case 0x05:
489 {
490 /* VMOV double precision to/from two ARM registers. */
491 int vm = BITS (0, 3);
492 int rt1 = BITS (12, 15);
493 int rt2 = BITS (16, 19);
494
495 /* FIXME: UNPREDICTABLE if rt1 == 15 or rt2 == 15. */
496 if (BIT (20))
497 {
498 /* Transfer to ARM. */
499 /* FIXME: UPPREDICTABLE if rt1 == rt2. */
500 state->Reg[rt1] = VFP_dword (vm) & 0xffffffff;
501 state->Reg[rt2] = VFP_dword (vm) >> 32;
502 }
503 else
504 {
505 VFP_dword (vm) = state->Reg[rt2];
506 VFP_dword (vm) <<= 32;
507 VFP_dword (vm) |= (state->Reg[rt1] & 0xffffffff);
508 }
509 return;
510 }
511
512 case 0x08:
513 case 0x0A:
514 case 0x0C:
515 case 0x0E:
516 {
517 /* VSTM with PUW=011 or PUW=010. */
518 int n = BITS (16, 19);
519 int imm8 = BITS (0, 7);
520
521 ARMword address = state->Reg[n];
522 if (BIT (21))
523 state->Reg[n] = address + (imm8 << 2);
524
525 if (BIT (8))
526 {
527 int src = (BIT (22) << 4) | BITS (12, 15);
528 imm8 >>= 1;
529 while (imm8--)
530 {
531 if (state->bigendSig)
532 {
533 ARMul_StoreWordN (state, address, VFP_dword (src) >> 32);
534 ARMul_StoreWordN (state, address + 4, VFP_dword (src));
535 }
536 else
537 {
538 ARMul_StoreWordN (state, address, VFP_dword (src));
539 ARMul_StoreWordN (state, address + 4, VFP_dword (src) >> 32);
540 }
541 address += 8;
542 src += 1;
543 }
544 }
545 else
546 {
547 int src = (BITS (12, 15) << 1) | BIT (22);
548 while (imm8--)
549 {
550 ARMul_StoreWordN (state, address, VFP_uword (src));
551 address += 4;
552 src += 1;
553 }
554 }
555 }
556 return;
557
558 case 0x10:
559 case 0x14:
560 case 0x18:
561 case 0x1C:
562 {
563 /* VSTR */
564 ARMword imm32 = BITS (0, 7) << 2;
565 int base = state->Reg[LHSReg];
566 ARMword address;
567 int dest;
568
569 if (LHSReg == 15)
570 base = (base + 3) & ~3;
571
572 address = base + (BIT (23) ? imm32 : - imm32);
573
574 if (CPNum == 10)
575 {
576 dest = (DESTReg << 1) + BIT (22);
577
578 ARMul_StoreWordN (state, address, VFP_uword (dest));
579 }
580 else
581 {
582 dest = (BIT (22) << 4) + DESTReg;
583
584 if (state->bigendSig)
585 {
586 ARMul_StoreWordN (state, address, VFP_dword (dest) >> 32);
587 ARMul_StoreWordN (state, address + 4, VFP_dword (dest));
588 }
589 else
590 {
591 ARMul_StoreWordN (state, address, VFP_dword (dest));
592 ARMul_StoreWordN (state, address + 4, VFP_dword (dest) >> 32);
593 }
594 }
595 }
596 return;
597
598 case 0x12:
599 case 0x16:
600 if (BITS (16, 19) == 13)
601 {
602 /* VPUSH */
603 ARMword address = state->Reg[13] - (BITS (0, 7) << 2);
604 state->Reg[13] = address;
605
606 if (BIT (8))
607 {
608 int dreg = (BIT (22) << 4) | BITS (12, 15);
609 int num = BITS (0, 7) >> 1;
610 while (num--)
611 {
612 if (state->bigendSig)
613 {
614 ARMul_StoreWordN (state, address, VFP_dword (dreg) >> 32);
615 ARMul_StoreWordN (state, address + 4, VFP_dword (dreg));
616 }
617 else
618 {
619 ARMul_StoreWordN (state, address, VFP_dword (dreg));
620 ARMul_StoreWordN (state, address + 4, VFP_dword (dreg) >> 32);
621 }
622 address += 8;
623 dreg += 1;
624 }
625 }
626 else
627 {
628 int sreg = (BITS (12, 15) << 1) | BIT (22);
629 int num = BITS (0, 7);
630 while (num--)
631 {
632 ARMul_StoreWordN (state, address, VFP_uword (sreg));
633 address += 4;
634 sreg += 1;
635 }
636 }
637 }
638 else if (BITS (9, 11) != 0x5)
639 break;
640 else
641 {
642 /* VSTM PUW=101 */
643 int n = BITS (16, 19);
644 int imm8 = BITS (0, 7);
645 ARMword address = state->Reg[n] - (imm8 << 2);
646 state->Reg[n] = address;
647
648 if (BIT (8))
