e03f226e9e453f8d461bf53d1a749bfe84108fef
[deliverable/binutils-gdb.git] / sim / mips / mips.igen
1 // -*- C -*-
2 //
3 // In mips.igen, the semantics for many of the instructions were created
4 // using code generated by gencode. Those semantic segments could be
5 // greatly simplified.
6 //
7 // <insn> ::=
8 // <insn-word> { "+" <insn-word> }
9 // ":" <format-name>
10 // ":" <filter-flags>
11 // ":" <options>
12 // ":" <name>
13 // <nl>
14 // { <insn-model> }
15 // { <insn-mnemonic> }
16 // <code-block>
17 //
18
19
20 // IGEN config - mips16
21 // :option:16::insn-bit-size:16
22 // :option:16::hi-bit-nr:15
23 :option:16::insn-specifying-widths:true
24 :option:16::gen-delayed-branch:false
25
26 // IGEN config - mips32/64..
27 // :option:32::insn-bit-size:32
28 // :option:32::hi-bit-nr:31
29 :option:32::insn-specifying-widths:true
30 :option:32::gen-delayed-branch:false
31
32
33 // Generate separate simulators for each target
34 // :option:::multi-sim:true
35
36
37 // Models known by this simulator are defined below.
38 //
39 // When placing models in the instruction descriptions, please place
40 // them one per line, in the order given here.
41
42 // MIPS ISAs:
43 //
44 // Instructions and related functions for these models are included in
45 // this file.
46 :model:::mipsI:mips3000:
47 :model:::mipsII:mips6000:
48 :model:::mipsIII:mips4000:
49 :model:::mipsIV:mips8000:
50 :model:::mipsV:mipsisaV:
51
52 // Vendor ISAs:
53 //
54 // Standard MIPS ISA instructions used for these models are listed here,
55 // as are functions needed by those standard instructions. Instructions
56 // which are model-dependent and which are not in the standard MIPS ISAs
57 // (or which pre-date or use different encodings than the standard
58 // instructions) are (for the most part) in separate .igen files.
59 :model:::vr4100:mips4100: // vr.igen
60 :model:::vr5000:mips5000:
61 :model:::r3900:mips3900: // tx.igen
62
63 // MIPS Application Specific Extensions (ASEs)
64 //
65 // Instructions for the ASEs are in separate .igen files.
66 :model:::mips16:mips16: // m16.igen (and m16.dc)
67
68
69 // Pseudo instructions known by IGEN
70 :internal::::illegal:
71 {
72 SignalException (ReservedInstruction, 0);
73 }
74
75
76 // Pseudo instructions known by interp.c
77 // For grep - RSVD_INSTRUCTION, RSVD_INSTRUCTION_MASK
78 000000,5.*,5.*,5.*,5.OP,000101:SPECIAL:32::RSVD
79 "rsvd <OP>"
80 {
81 SignalException (ReservedInstruction, instruction_0);
82 }
83
84
85
86 // Helper:
87 //
88 // Simulate a 32 bit delayslot instruction
89 //
90
91 :function:::address_word:delayslot32:address_word target
92 {
93 instruction_word delay_insn;
94 sim_events_slip (SD, 1);
95 DSPC = CIA;
96 CIA = CIA + 4; /* NOTE not mips16 */
97 STATE |= simDELAYSLOT;
98 delay_insn = IMEM32 (CIA); /* NOTE not mips16 */
99 ENGINE_ISSUE_PREFIX_HOOK();
100 idecode_issue (CPU_, delay_insn, (CIA));
101 STATE &= ~simDELAYSLOT;
102 return target;
103 }
104
105 :function:::address_word:nullify_next_insn32:
106 {
107 sim_events_slip (SD, 1);
108 dotrace (SD, CPU, tracefh, 2, CIA + 4, 4, "load instruction");
109 return CIA + 8;
110 }
111
112
113 // Helper:
114 //
115 // Calculate an effective address given a base and an offset.
