This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / sim / common / sim-fpu.c
1 /* This is a software floating point library which can be used instead
2 of the floating point routines in libgcc1.c for targets without
3 hardware floating point. */
4
5 /* Copyright (C) 1994,1997 Free Software Foundation, Inc.
6
7 This file is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file with other programs, and to distribute
15 those programs without any restriction coming from the use of this
16 file. (The General Public License restrictions do apply in other
17 respects; for example, they cover modification of the file, and
18 distribution when not linked into another program.)
19
20 This file is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; see the file COPYING. If not, write to
27 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
28
29 /* As a special exception, if you link this library with other files,
30 some of which are compiled with GCC, to produce an executable,
31 this library does not by itself cause the resulting executable
32 to be covered by the GNU General Public License.
33 This exception does not however invalidate any other reasons why
34 the executable file might be covered by the GNU General Public License. */
35
36 /* This implements IEEE 754 format arithmetic, but does not provide a
37 mechanism for setting the rounding mode, or for generating or handling
38 exceptions.
39
40 The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
41 Wilson, all of Cygnus Support. */
42
43
44 #ifndef SIM_FPU_C
45 #define SIM_FPU_C
46
47 #include "sim-basics.h"
48 #include "sim-fpu.h"
49
50 #include "sim-io.h"
51 #include "sim-assert.h"
52
53
54 /* Debugging support. */
55
56 static void
57 print_bits (unsigned64 x,
58 int msbit,
59 sim_fpu_print_func print,
60 void *arg)
61 {
62 unsigned64 bit = LSBIT64 (msbit);
63 int i = 4;
64 while (bit)
65 {
66 if (i == 0)
67 print (arg, ",");
68 if ((x & bit))
69 print (arg, "1");
70 else
71 print (arg, "0");
72 bit >>= 1;
73 i = (i + 1) % 4;
74 }
75 }
76
77
78
79 /* Quick and dirty conversion between a host double and host 64bit int */
80
81 typedef union {
82 double d;
83 unsigned64 i;
84 } sim_fpu_map;
85
86
87 /* A packed IEEE floating point number.
88
89 Form is <SIGN:1><BIASEDEXP:NR_EXPBITS><FRAC:NR_FRACBITS> for both
90 32 and 64 bit numbers. This number is interpreted as:
91
92 Normalized (0 < BIASEDEXP && BIASEDEXP < EXPMAX):
93 (sign ? '-' : '+') 1.<FRAC> x 2 ^ (BIASEDEXP - EXPBIAS)
94
95 Denormalized (0 == BIASEDEXP && FRAC != 0):
96 (sign ? "-" : "+") 0.<FRAC> x 2 ^ (- EXPBIAS)
97
98 Zero (0 == BIASEDEXP && FRAC == 0):
99 (sign ? "-" : "+") 0.0
100
101 Infinity (BIASEDEXP == EXPMAX && FRAC == 0):
102 (sign ? "-" : "+") "infinity"
103
104 SignalingNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC < QUIET_NAN):
105 SNaN.FRAC
106
107 QuietNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC > QUIET_NAN):
108 QNaN.FRAC
109
110 */
111
112 #define NR_EXPBITS (is_double ? 11 : 8)
113 #define NR_FRACBITS (is_double ? 52 : 23)
114 #define SIGNBIT (is_double ? MSBIT64 (0) : MSBIT64 (32))
115
116 #define EXPMAX32 (255)
117 #define EXMPAX64 (2047)
118 #define EXPMAX ((unsigned) (is_double ? EXMPAX64 : EXPMAX32))
119
120 #define EXPBIAS32 (127)
121 #define EXPBIAS64 (1023)
122 #define EXPBIAS (is_double ? EXPBIAS64 : EXPBIAS32)
123
124 #define QUIET_NAN LSBIT64 (NR_FRACBITS - 1)
125
126
127
128 /* An unpacked floating point number.
129
130 When unpacked, the fraction of both a 32 and 64 bit floating point
131 number is stored using the same format:
132
133 64 bit - <IMPLICIT_1:1><FRACBITS:52><GUARDS:8><PAD:00>
134 32 bit - <IMPLICIT_1:1><FRACBITS:23><GUARDS:7><PAD:30> */
135
136 #define NR_PAD32 (30)
137 #define NR_PAD64 (0)
138 #define NR_PAD (is_double ? NR_PAD64 : NR_PAD32)
139 #define PADMASK (is_double ? 0 : LSMASK64 (NR_PAD32 - 1, 0))
140
141 #define NR_GUARDS32 (7 + NR_PAD32)
142 #define NR_GUARDS64 (8 + NR_PAD32)
143 #define NR_GUARDS (is_double ? NR_GUARDS64 : NR_GUARDS32)
144 #define GUARDMASK LSMASK64 (NR_GUARDS - 1, 0)
145
146 #define GUARDMSB LSBIT64 (NR_GUARDS - 1)
147 #define GUARDLSB LSBIT64 (NR_PAD)
148 #define GUARDROUND LSMASK64 (NR_GUARDS - 2, 0)
149
150 #define NR_FRAC_GUARD (60)
151 #define IMPLICIT_1 LSBIT64 (NR_FRAC_GUARD)
152 #define IMPLICIT_2 LSBIT64 (NR_FRAC_GUARD + 1)
153 #define IMPLICIT_4 LSBIT64 (NR_FRAC_GUARD + 2)
154 #define NR_SPARE 2
155
156 #define FRAC32MASK LSMASK64 (63, NR_FRAC_GUARD - 32 + 1)
157
158 #define NORMAL_EXPMIN (-(EXPBIAS)+1)
159
160 #define NORMAL_EXPMAX32 (EXPBIAS32)
161 #define NORMAL_EXPMAX64 (EXPBIAS64)
162 #define NORMAL_EXPMAX (EXPBIAS)
163
164
165 /* Integer constants */
166
167 #define MAX_INT32 ((signed64) LSMASK64 (30, 0))
168 #define MAX_UINT32 LSMASK64 (31, 0)
169 #define MIN_INT32 ((signed64) LSMASK64 (63, 31))
170
171 #define MAX_INT64 ((signed64) LSMASK64 (62, 0))
172 #define MAX_UINT64 LSMASK64 (63, 0)
173 #define MIN_INT64 ((signed64) LSMASK64 (63, 63))
174
175 #define MAX_INT (is_64bit ? MAX_INT64 : MAX_INT32)
176 #define MIN_INT (is_64bit ? MIN_INT64 : MIN_INT32)
177 #define MAX_UINT (is_64bit ? MAX_UINT64 : MAX_UINT32)
178 #define NR_INTBITS (is_64bit ? 64 : 32)
179
180 /* Squeese an unpacked sim_fpu struct into a 32/64 bit integer */
181 STATIC_INLINE_SIM_FPU (unsigned64)
182 pack_fpu (const sim_fpu *src,
183 int is_double)
184 {
185 int sign;
186 unsigned64 exp;
187 unsigned64 fraction;
188 unsigned64 packed;
189
190 switch (src->class)
191 {
192 /* create a NaN */
193 case sim_fpu_class_qnan:
194 sign = src->sign;
195 exp = EXPMAX;
196 /* force fraction to correct class */
197 fraction = src->fraction;
198 fraction >>= NR_GUARDS;
199 fraction |= QUIET_NAN;
200 break;
201 case sim_fpu_class_snan:
202 sign = src->sign;
203 exp = EXPMAX;
204 /* force fraction to correct class */
205 fraction = src->fraction;
206 fraction >>= NR_GUARDS;
207 fraction &= ~QUIET_NAN;
208 break;
209 case sim_fpu_class_infinity:
210 sign = src->sign;
211 exp = EXPMAX;
212 fraction = 0;
213 break;
214 case sim_fpu_class_zero:
215 sign = src->sign;
216 exp = 0;
217 fraction = 0;
218 break;
219 case sim_fpu_class_number:
220 case sim_fpu_class_denorm:
221 ASSERT (src->fraction >= IMPLICIT_1);
222 ASSERT (src->fraction < IMPLICIT_2);
223 if (src->normal_exp < NORMAL_EXPMIN)
224 {
225 /* This number's exponent is too low to fit into the bits
226 available in the number We'll denormalize the number by
227 storing zero in the exponent and shift the fraction to
228 the right to make up for it. */
229 int nr_shift = NORMAL_EXPMIN - src->normal_exp;
230 if (nr_shift > NR_FRACBITS)
231 {
232 /* underflow, just make the number zero */
233 sign = src->sign;
234 exp = 0;
235 fraction = 0;
236 }
237 else
238 {
239 sign = src->sign;
240 exp = 0;
241 /* Shift by the value */
242 fraction = src->fraction;
243 fraction >>= NR_GUARDS;
244 fraction >>= nr_shift;
245 }
246 }
247 else if (src->normal_exp > NORMAL_EXPMAX)
248 {
249 /* Infinity */
250 sign = src->sign;
251 exp = EXPMAX;
252 fraction = 0;
253 }
254 else
255 {
256 exp = (src->normal_exp + EXPBIAS);
257 sign = src->sign;