649 {
650 int src = (BIT (22) << 4) | BITS (12, 15);
651
652 imm8 >>= 1;
653 while (imm8--)
654 {
655 if (state->bigendSig)
656 {
657 ARMul_StoreWordN (state, address, VFP_dword (src) >> 32);
658 ARMul_StoreWordN (state, address + 4, VFP_dword (src));
659 }
660 else
661 {
662 ARMul_StoreWordN (state, address, VFP_dword (src));
663 ARMul_StoreWordN (state, address + 4, VFP_dword (src) >> 32);
664 }
665 address += 8;
666 src += 1;
667 }
668 }
669 else
670 {
671 int src = (BITS (12, 15) << 1) | BIT (22);
672
673 while (imm8--)
674 {
675 ARMul_StoreWordN (state, address, VFP_uword (src));
676 address += 4;
677 src += 1;
678 }
679 }
680 }
681 return;
682
683 case 0x13:
684 case 0x17:
685 /* VLDM PUW=101 */
686 case 0x09:
687 case 0x0D:
688 /* VLDM PUW=010 */
689 {
690 int n = BITS (16, 19);
691 int imm8 = BITS (0, 7);
692
693 ARMword address = state->Reg[n];
694 if (BIT (23) == 0)
695 address -= imm8 << 2;
696 if (BIT (21))
697 state->Reg[n] = BIT (23) ? address + (imm8 << 2) : address;
698
699 if (BIT (8))
700 {
701 int dest = (BIT (22) << 4) | BITS (12, 15);
702 imm8 >>= 1;
703 while (imm8--)
704 {
705 if (state->bigendSig)
706 {
707 VFP_dword (dest) = ARMul_LoadWordN (state, address);
708 VFP_dword (dest) <<= 32;
709 VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4);
710 }
711 else
712 {
713 VFP_dword (dest) = ARMul_LoadWordN (state, address + 4);
714 VFP_dword (dest) <<= 32;
715 VFP_dword (dest) |= ARMul_LoadWordN (state, address);
716 }
717
718 if (trace)
719 fprintf (stderr, " VFP: VLDM: D%d = %g\n", dest, VFP_dval (dest));
720
721 address += 8;
722 dest += 1;
723 }
724 }
725 else
726 {
727 int dest = (BITS (12, 15) << 1) | BIT (22);
728
729 while (imm8--)
730 {
731 VFP_uword (dest) = ARMul_LoadWordN (state, address);
732 address += 4;
733 dest += 1;
734 }
735 }
736 }
737 return;
738
739 case 0x0B:
740 case 0x0F:
741 if (BITS (16, 19) == 13)
742 {
743 /* VPOP */
744 ARMword address = state->Reg[13];
745 state->Reg[13] = address + (BITS (0, 7) << 2);
746
747 if (BIT (8))
748 {
749 int dest = (BIT (22) << 4) | BITS (12, 15);
750 int num = BITS (0, 7) >> 1;
751
752 while (num--)
753 {
754 if (state->bigendSig)
755 {
756 VFP_dword (dest) = ARMul_LoadWordN (state, address);
757 VFP_dword (dest) <<= 32;
758 VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4);
759 }
760 else
761 {
762 VFP_dword (dest) = ARMul_LoadWordN (state, address + 4);
763 VFP_dword (dest) <<= 32;
764 VFP_dword (dest) |= ARMul_LoadWordN (state, address);
765 }
766
767 if (trace)
768 fprintf (stderr, " VFP: VPOP: D%d = %g\n", dest, VFP_dval (dest));
769
770 address += 8;
771 dest += 1;
772 }
773 }
774 else
775 {
776 int sreg = (BITS (12, 15) << 1) | BIT (22);
777 int num = BITS (0, 7);
778
779 while (num--)
780 {
781 VFP_uword (sreg) = ARMul_LoadWordN (state, address);
782 address += 4;
783 sreg += 1;
784 }
785 }
786 }
787 else if (BITS (9, 11) != 0x5)
788 break;
789 else
790 {
791 /* VLDM PUW=011 */
792 int n = BITS (16, 19);
793 int imm8 = BITS (0, 7);
794 ARMword address = state->Reg[n];
795 state->Reg[n] += imm8 << 2;
796
797 if (BIT (8))
798 {
799 int dest = (BIT (22) << 4) | BITS (12, 15);
800
801 imm8 >>= 1;
802 while (imm8--)
803 {
804 if (state->bigendSig)
805 {
806 VFP_dword (dest) = ARMul_LoadWordN (state, address);
807 VFP_dword (dest) <<= 32;
808 VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4);
809 }
810 else
811 {
812 VFP_dword (dest) = ARMul_LoadWordN (state, address + 4);
