* interp.c (sim_hw_configure): Return 1 for success.
[deliverable/binutils-gdb.git] / sim / m68hc11 / interp.c
1 /* interp.c -- Simulator for Motorola 68HC11/68HC12
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Written by Stephane Carrez (stcarrez@nerim.fr)
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "sim-main.h"
22 #include "sim-assert.h"
23 #include "sim-hw.h"
24 #include "sim-options.h"
25 #include "hw-tree.h"
26 #include "hw-device.h"
27 #include "hw-ports.h"
28
29 #ifndef MONITOR_BASE
30 # define MONITOR_BASE (0x0C000)
31 # define MONITOR_SIZE (0x04000)
32 #endif
33
34 static void sim_get_info (SIM_DESC sd, char *cmd);
35
36
37 char *interrupt_names[] = {
38 "reset",
39 "nmi",
40 "int",
41 NULL
42 };
43
44 #ifndef INLINE
45 #if defined(__GNUC__) && defined(__OPTIMIZE__)
46 #define INLINE __inline__
47 #else
48 #define INLINE
49 #endif
50 #endif
51
52 struct sim_info_list
53 {
54 const char *name;
55 const char *device;
56 };
57
58 struct sim_info_list dev_list_68hc11[] = {
59 {"cpu", "/m68hc11"},
60 {"timer", "/m68hc11/m68hc11tim"},
61 {"sio", "/m68hc11/m68hc11sio"},
62 {"spi", "/m68hc11/m68hc11spi"},
63 {"eeprom", "/m68hc11/m68hc11eepr"},
64 {0, 0}
65 };
66
67 struct sim_info_list dev_list_68hc12[] = {
68 {"cpu", "/m68hc12"},
69 {"timer", "/m68hc12/m68hc12tim"},
70 {"sio", "/m68hc12/m68hc12sio"},
71 {"spi", "/m68hc12/m68hc12spi"},
72 {"eeprom", "/m68hc12/m68hc12eepr"},
73 {0, 0}
74 };
75
76 /* Cover function of sim_state_free to free the cpu buffers as well. */
77
78 static void
79 free_state (SIM_DESC sd)
80 {
81 if (STATE_MODULES (sd) != NULL)
82 sim_module_uninstall (sd);
83
84 sim_state_free (sd);
85 }
86
87 /* Give some information about the simulator. */
88 static void
89 sim_get_info (SIM_DESC sd, char *cmd)
90 {
91 sim_cpu *cpu;
92
93 cpu = STATE_CPU (sd, 0);
94 if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
95 {
96 int i;
97 struct hw *hw_dev;
98 struct sim_info_list *dev_list;
99 const struct bfd_arch_info *arch;
100
101 arch = STATE_ARCHITECTURE (sd);
102 cmd++;
103
104 if (arch->arch == bfd_arch_m68hc11)
105 dev_list = dev_list_68hc11;
106 else
107 dev_list = dev_list_68hc12;
108
109 for (i = 0; dev_list[i].name; i++)
110 if (strcmp (cmd, dev_list[i].name) == 0)
111 break;
112
113 if (dev_list[i].name == 0)
114 {
115 sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
116 sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
117 return;
118 }
119 hw_dev = sim_hw_parse (sd, dev_list[i].device);
120 if (hw_dev == 0)
121 {
122 sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
123 return;
124 }
125 hw_ioctl (hw_dev, 23, 0);
126 return;
127 }
128
129 cpu_info (sd, cpu);
130 interrupts_info (sd, &cpu->cpu_interrupts);
131 }
132
133
134 void
135 sim_board_reset (SIM_DESC sd)
136 {
137 struct hw *hw_cpu;
138 sim_cpu *cpu;
139 const struct bfd_arch_info *arch;
140 const char *cpu_type;
141
142 cpu = STATE_CPU (sd, 0);
143 arch = STATE_ARCHITECTURE (sd);
144
145 /* hw_cpu = sim_hw_parse (sd, "/"); */
146 if (arch->arch == bfd_arch_m68hc11)
147 {
148 cpu->cpu_type = CPU_M6811;
149 cpu_type = "/m68hc11";
150 }
151 else
152 {
153 cpu->cpu_type = CPU_M6812;
154 cpu_type = "/m68hc12";
155 }
156
157 hw_cpu = sim_hw_parse (sd, cpu_type);
158 if (hw_cpu == 0)
159 {
160 sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
161 return;
162 }
163
164 cpu_reset (cpu);
165 hw_port_event (hw_cpu, 3, 0);
166 cpu_restart (cpu);
167 }
168
169 static int
170 sim_hw_configure (SIM_DESC sd)
171 {
172 const struct bfd_arch_info *arch;
173 struct hw *device_tree;
174 sim_cpu *cpu;
175
176 arch = STATE_ARCHITECTURE (sd);
177 if (arch == 0)
178 return 0;
179
180 cpu = STATE_CPU (sd, 0);
181 cpu->cpu_configured_arch = arch;
182 device_tree = sim_hw_parse (sd, "/");
183 if (arch->arch == bfd_arch_m68hc11)
184 {
185 cpu->cpu_interpretor = cpu_interp_m6811;
186 if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
187 {
188 /* Allocate core managed memory */
189
190 /* the monitor */
191 sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
192 /* MONITOR_BASE, MONITOR_SIZE */
193 0x8000, M6811_RAM_LEVEL, 0x8000);
194 sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
195 M6811_RAM_LEVEL);
196 sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
197 }
198
199 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
200 {
201 sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
202 sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
203 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
204 }
205 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