258 fraction = src->fraction;
259 /* FIXME: Need to round according to WITH_SIM_FPU_ROUNDING
260 or some such */
261 /* Round to nearest: If the guard bits are the all zero, but
262 the first, then we're half way between two numbers,
263 choose the one which makes the lsb of the answer 0. */
264 if ((fraction & GUARDMASK) == GUARDMSB)
265 {
266 if ((fraction & (GUARDMSB << 1)))
267 fraction += (GUARDMSB << 1);
268 }
269 else
270 {
271 /* Add a one to the guards to force round to nearest */
272 fraction += GUARDROUND;
273 }
274 if ((fraction & IMPLICIT_2)) /* rounding resulted in carry */
275 {
276 exp += 1;
277 fraction >>= 1;
278 }
279 fraction >>= NR_GUARDS;
280 /* When exp == EXPMAX (overflow from carry) fraction must
281 have been made zero */
282 ASSERT ((exp == EXPMAX) <= ((fraction & ~IMPLICIT_1) == 0));
283 }
284 break;
285 default:
286 abort ();
287 }
288
289 packed = ((sign ? SIGNBIT : 0)
290 | (exp << NR_FRACBITS)
291 | LSMASKED64 (fraction, NR_FRACBITS - 1, 0));
292
293 /* trace operation */
294 #if 0
295 if (is_double)
296 {
297 }
298 else
299 {
300 printf ("pack_fpu: ");
301 printf ("-> %c%0lX.%06lX\n",
302 LSMASKED32 (packed, 31, 31) ? '8' : '0',
303 (long) LSEXTRACTED32 (packed, 30, 23),
304 (long) LSEXTRACTED32 (packed, 23 - 1, 0));
305 }
306 #endif
307
308 return packed;
309 }
310
311
312 /* Unpack a 32/64 bit integer into a sim_fpu structure */
313 STATIC_INLINE_SIM_FPU (void)
314 unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
315 {
316 unsigned64 fraction = LSMASKED64 (packed, NR_FRACBITS - 1, 0);
317 unsigned exp = LSEXTRACTED64 (packed, NR_EXPBITS + NR_FRACBITS - 1, NR_FRACBITS);
318 int sign = (packed & SIGNBIT) != 0;
319
320 if (exp == 0)
321 {
322 /* Hmm. Looks like 0 */
323 if (fraction == 0)
324 {
325 /* tastes like zero */
326 dst->class = sim_fpu_class_zero;
327 dst->sign = sign;
328 }
329 else
330 {
331 /* Zero exponent with non zero fraction - it's denormalized,
332 so there isn't a leading implicit one - we'll shift it so
333 it gets one. */
334 dst->normal_exp = exp - EXPBIAS + 1;
335 dst->class = sim_fpu_class_denorm;
336 dst->sign = sign;
337 fraction <<= NR_GUARDS;
338 while (fraction < IMPLICIT_1)
339 {
340 fraction <<= 1;
341 dst->normal_exp--;
342 }
343 dst->fraction = fraction;
344 }
345 }
346 else if (exp == EXPMAX)
347 {
348 /* Huge exponent*/
349 if (fraction == 0)
350 {
351 /* Attached to a zero fraction - means infinity */
352 dst->class = sim_fpu_class_infinity;
353 dst->sign = sign;
354 /* dst->normal_exp = EXPBIAS; */
355 /* dst->fraction = 0; */
356 }
357 else
358 {
359 /* Non zero fraction, means NaN */
360 dst->sign = sign;
361 dst->fraction = (fraction << NR_GUARDS);
362 if (fraction >= QUIET_NAN)
363 dst->class = sim_fpu_class_qnan;
364 else
365 dst->class = sim_fpu_class_snan;
366 }
367 }
368 else
369 {
370 /* Nothing strange about this number */
371 dst->class = sim_fpu_class_number;
372 dst->sign = sign;
373 dst->fraction = ((fraction << NR_GUARDS) | IMPLICIT_1);
374 dst->normal_exp = exp - EXPBIAS;
375 }
376
377 /* trace operation */
378 #if 0
379 if (is_double)
380 {
381 }
382 else
383 {
384 printf ("unpack_fpu: %c%02lX.%06lX ->\n",
385 LSMASKED32 (packed, 31, 31) ? '8' : '0',
386 (long) LSEXTRACTED32 (packed, 30, 23),
387 (long) LSEXTRACTED32 (packed, 23 - 1, 0));
388 }
389 #endif
390
391 /* sanity checks */
392 {
393 sim_fpu_map val;
394 val.i = pack_fpu (dst, 1);
395 if (is_double)
396 {
397 ASSERT (val.i == packed);
398 }
399 else
400 {
401 unsigned32 val = pack_fpu (dst, 0);
402 unsigned32 org = packed;
403 ASSERT (val == org);
404 }
405 }
406 }
407
408
409 /* Convert a floating point into an integer */
410 STATIC_INLINE_SIM_FPU (int)
411 fpu2i (signed64 *i,
412 const sim_fpu *s,
413 int is_64bit,
414 sim_fpu_round round)
415 {
416 unsigned64 tmp;
417 int shift;
418 int status = 0;
419 if (sim_fpu_is_zero (s))
420 {
421 *i = 0;
422 return 0;
423 }
424 if (sim_fpu_is_snan (s))
425 {
426 *i = MIN_INT; /* FIXME */
427 return sim_fpu_status_invalid_cvi;
428 }
429 if (sim_fpu_is_qnan (s))
430 {
431 *i = MIN_INT; /* FIXME */
432 return sim_fpu_status_invalid_cvi;
433 }
434 /* map infinity onto MAX_INT... */
435 if (sim_fpu_is_infinity (s))
436 {
437 *i = s->sign ? MIN_INT : MAX_INT;
438 return sim_fpu_status_invalid_cvi;
439 }
440 /* it is a number, but a small one */
441 if (s->normal_exp < 0)
442 {
443 *i = 0;
444 return sim_fpu_status_inexact;
445 }
446 /* Is the floating point MIN_INT or just close? */
447 if (s->sign && s->normal_exp == (NR_INTBITS - 1))
448 {
449 *i = MIN_INT;
450 ASSERT (s->fraction >= IMPLICIT_1);
451 if (s->fraction == IMPLICIT_1)
452 return 0; /* exact */
453 if (is_64bit) /* can't round */
454 return sim_fpu_status_invalid_cvi; /* must be overflow */
455 /* For a 32bit with MAX_INT, rounding is possible */
456 switch (round)
457 {
458 case sim_fpu_round_default:
459 abort ();
460 case sim_fpu_round_zero:
461 if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
462 return sim_fpu_status_invalid_cvi;
463 else
464 return sim_fpu_status_inexact;
465 break;
466 case sim_fpu_round_near:
467 {
468 if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
469 return sim_fpu_status_invalid_cvi;
470 else if ((s->fraction & !FRAC32MASK) >= (~FRAC32MASK >> 1))
471 return sim_fpu_status_invalid_cvi;
472 else
473 return sim_fpu_status_inexact;
474 }
475 case sim_fpu_round_up:
476 if ((s->fraction & FRAC32MASK) == IMPLICIT_1)
477 return sim_fpu_status_inexact;
478 else
479 return sim_fpu_status_invalid_cvi;
480 case sim_fpu_round_down:
481 return sim_fpu_status_invalid_cvi;
482 }
483 }
484 /* Would right shifting result in the FRAC being shifted into
485 (through) the integer's sign bit? */
486 if (s->normal_exp > (NR_INTBITS - 2))
487 {
488 *i = s->sign ? MIN_INT : MAX_INT;
489 return sim_fpu_status_invalid_cvi;
490 }
491 /* normal number shift it into place */
492 tmp = s->fraction;
493 shift = (s->normal_exp - (NR_FRAC_GUARD));
494 if (shift > 0)
495 {
496 tmp <<= shift;
497 }
498 else
499 {
500 shift = -shift;
501 if (tmp & ((SIGNED64 (1) << shift) - 1))
502 status |= sim_fpu_status_inexact;
503 tmp >>= shift;
504 }
505 *i = s->sign ? (-tmp) : (tmp);
506 return status;
507 }
508
509 /* convert an integer into a floating point */
510 STATIC_INLINE_SIM_FPU (int)
511 i2fpu (sim_fpu *f, signed64 i, int is_64bit)
512 {
513 int status = 0;
514 if (i == 0)
515 {
516 f->class = sim_fpu_class_zero;
517 f->sign = 0;
518 }
519 else
520 {
521 f->class = sim_fpu_class_number;
522 f->sign = (i < 0);
523 f->normal_exp = NR_FRAC_GUARD;
524
525 if (f->sign)
526 {
527 /* Special case for minint, since there is no corresponding
528 +ve integer representation for it */
529 if (i == MIN_INT)
530 {
531 f->fraction = IMPLICIT_1;
532 f->normal_exp = NR_INTBITS - 1;
533 }
534 else
535 f->fraction = (-i);
536 }
537 else
538 f->fraction = i;
539
540 if (f->fraction >= IMPLICIT_2)
541 {
542 do
543 {
544 f->fraction >>= 1;
545 f->normal_exp += 1;
546 }
547 while (f->fraction >= IMPLICIT_2);
548 }
549 else if (f->fraction < IMPLICIT_1)
550 {
551 do
552 {
553 f->fraction <<= 1;
554 f->normal_exp -= 1;