813 VFP_dword (dest) <<= 32;
814 VFP_dword (dest) |= ARMul_LoadWordN (state, address);
815 }
816
817 if (trace)
818 fprintf (stderr, " VFP: VLDM: D%d = %g\n", dest, VFP_dval (dest));
819
820 address += 8;
821 dest += 1;
822 }
823 }
824 else
825 {
826 int dest = (BITS (12, 15) << 1) | BIT (22);
827 while (imm8--)
828 {
829 VFP_uword (dest) = ARMul_LoadWordN (state, address);
830 address += 4;
831 dest += 1;
832 }
833 }
834 }
835 return;
836
837 case 0x11:
838 case 0x15:
839 case 0x19:
840 case 0x1D:
841 {
842 /* VLDR */
843 ARMword imm32 = BITS (0, 7) << 2;
844 int base = state->Reg[LHSReg];
845 ARMword address;
846 int dest;
847
848 if (LHSReg == 15)
849 base = (base + 3) & ~3;
850
851 address = base + (BIT (23) ? imm32 : - imm32);
852
853 if (CPNum == 10)
854 {
855 dest = (DESTReg << 1) + BIT (22);
856
857 VFP_uword (dest) = ARMul_LoadWordN (state, address);
858 }
859 else
860 {
861 dest = (BIT (22) << 4) + DESTReg;
862
863 if (state->bigendSig)
864 {
865 VFP_dword (dest) = ARMul_LoadWordN (state, address);
866 VFP_dword (dest) <<= 32;
867 VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4);
868 }
869 else
870 {
871 VFP_dword (dest) = ARMul_LoadWordN (state, address + 4);
872 VFP_dword (dest) <<= 32;
873 VFP_dword (dest) |= ARMul_LoadWordN (state, address);
874 }
875
876 if (trace)
877 fprintf (stderr, " VFP: VLDR: D%d = %g\n", dest, VFP_dval (dest));
878 }
879 }
880 return;
881 }
882
883 fprintf (stderr, "SIM: VFP: Unimplemented: %0x\n", BITS (20, 24));
884 }
885
886 /* This function does the work of generating the addresses used in an
887 LDC instruction. The code here is always post-indexed, it's up to the
888 caller to get the input address correct and to handle base register
889 modification. It also handles the Busy-Waiting. */
890
891 void
892 ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address)
893 {
894 unsigned cpab;
895 ARMword data;
896
897 if (CPNum == 10 || CPNum == 11)
898 {
899 handle_VFP_xfer (state, instr);
900 return;
901 }
902
903 UNDEF_LSCPCBaseWb;
904
905 if (! CP_ACCESS_ALLOWED (state, CPNum))
906 {
907 ARMul_UndefInstr (state, instr);
908 return;
909 }
910
911 if (ADDREXCEPT (address))
912 INTERNALABORT (address);
913
914 cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0);
915 while (cpab == ARMul_BUSY)
916 {
917 ARMul_Icycles (state, 1, 0);
918
919 if (IntPending (state))
920 {
921 cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
922 return;
923 }
924 else
925 cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0);
926 }
927 if (cpab == ARMul_CANT)
928 {
929 CPTAKEABORT;
930 return;
931 }
932
933 cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0);
934 data = ARMul_LoadWordN (state, address);
935 BUSUSEDINCPCN;
936
937 if (BIT (21))
938 LSBase = state->Base;
939 cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
940
941 while (cpab == ARMul_INC)
942 {
943 address += 4;
944 data = ARMul_LoadWordN (state, address);
945 cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
946 }
947
948 if (state->abortSig || state->Aborted)
949 TAKEABORT;
950 }
951
952 /* This function does the work of generating the addresses used in an
953 STC instruction. The code here is always post-indexed, it's up to the
954 caller to get the input address correct and to handle base register
955 modification. It also handles the Busy-Waiting. */
956
957 void
958 ARMul_STC (ARMul_State * state, ARMword instr, ARMword address)
959 {
960 unsigned cpab;
