2003-12-02 Kazuhiro Inaoka <inaoka.kazuhiro@renesas.com>
[deliverable/binutils-gdb.git] / sim / m32r / m32r.c
1 /* m32r simulator support code
2 Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #define WANT_CPU m32rbf
22 #define WANT_CPU_M32RBF
23
24 #include "sim-main.h"
25 #include "cgen-mem.h"
26 #include "cgen-ops.h"
27
28 /* Decode gdb ctrl register number. */
29
30 int
31 m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
32 {
33 switch (gdb_regnum)
34 {
35 case PSW_REGNUM : return H_CR_PSW;
36 case CBR_REGNUM : return H_CR_CBR;
37 case SPI_REGNUM : return H_CR_SPI;
38 case SPU_REGNUM : return H_CR_SPU;
39 case BPC_REGNUM : return H_CR_BPC;
40 case BBPSW_REGNUM : return H_CR_BBPSW;
41 case BBPC_REGNUM : return H_CR_BBPC;
42 case EVB_REGNUM : return H_CR_CR5;
43 }
44 abort ();
45 }
46
47 /* The contents of BUF are in target byte order. */
48
49 int
50 m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
51 {
52 int mach = MACH_NUM (CPU_MACH (current_cpu));
53
54 if (rn < 16)
55 SETTWI (buf, a_m32r_h_gr_get (current_cpu, rn));
56 else
57 switch (rn)
58 {
59 case PSW_REGNUM :
60 case CBR_REGNUM :
61 case SPI_REGNUM :
62 case SPU_REGNUM :
63 case BPC_REGNUM :
64 case BBPSW_REGNUM :
65 case BBPC_REGNUM :
66 case EVB_REGNUM :
67 SETTWI (buf, a_m32r_h_cr_get (current_cpu,
68 m32r_decode_gdb_ctrl_regnum (rn)));
69 break;
70 case PC_REGNUM :
71 if (mach == MACH_M32R)
72 SETTWI (buf, m32rbf_h_pc_get (current_cpu));
73 else if (mach == MACH_M32RX)
74 SETTWI (buf, m32rxf_h_pc_get (current_cpu));
75 else
76 SETTWI (buf, m32r2f_h_pc_get (current_cpu));
77 break;
78 case ACCL_REGNUM :
79 if (mach == MACH_M32R)
80 SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
81 else if (mach == MACH_M32RX)
82 SETTWI (buf, GETLODI (m32rxf_h_accum_get (current_cpu)));
83 else
84 SETTWI (buf, GETLODI (m32r2f_h_accum_get (current_cpu)));
85 break;
86 case ACCH_REGNUM :
87 if (mach == MACH_M32R)
88 SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
89 else if (mach == MACH_M32RX)
90 SETTWI (buf, GETHIDI (m32rxf_h_accum_get (current_cpu)));
91 else
92 SETTWI (buf, GETHIDI (m32r2f_h_accum_get (current_cpu)));
93 break;
94 default :
95 return 0;
96 }
97
98 return -1; /*FIXME*/
99 }
100
101 /* The contents of BUF are in target byte order. */
102
103 int
104 m32rbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
105 {
106 int mach = MACH_NUM (CPU_MACH (current_cpu));
107
108 if (rn < 16)
109 a_m32r_h_gr_set (current_cpu, rn, GETTWI (buf));
110 else
111 switch (rn)
112 {
113 case PSW_REGNUM :
114 case CBR_REGNUM :
115 case SPI_REGNUM :
116 case SPU_REGNUM :
117 case BPC_REGNUM :
118 case BBPSW_REGNUM :
119 case BBPC_REGNUM :
120 case EVB_REGNUM :
121 a_m32r_h_cr_set (current_cpu,
122 m32r_decode_gdb_ctrl_regnum (rn),
123 GETTWI (buf));
124 break;
125 case PC_REGNUM :
126 if (mach == MACH_M32R)
127 m32rbf_h_pc_set (current_cpu, GETTWI (buf));
128 else if (mach == MACH_M32RX)
129 m32rxf_h_pc_set (current_cpu, GETTWI (buf));
130 else
131 m32r2f_h_pc_set (current_cpu, GETTWI (buf));
132 break;
133 case ACCL_REGNUM :
134 {
135 DI val;
136 if (mach == MACH_M32R)
137 val = m32rbf_h_accum_get (current_cpu);
138 else if (mach == MACH_M32RX)
139 val = m32rxf_h_accum_get (current_cpu);
140 else
141 val = m32r2f_h_accum_get (current_cpu);
142 SETLODI (val, GETTWI (buf));
143 if (mach == MACH_M32R)