206 {
207 /* M68hc11 Timer configuration. */
208 sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
209 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
210 sim_hw_parse (sd, "/m68hc11 > capture capture /m68hc11/m68hc11tim");
211 }
212
213 /* Create the SPI device. */
214 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
215 {
216 sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
217 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
218 }
219 if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
220 {
221 /* M68hc11 persistent ram configuration. */
222 sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
223 sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
224 sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
225 /*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
226 }
227 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
228 {
229 sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
230 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
231 }
232 sim_hw_parse (sd, "/m68hc11 > port-a cpu-write-port /m68hc11");
233 sim_hw_parse (sd, "/m68hc11 > port-b cpu-write-port /m68hc11");
234 sim_hw_parse (sd, "/m68hc11 > port-c cpu-write-port /m68hc11");
235 sim_hw_parse (sd, "/m68hc11 > port-d cpu-write-port /m68hc11");
236 cpu->hw_cpu = sim_hw_parse (sd, "/m68hc11");
237 }
238 else
239 {
240 cpu->cpu_interpretor = cpu_interp_m6812;
241 if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
242 {
243 /* Allocate core external memory. */
244 sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
245 0xC000, M6811_RAM_LEVEL, 0x4000);
246 sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
247 M6811_RAM_LEVEL);
248 sim_do_commandf (sd, "memory region 0x01000000@%d,0x100000",
249 M6811_RAM_LEVEL);
250
251 sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
252 sim_hw_parse (sd, "/m68hc12/use_bank 1");
253 }
254
255 if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
256 {
257 sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
258 sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
259 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
260 }
261 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
262 {
263 /* M68hc11 Timer configuration. */
264 sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
265 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
266 sim_hw_parse (sd, "/m68hc12 > capture capture /m68hc12/m68hc12tim");
267 }
268
269 /* Create the SPI device. */
270 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
271 {
272 sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
273 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
274 }
275 if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
276 {
277 /* M68hc11 persistent ram configuration. */
278 sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
279 sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
280 sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
281 }
282 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
283 {
284 sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
285 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
286 }
287
288 sim_hw_parse (sd, "/m68hc12 > port-a cpu-write-port /m68hc12");
289 sim_hw_parse (sd, "/m68hc12 > port-b cpu-write-port /m68hc12");
290 sim_hw_parse (sd, "/m68hc12 > port-c cpu-write-port /m68hc12");
291 sim_hw_parse (sd, "/m68hc12 > port-d cpu-write-port /m68hc12");
292 cpu->hw_cpu = sim_hw_parse (sd, "/m68hc12");
293 }
294 return 1;
295 }
296
297 static int
298 sim_prepare_for_program (SIM_DESC sd, struct _bfd* abfd)
299 {
300 sim_cpu *cpu;
301
302 cpu = STATE_CPU (sd, 0);
303
304 if (!sim_hw_configure (sd))
305 return SIM_RC_FAIL;
306
307 if (abfd != NULL)
308 {
309 cpu->cpu_elf_start = bfd_get_start_address (abfd);
310 }
311
312 /* reset all state information */
313 sim_board_reset (sd);
314
315 return SIM_RC_OK;
316 }
317
318 SIM_DESC
319 sim_open (SIM_OPEN_KIND kind, host_callback *callback,
320 struct _bfd *abfd, char **argv)
321 {
322 SIM_DESC sd;
323 sim_cpu *cpu;
324
325 sd = sim_state_alloc (kind, callback);
326 cpu = STATE_CPU (sd, 0);
327
328 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
329
330 /* for compatibility */
331 current_alignment = NONSTRICT_ALIGNMENT;
332 current_target_byte_order = BIG_ENDIAN;
333
334 cpu_initialize (sd, cpu);
335
336 cpu->cpu_use_elf_start = 1;
337 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
338 {
339 free_state (sd);
340 return 0;
341 }
342
343 /* getopt will print the error message so we just have to exit if this fails.