961 ARMword data;
962
963 if (CPNum == 10 || CPNum == 11)
964 {
965 handle_VFP_xfer (state, instr);
966 return;
967 }
968
969 UNDEF_LSCPCBaseWb;
970
971 if (! CP_ACCESS_ALLOWED (state, CPNum))
972 {
973 ARMul_UndefInstr (state, instr);
974 return;
975 }
976
977 if (ADDREXCEPT (address) || VECTORACCESS (address))
978 INTERNALABORT (address);
979
980 cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data);
981 while (cpab == ARMul_BUSY)
982 {
983 ARMul_Icycles (state, 1, 0);
984 if (IntPending (state))
985 {
986 cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
987 return;
988 }
989 else
990 cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data);
991 }
992
993 if (cpab == ARMul_CANT)
994 {
995 CPTAKEABORT;
996 return;
997 }
998 #ifndef MODE32
999 if (ADDREXCEPT (address) || VECTORACCESS (address))
1000 INTERNALABORT (address);
1001 #endif
1002 BUSUSEDINCPCN;
1003 if (BIT (21))
1004 LSBase = state->Base;
1005 cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
1006 ARMul_StoreWordN (state, address, data);
1007
1008 while (cpab == ARMul_INC)
1009 {
1010 address += 4;
1011 cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
1012 ARMul_StoreWordN (state, address, data);
1013 }
1014
1015 if (state->abortSig || state->Aborted)
1016 TAKEABORT;
1017 }
1018
1019 /* This function does the Busy-Waiting for an MCR instruction. */
1020
1021 void
1022 ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source)
1023 {
1024 unsigned cpab;
1025
1026 if (! CP_ACCESS_ALLOWED (state, CPNum))
1027 {
1028 ARMul_UndefInstr (state, instr);
1029 return;
1030 }
1031
1032 cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source);
1033
1034 while (cpab == ARMul_BUSY)
1035 {
1036 ARMul_Icycles (state, 1, 0);
1037
1038 if (IntPending (state))
1039 {
1040 cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
1041 return;
1042 }
1043 else
1044 cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source);
1045 }
1046
1047 if (cpab == ARMul_CANT)
1048 ARMul_Abort (state, ARMul_UndefinedInstrV);
1049 else
1050 {
1051 BUSUSEDINCPCN;
1052 ARMul_Ccycles (state, 1, 0);
1053 }
1054 }
1055
1056 /* This function does the Busy-Waiting for an MRC instruction. */
1057
1058 ARMword
1059 ARMul_MRC (ARMul_State * state, ARMword instr)
1060 {
1061 unsigned cpab;
1062 ARMword result = 0;
1063
1064 if (! CP_ACCESS_ALLOWED (state, CPNum))
1065 {
1066 ARMul_UndefInstr (state, instr);
1067 return result;
1068 }
1069
1070 cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result);
1071 while (cpab == ARMul_BUSY)
1072 {
1073 ARMul_Icycles (state, 1, 0);
1074 if (IntPending (state))
1075 {
1076 cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
1077 return (0);
1078 }
1079 else
1080 cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result);
1081 }
1082 if (cpab == ARMul_CANT)
1083 {
1084 ARMul_Abort (state, ARMul_UndefinedInstrV);
1085 /* Parent will destroy the flags otherwise. */
1086 result = ECC;
1087 }
1088 else
1089 {
1090 BUSUSEDINCPCN;
1091 ARMul_Ccycles (state, 1, 0);
1092 ARMul_Icycles (state, 1, 0);
1093 }
1094
1095 return result;
1096 }
1097
1098 static void
1099 handle_VFP_op (ARMul_State * state, ARMword instr)
1100 {
1101 int dest;
1102 int srcN;
1103 int srcM;
1104
1105 if (BITS (9, 11) != 0x5 || BIT (4) != 0)
1106 {
1107 fprintf (stderr, "SIM: VFP: Unimplemented: Float op: %08x\n", BITS (0,31));
1108 return;
1109 }
1110
1111 if (BIT (8))
1112 {
1113 dest = BITS(12,15) + (BIT (22) << 4);