116 //
117
118 :function:::address_word:loadstore_ea:address_word base, address_word offset
119 *mipsI:
120 *mipsII:
121 *mipsIII:
122 *mipsIV:
123 *mipsV:
124 *vr4100:
125 *vr5000:
126 *r3900:
127 {
128 return base + offset;
129 }
130
131
132 // Helper:
133 //
134 // Check that an access to a HI/LO register meets timing requirements
135 //
136 // The following requirements exist:
137 //
138 // - A MT {HI,LO} update was not immediatly preceeded by a MF {HI,LO} read
139 // - A OP {HI,LO} update was not immediatly preceeded by a MF {HI,LO} read
140 // - A MF {HI,LO} read was not corrupted by a preceeding MT{LO,HI} update
141 // corruption occures when MT{LO,HI} is preceeded by a OP {HI,LO}.
142 //
143
144 :function:::int:check_mf_cycles:hilo_history *history, signed64 time, const char *new
145 {
146 if (history->mf.timestamp + 3 > time)
147 {
148 sim_engine_abort (SD, CPU, CIA, "HILO: %s: %s at 0x%08lx too close to MF at 0x%08lx\n",
149 itable[MY_INDEX].name,
150 new, (long) CIA,
151 (long) history->mf.cia);
152 return 0;
153 }
154 return 1;
155 }
156
157 :function:::int:check_mt_hilo:hilo_history *history
158 *mipsI:
159 *mipsII:
160 *mipsIII:
161 *mipsIV:
162 *mipsV:
163 *vr4100:
164 *vr5000:
165 {
166 signed64 time = sim_events_time (SD);
167 int ok = check_mf_cycles (SD_, history, time, "MT");
168 history->mt.timestamp = time;
169 history->mt.cia = CIA;
170 return ok;
171 }
172
173 :function:::int:check_mt_hilo:hilo_history *history
174 *r3900:
175 {
176 signed64 time = sim_events_time (SD);
177 history->mt.timestamp = time;
178 history->mt.cia = CIA;
179 return 1;
180 }
181
182
183 :function:::int:check_mf_hilo:hilo_history *history, hilo_history *peer
184 *mipsI:
185 *mipsII:
186 *mipsIII:
187 *mipsIV:
188 *mipsV:
189 *vr4100:
190 *vr5000:
191 *r3900:
192 {
193 signed64 time = sim_events_time (SD);
194 int ok = 1;
195 if (peer != NULL
196 && peer->mt.timestamp > history->op.timestamp
197 && history->mt.timestamp < history->op.timestamp
198 && ! (history->mf.timestamp > history->op.timestamp
199 && history->mf.timestamp < peer->mt.timestamp)
200 && ! (peer->mf.timestamp > history->op.timestamp
201 && peer->mf.timestamp < peer->mt.timestamp))
202 {
203 /* The peer has been written to since the last OP yet we have
204 not */
205 sim_engine_abort (SD, CPU, CIA, "HILO: %s: MF at 0x%08lx following OP at 0x%08lx corrupted by MT at 0x%08lx\n",
206 itable[MY_INDEX].name,
207 (long) CIA,
208 (long) history->op.cia,
209 (long) peer->mt.cia);
210 ok = 0;
211 }
212 history->mf.timestamp = time;
213 history->mf.cia = CIA;
214 return ok;
215 }
216
217
218
219 :function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo
220 *mipsI:
221 *mipsII:
222 *mipsIII:
223 *mipsIV:
224 *mipsV:
225 *vr4100:
226 *vr5000:
227 {
228 signed64 time = sim_events_time (SD);
229 int ok = (check_mf_cycles (SD_, hi, time, "OP")
230 && check_mf_cycles (SD_, lo, time, "OP"));
231 hi->op.timestamp = time;
232 lo->op.timestamp = time;
233 hi->op.cia = CIA;
234 lo->op.cia = CIA;
235 return ok;
236 }
237
238 // The r3900 mult and multu insns _can_ be exectuted immediatly after
239 // a mf{hi,lo}
240 :function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo
241 *r3900:
242 {
243 /* FIXME: could record the fact that a stall occured if we want */
244 signed64 time = sim_events_time (SD);
245 hi->op.timestamp = time;
246 lo->op.timestamp = time;
247 hi->op.cia = CIA;
248 lo->op.cia = CIA;
249 return 1;
250 }
251
252
253 :function:::int:check_div_hilo:hilo_history *hi, hilo_history *lo
254 *mipsI:
255 *mipsII:
256 *mipsIII:
257 *mipsIV:
258 *mipsV:
259 *vr4100:
260 *vr5000:
261 *r3900:
262 {
263 signed64 time = sim_events_time (SD);
264 int ok = (check_mf_cycles (SD_, hi, time, "OP")
265 && check_mf_cycles (SD_, lo, time, "OP"));
266 hi->op.timestamp = time;
267 lo->op.timestamp = time;
268 hi->op.cia = CIA;
269 lo->op.cia = CIA;
270 return ok;
271 }
272
273
274 // Helper:
275 //
276 // Check that the 64-bit instruction can currently be used, and signal
277 // an ReservedInstruction exception if not.
278 //
279
280 :function:::void:check_u64:instruction_word insn
281 *mipsIII:
282 *mipsIV:
283 *mipsV:
284 *vr4100:
285 *vr5000:
286 {
287 // On mips64, if UserMode check SR:PX & SR:UX bits.
288 // The check should be similar to mips64 for any with PX/UX bit equivalents.
289 }
290
291
292
293 //
294 // MIPS Architecture:
295 //
296 // CPU Instruction Set (mipsI - mipsV)
297 //
298
299
300
301 000000,5.RS,5.RT,5.RD,00000,100000:SPECIAL:32::ADD
302 "add r<RD>, r<RS>, r<RT>"
303 *mipsI:
304 *mipsII:
305 *mipsIII:
306 *mipsIV:
307 *mipsV:
308 *vr4100:
309 *vr5000:
310 *r3900:
311 {
312 TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
313 {
314 ALU32_BEGIN (GPR[RS]);
315 ALU32_ADD (GPR[RT]);
316 ALU32_END (GPR[RD]); /* This checks for overflow. */
317 }
318 TRACE_ALU_RESULT (GPR[RD]);
319 }
320
321
322
323 001000,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ADDI
324 "addi r<RT>, r<RS>, <IMMEDIATE>"
325 *mipsI:
326 *mipsII:
327 *mipsIII:
328 *mipsIV:
329 *mipsV:
330 *vr4100:
331 *vr5000:
332 *r3900:
333 {
334 TRACE_ALU_INPUT2 (GPR[RS], EXTEND16 (IMMEDIATE));
335 {
336 ALU32_BEGIN (GPR[RS]);
337 ALU32_ADD (EXTEND16 (IMMEDIATE));
338 ALU32_END (GPR[RT]); /* This checks for overflow. */
339 }
340 TRACE_ALU_RESULT (GPR[RT]);
341 }
342
343
344
345 :function:::void:do_addiu:int rs, int rt, unsigned16 immediate