555 }
556 while (f->fraction < IMPLICIT_1);
557 }
558 }
559
560 /* trace operation */
561 #if 0
562 {
563 printf ("i2fpu: 0x%08lX ->\n", (long) i);
564 }
565 #endif
566
567 /* sanity check */
568 {
569 signed64 val;
570 fpu2i (&val, f, is_64bit, sim_fpu_round_zero);
571 if (i >= MIN_INT32 && i <= MAX_INT32)
572 {
573 ASSERT (val == i);
574 }
575 }
576
577 return status;
578 }
579
580
581 /* Convert a floating point into an integer */
582 STATIC_INLINE_SIM_FPU (int)
583 fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
584 {
585 const int is_double = 1;
586 unsigned64 tmp;
587 int shift;
588 if (sim_fpu_is_zero (s))
589 {
590 *u = 0;
591 return 0;
592 }
593 if (sim_fpu_is_nan (s))
594 {
595 *u = 0;
596 return 0;
597 }
598 /* it is a negative number */
599 if (s->sign)
600 {
601 *u = 0;
602 return 0;
603 }
604 /* get reasonable MAX_USI_INT... */
605 if (sim_fpu_is_infinity (s))
606 {
607 *u = MAX_UINT;
608 return 0;
609 }
610 /* it is a number, but a small one */
611 if (s->normal_exp < 0)
612 {
613 *u = 0;
614 return 0;
615 }
616 /* overflow */
617 if (s->normal_exp > (NR_INTBITS - 1))
618 {
619 *u = MAX_UINT;
620 return 0;
621 }
622 /* normal number */
623 tmp = (s->fraction & ~PADMASK);
624 shift = (s->normal_exp - (NR_FRACBITS + NR_GUARDS));
625 if (shift > 0)
626 {
627 tmp <<= shift;
628 }
629 else
630 {
631 shift = -shift;
632 tmp >>= shift;
633 }
634 *u = tmp;
635 return 0;
636 }
637
638 /* Convert an unsigned integer into a floating point */
639 STATIC_INLINE_SIM_FPU (int)
640 u2fpu (sim_fpu *f, unsigned64 u, int is_64bit)
641 {
642 if (u == 0)
643 {
644 f->class = sim_fpu_class_zero;
645 f->sign = 0;
646 }
647 else
648 {
649 f->class = sim_fpu_class_number;
650 f->sign = 0;
651 f->normal_exp = NR_FRAC_GUARD;
652 f->fraction = u;
653
654 while (f->fraction < IMPLICIT_1)
655 {
656 f->fraction <<= 1;
657 f->normal_exp -= 1;
658 }
659 }
660 return 0;
661 }
662
663
664 /* register <-> sim_fpu */
665
666 INLINE_SIM_FPU (void)
667 sim_fpu_32to (sim_fpu *f, unsigned32 s)
668 {
669 unpack_fpu (f, s, 0);
670 }
671
672
673 INLINE_SIM_FPU (void)
674 sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l)
675 {
676 unsigned64 s = h;
677 s = (s << 32) | l;
678 unpack_fpu (f, s, 1);
679 }
680
681
682 INLINE_SIM_FPU (void)
683 sim_fpu_64to (sim_fpu *f, unsigned64 s)
684 {
685 unpack_fpu (f, s, 1);
686 }
687
688
689 INLINE_SIM_FPU (void)
690 sim_fpu_to32 (unsigned32 *s,
691 const sim_fpu *f)
692 {
693 *s = pack_fpu (f, 0);
694 }
695
696
697 INLINE_SIM_FPU (void)
698 sim_fpu_to232 (unsigned32 *h, unsigned32 *l,
699 const sim_fpu *f)
700 {
701 unsigned64 s = pack_fpu (f, 1);
702 *l = s;
703 *h = (s >> 32);
704 }
705
706
707 INLINE_SIM_FPU (void)
708 sim_fpu_to64 (unsigned64 *u,
709 const sim_fpu *f)
710 {
711 *u = pack_fpu (f, 1);
712 }
713
714
715 /* Rounding */
716
717 STATIC_INLINE_SIM_FPU (int)
718 do_normal_overflow (sim_fpu *f,
719 int is_double,
720 sim_fpu_round round)
721 {
722 switch (round)
723 {
724 case sim_fpu_round_default:
725 return 0;
726 case sim_fpu_round_near:
727 f->class = sim_fpu_class_infinity;
728 break;
729 case sim_fpu_round_up:
730 if (!f->sign)
731 f->class = sim_fpu_class_infinity;
732 break;
733 case sim_fpu_round_down:
734 if (f->sign)
735 f->class = sim_fpu_class_infinity;
736 break;
737 case sim_fpu_round_zero:
738 break;
739 }
740 f->normal_exp = NORMAL_EXPMAX;
741 f->fraction = LSMASK64 (NR_FRAC_GUARD, NR_GUARDS);
742 return (sim_fpu_status_overflow | sim_fpu_status_inexact);
743 }
744
745 STATIC_INLINE_SIM_FPU (int)
746 do_normal_underflow (sim_fpu *f,
747 int is_double,
748 sim_fpu_round round)
749 {
750 switch (round)
751 {
752 case sim_fpu_round_default:
753 return 0;
754 case sim_fpu_round_near:
755 f->class = sim_fpu_class_zero;
756 break;
757 case sim_fpu_round_up:
758 if (f->sign)
759 f->class = sim_fpu_class_zero;
760 break;
761 case sim_fpu_round_down:
762 if (!f->sign)
763 f->class = sim_fpu_class_zero;
764 break;
765 case sim_fpu_round_zero:
766 f->class = sim_fpu_class_zero;
767 break;
768 }
769 f->normal_exp = NORMAL_EXPMIN - NR_FRACBITS;
770 f->fraction = IMPLICIT_1;
771 return (sim_fpu_status_inexact | sim_fpu_status_underflow);
772 }
773
774
775
776 /* Round a number using NR_GUARDS.
777 Will return the rounded number or F->FRACTION == 0 when underflow */
778
779 STATIC_INLINE_SIM_FPU (int)
780 do_normal_round (sim_fpu *f,
781 int nr_guards,
782 sim_fpu_round round)
783 {
784 unsigned64 guardmask = LSMASK64 (nr_guards - 1, 0);
785 unsigned64 guardmsb = LSBIT64 (nr_guards - 1);
786 unsigned64 fraclsb = guardmsb << 1;
787 if ((f->fraction & guardmask))
788 {
789 int status = sim_fpu_status_inexact;
790 switch (round)
791 {
792 case sim_fpu_round_default:
793 return 0;
794 case sim_fpu_round_near:
795 if ((f->fraction & guardmsb))
796 {
797 if ((f->fraction & fraclsb))
798 {
799 status |= sim_fpu_status_rounded;
800 }
801 else if ((f->fraction & (guardmask >> 1)))
802 {
803 status |= sim_fpu_status_rounded;
804 }
805 }
806 break;
807 case sim_fpu_round_up:
808 if (!f->sign)
809 status |= sim_fpu_status_rounded;
810 break;
811 case sim_fpu_round_down:
812 if (f->sign)
813 status |= sim_fpu_status_rounded;
814 break;
815 case sim_fpu_round_zero:
816 break;
817 }
818 f->fraction &= ~guardmask;
819 /* round if needed, handle resulting overflow */
820 if ((status & sim_fpu_status_rounded))
821 {
822 f->fraction += fraclsb;
823 if ((f->fraction & IMPLICIT_2))
824 {
825 f->fraction >>= 1;
826 f->normal_exp += 1;
827 }
828 }
829 return status;
830 }
831 else
832 return 0;
833 }
834
835
836 STATIC_INLINE_SIM_FPU (int)
837 do_round (sim_fpu *f,
838 int is_double,
839 sim_fpu_round round,
840 sim_fpu_denorm denorm)
841 {
842 switch (f->class)
843 {
844 case sim_fpu_class_qnan:
845 case sim_fpu_class_zero:
846 case sim_fpu_class_infinity:
847 return 0;
848 break;
849 case sim_fpu_class_snan:
850 /* Quieten a SignalingNaN */
851 f->class = sim_fpu_class_qnan;
852 return sim_fpu_status_invalid_snan;
853 break;
854 case sim_fpu_class_number:
855 case sim_fpu_class_denorm:
856 {
857 int status;
858 ASSERT (f->fraction < IMPLICIT_2);
859 ASSERT (f->fraction >= IMPLICIT_1);
860 if (f->normal_exp < NORMAL_EXPMIN)
861 {
862 /* This number's exponent is too low to fit into the bits
863 available in the number. Round off any bits that will be
864 discarded as a result of denormalization. Edge case is
865 the implicit bit shifted to GUARD0 and then rounded
866 up. */
867 int shift = NORMAL_EXPMIN - f->normal_exp;
868 if (shift + NR_GUARDS <= NR_FRAC_GUARD + 1
869 && !(denorm & sim_fpu_denorm_zero))
870 {
871 status = do_normal_round (f, shift + NR_GUARDS, round);
872 if (f->fraction == 0) /* rounding underflowed */
873 {
874 status |= do_normal_underflow (f, is_double, round);
875 }
876 else if (f->normal_exp < NORMAL_EXPMIN) /* still underflow? */
877 {
878 status |= sim_fpu_status_denorm;
879 /* Any loss of precision when denormalizing is
880 underflow. Some processors check for underflow
881 before rounding, some after! */
882 if (status & sim_fpu_status_inexact)
883 status |= sim_fpu_status_underflow;
884 /* Flag that resultant value has been denormalized */