1114 srcN = LHSReg + (BIT (7) << 4);
1115 srcM = BITS (0,3) + (BIT (5) << 4);
1116 }
1117 else
1118 {
1119 dest = (BITS(12,15) << 1) + BIT (22);
1120 srcN = (LHSReg << 1) + BIT (7);
1121 srcM = (BITS (0,3) << 1) + BIT (5);
1122 }
1123
1124 switch (BITS (20, 27))
1125 {
1126 case 0xE0:
1127 case 0xE4:
1128 /* VMLA VMLS */
1129 if (BIT (8))
1130 {
1131 ARMdval val = VFP_dval (srcN) * VFP_dval (srcM);
1132
1133 if (BIT (6))
1134 {
1135 if (trace)
1136 fprintf (stderr, " VFP: VMLS: %g = %g - %g * %g\n",
1137 VFP_dval (dest) - val,
1138 VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM));
1139 VFP_dval (dest) -= val;
1140 }
1141 else
1142 {
1143 if (trace)
1144 fprintf (stderr, " VFP: VMLA: %g = %g + %g * %g\n",
1145 VFP_dval (dest) + val,
1146 VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM));
1147 VFP_dval (dest) += val;
1148 }
1149 }
1150 else
1151 {
1152 ARMfval val = VFP_fval (srcN) * VFP_fval (srcM);
1153
1154 if (BIT (6))
1155 {
1156 if (trace)
1157 fprintf (stderr, " VFP: VMLS: %g = %g - %g * %g\n",
1158 VFP_fval (dest) - val,
1159 VFP_fval (dest), VFP_fval (srcN), VFP_fval (srcM));
1160 VFP_fval (dest) -= val;
1161 }
1162 else
1163 {
1164 if (trace)
1165 fprintf (stderr, " VFP: VMLA: %g = %g + %g * %g\n",
1166 VFP_fval (dest) + val,
1167 VFP_fval (dest), VFP_fval (srcN), VFP_fval (srcM));
1168 VFP_fval (dest) += val;
1169 }
1170 }
1171 return;
1172
1173 case 0xE1:
1174 case 0xE5:
1175 if (BIT (8))
1176 {
1177 ARMdval product = VFP_dval (srcN) * VFP_dval (srcM);
1178
1179 if (BIT (6))
1180 {
1181 /* VNMLA */
1182 if (trace)
1183 fprintf (stderr, " VFP: VNMLA: %g = -(%g + (%g * %g))\n",
1184 -(VFP_dval (dest) + product),
1185 VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM));
1186 VFP_dval (dest) = -(product + VFP_dval (dest));
1187 }
1188 else
1189 {
1190 /* VNMLS */
1191 if (trace)
1192 fprintf (stderr, " VFP: VNMLS: %g = -(%g + (%g * %g))\n",
1193 -(VFP_dval (dest) + product),
1194 VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM));
1195 VFP_dval (dest) = product - VFP_dval (dest);
1196 }
1197 }
1198 else
1199 {
1200 ARMfval product = VFP_fval (srcN) * VFP_fval (srcM);
1201
1202 if (BIT (6))
1203 /* VNMLA */
1204 VFP_fval (dest) = -(product + VFP_fval (dest));
1205 else
1206 /* VNMLS */
1207 VFP_fval (dest) = product - VFP_fval (dest);
1208 }
1209 return;
1210
1211 case 0xE2:
1212 case 0xE6:
1213 if (BIT (8))
1214 {
1215 ARMdval product = VFP_dval (srcN) * VFP_dval (srcM);
1216
1217 if (BIT (6))
1218 {
1219 if (trace)
1220 fprintf (stderr, " VFP: VMUL: %g = %g * %g\n",
1221 - product, VFP_dval (srcN), VFP_dval (srcM));
1222 /* VNMUL */
1223 VFP_dval (dest) = - product;
1224 }
1225 else
1226 {
1227 if (trace)
1228 fprintf (stderr, " VFP: VMUL: %g = %g * %g\n",
1229 product, VFP_dval (srcN), VFP_dval (srcM));
1230 /* VMUL */
1231 VFP_dval (dest) = product;
1232 }
1233 }
1234 else
1235 {
1236 ARMfval product = VFP_fval (srcN) * VFP_fval (srcM);
1237
1238 if (BIT (6))
1239 {
1240 if (trace)
1241 fprintf (stderr, " VFP: VNMUL: %g = %g * %g\n",
1242 - product, VFP_fval (srcN), VFP_fval (srcM));
1243
1244 VFP_fval (dest) = - product;
1245 }
1246 else
1247 {
1248 if (trace)
1249 fprintf (stderr, " VFP: VMUL: %g = %g * %g\n",
1250 product, VFP_fval (srcN), VFP_fval (srcM));
1251
1252 VFP_fval (dest) = product;
1253 }
1254 }
1255 return;
1256
1257 case 0xE3:
1258 case 0xE7:
1259 if (BIT (6) == 0)
1260 {
1261 /* VADD */
1262 if (BIT(8))
1263 {
1264 if (trace)