144 m32rbf_h_accum_set (current_cpu, val);
145 else if (mach == MACH_M32RX)
146 m32rxf_h_accum_set (current_cpu, val);
147 else
148 m32r2f_h_accum_set (current_cpu, val);
149 break;
150 }
151 case ACCH_REGNUM :
152 {
153 DI val;
154 if (mach == MACH_M32R)
155 val = m32rbf_h_accum_get (current_cpu);
156 else if (mach == MACH_M32RX)
157 val = m32rxf_h_accum_get (current_cpu);
158 else
159 val = m32r2f_h_accum_get (current_cpu);
160 SETHIDI (val, GETTWI (buf));
161 if (mach == MACH_M32R)
162 m32rbf_h_accum_set (current_cpu, val);
163 else if (mach == MACH_M32RX)
164 m32rxf_h_accum_set (current_cpu, val);
165 else
166 m32r2f_h_accum_set (current_cpu, val);
167 break;
168 }
169 default :
170 return 0;
171 }
172
173 return -1; /*FIXME*/
174 }
175 \f
176 /* Cover fns for mach independent register accesses. */
177
178 SI
179 a_m32r_h_gr_get (SIM_CPU *current_cpu, UINT regno)
180 {
181 switch (MACH_NUM (CPU_MACH (current_cpu)))
182 {
183 #ifdef HAVE_CPU_M32RBF
184 case MACH_M32R :
185 return m32rbf_h_gr_get (current_cpu, regno);
186 #endif
187 #ifdef HAVE_CPU_M32RXF
188 case MACH_M32RX :
189 return m32rxf_h_gr_get (current_cpu, regno);
190 #endif
191 #ifdef HAVE_CPU_M32R2F
192 case MACH_M32R2 :
193 return m32r2f_h_gr_get (current_cpu, regno);
194 #endif
195 default :
196 abort ();
197 }
198 }
199
200 void
201 a_m32r_h_gr_set (SIM_CPU *current_cpu, UINT regno, SI newval)
202 {
203 switch (MACH_NUM (CPU_MACH (current_cpu)))
204 {
205 #ifdef HAVE_CPU_M32RBF
206 case MACH_M32R :
207 m32rbf_h_gr_set (current_cpu, regno, newval);
208 break;
209 #endif
210 #ifdef HAVE_CPU_M32RXF
211 case MACH_M32RX :
212 m32rxf_h_gr_set (current_cpu, regno, newval);
213 break;
214 #endif
215 #ifdef HAVE_CPU_M32RXF
216 case MACH_M32R2 :
217 m32r2f_h_gr_set (current_cpu, regno, newval);
218 break;
219 #endif
220 default :
221 abort ();
222 }
223 }
224
225 USI
226 a_m32r_h_cr_get (SIM_CPU *current_cpu, UINT regno)
227 {
228 switch (MACH_NUM (CPU_MACH (current_cpu)))
229 {
230 #ifdef HAVE_CPU_M32RBF
231 case MACH_M32R :
232 return m32rbf_h_cr_get (current_cpu, regno);
233 #endif
234 #ifdef HAVE_CPU_M32RXF
235 case MACH_M32RX :
236 return m32rxf_h_cr_get (current_cpu, regno);
237 #endif
238 #ifdef HAVE_CPU_M32R2F
239 case MACH_M32R2 :
240 return m32r2f_h_cr_get (current_cpu, regno);
241 #endif
242 default :
243 abort ();
244 }
245 }
246
247 void
248 a_m32r_h_cr_set (SIM_CPU *current_cpu, UINT regno, USI newval)
249 {
250 switch (MACH_NUM (CPU_MACH (current_cpu)))
251 {
252 #ifdef HAVE_CPU_M32RBF
253 case MACH_M32R :
254 m32rbf_h_cr_set (current_cpu, regno, newval);
255 break;
256 #endif
257 #ifdef HAVE_CPU_M32RXF
258 case MACH_M32RX :
259 m32rxf_h_cr_set (current_cpu, regno, newval);
260 break;
261 #endif
262 #ifdef HAVE_CPU_M32RXF
263 case MACH_M32R2 :
264 m32r2f_h_cr_set (current_cpu, regno, newval);
265 break;
266 #endif
267 default :
268 abort ();
269 }
270 }
271 \f
272 USI
273 m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
274 {
275 switch (cr)
276 {
277 case H_CR_PSW : /* psw */
278 return (((CPU (h_bpsw) & 0xc1) << 8)
279 | ((CPU (h_psw) & 0xc0) << 0)
280 | GET_H_COND ());
281 case H_CR_BBPSW : /* backup backup psw */
282 return CPU (h_bbpsw) & 0xc1;
283 case H_CR_CBR : /* condition bit */
284 return GET_H_COND ();
285 case H_CR_SPI : /* interrupt stack pointer */
286 if (! GET_H_SM ())
287 return CPU (h_gr[H_GR_SP]);
288 else