885 f->class = sim_fpu_class_denorm;
886 }
887 else if ((denorm & sim_fpu_denorm_underflow_inexact))
888 {
889 if ((status & sim_fpu_status_inexact))
890 status |= sim_fpu_status_underflow;
891 }
892 }
893 else
894 {
895 status = do_normal_underflow (f, is_double, round);
896 }
897 }
898 else if (f->normal_exp > NORMAL_EXPMAX)
899 {
900 /* Infinity */
901 status = do_normal_overflow (f, is_double, round);
902 }
903 else
904 {
905 status = do_normal_round (f, NR_GUARDS, round);
906 if (f->fraction == 0)
907 /* f->class = sim_fpu_class_zero; */
908 status |= do_normal_underflow (f, is_double, round);
909 else if (f->normal_exp > NORMAL_EXPMAX)
910 /* oops! rounding caused overflow */
911 status |= do_normal_overflow (f, is_double, round);
912 }
913 ASSERT ((f->class == sim_fpu_class_number
914 || f->class == sim_fpu_class_denorm)
915 <= (f->fraction < IMPLICIT_2 && f->fraction >= IMPLICIT_1));
916 return status;
917 }
918 }
919 return 0;
920 }
921
922 INLINE_SIM_FPU (int)
923 sim_fpu_round_32 (sim_fpu *f,
924 sim_fpu_round round,
925 sim_fpu_denorm denorm)
926 {
927 return do_round (f, 0, round, denorm);
928 }
929
930 INLINE_SIM_FPU (int)
931 sim_fpu_round_64 (sim_fpu *f,
932 sim_fpu_round round,
933 sim_fpu_denorm denorm)
934 {
935 return do_round (f, 1, round, denorm);
936 }
937
938
939
940 /* Arithmetic ops */
941
942 INLINE_SIM_FPU (int)
943 sim_fpu_add (sim_fpu *f,
944 const sim_fpu *l,
945 const sim_fpu *r)
946 {
947 if (sim_fpu_is_snan (l))
948 {
949 *f = *l;
950 f->class = sim_fpu_class_qnan;
951 return sim_fpu_status_invalid_snan;
952 }
953 if (sim_fpu_is_snan (r))
954 {
955 *f = *r;
956 f->class = sim_fpu_class_qnan;
957 return sim_fpu_status_invalid_snan;
958 }
959 if (sim_fpu_is_qnan (l))
960 {
961 *f = *l;
962 return 0;
963 }
964 if (sim_fpu_is_qnan (r))
965 {
966 *f = *r;
967 return 0;
968 }
969 if (sim_fpu_is_infinity (l))
970 {
971 if (sim_fpu_is_infinity (r)
972 && l->sign != r->sign)
973 {
974 *f = sim_fpu_qnan;
975 return sim_fpu_status_invalid_isi;
976 }
977 *f = *l;
978 return 0;
979 }
980 if (sim_fpu_is_infinity (r))
981 {
982 *f = *r;
983 return 0;
984 }
985 if (sim_fpu_is_zero (l))
986 {
987 if (sim_fpu_is_zero (r))
988 {
989 *f = sim_fpu_zero;
990 f->sign = l->sign & r->sign;
991 }
992 else
993 *f = *r;
994 return 0;
995 }
996 if (sim_fpu_is_zero (r))
997 {
998 *f = *l;
999 return 0;
1000 }
1001 {
1002 int status = 0;
1003 int shift = l->normal_exp - r->normal_exp;
1004 unsigned64 lfraction;
1005 unsigned64 rfraction;
1006 /* use exp of larger */
1007 if (shift >= NR_FRAC_GUARD)
1008 {
1009 /* left has much bigger magnitute */
1010 *f = *l;
1011 return sim_fpu_status_inexact;
1012 }
1013 if (shift <= - NR_FRAC_GUARD)
1014 {
1015 /* right has much bigger magnitute */
1016 *f = *r;
1017 return sim_fpu_status_inexact;
1018 }
1019 lfraction = l->fraction;
1020 rfraction = r->fraction;
1021 if (shift > 0)
1022 {
1023 f->normal_exp = l->normal_exp;
1024 if (rfraction & LSMASK64 (shift - 1, 0))
1025 {
1026 status |= sim_fpu_status_inexact;
1027 rfraction |= LSBIT64 (shift); /* stick LSBit */
1028 }
1029 rfraction >>= shift;
1030 }
1031 else if (shift < 0)
1032 {
1033 f->normal_exp = r->normal_exp;
1034 if (lfraction & LSMASK64 (- shift - 1, 0))
1035 {
1036 status |= sim_fpu_status_inexact;
1037 lfraction |= LSBIT64 (- shift); /* stick LSBit */
1038 }
1039 lfraction >>= -shift;
1040 }
1041 else
1042 {
1043 f->normal_exp = r->normal_exp;
1044 }
1045
1046 /* perform the addition */
1047 if (l->sign)
1048 lfraction = - lfraction;
1049 if (r->sign)
1050 rfraction = - rfraction;
1051 f->fraction = lfraction + rfraction;
1052
1053 /* zero? */
1054 if (f->fraction == 0)
1055 {
1056 *f = sim_fpu_zero;
1057 return 0;
1058 }
1059
1060 /* sign? */
1061 f->class = sim_fpu_class_number;
1062 if ((signed64) f->fraction >= 0)
1063 f->sign = 0;
1064 else
1065 {
1066 f->sign = 1;
1067 f->fraction = - f->fraction;
1068 }
1069
1070 /* normalize it */
1071 if ((f->fraction & IMPLICIT_2))
1072 {
1073 f->fraction = (f->fraction >> 1) | (f->fraction & 1);
1074 f->normal_exp ++;
1075 }
1076 else if (f->fraction < IMPLICIT_1)
1077 {
1078 do
1079 {
1080 f->fraction <<= 1;
1081 f->normal_exp --;
1082 }
1083 while (f->fraction < IMPLICIT_1);
1084 }
1085 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1086 return status;
1087 }
1088 }
1089
1090
1091 INLINE_SIM_FPU (int)
1092 sim_fpu_sub (sim_fpu *f,
1093 const sim_fpu *l,
1094 const sim_fpu *r)
1095 {
1096 if (sim_fpu_is_snan (l))
1097 {
1098 *f = *l;
1099 f->class = sim_fpu_class_qnan;
1100 return sim_fpu_status_invalid_snan;
1101 }
1102 if (sim_fpu_is_snan (r))
1103 {
1104 *f = *r;
1105 f->class = sim_fpu_class_qnan;
1106 return sim_fpu_status_invalid_snan;
1107 }
1108 if (sim_fpu_is_qnan (l))
1109 {
1110 *f = *l;
1111 return 0;
1112 }
1113 if (sim_fpu_is_qnan (r))
1114 {
1115 *f = *r;
1116 return 0;
1117 }
1118 if (sim_fpu_is_infinity (l))
1119 {
1120 if (sim_fpu_is_infinity (r)
1121 && l->sign == r->sign)
1122 {
1123 *f = sim_fpu_qnan;
1124 return sim_fpu_status_invalid_isi;
1125 }
1126 *f = *l;
1127 return 0;
1128 }
1129 if (sim_fpu_is_infinity (r))
1130 {
1131 *f = *r;
1132 f->sign = !r->sign;
1133 return 0;
1134 }
1135 if (sim_fpu_is_zero (l))
1136 {
1137 if (sim_fpu_is_zero (r))
1138 {
1139 *f = sim_fpu_zero;
1140 f->sign = l->sign & !r->sign;
1141 }
1142 else
1143 {
1144 *f = *r;
1145 f->sign = !r->sign;
1146 }
1147 return 0;
1148 }
1149 if (sim_fpu_is_zero (r))
1150 {
1151 *f = *l;
1152 return 0;
1153 }
1154 {
1155 int status = 0;
1156 int shift = l->normal_exp - r->normal_exp;
1157 unsigned64 lfraction;
1158 unsigned64 rfraction;
1159 /* use exp of larger */
1160 if (shift >= NR_FRAC_GUARD)
1161 {
1162 /* left has much bigger magnitute */
1163 *f = *l;
1164 return sim_fpu_status_inexact;
1165 }
1166 if (shift <= - NR_FRAC_GUARD)
1167 {
1168 /* right has much bigger magnitute */
1169 *f = *r;
1170 f->sign = !r->sign;
1171 return sim_fpu_status_inexact;
1172 }
1173 lfraction = l->fraction;
1174 rfraction = r->fraction;
1175 if (shift > 0)
1176 {
1177 f->normal_exp = l->normal_exp;
1178 if (rfraction & LSMASK64 (shift - 1, 0))
1179 {
1180 status |= sim_fpu_status_inexact;
1181 rfraction |= LSBIT64 (shift); /* stick LSBit */
1182 }
1183 rfraction >>= shift;
1184 }
1185 else if (shift < 0)
1186 {
1187 f->normal_exp = r->normal_exp;
1188 if (lfraction & LSMASK64 (- shift - 1, 0))
1189 {
1190 status |= sim_fpu_status_inexact;
1191 lfraction |= LSBIT64 (- shift); /* stick LSBit */
1192 }
1193 lfraction >>= -shift;
1194 }
1195 else
1196 {
1197 f->normal_exp = r->normal_exp;
1198 }
1199
1200 /* perform the subtraction */
1201 if (l->sign)
1202 lfraction = - lfraction;
1203 if (!r->sign)
1204 rfraction = - rfraction;
1205 f->fraction = lfraction + rfraction;
1206
1207 /* zero? */
1208 if (f->fraction == 0)
1209 {
1210 *f = sim_fpu_zero;
1211 return 0;
1212 }
1213
1214 /* sign? */
1215 f->class = sim_fpu_class_number;
1216 if ((signed64) f->fraction >= 0)
1217 f->sign = 0;
1218 else
1219 {
1220 f->sign = 1;
1221 f->fraction = - f->fraction;
1222 }
1223
1224 /* normalize it */
1225 if ((f->fraction & IMPLICIT_2))