1265 fprintf (stderr, " VFP: VADD %g = %g + %g\n",
1266 VFP_dval (srcN) + VFP_dval (srcM),
1267 VFP_dval (srcN),
1268 VFP_dval (srcM));
1269 VFP_dval (dest) = VFP_dval (srcN) + VFP_dval (srcM);
1270 }
1271 else
1272 VFP_fval (dest) = VFP_fval (srcN) + VFP_fval (srcM);
1273
1274 }
1275 else
1276 {
1277 /* VSUB */
1278 if (BIT(8))
1279 {
1280 if (trace)
1281 fprintf (stderr, " VFP: VSUB %g = %g - %g\n",
1282 VFP_dval (srcN) - VFP_dval (srcM),
1283 VFP_dval (srcN),
1284 VFP_dval (srcM));
1285 VFP_dval (dest) = VFP_dval (srcN) - VFP_dval (srcM);
1286 }
1287 else
1288 VFP_fval (dest) = VFP_fval (srcN) - VFP_fval (srcM);
1289 }
1290 return;
1291
1292 case 0xE8:
1293 case 0xEC:
1294 if (BIT (6) == 1)
1295 break;
1296
1297 /* VDIV */
1298 if (BIT (8))
1299 {
1300 ARMdval res = VFP_dval (srcN) / VFP_dval (srcM);
1301 if (trace)
1302 fprintf (stderr, " VFP: VDIV (64bit): %g = %g / %g\n",
1303 res, VFP_dval (srcN), VFP_dval (srcM));
1304 VFP_dval (dest) = res;
1305 }
1306 else
1307 {
1308 if (trace)
1309 fprintf (stderr, " VFP: VDIV: %g = %g / %g\n",
1310 VFP_fval (srcN) / VFP_fval (srcM),
1311 VFP_fval (srcN), VFP_fval (srcM));
1312
1313 VFP_fval (dest) = VFP_fval (srcN) / VFP_fval (srcM);
1314 }
1315 return;
1316
1317 case 0xEB:
1318 case 0xEF:
1319 if (BIT (6) != 1)
1320 break;
1321
1322 switch (BITS (16, 19))
1323 {
1324 case 0x0:
1325 if (BIT (7) == 0)
1326 {
1327 if (BIT (8))
1328 {
1329 /* VMOV.F64 <Dd>, <Dm>. */
1330 VFP_dval (dest) = VFP_dval (srcM);
1331 if (trace)
1332 fprintf (stderr, " VFP: VMOV d%d, d%d: %g\n", dest, srcM, VFP_dval (srcM));
1333 }
1334 else
1335 {
1336 /* VMOV.F32 <Sd>, <Sm>. */
1337 VFP_fval (dest) = VFP_fval (srcM);
1338 if (trace)
1339 fprintf (stderr, " VFP: VMOV s%d, s%d: %g\n", dest, srcM, VFP_fval (srcM));
1340 }
1341 }
1342 else
1343 {
1344 /* VABS */
1345 if (BIT (8))
1346 {
1347 ARMdval src = VFP_dval (srcM);
1348
1349 VFP_dval (dest) = fabs (src);
1350 if (trace)
1351 fprintf (stderr, " VFP: VABS (%g) = %g\n", src, VFP_dval (dest));
1352 }
1353 else
1354 {
1355 ARMfval src = VFP_fval (srcM);
1356
1357 VFP_fval (dest) = fabsf (src);
1358 if (trace)
1359 fprintf (stderr, " VFP: VABS (%g) = %g\n", src, VFP_fval (dest));
1360 }
1361 }
1362 return;
1363
1364 case 0x1:
1365 if (BIT (7) == 0)
1366 {
1367 /* VNEG */
1368 if (BIT (8))
1369 VFP_dval (dest) = - VFP_dval (srcM);
1370 else
1371 VFP_fval (dest) = - VFP_fval (srcM);
1372 }
1373 else
1374 {
1375 /* VSQRT */
1376 if (BIT (8))
1377 {
1378 if (trace)
1379 fprintf (stderr, " VFP: %g = root(%g)\n",
1380 sqrt (VFP_dval (srcM)), VFP_dval (srcM));
1381
1382 VFP_dval (dest) = sqrt (VFP_dval (srcM));
1383 }
1384 else
1385 {
1386 if (trace)
1387 fprintf (stderr, " VFP: %g = root(%g)\n",
1388 sqrtf (VFP_fval (srcM)), VFP_fval (srcM));
1389
1390 VFP_fval (dest) = sqrtf (VFP_fval (srcM));
1391 }
1392 }
1393 return;
1394
1395 case 0x4:
1396 case 0x5:
1397 /* VCMP, VCMPE */
1398 if (BIT(8))
1399 {
1400 ARMdval res = VFP_dval (dest);
1401
1402 if (BIT (16) == 0)
1403 {
1404 ARMdval src = VFP_dval (srcM);
1405
1406 if (isinf (res) && isinf (src))
1407 {
1408 if (res > 0.0 && src > 0.0)
1409 res = 0.0;
1410 else if (res < 0.0 && src < 0.0)
1411 res = 0.0;
1412 /* else leave res alone. */
1413 }
1414 else
1415 res -= src;
1416 }
1417
1418 /* FIXME: Add handling of signalling NaNs and the E bit. */
1419
1420 state->FPSCR &= 0x0FFFFFFF;
1421 if (res < 0.0)
1422 state->FPSCR |= NBIT;
1423 else
1424 state->FPSCR |= CBIT;
1425 if (res == 0.0)