289 return CPU (h_cr[H_CR_SPI]);
290 case H_CR_SPU : /* user stack pointer */
291 if (GET_H_SM ())
292 return CPU (h_gr[H_GR_SP]);
293 else
294 return CPU (h_cr[H_CR_SPU]);
295 case H_CR_BPC : /* backup pc */
296 return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
297 case H_CR_BBPC : /* backup backup pc */
298 return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
299 case 4 : /* ??? unspecified, but apparently available */
300 case 5 : /* ??? unspecified, but apparently available */
301 return CPU (h_cr[cr]);
302 default :
303 return 0;
304 }
305 }
306
307 void
308 m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
309 {
310 switch (cr)
311 {
312 case H_CR_PSW : /* psw */
313 {
314 int old_sm = (CPU (h_psw) & 0x80) != 0;
315 int new_sm = (newval & 0x80) != 0;
316 CPU (h_bpsw) = (newval >> 8) & 0xff;
317 CPU (h_psw) = newval & 0xff;
318 SET_H_COND (newval & 1);
319 /* When switching stack modes, update the registers. */
320 if (old_sm != new_sm)
321 {
322 if (old_sm)
323 {
324 /* Switching user -> system. */
325 CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
326 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
327 }
328 else
329 {
330 /* Switching system -> user. */
331 CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
332 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
333 }
334 }
335 break;
336 }
337 case H_CR_BBPSW : /* backup backup psw */
338 CPU (h_bbpsw) = newval & 0xff;
339 break;
340 case H_CR_CBR : /* condition bit */
341 SET_H_COND (newval & 1);
342 break;
343 case H_CR_SPI : /* interrupt stack pointer */
344 if (! GET_H_SM ())
345 CPU (h_gr[H_GR_SP]) = newval;
346 else
347 CPU (h_cr[H_CR_SPI]) = newval;
348 break;
349 case H_CR_SPU : /* user stack pointer */
350 if (GET_H_SM ())
351 CPU (h_gr[H_GR_SP]) = newval;
352 else
353 CPU (h_cr[H_CR_SPU]) = newval;
354 break;
355 case H_CR_BPC : /* backup pc */
356 CPU (h_cr[H_CR_BPC]) = newval;
357 break;
358 case H_CR_BBPC : /* backup backup pc */
359 CPU (h_cr[H_CR_BBPC]) = newval;
360 break;
361 case 4 : /* ??? unspecified, but apparently available */
362 case 5 : /* ??? unspecified, but apparently available */
363 CPU (h_cr[cr]) = newval;
364 break;
365 default :
366 /* ignore */
367 break;
368 }
369 }
370
371 /* Cover fns to access h-psw. */
372
373 UQI
374 m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
375 {
376 return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
377 }
378
379 void
380 m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
381 {
382 CPU (h_psw) = newval;
383 CPU (h_cond) = newval & 1;
384 }
385
386 /* Cover fns to access h-accum. */
387
388 DI
389 m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
390 {
391 /* Sign extend the top 8 bits. */
392 DI r;
393 #if 1
394 r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
395 r = XORDI (r, MAKEDI (0x800000, 0));
396 r = SUBDI (r, MAKEDI (0x800000, 0));
397 #else
398 SI hi,lo;
399 r = CPU (h_accum);
400 hi = GETHIDI (r);
401 lo = GETLODI (r);
402 hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
403 r = MAKEDI (hi, lo);
404 #endif
405 return r;
406 }
407
408 void
409 m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
410 {
411 CPU (h_accum) = newval;
412 }
413 \f
414 #if WITH_PROFILE_MODEL_P
415
416 /* FIXME: Some of these should be inline or macros. Later. */
417
418 /* Initialize cycle counting for an insn.