1226 {
1227 f->fraction = (f->fraction >> 1) | (f->fraction & 1);
1228 f->normal_exp ++;
1229 }
1230 else if (f->fraction < IMPLICIT_1)
1231 {
1232 do
1233 {
1234 f->fraction <<= 1;
1235 f->normal_exp --;
1236 }
1237 while (f->fraction < IMPLICIT_1);
1238 }
1239 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1240 return status;
1241 }
1242 }
1243
1244
1245 INLINE_SIM_FPU (int)
1246 sim_fpu_mul (sim_fpu *f,
1247 const sim_fpu *l,
1248 const sim_fpu *r)
1249 {
1250 if (sim_fpu_is_snan (l))
1251 {
1252 *f = *l;
1253 f->class = sim_fpu_class_qnan;
1254 return sim_fpu_status_invalid_snan;
1255 }
1256 if (sim_fpu_is_snan (r))
1257 {
1258 *f = *r;
1259 f->class = sim_fpu_class_qnan;
1260 return sim_fpu_status_invalid_snan;
1261 }
1262 if (sim_fpu_is_qnan (l))
1263 {
1264 *f = *l;
1265 return 0;
1266 }
1267 if (sim_fpu_is_qnan (r))
1268 {
1269 *f = *r;
1270 return 0;
1271 }
1272 if (sim_fpu_is_infinity (l))
1273 {
1274 if (sim_fpu_is_zero (r))
1275 {
1276 *f = sim_fpu_qnan;
1277 return sim_fpu_status_invalid_imz;
1278 }
1279 *f = *l;
1280 f->sign = l->sign ^ r->sign;
1281 return 0;
1282 }
1283 if (sim_fpu_is_infinity (r))
1284 {
1285 if (sim_fpu_is_zero (l))
1286 {
1287 *f = sim_fpu_qnan;
1288 return sim_fpu_status_invalid_imz;
1289 }
1290 *f = *r;
1291 f->sign = l->sign ^ r->sign;
1292 return 0;
1293 }
1294 if (sim_fpu_is_zero (l) || sim_fpu_is_zero (r))
1295 {
1296 *f = sim_fpu_zero;
1297 f->sign = l->sign ^ r->sign;
1298 return 0;
1299 }
1300 /* Calculate the mantissa by multiplying both 64bit numbers to get a
1301 128 bit number */
1302 {
1303 unsigned64 low;
1304 unsigned64 high;
1305 unsigned64 nl = l->fraction & 0xffffffff;
1306 unsigned64 nh = l->fraction >> 32;
1307 unsigned64 ml = r->fraction & 0xffffffff;
1308 unsigned64 mh = r->fraction >>32;
1309 unsigned64 pp_ll = ml * nl;
1310 unsigned64 pp_hl = mh * nl;
1311 unsigned64 pp_lh = ml * nh;
1312 unsigned64 pp_hh = mh * nh;
1313 unsigned64 res2 = 0;
1314 unsigned64 res0 = 0;
1315 unsigned64 ps_hh__ = pp_hl + pp_lh;
1316 if (ps_hh__ < pp_hl)
1317 res2 += UNSIGNED64 (0x100000000);
1318 pp_hl = (ps_hh__ << 32) & UNSIGNED64 (0xffffffff00000000);
1319 res0 = pp_ll + pp_hl;
1320 if (res0 < pp_ll)
1321 res2++;
1322 res2 += ((ps_hh__ >> 32) & 0xffffffff) + pp_hh;
1323 high = res2;
1324 low = res0;
1325
1326 f->normal_exp = l->normal_exp + r->normal_exp;
1327 f->sign = l->sign ^ r->sign;
1328 f->class = sim_fpu_class_number;
1329
1330 /* Input is bounded by [1,2) ; [2^60,2^61)
1331 Output is bounded by [1,4) ; [2^120,2^122) */
1332
1333 /* Adjust the exponent according to where the decimal point ended
1334 up in the high 64 bit word. In the source the decimal point
1335 was at NR_FRAC_GUARD. */
1336 f->normal_exp += NR_FRAC_GUARD + 64 - (NR_FRAC_GUARD * 2);
1337
1338 /* The high word is bounded according to the above. Consequently
1339 it has never overflowed into IMPLICIT_2. */
1340 ASSERT (high < LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64));
1341 ASSERT (high >= LSBIT64 ((NR_FRAC_GUARD * 2) - 64));
1342 ASSERT (LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64) < IMPLICIT_1);
1343
1344 #if 0
1345 printf ("\n");
1346 print_bits (high, 63, (sim_fpu_print_func*)fprintf, stdout);
1347 printf (";");
1348 print_bits (low, 63, (sim_fpu_print_func*)fprintf, stdout);
1349 printf ("\n");
1350 #endif
1351
1352 /* normalize */
1353 do
1354 {
1355 f->normal_exp--;
1356 high <<= 1;
1357 if (low & LSBIT64 (63))
1358 high |= 1;
1359 low <<= 1;
1360 }
1361 while (high < IMPLICIT_1);
1362
1363 #if 0
1364 print_bits (high, 63, (sim_fpu_print_func*)fprintf, stdout);
1365 printf (";");
1366 print_bits (low, 63, (sim_fpu_print_func*)fprintf, stdout);
1367 printf ("\n");
1368 #endif
1369
1370 ASSERT (high >= IMPLICIT_1 && high < IMPLICIT_2);
1371 if (low != 0)
1372 {
1373 f->fraction = (high | 1); /* sticky */
1374 return sim_fpu_status_inexact;
1375 }
1376 else
1377 {
1378 f->fraction = high;
1379 return 0;
1380 }
1381 return 0;
1382 }
1383 }
1384
1385 INLINE_SIM_FPU (int)
1386 sim_fpu_div (sim_fpu *f,
1387 const sim_fpu *l,
1388 const sim_fpu *r)
1389 {
1390 if (sim_fpu_is_snan (l))
1391 {
1392 *f = *l;
1393 f->class = sim_fpu_class_qnan;
1394 return sim_fpu_status_invalid_snan;
1395 }
1396 if (sim_fpu_is_snan (r))
1397 {
1398 *f = *r;
1399 f->class = sim_fpu_class_qnan;
1400 return sim_fpu_status_invalid_snan;
1401 }
1402 if (sim_fpu_is_qnan (l))
1403 {
1404 *f = *l;
1405 f->class = sim_fpu_class_qnan;
1406 return 0;
1407 }
1408 if (sim_fpu_is_qnan (r))
1409 {
1410 *f = *r;
1411 f->class = sim_fpu_class_qnan;
1412 return 0;
1413 }
1414 if (sim_fpu_is_infinity (l))
1415 {
1416 if (sim_fpu_is_infinity (r))
1417 {
1418 *f = sim_fpu_qnan;
1419 return sim_fpu_status_invalid_idi;
1420 }
1421 else
1422 {
1423 *f = *l;
1424 f->sign = l->sign ^ r->sign;
1425 return 0;
1426 }
1427 }
1428 if (sim_fpu_is_zero (l))
1429 {
1430 if (sim_fpu_is_zero (r))
1431 {
1432 *f = sim_fpu_qnan;
1433 return sim_fpu_status_invalid_zdz;
1434 }
1435 else
1436 {
1437 *f = *l;
1438 f->sign = l->sign ^ r->sign;
1439 return 0;
1440 }
1441 }
1442 if (sim_fpu_is_infinity (r))
1443 {
1444 *f = sim_fpu_zero;
1445 f->sign = l->sign ^ r->sign;
1446 return 0;
1447 }
1448 if (sim_fpu_is_zero (r))
1449 {
1450 f->class = sim_fpu_class_infinity;
1451 f->sign = l->sign ^ r->sign;
1452 return sim_fpu_status_invalid_div0;
1453 }
1454
1455 /* Calculate the mantissa by multiplying both 64bit numbers to get a
1456 128 bit number */
1457 {
1458 /* quotient = ( ( numerator / denominator)
1459 x 2^(numerator exponent - denominator exponent)
1460 */
1461 unsigned64 numerator;
1462 unsigned64 denominator;
1463 unsigned64 quotient;
1464 unsigned64 bit;
1465
1466 f->class = sim_fpu_class_number;
1467 f->sign = l->sign ^ r->sign;
1468 f->normal_exp = l->normal_exp - r->normal_exp;
1469
1470 numerator = l->fraction;
1471 denominator = r->fraction;
1472
1473 /* Fraction will be less than 1.0 */
1474 if (numerator < denominator)
1475 {
1476 numerator <<= 1;
1477 f->normal_exp--;
1478 }
1479 ASSERT (numerator >= denominator);
1480
1481 /* Gain extra precision, already used one spare bit */
1482 numerator <<= NR_SPARE;
1483 denominator <<= NR_SPARE;
1484
1485 /* Does divide one bit at a time. Optimize??? */
1486 quotient = 0;
1487 bit = (IMPLICIT_1 << NR_SPARE);
1488 while (bit)
1489 {
1490 if (numerator >= denominator)
1491 {
1492 quotient |= bit;
1493 numerator -= denominator;
1494 }
1495 bit >>= 1;
1496 numerator <<= 1;
1497 }
1498
1499 #if 0
1500 printf ("\n");
1501 print_bits (quotient, 63, (sim_fpu_print_func*)fprintf, stdout);
1502 printf ("\n");
1503 print_bits (numerator, 63, (sim_fpu_print_func*)fprintf, stdout);
1504 printf ("\n");
1505 print_bits (denominator, 63, (sim_fpu_print_func*)fprintf, stdout);
1506 printf ("\n");
1507 #endif
1508
1509 /* discard (but save) the extra bits */
1510 if ((quotient & LSMASK64 (NR_SPARE -1, 0)))
1511 quotient = (quotient >> NR_SPARE) | 1;
1512 else
1513 quotient = (quotient >> NR_SPARE);
1514
1515 f->fraction = quotient;
1516 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1517 if (numerator != 0)
1518 {