1426 state->FPSCR |= ZBIT;
1427 if (isnan (res))
1428 state->FPSCR |= VBIT;
1429
1430 if (trace)
1431 fprintf (stderr, " VFP: VCMP (64bit) %g vs %g res %g, flags: %c%c%c%c\n",
1432 VFP_dval (dest), BIT (16) ? 0.0 : VFP_dval (srcM), res,
1433 state->FPSCR & NBIT ? 'N' : '-',
1434 state->FPSCR & ZBIT ? 'Z' : '-',
1435 state->FPSCR & CBIT ? 'C' : '-',
1436 state->FPSCR & VBIT ? 'V' : '-');
1437 }
1438 else
1439 {
1440 ARMfval res = VFP_fval (dest);
1441
1442 if (BIT (16) == 0)
1443 {
1444 ARMfval src = VFP_fval (srcM);
1445
1446 if (isinf (res) && isinf (src))
1447 {
1448 if (res > 0.0 && src > 0.0)
1449 res = 0.0;
1450 else if (res < 0.0 && src < 0.0)
1451 res = 0.0;
1452 /* else leave res alone. */
1453 }
1454 else
1455 res -= src;
1456 }
1457
1458 /* FIXME: Add handling of signalling NaNs and the E bit. */
1459
1460 state->FPSCR &= 0x0FFFFFFF;
1461 if (res < 0.0)
1462 state->FPSCR |= NBIT;
1463 else
1464 state->FPSCR |= CBIT;
1465 if (res == 0.0)
1466 state->FPSCR |= ZBIT;
1467 if (isnan (res))
1468 state->FPSCR |= VBIT;
1469
1470 if (trace)
1471 fprintf (stderr, " VFP: VCMP (32bit) %g vs %g res %g, flags: %c%c%c%c\n",
1472 VFP_fval (dest), BIT (16) ? 0.0 : VFP_fval (srcM), res,
1473 state->FPSCR & NBIT ? 'N' : '-',
1474 state->FPSCR & ZBIT ? 'Z' : '-',
1475 state->FPSCR & CBIT ? 'C' : '-',
1476 state->FPSCR & VBIT ? 'V' : '-');
1477 }
1478 return;
1479
1480 case 0x7:
1481 if (BIT (8))
1482 {
1483 dest = (DESTReg << 1) + BIT (22);
1484 VFP_fval (dest) = VFP_dval (srcM);
1485 }
1486 else
1487 {
1488 dest = DESTReg + (BIT (22) << 4);
1489 VFP_dval (dest) = VFP_fval (srcM);
1490 }
1491 return;
1492
1493 case 0x8:
1494 case 0xC:
1495 case 0xD:
1496 /* VCVT integer <-> FP */
1497 if (BIT (18))
1498 {
1499 /* To integer. */
1500 if (BIT (8))
1501 {
1502 dest = (BITS(12,15) << 1) + BIT (22);
1503 if (BIT (16))
1504 VFP_sword (dest) = VFP_dval (srcM);
1505 else
1506 VFP_uword (dest) = VFP_dval (srcM);
1507 }
1508 else
1509 {
1510 if (BIT (16))
1511 VFP_sword (dest) = VFP_fval (srcM);
1512 else
1513 VFP_uword (dest) = VFP_fval (srcM);
1514 }
1515 }
1516 else
1517 {
1518 /* From integer. */
1519 if (BIT (8))
1520 {
1521 srcM = (BITS (0,3) << 1) + BIT (5);
1522 if (BIT (7))
1523 VFP_dval (dest) = VFP_sword (srcM);
1524 else
1525 VFP_dval (dest) = VFP_uword (srcM);
1526 }
1527 else
1528 {
1529 if (BIT (7))
1530 VFP_fval (dest) = VFP_sword (srcM);
1531 else
1532 VFP_fval (dest) = VFP_uword (srcM);
1533 }
1534 }
1535 return;
1536 }
1537
1538 fprintf (stderr, "SIM: VFP: Unimplemented: Float op3: %03x\n", BITS (16,27));
1539 return;
1540 }
1541
1542 fprintf (stderr, "SIM: VFP: Unimplemented: Float op2: %02x\n", BITS (20, 27));
1543 return;
1544 }
1545
1546 /* This function does the Busy-Waiting for an CDP instruction. */
1547
1548 void
1549 ARMul_CDP (ARMul_State * state, ARMword instr)
1550 {
1551 unsigned cpab;
1552
1553 if (CPNum == 10 || CPNum == 11)
1554 {
1555 handle_VFP_op (state, instr);
1556 return;
1557 }
1558
1559 if (! CP_ACCESS_ALLOWED (state, CPNum))
1560 {
1561 ARMul_UndefInstr (state, instr);
1562 return;
1563 }
1564
1565 cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr);
1566 while (cpab == ARMul_BUSY)
1567 {
1568 ARMul_Icycles (state, 1, 0);
1569 if (IntPending (state))
1570 {
1571 cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr);
1572 return;
1573 }
1574 else
1575 cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr);
1576 }
1577 if (cpab == ARMul_CANT)