346 {
347 TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
348 GPR[rt] = EXTEND32 (GPR[rs] + EXTEND16 (immediate));
349 TRACE_ALU_RESULT (GPR[rt]);
350 }
351
352 001001,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ADDIU
353 "addiu r<RT>, r<RS>, <IMMEDIATE>"
354 *mipsI:
355 *mipsII:
356 *mipsIII:
357 *mipsIV:
358 *mipsV:
359 *vr4100:
360 *vr5000:
361 *r3900:
362 {
363 do_addiu (SD_, RS, RT, IMMEDIATE);
364 }
365
366
367
368 :function:::void:do_addu:int rs, int rt, int rd
369 {
370 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
371 GPR[rd] = EXTEND32 (GPR[rs] + GPR[rt]);
372 TRACE_ALU_RESULT (GPR[rd]);
373 }
374
375 000000,5.RS,5.RT,5.RD,00000,100001:SPECIAL:32::ADDU
376 "addu r<RD>, r<RS>, r<RT>"
377 *mipsI:
378 *mipsII:
379 *mipsIII:
380 *mipsIV:
381 *mipsV:
382 *vr4100:
383 *vr5000:
384 *r3900:
385 {
386 do_addu (SD_, RS, RT, RD);
387 }
388
389
390
391 :function:::void:do_and:int rs, int rt, int rd
392 {
393 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
394 GPR[rd] = GPR[rs] & GPR[rt];
395 TRACE_ALU_RESULT (GPR[rd]);
396 }
397
398 000000,5.RS,5.RT,5.RD,00000,100100:SPECIAL:32::AND
399 "and r<RD>, r<RS>, r<RT>"
400 *mipsI:
401 *mipsII:
402 *mipsIII:
403 *mipsIV:
404 *mipsV:
405 *vr4100:
406 *vr5000:
407 *r3900:
408 {
409 do_and (SD_, RS, RT, RD);
410 }
411
412
413
414 001100,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ANDI
415 "and r<RT>, r<RS>, <IMMEDIATE>"
416 *mipsI:
417 *mipsII:
418 *mipsIII:
419 *mipsIV:
420 *mipsV:
421 *vr4100:
422 *vr5000:
423 *r3900:
424 {
425 TRACE_ALU_INPUT2 (GPR[RS], IMMEDIATE);
426 GPR[RT] = GPR[RS] & IMMEDIATE;
427 TRACE_ALU_RESULT (GPR[RT]);
428 }
429
430
431
432 000100,5.RS,5.RT,16.OFFSET:NORMAL:32::BEQ
433 "beq r<RS>, r<RT>, <OFFSET>"
434 *mipsI:
435 *mipsII:
436 *mipsIII:
437 *mipsIV:
438 *mipsV:
439 *vr4100:
440 *vr5000:
441 *r3900:
442 {
443 address_word offset = EXTEND16 (OFFSET) << 2;
444 check_branch_bug ();
445 if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
446 {
447 mark_branch_bug (NIA+offset);
448 DELAY_SLOT (NIA + offset);
449 }
450 }
451
452
453
454 010100,5.RS,5.RT,16.OFFSET:NORMAL:32::BEQL
455 "beql r<RS>, r<RT>, <OFFSET>"
456 *mipsII:
457 *mipsIII:
458 *mipsIV:
459 *mipsV:
460 *vr4100:
461 *vr5000:
462 *r3900:
463 {
464 address_word offset = EXTEND16 (OFFSET) << 2;
465 check_branch_bug ();
466 if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
467 {
468 mark_branch_bug (NIA+offset);
469 DELAY_SLOT (NIA + offset);
470 }
471 else
472 NULLIFY_NEXT_INSTRUCTION ();
473 }
474
475
476
477 000001,5.RS,00001,16.OFFSET:REGIMM:32::BGEZ
478 "bgez r<RS>, <OFFSET>"
479 *mipsI:
480 *mipsII:
481 *mipsIII:
482 *mipsIV:
483 *mipsV:
484 *vr4100:
485 *vr5000:
486 *r3900:
487 {
488 address_word offset = EXTEND16 (OFFSET) << 2;
489 check_branch_bug ();
490 if ((signed_word) GPR[RS] >= 0)
491 {
492 mark_branch_bug (NIA+offset);
493 DELAY_SLOT (NIA + offset);
494 }
495 }
496
497
498
499 000001,5.RS!31,10001,16.OFFSET:REGIMM:32::BGEZAL
500 "bgezal r<RS>, <OFFSET>"
501 *mipsI:
502 *mipsII:
503 *mipsIII:
504 *mipsIV:
505 *mipsV:
506 *vr4100:
507 *vr5000:
508 *r3900:
509 {
510 address_word offset = EXTEND16 (OFFSET) << 2;
511 check_branch_bug ();
512 RA = (CIA + 8);
513 if ((signed_word) GPR[RS] >= 0)
514 {
515 mark_branch_bug (NIA+offset);
516 DELAY_SLOT (NIA + offset);
517 }
518 }
519
520
521
522 000001,5.RS!31,10011,16.OFFSET:REGIMM:32::BGEZALL
523 "bgezall r<RS>, <OFFSET>"
524 *mipsII:
525 *mipsIII:
526 *mipsIV:
527 *mipsV:
528 *vr4100:
529 *vr5000:
530 *r3900:
531 {
532 address_word offset = EXTEND16 (OFFSET) << 2;
533 check_branch_bug ();
534 RA = (CIA + 8);
535 /* NOTE: The branch occurs AFTER the next instruction has been
536 executed */
537 if ((signed_word) GPR[RS] >= 0)
538 {
539 mark_branch_bug (NIA+offset);
540 DELAY_SLOT (NIA + offset);
541 }
542 else
543 NULLIFY_NEXT_INSTRUCTION ();
544 }
545
546
547
548 000001,5.RS,00011,16.OFFSET:REGIMM:32::BGEZL
549 "bgezl r<RS>, <OFFSET>"
550 *mipsII:
551 *mipsIII:
552 *mipsIV:
553 *mipsV:
554 *vr4100:
555 *vr5000:
556 *r3900:
557 {
558 address_word offset = EXTEND16 (OFFSET) << 2;
559 check_branch_bug ();
560 if ((signed_word) GPR[RS] >= 0)
561 {
562 mark_branch_bug (NIA+offset);
563 DELAY_SLOT (NIA + offset);
564 }
565 else
566 NULLIFY_NEXT_INSTRUCTION ();
567 }
568
569
570
571 000111,5.RS,00000,16.OFFSET:NORMAL:32::BGTZ
572 "bgtz r<RS>, <OFFSET>"
573 *mipsI:
574 *mipsII:
575 *mipsIII:
576 *mipsIV:
577 *mipsV:
578 *vr4100:
579 *vr5000:
580 *r3900:
581 {
582 address_word offset = EXTEND16 (OFFSET) << 2;
583 check_branch_bug ();
584 if ((signed_word) GPR[RS] > 0)
585 {
586 mark_branch_bug (NIA+offset);
587 DELAY_SLOT (NIA + offset);
588 }
589 }
590
591
592
593 010111,5.RS,00000,16.OFFSET:NORMAL:32::BGTZL
594 "bgtzl r<RS>, <OFFSET>"
595 *mipsII:
596 *mipsIII:
597 *mipsIV:
598 *mipsV:
599 *vr4100:
600 *vr5000:
601 *r3900:
602 {
603 address_word offset = EXTEND16 (OFFSET) << 2;
604 check_branch_bug ();
605 /* NOTE: The branch occurs AFTER the next instruction has been
606 executed */
607 if ((signed_word) GPR[RS] > 0)
608 {
609 mark_branch_bug (NIA+offset);
610 DELAY_SLOT (NIA + offset);
611 }
612 else
613 NULLIFY_NEXT_INSTRUCTION ();
614 }
615
616
617
618 000110,5.RS,00000,16.OFFSET:NORMAL:32::BLEZ
619 "blez r<RS>, <OFFSET>"
620 *mipsI:
621 *mipsII:
622 *mipsIII:
623 *mipsIV:
624 *mipsV:
625 *vr4100:
626 *vr5000:
627 *r3900:
628 {