419 FIRST_P is non-zero if this is the first insn in a set of parallel
420 insns. */
421
422 void
423 m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
424 {
425 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
426 mp->cti_stall = 0;
427 mp->load_stall = 0;
428 if (first_p)
429 {
430 mp->load_regs_pending = 0;
431 mp->biggest_cycles = 0;
432 }
433 }
434
435 /* Record the cycles computed for an insn.
436 LAST_P is non-zero if this is the last insn in a set of parallel insns,
437 and we update the total cycle count.
438 CYCLES is the cycle count of the insn. */
439
440 void
441 m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
442 {
443 PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
444 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
445 unsigned long total = cycles + mp->cti_stall + mp->load_stall;
446
447 if (last_p)
448 {
449 unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
450 PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
451 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
452 }
453 else
454 {
455 /* Here we take advantage of the fact that !last_p -> first_p. */
456 mp->biggest_cycles = total;
457 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
458 }
459
460 /* Branch and load stall counts are recorded independently of the
461 total cycle count. */
462 PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
463 PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
464
465 mp->load_regs = mp->load_regs_pending;
466 }
467
468 static INLINE void
469 check_load_stall (SIM_CPU *cpu, int regno)
470 {
471 UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
472
473 if (regno != -1
474 && (h_gr & (1 << regno)) != 0)
475 {
476 CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
477 if (TRACE_INSN_P (cpu))
478 cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
479 }
480 }
481
482 int
483 m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
484 int unit_num, int referenced,
485 INT sr, INT sr2, INT dr)
486 {
487 check_load_stall (cpu, sr);
488 check_load_stall (cpu, sr2);
489 return idesc->timing->units[unit_num].done;
490 }
491
492 int
493 m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
494 int unit_num, int referenced,
495 INT src1, INT src2)
496 {
497 check_load_stall (cpu, src1);
498 check_load_stall (cpu, src2);
499 return idesc->timing->units[unit_num].done;
500 }
501
502 int
503 m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
504 int unit_num, int referenced,
505 INT src1, INT src2)
506 {
507 check_load_stall (cpu, src1);
508 check_load_stall (cpu, src2);
509 return idesc->timing->units[unit_num].done;
510 }
511
512 int
513 m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
514 int unit_num, int referenced,
515 INT sr)
516 {
517 PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
518 int taken_p = (referenced & (1 << 1)) != 0;
519
520 check_load_stall (cpu, sr);
521 if (taken_p)
522 {
523 CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
524 PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
525 }
526 else
527 PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
528 return idesc->timing->units[unit_num].done;
529 }
530
531 int
532 m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
533 int unit_num, int referenced,
534 INT sr, INT dr)
535 {
536 CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
537 check_load_stall (cpu, sr);
538 return idesc->timing->units[unit_num].done;
539 }
540
541 int
542 m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
543 int unit_num, int referenced,
544 INT src1, INT src2)
545 {
546 check_load_stall (cpu, src1);
547 check_load_stall (cpu, src2);
548 return idesc->timing->units[unit_num].done;
549 }
550
551 int
552 m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
553 int unit_num, int referenced)
554 {
555 return idesc->timing->units[unit_num].done;
556 }
557
558 #endif /* WITH_PROFILE_MODEL_P */
This page took 0.040212 seconds and 5 git commands to generate.