344 FIXME: Hmmm... in the case of gdb we need getopt to call
345 print_filtered. */
346 if (sim_parse_args (sd, argv) != SIM_RC_OK)
347 {
348 /* Uninstall the modules to avoid memory leaks,
349 file descriptor leaks, etc. */
350 free_state (sd);
351 return 0;
352 }
353
354 /* Check for/establish the a reference program image. */
355 if (sim_analyze_program (sd,
356 (STATE_PROG_ARGV (sd) != NULL
357 ? *STATE_PROG_ARGV (sd)
358 : NULL), abfd) != SIM_RC_OK)
359 {
360 free_state (sd);
361 return 0;
362 }
363
364 /* Establish any remaining configuration options. */
365 if (sim_config (sd) != SIM_RC_OK)
366 {
367 free_state (sd);
368 return 0;
369 }
370
371 if (sim_post_argv_init (sd) != SIM_RC_OK)
372 {
373 /* Uninstall the modules to avoid memory leaks,
374 file descriptor leaks, etc. */
375 free_state (sd);
376 return 0;
377 }
378
379 sim_hw_configure (sd);
380
381 /* Fudge our descriptor. */
382 return sd;
383 }
384
385
386 void
387 sim_close (SIM_DESC sd, int quitting)
388 {
389 /* shut down modules */
390 sim_module_uninstall (sd);
391
392 /* Ensure that any resources allocated through the callback
393 mechanism are released: */
394 sim_io_shutdown (sd);
395
396 /* FIXME - free SD */
397 sim_state_free (sd);
398 return;
399 }
400
401 void
402 sim_set_profile (int n)
403 {
404 }
405
406 void
407 sim_set_profile_size (int n)
408 {
409 }
410
411 /* Generic implementation of sim_engine_run that works within the
412 sim_engine setjmp/longjmp framework. */
413
414 void
415 sim_engine_run (SIM_DESC sd,
416 int next_cpu_nr, /* ignore */
417 int nr_cpus, /* ignore */
418 int siggnal) /* ignore */
419 {
420 sim_cpu *cpu;
421
422 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
423 cpu = STATE_CPU (sd, 0);
424 while (1)
425 {
426 cpu_single_step (cpu);
427
428 /* process any events */
429 if (sim_events_tickn (sd, cpu->cpu_current_cycle))
430 {
431 sim_events_process (sd);
432 }
433 }
434 }
435
436 int
437 sim_trace (SIM_DESC sd)
438 {
439 sim_resume (sd, 0, 0);
440 return 1;
441 }
442
443 void
444 sim_info (SIM_DESC sd, int verbose)
445 {
446 const char *cpu_type;
447 const struct bfd_arch_info *arch;
448
449 /* Nothing to do if there is no verbose flag set. */
450 if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
451 return;
452
453 arch = STATE_ARCHITECTURE (sd);
454 if (arch->arch == bfd_arch_m68hc11)
455 cpu_type = "68HC11";
456 else
457 cpu_type = "68HC12";
458
459 sim_io_eprintf (sd, "Simulator info:\n");
460 sim_io_eprintf (sd, " CPU Motorola %s\n", cpu_type);
461 sim_get_info (sd, 0);
462 sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
463 }
464
465 SIM_RC
466 sim_create_inferior (SIM_DESC sd, struct _bfd *abfd,
467 char **argv, char **env)
468 {
469 return sim_prepare_for_program (sd, abfd);
470 }
471
472
473 void
474 sim_set_callbacks (host_callback *p)
475 {
476 /* m6811_callback = p; */
477 }
478
479
480 int
481 sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
482 {
483 sim_cpu *cpu;
484 uint16 val;
485 int size = 2;
486
487 cpu = STATE_CPU (sd, 0);
488 switch (rn)
489 {
490 case A_REGNUM:
491 val = cpu_get_a (cpu);
492 size = 1;
493 break;
494
495 case B_REGNUM:
496 val = cpu_get_b (cpu);
497 size = 1;
498 break;
499
500 case D_REGNUM:
501 val = cpu_get_d (cpu);
502 break;
503
504 case X_REGNUM:
505 val = cpu_get_x (cpu);
506 break;
507
508 case Y_REGNUM:
509 val = cpu_get_y (cpu);
510 break;
511
512 case SP_REGNUM:
513 val = cpu_get_sp (cpu);
514 break;
515
516 case PC_REGNUM:
517 val = cpu_get_pc (cpu);
518 break;
519
520 case PSW_REGNUM:
521 val = cpu_get_ccr (cpu);
522 size = 1;
523 break;
524
525 case PAGE_REGNUM:
526 val = cpu_get_page (cpu);
527 size = 1;
528 break;
529
530 default:
531 val = 0;
532 break;
533 }
534 memory[0] = val >> 8;
535 memory[1] = val & 0x0FF;
536 return size;
537 }
538
539 int
540 sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
541 {
542 uint16 val;
543 sim_cpu *cpu;
544
545 cpu = STATE_CPU (sd, 0);
546
547 val = *memory++;
548 if (length == 2)