1519 f->fraction |= 1; /* stick remaining bits */
1520 return sim_fpu_status_inexact;
1521 }
1522 else
1523 return 0;
1524 }
1525 }
1526
1527
1528 INLINE_SIM_FPU (int)
1529 sim_fpu_max (sim_fpu *f,
1530 const sim_fpu *l,
1531 const sim_fpu *r)
1532 {
1533 if (sim_fpu_is_snan (l))
1534 {
1535 *f = *l;
1536 f->class = sim_fpu_class_qnan;
1537 return sim_fpu_status_invalid_snan;
1538 }
1539 if (sim_fpu_is_snan (r))
1540 {
1541 *f = *r;
1542 f->class = sim_fpu_class_qnan;
1543 return sim_fpu_status_invalid_snan;
1544 }
1545 if (sim_fpu_is_qnan (l))
1546 {
1547 *f = *l;
1548 return 0;
1549 }
1550 if (sim_fpu_is_qnan (r))
1551 {
1552 *f = *r;
1553 return 0;
1554 }
1555 if (sim_fpu_is_infinity (l))
1556 {
1557 if (sim_fpu_is_infinity (r)
1558 && l->sign == r->sign)
1559 {
1560 *f = sim_fpu_qnan;
1561 return sim_fpu_status_invalid_isi;
1562 }
1563 if (l->sign)
1564 *f = *r; /* -inf < anything */
1565 else
1566 *f = *l; /* +inf > anthing */
1567 return 0;
1568 }
1569 if (sim_fpu_is_infinity (r))
1570 {
1571 if (r->sign)
1572 *f = *l; /* anything > -inf */
1573 else
1574 *f = *r; /* anthing < +inf */
1575 return 0;
1576 }
1577 if (l->sign > r->sign)
1578 {
1579 *f = *r; /* -ve < +ve */
1580 return 0;
1581 }
1582 if (l->sign < r->sign)
1583 {
1584 *f = *l; /* +ve > -ve */
1585 return 0;
1586 }
1587 ASSERT (l->sign == r->sign);
1588 if (l->normal_exp > r->normal_exp
1589 || (l->normal_exp == r->normal_exp &&
1590 l->fraction > r->fraction))
1591 {
1592 /* |l| > |r| */
1593 if (l->sign)
1594 *f = *r; /* -ve < -ve */
1595 else
1596 *f = *l; /* +ve > +ve */
1597 return 0;
1598 }
1599 else
1600 {
1601 /* |l| <= |r| */
1602 if (l->sign)
1603 *f = *l; /* -ve > -ve */
1604 else
1605 *f = *r; /* +ve < +ve */
1606 return 0;
1607 }
1608 }
1609
1610
1611 INLINE_SIM_FPU (int)
1612 sim_fpu_min (sim_fpu *f,
1613 const sim_fpu *l,
1614 const sim_fpu *r)
1615 {
1616 if (sim_fpu_is_snan (l))
1617 {
1618 *f = *l;
1619 f->class = sim_fpu_class_qnan;
1620 return sim_fpu_status_invalid_snan;
1621 }
1622 if (sim_fpu_is_snan (r))
1623 {
1624 *f = *r;
1625 f->class = sim_fpu_class_qnan;
1626 return sim_fpu_status_invalid_snan;
1627 }
1628 if (sim_fpu_is_qnan (l))
1629 {
1630 *f = *l;
1631 return 0;
1632 }
1633 if (sim_fpu_is_qnan (r))
1634 {
1635 *f = *r;
1636 return 0;
1637 }
1638 if (sim_fpu_is_infinity (l))
1639 {
1640 if (sim_fpu_is_infinity (r)
1641 && l->sign == r->sign)
1642 {
1643 *f = sim_fpu_qnan;
1644 return sim_fpu_status_invalid_isi;
1645 }
1646 if (l->sign)
1647 *f = *l; /* -inf < anything */
1648 else
1649 *f = *r; /* +inf > anthing */
1650 return 0;
1651 }
1652 if (sim_fpu_is_infinity (r))
1653 {
1654 if (r->sign)
1655 *f = *r; /* anything > -inf */
1656 else
1657 *f = *l; /* anything < +inf */
1658 return 0;
1659 }
1660 if (l->sign > r->sign)
1661 {
1662 *f = *l; /* -ve < +ve */
1663 return 0;
1664 }
1665 if (l->sign < r->sign)
1666 {
1667 *f = *r; /* +ve > -ve */
1668 return 0;
1669 }
1670 ASSERT (l->sign == r->sign);
1671 if (l->normal_exp > r->normal_exp
1672 || (l->normal_exp == r->normal_exp &&
1673 l->fraction > r->fraction))
1674 {
1675 /* |l| > |r| */
1676 if (l->sign)
1677 *f = *l; /* -ve < -ve */
1678 else
1679 *f = *r; /* +ve > +ve */
1680 return 0;
1681 }
1682 else
1683 {
1684 /* |l| <= |r| */
1685 if (l->sign)
1686 *f = *r; /* -ve > -ve */
1687 else
1688 *f = *l; /* +ve < +ve */
1689 return 0;
1690 }
1691 }
1692
1693
1694 INLINE_SIM_FPU (int)
1695 sim_fpu_neg (sim_fpu *f,
1696 const sim_fpu *r)
1697 {
1698 if (sim_fpu_is_snan (r))
1699 {
1700 *f = *r;
1701 f->class = sim_fpu_class_qnan;
1702 return sim_fpu_status_invalid_snan;
1703 }
1704 if (sim_fpu_is_qnan (r))
1705 {
1706 *f = *r;
1707 return 0;
1708 }
1709 *f = *r;
1710 f->sign = !r->sign;
1711 return 0;
1712 }
1713
1714
1715 INLINE_SIM_FPU (int)
1716 sim_fpu_abs (sim_fpu *f,
1717 const sim_fpu *r)
1718 {
1719 if (sim_fpu_is_snan (r))
1720 {
1721 *f = *r;
1722 f->class = sim_fpu_class_qnan;
1723 return sim_fpu_status_invalid_snan;
1724 }
1725 if (sim_fpu_is_qnan (r))
1726 {
1727 *f = *r;
1728 return 0;
1729 }
1730 *f = *r;
1731 f->sign = 0;
1732 return 0;
1733 }
1734
1735
1736 INLINE_SIM_FPU (int)
1737 sim_fpu_inv (sim_fpu *f,
1738 const sim_fpu *r)
1739 {
1740 if (sim_fpu_is_snan (r))
1741 {
1742 *f = *r;
1743 f->class = sim_fpu_class_qnan;
1744 return sim_fpu_status_invalid_snan;
1745 }
1746 if (sim_fpu_is_qnan (r))
1747 {
1748 *f = *r;
1749 f->class = sim_fpu_class_qnan;
1750 return 0;
1751 }
1752 if (sim_fpu_is_infinity (r))
1753 {
1754 *f = sim_fpu_zero;
1755 f->sign = r->sign;
1756 return 0;
1757 }
1758 if (sim_fpu_is_zero (r))
1759 {
1760 f->class = sim_fpu_class_infinity;
1761 f->sign = r->sign;
1762 return sim_fpu_status_invalid_div0;
1763 }
1764 *f = *r;
1765 f->normal_exp = - r->normal_exp;
1766 return 0;
1767 }
1768
1769
1770 INLINE_SIM_FPU (int)
1771 sim_fpu_sqrt (sim_fpu *f,
1772 const sim_fpu *r)
1773 {
1774 if (sim_fpu_is_snan (r))
1775 {
1776 *f = sim_fpu_qnan;
1777 return sim_fpu_status_invalid_snan;
1778 }
1779 if (sim_fpu_is_qnan (r))
1780 {
1781 *f = sim_fpu_qnan;
1782 return 0;
1783 }
1784 if (sim_fpu_is_zero (r))
1785 {
1786 f->class = sim_fpu_class_zero;
1787 f->sign = r->sign;
1788 return 0;
1789 }
1790 if (sim_fpu_is_infinity (r))
1791 {
1792 if (r->sign)
1793 {
1794 *f = sim_fpu_qnan;
1795 return sim_fpu_status_invalid_sqrt;
1796 }
1797 else
1798 {
1799 f->class = sim_fpu_class_infinity;
1800 f->sign = 0;
1801 f->sign = 0;
1802 return 0;
1803 }
1804 }
1805 if (r->sign)
1806 {
1807 *f = sim_fpu_qnan;
1808 return sim_fpu_status_invalid_sqrt;
1809 }
1810
1811 /* @(#)e_sqrt.c 5.1 93/09/24 */
1812 /*
1813 * ====================================================
1814 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
1815 *
1816 * Developed at SunPro, a Sun Microsystems, Inc. business.
1817 * Permission to use, copy, modify, and distribute this
1818 * software is freely granted, provided that this notice
1819 * is preserved.
1820 * ====================================================
1821 */
1822
1823 /* __ieee754_sqrt(x)
1824 * Return correctly rounded sqrt.
1825 * ------------------------------------------
1826 * | Use the hardware sqrt if you have one |
1827 * ------------------------------------------
1828 * Method:
1829 * Bit by bit method using integer arithmetic. (Slow, but portable)
1830 * 1. Normalization
1831 * Scale x to y in [1,4) with even powers of 2:
1832 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
1833 * sqrt(x) = 2^k * sqrt(y)
1834 -
1835 - Since:
1836 - sqrt ( x*2^(2m) ) = sqrt(x).2^m ; m even
1837 - sqrt ( x*2^(2m + 1) ) = sqrt(2.x).2^m ; m odd
1838 - Define:
1839 - y = ((m even) ? x : 2.x)
1840 - Then:
1841 - y in [1, 4) ; [IMPLICIT_1,IMPLICIT_4)
1842 - And:
1843 - sqrt (y) in [1, 2) ; [IMPLICIT_1,IMPLICIT_2)
1844 -
1845 * 2. Bit by bit computation
1846 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
1847 * i 0
1848 * i+1 2
1849 * s = 2*q , and y = 2 * ( y - q ). (1)
1850 * i i i i
1851 *
1852 * To compute q from q , one checks whether
1853 * i+1 i
1854 *
1855 * -(i+1) 2
1856 * (q + 2 ) <= y. (2)
1857 * i
1858 * -(i+1)
1859 * If (2) is false, then q = q ; otherwise q = q + 2 .