629 address_word offset = EXTEND16 (OFFSET) << 2;
630 check_branch_bug ();
631 /* NOTE: The branch occurs AFTER the next instruction has been
632 executed */
633 if ((signed_word) GPR[RS] <= 0)
634 {
635 mark_branch_bug (NIA+offset);
636 DELAY_SLOT (NIA + offset);
637 }
638 }
639
640
641
642 010110,5.RS,00000,16.OFFSET:NORMAL:32::BLEZL
643 "bgezl r<RS>, <OFFSET>"
644 *mipsII:
645 *mipsIII:
646 *mipsIV:
647 *mipsV:
648 *vr4100:
649 *vr5000:
650 *r3900:
651 {
652 address_word offset = EXTEND16 (OFFSET) << 2;
653 check_branch_bug ();
654 if ((signed_word) GPR[RS] <= 0)
655 {
656 mark_branch_bug (NIA+offset);
657 DELAY_SLOT (NIA + offset);
658 }
659 else
660 NULLIFY_NEXT_INSTRUCTION ();
661 }
662
663
664
665 000001,5.RS,00000,16.OFFSET:REGIMM:32::BLTZ
666 "bltz r<RS>, <OFFSET>"
667 *mipsI:
668 *mipsII:
669 *mipsIII:
670 *mipsIV:
671 *mipsV:
672 *vr4100:
673 *vr5000:
674 *r3900:
675 {
676 address_word offset = EXTEND16 (OFFSET) << 2;
677 check_branch_bug ();
678 if ((signed_word) GPR[RS] < 0)
679 {
680 mark_branch_bug (NIA+offset);
681 DELAY_SLOT (NIA + offset);
682 }
683 }
684
685
686
687 000001,5.RS!31,10000,16.OFFSET:REGIMM:32::BLTZAL
688 "bltzal r<RS>, <OFFSET>"
689 *mipsI:
690 *mipsII:
691 *mipsIII:
692 *mipsIV:
693 *mipsV:
694 *vr4100:
695 *vr5000:
696 *r3900:
697 {
698 address_word offset = EXTEND16 (OFFSET) << 2;
699 check_branch_bug ();
700 RA = (CIA + 8);
701 /* NOTE: The branch occurs AFTER the next instruction has been
702 executed */
703 if ((signed_word) GPR[RS] < 0)
704 {
705 mark_branch_bug (NIA+offset);
706 DELAY_SLOT (NIA + offset);
707 }
708 }
709
710
711
712 000001,5.RS!31,10010,16.OFFSET:REGIMM:32::BLTZALL
713 "bltzall r<RS>, <OFFSET>"
714 *mipsII:
715 *mipsIII:
716 *mipsIV:
717 *mipsV:
718 *vr4100:
719 *vr5000:
720 *r3900:
721 {
722 address_word offset = EXTEND16 (OFFSET) << 2;
723 check_branch_bug ();
724 RA = (CIA + 8);
725 if ((signed_word) GPR[RS] < 0)
726 {
727 mark_branch_bug (NIA+offset);
728 DELAY_SLOT (NIA + offset);
729 }
730 else
731 NULLIFY_NEXT_INSTRUCTION ();
732 }
733
734
735
736 000001,5.RS,00010,16.OFFSET:REGIMM:32::BLTZL
737 "bltzl r<RS>, <OFFSET>"
738 *mipsII:
739 *mipsIII:
740 *mipsIV:
741 *mipsV:
742 *vr4100:
743 *vr5000:
744 *r3900:
745 {
746 address_word offset = EXTEND16 (OFFSET) << 2;
747 check_branch_bug ();
748 /* NOTE: The branch occurs AFTER the next instruction has been
749 executed */
750 if ((signed_word) GPR[RS] < 0)
751 {
752 mark_branch_bug (NIA+offset);
753 DELAY_SLOT (NIA + offset);
754 }
755 else
756 NULLIFY_NEXT_INSTRUCTION ();
757 }
758
759
760
761 000101,5.RS,5.RT,16.OFFSET:NORMAL:32::BNE
762 "bne r<RS>, r<RT>, <OFFSET>"
763 *mipsI:
764 *mipsII:
765 *mipsIII:
766 *mipsIV:
767 *mipsV:
768 *vr4100:
769 *vr5000:
770 *r3900:
771 {
772 address_word offset = EXTEND16 (OFFSET) << 2;
773 check_branch_bug ();
774 if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
775 {
776 mark_branch_bug (NIA+offset);
777 DELAY_SLOT (NIA + offset);
778 }
779 }
780
781
782
783 010101,5.RS,5.RT,16.OFFSET:NORMAL:32::BNEL
784 "bnel r<RS>, r<RT>, <OFFSET>"
785 *mipsII:
786 *mipsIII:
787 *mipsIV:
788 *mipsV:
789 *vr4100:
790 *vr5000:
791 *r3900:
792 {
793 address_word offset = EXTEND16 (OFFSET) << 2;
794 check_branch_bug ();
795 if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
796 {
797 mark_branch_bug (NIA+offset);
798 DELAY_SLOT (NIA + offset);
799 }
800 else
801 NULLIFY_NEXT_INSTRUCTION ();
802 }
803
804
805
806 000000,20.CODE,001101:SPECIAL:32::BREAK
807 "break <CODE>"
808 *mipsI:
809 *mipsII:
810 *mipsIII:
811 *mipsIV:
812 *mipsV:
813 *vr4100:
814 *vr5000:
815 *r3900:
816 {
817 /* Check for some break instruction which are reserved for use by the simulator. */
818 unsigned int break_code = instruction_0 & HALT_INSTRUCTION_MASK;
819 if (break_code == (HALT_INSTRUCTION & HALT_INSTRUCTION_MASK) ||
820 break_code == (HALT_INSTRUCTION2 & HALT_INSTRUCTION_MASK))
821 {
822 sim_engine_halt (SD, CPU, NULL, cia,
823 sim_exited, (unsigned int)(A0 & 0xFFFFFFFF));
824 }
825 else if (break_code == (BREAKPOINT_INSTRUCTION & HALT_INSTRUCTION_MASK) ||
826 break_code == (BREAKPOINT_INSTRUCTION2 & HALT_INSTRUCTION_MASK))
827 {
828 if (STATE & simDELAYSLOT)
829 PC = cia - 4; /* reference the branch instruction */
830 else
831 PC = cia;
832 SignalException(BreakPoint, instruction_0);
833 }
834
835 else
836 {
837 /* If we get this far, we're not an instruction reserved by the sim. Raise
838 the exception. */
839 SignalException(BreakPoint, instruction_0);
840 }
841 }
842
843
844
845 000000,5.RS,5.RT,5.RD,00000,101100:SPECIAL:64::DADD
846 "dadd r<RD>, r<RS>, r<RT>"
847 *mipsIII:
848 *mipsIV:
849 *mipsV:
850 *vr4100:
851 *vr5000:
852 {
853 check_u64 (SD_, instruction_0);
854 TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
855 {
856 ALU64_BEGIN (GPR[RS]);
857 ALU64_ADD (GPR[RT]);
858 ALU64_END (GPR[RD]); /* This checks for overflow. */
859 }
860 TRACE_ALU_RESULT (GPR[RD]);
861 }
862
863
864
865 011000,5.RS,5.RT,16.IMMEDIATE:NORMAL:64::DADDI
866 "daddi r<RT>, r<RS>, <IMMEDIATE>"
867 *mipsIII:
868 *mipsIV:
869 *mipsV:
870 *vr4100:
871 *vr5000:
872 {
873 check_u64 (SD_, instruction_0);
874 TRACE_ALU_INPUT2 (GPR[RS], EXTEND16 (IMMEDIATE));
875 {
876 ALU64_BEGIN (GPR[RS]);
877 ALU64_ADD (EXTEND16 (IMMEDIATE));
878 ALU64_END (GPR[RT]); /* This checks for overflow. */
879 }
880 TRACE_ALU_RESULT (GPR[RT]);
881 }
882
883
884
885 :function:::void:do_daddiu:int rs, int rt, unsigned16 immediate