1578 ARMul_Abort (state, ARMul_UndefinedInstrV);
1579 else
1580 BUSUSEDN;
1581 }
1582
1583 /* This function handles Undefined instructions, as CP isntruction. */
1584
1585 void
1586 ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED)
1587 {
1588 ARMul_Abort (state, ARMul_UndefinedInstrV);
1589 }
1590
1591 /* Return TRUE if an interrupt is pending, FALSE otherwise. */
1592
1593 unsigned
1594 IntPending (ARMul_State * state)
1595 {
1596 if (state->Exception)
1597 {
1598 /* Any exceptions. */
1599 if (state->NresetSig == LOW)
1600 {
1601 ARMul_Abort (state, ARMul_ResetV);
1602 return TRUE;
1603 }
1604 else if (!state->NfiqSig && !FFLAG)
1605 {
1606 ARMul_Abort (state, ARMul_FIQV);
1607 return TRUE;
1608 }
1609 else if (!state->NirqSig && !IFLAG)
1610 {
1611 ARMul_Abort (state, ARMul_IRQV);
1612 return TRUE;
1613 }
1614 }
1615
1616 return FALSE;
1617 }
1618
1619 /* Align a word access to a non word boundary. */
1620
1621 ARMword
1622 ARMul_Align (ARMul_State *state ATTRIBUTE_UNUSED, ARMword address, ARMword data)
1623 {
1624 /* This code assumes the address is really unaligned,
1625 as a shift by 32 is undefined in C. */
1626
1627 address = (address & 3) << 3; /* Get the word address. */
1628 return ((data >> address) | (data << (32 - address))); /* rot right */
1629 }
1630
1631 /* This routine is used to call another routine after a certain number of
1632 cycles have been executed. The first parameter is the number of cycles
1633 delay before the function is called, the second argument is a pointer
1634 to the function. A delay of zero doesn't work, just call the function. */
1635
1636 void
1637 ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
1638 unsigned (*what) (ARMul_State *))
1639 {
1640 unsigned long when;
1641 struct EventNode *event;
1642
1643 if (state->EventSet++ == 0)
1644 state->Now = ARMul_Time (state);
1645 when = (state->Now + delay) % EVENTLISTSIZE;
1646 event = (struct EventNode *) malloc (sizeof (struct EventNode));
1647 event->func = what;
1648 event->next = *(state->EventPtr + when);
1649 *(state->EventPtr + when) = event;
1650 }
1651
1652 /* This routine is called at the beginning of
1653 every cycle, to envoke scheduled events. */
1654
1655 void
1656 ARMul_EnvokeEvent (ARMul_State * state)
1657 {
1658 static unsigned long then;
1659
1660 then = state->Now;
1661 state->Now = ARMul_Time (state) % EVENTLISTSIZE;
1662 if (then < state->Now)
1663 /* Schedule events. */
1664 EnvokeList (state, then, state->Now);
1665 else if (then > state->Now)
1666 {
1667 /* Need to wrap around the list. */
1668 EnvokeList (state, then, EVENTLISTSIZE - 1L);
1669 EnvokeList (state, 0L, state->Now);
1670 }
1671 }
1672
1673 /* Envokes all the entries in a range. */
1674
1675 static void
1676 EnvokeList (ARMul_State * state, unsigned long from, unsigned long to)
1677 {
1678 for (; from <= to; from++)
1679 {
1680 struct EventNode *anevent;
1681
1682 anevent = *(state->EventPtr + from);
1683 while (anevent)
1684 {
1685 (anevent->func) (state);
1686 state->EventSet--;
1687 anevent = anevent->next;
1688 }
1689 *(state->EventPtr + from) = NULL;
1690 }
1691 }
1692
1693 /* This routine is returns the number of clock ticks since the last reset. */
1694
1695 unsigned long
1696 ARMul_Time (ARMul_State * state)
1697 {
1698 return (state->NumScycles + state->NumNcycles +
1699 state->NumIcycles + state->NumCcycles + state->NumFcycles);
1700 }
This page took 0.087747 seconds and 4 git commands to generate.