1860 * i+1 i i+1 i
1861 *
1862 * With some algebric manipulation, it is not difficult to see
1863 * that (2) is equivalent to
1864 * -(i+1)
1865 * s + 2 <= y (3)
1866 * i i
1867 *
1868 * The advantage of (3) is that s and y can be computed by
1869 * i i
1870 * the following recurrence formula:
1871 * if (3) is false
1872 *
1873 * s = s , y = y ; (4)
1874 * i+1 i i+1 i
1875 *
1876 -
1877 - NOTE: y = 2*y
1878 - i+1 i
1879 -
1880 * otherwise,
1881 * -i -(i+1)
1882 * s = s + 2 , y = y - s - 2 (5)
1883 * i+1 i i+1 i i
1884 *
1885 -
1886 - -(i+1)
1887 - NOTE: y = 2 (y - s - 2 )
1888 - i+1 i i
1889 -
1890 * One may easily use induction to prove (4) and (5).
1891 * Note. Since the left hand side of (3) contain only i+2 bits,
1892 * it does not necessary to do a full (53-bit) comparison
1893 * in (3).
1894 * 3. Final rounding
1895 * After generating the 53 bits result, we compute one more bit.
1896 * Together with the remainder, we can decide whether the
1897 * result is exact, bigger than 1/2ulp, or less than 1/2ulp
1898 * (it will never equal to 1/2ulp).
1899 * The rounding mode can be detected by checking whether
1900 * huge + tiny is equal to huge, and whether huge - tiny is
1901 * equal to huge for some floating point number "huge" and "tiny".
1902 *
1903 * Special cases:
1904 * sqrt(+-0) = +-0 ... exact
1905 * sqrt(inf) = inf
1906 * sqrt(-ve) = NaN ... with invalid signal
1907 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
1908 *
1909 * Other methods : see the appended file at the end of the program below.
1910 *---------------
1911 */
1912
1913 {
1914 /* generate sqrt(x) bit by bit */
1915 unsigned64 y;
1916 unsigned64 q;
1917 unsigned64 s;
1918 unsigned64 b;
1919
1920 f->class = sim_fpu_class_number;
1921 f->sign = 0;
1922 y = r->fraction;
1923 f->normal_exp = (r->normal_exp >> 1); /* exp = [exp/2] */
1924
1925 /* odd exp, double x to make it even */
1926 ASSERT (y >= IMPLICIT_1 && y < IMPLICIT_4);
1927 if ((r->normal_exp & 1))
1928 {
1929 y += y;
1930 }
1931 ASSERT (y >= IMPLICIT_1 && y < (IMPLICIT_2 << 1));
1932
1933 /* Let loop determine first value of s (either 1 or 2) */
1934 b = IMPLICIT_1;
1935 q = 0;
1936 s = 0;
1937
1938 while (b)
1939 {
1940 unsigned64 t = s + b;
1941 if (t <= y)
1942 {
1943 s |= (b << 1);
1944 y -= t;
1945 q |= b;
1946 }
1947 y <<= 1;
1948 b >>= 1;
1949 }
1950
1951 ASSERT (q >= IMPLICIT_1 && q < IMPLICIT_2);
1952 f->fraction = q;
1953 if (y != 0)
1954 {
1955 f->fraction |= 1; /* stick remaining bits */
1956 return sim_fpu_status_inexact;
1957 }
1958 else
1959 return 0;
1960 }
1961 }
1962
1963
1964 /* int/long <-> sim_fpu */
1965
1966 INLINE_SIM_FPU (int)
1967 sim_fpu_i32to (sim_fpu *f,
1968 signed32 i,
1969 sim_fpu_round round)
1970 {
1971 i2fpu (f, i, 0);
1972 return 0;
1973 }
1974
1975 INLINE_SIM_FPU (int)
1976 sim_fpu_u32to (sim_fpu *f,
1977 unsigned32 u,
1978 sim_fpu_round round)
1979 {
1980 u2fpu (f, u, 0);
1981 return 0;
1982 }
1983
1984 INLINE_SIM_FPU (int)
1985 sim_fpu_i64to (sim_fpu *f,
1986 signed64 i,
1987 sim_fpu_round round)
1988 {
1989 i2fpu (f, i, 1);
1990 return 0;
1991 }
1992
1993 INLINE_SIM_FPU (int)
1994 sim_fpu_u64to (sim_fpu *f,
1995 unsigned64 u,
1996 sim_fpu_round round)
1997 {
1998 u2fpu (f, u, 1);
1999 return 0;
2000 }
2001
2002
2003 INLINE_SIM_FPU (int)
2004 sim_fpu_to32i (signed32 *i,
2005 const sim_fpu *f,
2006 sim_fpu_round round)
2007 {
2008 signed64 i64;
2009 int status = fpu2i (&i64, f, 0, round);
2010 *i = i64;
2011 return status;
2012 }
2013
2014 INLINE_SIM_FPU (int)
2015 sim_fpu_to32u (unsigned32 *u,
2016 const sim_fpu *f,
2017 sim_fpu_round round)
2018 {
2019 unsigned64 u64;
2020 int status = fpu2u (&u64, f, 0);
2021 *u = u64;
2022 return status;
2023 }
2024
2025 INLINE_SIM_FPU (int)
2026 sim_fpu_to64i (signed64 *i,
2027 const sim_fpu *f,
2028 sim_fpu_round round)
2029 {
2030 return fpu2i (i, f, 1, round);
2031 }
2032
2033
2034 INLINE_SIM_FPU (int)
2035 sim_fpu_to64u (unsigned64 *u,
2036 const sim_fpu *f,
2037 sim_fpu_round round)
2038 {
2039 return fpu2u (u, f, 1);
2040 }
2041
2042
2043
2044 /* sim_fpu -> host format */
2045
2046 #if 0
2047 INLINE_SIM_FPU (float)
2048 sim_fpu_2f (const sim_fpu *f)
2049 {
2050 return fval.d;
2051 }
2052 #endif
2053
2054
2055 INLINE_SIM_FPU (double)
2056 sim_fpu_2d (const sim_fpu *s)
2057 {
2058 sim_fpu_map val;
2059 val.i = pack_fpu (s, 1);
2060 return val.d;
2061 }
2062
2063
2064 #if 0
2065 INLINE_SIM_FPU (void)
2066 sim_fpu_f2 (sim_fpu *f,
2067 float s)
2068 {
2069 sim_fpu_map val;
2070 val.d = s;
2071 unpack_fpu (f, val.i, 1);
2072 }
2073 #endif
2074
2075
2076 INLINE_SIM_FPU (void)
2077 sim_fpu_d2 (sim_fpu *f,
2078 double d)
2079 {
2080 sim_fpu_map val;
2081 val.d = d;
2082 unpack_fpu (f, val.i, 1);
2083 }
2084
2085
2086 /* General */
2087
2088 INLINE_SIM_FPU (int)
2089 sim_fpu_is_nan (const sim_fpu *d)
2090 {
2091 switch (d->class)
2092 {
2093 case sim_fpu_class_qnan:
2094 case sim_fpu_class_snan:
2095 return 1;
2096 default:
2097 return 0;
2098 }
2099 }
2100
2101 INLINE_SIM_FPU (int)
2102 sim_fpu_is_qnan (const sim_fpu *d)
2103 {
2104 switch (d->class)
2105 {
2106 case sim_fpu_class_qnan:
2107 return 1;
2108 default:
2109 return 0;
2110 }
2111 }
2112
2113 INLINE_SIM_FPU (int)
2114 sim_fpu_is_snan (const sim_fpu *d)
2115 {
2116 switch (d->class)
2117 {
2118 case sim_fpu_class_snan:
2119 return 1;
2120 default:
2121 return 0;
2122 }
2123 }
2124
2125 INLINE_SIM_FPU (int)
2126 sim_fpu_is_zero (const sim_fpu *d)
2127 {
2128 switch (d->class)
2129 {
2130 case sim_fpu_class_zero:
2131 return 1;
2132 default:
2133 return 0;
2134 }
2135 }
2136
2137 INLINE_SIM_FPU (int)
2138 sim_fpu_is_infinity (const sim_fpu *d)
2139 {
2140 switch (d->class)
2141 {
2142 case sim_fpu_class_infinity:
2143 return 1;
2144 default:
2145 return 0;
2146 }
2147 }
2148
2149 INLINE_SIM_FPU (int)
2150 sim_fpu_is_number (const sim_fpu *d)
2151 {
2152 switch (d->class)
2153 {
2154 case sim_fpu_class_denorm:
2155 case sim_fpu_class_number:
2156 return 1;
2157 default:
2158 return 0;
2159 }
2160 }
2161
2162 INLINE_SIM_FPU (int)
2163 sim_fpu_is_denorm (const sim_fpu *d)
2164 {
2165 switch (d->class)
2166 {
2167 case sim_fpu_class_denorm:
2168 return 1;
2169 default:
2170 return 0;
2171 }
2172 }
2173
2174
2175 INLINE_SIM_FPU (int)
2176 sim_fpu_sign (const sim_fpu *d)
2177 {
2178 return d->sign;
2179 }
2180
2181
2182 INLINE_SIM_FPU (int)
2183 sim_fpu_exp (const sim_fpu *d)
2184 {
2185 return d->normal_exp;
2186 }
2187
2188
2189 INLINE_SIM_FPU (int)
2190 sim_fpu_is (const sim_fpu *d)
2191 {
2192 switch (d->class)
2193 {
2194 case sim_fpu_class_qnan:
2195 return SIM_FPU_IS_QNAN;
2196 case sim_fpu_class_snan:
2197 return SIM_FPU_IS_SNAN;
2198 case sim_fpu_class_infinity:
2199 return SIM_FPU_IS_NINF;
2200 return SIM_FPU_IS_PINF;
2201 case sim_fpu_class_number:
2202 if (d->sign)
2203 return SIM_FPU_IS_NNUMBER;
2204 else
2205 return SIM_FPU_IS_PNUMBER;
2206 case sim_fpu_class_denorm:
2207 if (d->sign)
2208 return SIM_FPU_IS_NDENORM;
2209 else
2210 return SIM_FPU_IS_PDENORM;
2211 case sim_fpu_class_zero:
2212 if (d->sign)
2213 return SIM_FPU_IS_NZERO;
2214 else
2215 return SIM_FPU_IS_PZERO;