549 val = (val << 8) | *memory;
550
551 switch (rn)
552 {
553 case D_REGNUM:
554 cpu_set_d (cpu, val);
555 break;
556
557 case A_REGNUM:
558 cpu_set_a (cpu, val);
559 return 1;
560
561 case B_REGNUM:
562 cpu_set_b (cpu, val);
563 return 1;
564
565 case X_REGNUM:
566 cpu_set_x (cpu, val);
567 break;
568
569 case Y_REGNUM:
570 cpu_set_y (cpu, val);
571 break;
572
573 case SP_REGNUM:
574 cpu_set_sp (cpu, val);
575 break;
576
577 case PC_REGNUM:
578 cpu_set_pc (cpu, val);
579 break;
580
581 case PSW_REGNUM:
582 cpu_set_ccr (cpu, val);
583 return 1;
584
585 case PAGE_REGNUM:
586 cpu_set_page (cpu, val);
587 return 1;
588
589 default:
590 break;
591 }
592
593 return 2;
594 }
595
596 void
597 sim_size (int s)
598 {
599 ;
600 }
601
602 void
603 sim_do_command (SIM_DESC sd, char *cmd)
604 {
605 char *mm_cmd = "memory-map";
606 char *int_cmd = "interrupt";
607 sim_cpu *cpu;
608
609 cpu = STATE_CPU (sd, 0);
610 /* Commands available from GDB: */
611 if (sim_args_command (sd, cmd) != SIM_RC_OK)
612 {
613 if (strncmp (cmd, "info", sizeof ("info") - 1) == 0)
614 sim_get_info (sd, &cmd[4]);
615 else if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
616 sim_io_eprintf (sd,
617 "`memory-map' command replaced by `sim memory'\n");
618 else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
619 sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
620 else
621 sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
622 }
623
624 /* If the architecture changed, re-configure. */
625 if (STATE_ARCHITECTURE (sd) != cpu->cpu_configured_arch)
626 sim_hw_configure (sd);
627 }
628
629 /* Halt the simulator after just one instruction */
630
631 static void
632 has_stepped (SIM_DESC sd,
633 void *data)
634 {
635 ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
636 sim_engine_halt (sd, NULL, NULL, NULL_CIA, sim_stopped, SIM_SIGTRAP);
637 }
638
639
640 /* Generic resume - assumes the existance of sim_engine_run */
641
642 void
643 sim_resume (SIM_DESC sd,
644 int step,
645 int siggnal)
646 {
647 sim_engine *engine = STATE_ENGINE (sd);
648 jmp_buf buf;
649 int jmpval;
650
651 ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
652
653 /* we only want to be single stepping the simulator once */
654 if (engine->stepper != NULL)
655 {
656 sim_events_deschedule (sd, engine->stepper);
657 engine->stepper = NULL;
658 }
659 sim_module_resume (sd);
660
661 /* run/resume the simulator */
662 engine->jmpbuf = &buf;
663 jmpval = setjmp (buf);
664 if (jmpval == sim_engine_start_jmpval
665 || jmpval == sim_engine_restart_jmpval)
666 {
667 int last_cpu_nr = sim_engine_last_cpu_nr (sd);
668 int next_cpu_nr = sim_engine_next_cpu_nr (sd);
669 int nr_cpus = sim_engine_nr_cpus (sd);
670
671 sim_events_preprocess (sd, last_cpu_nr >= nr_cpus, next_cpu_nr >= nr_cpus);
672 if (next_cpu_nr >= nr_cpus)
673 next_cpu_nr = 0;
674
675 /* Only deliver the siggnal ]sic] the first time through - don't
676 re-deliver any siggnal during a restart. */
677 if (jmpval == sim_engine_restart_jmpval)
678 siggnal = 0;
679
680 /* Install the stepping event after having processed some
681 pending events. This is necessary for HC11/HC12 simulator
682 because the tick counter is incremented by the number of cycles
683 the instruction took. Some pending ticks to process can still
684 be recorded internally by the simulator and sim_events_preprocess
685 will handle them. If the stepping event is inserted before,
686 these pending ticks will raise the event and the simulator will
687 stop without having executed any instruction. */
688 if (step)
689 engine->stepper = sim_events_schedule (sd, 0, has_stepped, sd);
690
691 #ifdef SIM_CPU_EXCEPTION_RESUME
692 {
693 sim_cpu* cpu = STATE_CPU (sd, next_cpu_nr);
694 SIM_CPU_EXCEPTION_RESUME(sd, cpu, siggnal);
695 }
696 #endif
697
698 sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal);
699 }
700 engine->jmpbuf = NULL;
701
702 sim_module_suspend (sd);
703 }
This page took 0.067049 seconds and 4 git commands to generate.