2216 default:
2217 return -1;
2218 abort ();
2219 }
2220 }
2221
2222 INLINE_SIM_FPU (int)
2223 sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r)
2224 {
2225 sim_fpu res;
2226 sim_fpu_sub (&res, l, r);
2227 return sim_fpu_is (&res);
2228 }
2229
2230 INLINE_SIM_FPU (int)
2231 sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r)
2232 {
2233 int status;
2234 sim_fpu_lt (&status, l, r);
2235 return status;
2236 }
2237
2238 INLINE_SIM_FPU (int)
2239 sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r)
2240 {
2241 int is;
2242 sim_fpu_le (&is, l, r);
2243 return is;
2244 }
2245
2246 INLINE_SIM_FPU (int)
2247 sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r)
2248 {
2249 int is;
2250 sim_fpu_eq (&is, l, r);
2251 return is;
2252 }
2253
2254 INLINE_SIM_FPU (int)
2255 sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r)
2256 {
2257 int is;
2258 sim_fpu_ne (&is, l, r);
2259 return is;
2260 }
2261
2262 INLINE_SIM_FPU (int)
2263 sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r)
2264 {
2265 int is;
2266 sim_fpu_ge (&is, l, r);
2267 return is;
2268 }
2269
2270 INLINE_SIM_FPU (int)
2271 sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r)
2272 {
2273 int is;
2274 sim_fpu_gt (&is, l, r);
2275 return is;
2276 }
2277
2278
2279 /* Compare operators */
2280
2281 INLINE_SIM_FPU (int)
2282 sim_fpu_lt (int *is,
2283 const sim_fpu *l,
2284 const sim_fpu *r)
2285 {
2286 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2287 {
2288 sim_fpu_map lval;
2289 sim_fpu_map rval;
2290 lval.i = pack_fpu (l, 1);
2291 rval.i = pack_fpu (r, 1);
2292 (*is) = (lval.d < rval.d);
2293 return 0;
2294 }
2295 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2296 {
2297 *is = 0;
2298 return sim_fpu_status_invalid_snan;
2299 }
2300 else
2301 {
2302 *is = 0;
2303 return sim_fpu_status_invalid_qnan;
2304 }
2305 }
2306
2307 INLINE_SIM_FPU (int)
2308 sim_fpu_le (int *is,
2309 const sim_fpu *l,
2310 const sim_fpu *r)
2311 {
2312 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2313 {
2314 sim_fpu_map lval;
2315 sim_fpu_map rval;
2316 lval.i = pack_fpu (l, 1);
2317 rval.i = pack_fpu (r, 1);
2318 *is = (lval.d <= rval.d);
2319 return 0;
2320 }
2321 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2322 {
2323 *is = 0;
2324 return sim_fpu_status_invalid_snan;
2325 }
2326 else
2327 {
2328 *is = 0;
2329 return sim_fpu_status_invalid_qnan;
2330 }
2331 }
2332
2333 INLINE_SIM_FPU (int)
2334 sim_fpu_eq (int *is,
2335 const sim_fpu *l,
2336 const sim_fpu *r)
2337 {
2338 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2339 {
2340 sim_fpu_map lval;
2341 sim_fpu_map rval;
2342 lval.i = pack_fpu (l, 1);
2343 rval.i = pack_fpu (r, 1);
2344 (*is) = (lval.d == rval.d);
2345 return 0;
2346 }
2347 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2348 {
2349 *is = 0;
2350 return sim_fpu_status_invalid_snan;
2351 }
2352 else
2353 {
2354 *is = 0;
2355 return sim_fpu_status_invalid_qnan;
2356 }
2357 }
2358
2359 INLINE_SIM_FPU (int)
2360 sim_fpu_ne (int *is,
2361 const sim_fpu *l,
2362 const sim_fpu *r)
2363 {
2364 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2365 {
2366 sim_fpu_map lval;
2367 sim_fpu_map rval;
2368 lval.i = pack_fpu (l, 1);
2369 rval.i = pack_fpu (r, 1);
2370 (*is) = (lval.d != rval.d);
2371 return 0;
2372 }
2373 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2374 {
2375 *is = 0;
2376 return sim_fpu_status_invalid_snan;
2377 }
2378 else
2379 {
2380 *is = 0;
2381 return sim_fpu_status_invalid_qnan;
2382 }
2383 }
2384
2385 INLINE_SIM_FPU (int)
2386 sim_fpu_ge (int *is,
2387 const sim_fpu *l,
2388 const sim_fpu *r)
2389 {
2390 return sim_fpu_le (is, r, l);
2391 }
2392
2393 INLINE_SIM_FPU (int)
2394 sim_fpu_gt (int *is,
2395 const sim_fpu *l,
2396 const sim_fpu *r)
2397 {
2398 return sim_fpu_lt (is, r, l);
2399 }
2400
2401
2402 /* A number of useful constants */
2403
2404 const sim_fpu sim_fpu_zero = { sim_fpu_class_zero, };
2405 const sim_fpu sim_fpu_qnan = { sim_fpu_class_qnan, };
2406 const sim_fpu sim_fpu_one = { sim_fpu_class_number, 0, IMPLICIT_1, 1 };
2407 const sim_fpu sim_fpu_two = { sim_fpu_class_number, 0, IMPLICIT_1, 2 };
2408 const sim_fpu sim_fpu_max32 = { sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS32), NORMAL_EXPMAX32 };
2409 const sim_fpu sim_fpu_max64 = { sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS64), NORMAL_EXPMAX64 };
2410
2411
2412 /* For debugging */
2413
2414 INLINE_SIM_FPU (void)
2415 sim_fpu_print_fpu (const sim_fpu *f,
2416 sim_fpu_print_func *print,
2417 void *arg)
2418 {
2419 print (arg, "%s", f->sign ? "-" : "+");
2420 switch (f->class)
2421 {
2422 case sim_fpu_class_qnan:
2423 print (arg, "0.");
2424 print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
2425 print (arg, "*QuietNaN");
2426 break;
2427 case sim_fpu_class_snan:
2428 print (arg, "0.");
2429 print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
2430 print (arg, "*SignalNaN");
2431 break;
2432 case sim_fpu_class_zero:
2433 print (arg, "0.0");
2434 break;
2435 case sim_fpu_class_infinity:
2436 print (arg, "INF");
2437 break;
2438 case sim_fpu_class_number:
2439 case sim_fpu_class_denorm:
2440 print (arg, "1.");
2441 print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
2442 print (arg, "*2^%+-5d", f->normal_exp);
2443 ASSERT (f->fraction >= IMPLICIT_1);
2444 ASSERT (f->fraction < IMPLICIT_2);
2445 }
2446 }
2447
2448
2449 INLINE_SIM_FPU (void)
2450 sim_fpu_print_status (int status,
2451 sim_fpu_print_func *print,
2452 void *arg)
2453 {
2454 int i = 1;
2455 char *prefix = "";
2456 while (status >= i)
2457 {
2458 switch ((sim_fpu_status) (status & i))
2459 {
2460 case sim_fpu_status_denorm:
2461 print (arg, "%sD", prefix);
2462 break;
2463 case sim_fpu_status_invalid_snan:
2464 print (arg, "%sSNaN", prefix);
2465 break;
2466 case sim_fpu_status_invalid_qnan:
2467 print (arg, "%sQNaN", prefix);
2468 break;
2469 case sim_fpu_status_invalid_isi:
2470 print (arg, "%sISI", prefix);
2471 break;
2472 case sim_fpu_status_invalid_idi:
2473 print (arg, "%sIDI", prefix);
2474 break;
2475 case sim_fpu_status_invalid_zdz:
2476 print (arg, "%sZDZ", prefix);
2477 break;
2478 case sim_fpu_status_invalid_imz:
2479 print (arg, "%sIMZ", prefix);
2480 break;
2481 case sim_fpu_status_invalid_cvi:
2482 print (arg, "%sCVI", prefix);
2483 break;
2484 case sim_fpu_status_invalid_cmp:
2485 print (arg, "%sCMP", prefix);
2486 break;
2487 case sim_fpu_status_invalid_sqrt:
2488 print (arg, "%sSQRT", prefix);
2489 break;
2490 break;
2491 case sim_fpu_status_inexact:
2492 print (arg, "%sX", prefix);
2493 break;
2494 break;
2495 case sim_fpu_status_overflow:
2496 print (arg, "%sO", prefix);
2497 break;
2498 break;
2499 case sim_fpu_status_underflow:
2500 print (arg, "%sU", prefix);
2501 break;
2502 break;
2503 case sim_fpu_status_invalid_div0:
2504 print (arg, "%s/", prefix);
2505 break;
2506 break;
2507 case sim_fpu_status_rounded:
2508 print (arg, "%sR", prefix);
2509 break;
2510 break;
2511 }
2512 i <<= 1;
2513 prefix = ",";
2514 }
2515 }
2516
2517 #endif
This page took 0.081237 seconds and 5 git commands to generate.