886 {
887 TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
888 GPR[rt] = GPR[rs] + EXTEND16 (immediate);
889 TRACE_ALU_RESULT (GPR[rt]);
890 }
891
892 011001,5.RS,5.RT,16.IMMEDIATE:NORMAL:64::DADDIU
893 "daddiu r<RT>, r<RS>, <IMMEDIATE>"
894 *mipsIII:
895 *mipsIV:
896 *mipsV:
897 *vr4100:
898 *vr5000:
899 {
900 check_u64 (SD_, instruction_0);
901 do_daddiu (SD_, RS, RT, IMMEDIATE);
902 }
903
904
905
906 :function:::void:do_daddu:int rs, int rt, int rd
907 {
908 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
909 GPR[rd] = GPR[rs] + GPR[rt];
910 TRACE_ALU_RESULT (GPR[rd]);
911 }
912
913 000000,5.RS,5.RT,5.RD,00000,101101:SPECIAL:64::DADDU
914 "daddu r<RD>, r<RS>, r<RT>"
915 *mipsIII:
916 *mipsIV:
917 *mipsV:
918 *vr4100:
919 *vr5000:
920 {
921 check_u64 (SD_, instruction_0);
922 do_daddu (SD_, RS, RT, RD);
923 }
924
925
926
927 :function:::void:do_ddiv:int rs, int rt
928 {
929 check_div_hilo (SD_, HIHISTORY, LOHISTORY);
930 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
931 {
932 signed64 n = GPR[rs];
933 signed64 d = GPR[rt];
934 signed64 hi;
935 signed64 lo;
936 if (d == 0)
937 {
938 lo = SIGNED64 (0x8000000000000000);
939 hi = 0;
940 }
941 else if (d == -1 && n == SIGNED64 (0x8000000000000000))
942 {
943 lo = SIGNED64 (0x8000000000000000);
944 hi = 0;
945 }
946 else
947 {
948 lo = (n / d);
949 hi = (n % d);
950 }
951 HI = hi;
952 LO = lo;
953 }
954 TRACE_ALU_RESULT2 (HI, LO);
955 }
956
957 000000,5.RS,5.RT,0000000000,011110:SPECIAL:64::DDIV
958 "ddiv r<RS>, r<RT>"
959 *mipsIII:
960 *mipsIV:
961 *mipsV:
962 *vr4100:
963 *vr5000:
964 {
965 check_u64 (SD_, instruction_0);
966 do_ddiv (SD_, RS, RT);
967 }
968
969
970
971 :function:::void:do_ddivu:int rs, int rt
972 {
973 check_div_hilo (SD_, HIHISTORY, LOHISTORY);
974 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
975 {
976 unsigned64 n = GPR[rs];
977 unsigned64 d = GPR[rt];
978 unsigned64 hi;
979 unsigned64 lo;
980 if (d == 0)
981 {
982 lo = SIGNED64 (0x8000000000000000);
983 hi = 0;
984 }
985 else
986 {
987 lo = (n / d);
988 hi = (n % d);
989 }
990 HI = hi;
991 LO = lo;
992 }
993 TRACE_ALU_RESULT2 (HI, LO);
994 }
995
996 000000,5.RS,5.RT,0000000000,011111:SPECIAL:64::DDIVU
997 "ddivu r<RS>, r<RT>"
998 *mipsIII:
999 *mipsIV:
1000 *mipsV:
1001 *vr4100:
1002 *vr5000:
1003 {
1004 check_u64 (SD_, instruction_0);
1005 do_ddivu (SD_, RS, RT);
1006 }
1007
1008
1009
1010 :function:::void:do_div:int rs, int rt
1011 {
1012 check_div_hilo (SD_, HIHISTORY, LOHISTORY);
1013 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
1014 {
1015 signed32 n = GPR[rs];
1016 signed32 d = GPR[rt];
1017 if (d == 0)
1018 {
1019 LO = EXTEND32 (0x80000000);
1020 HI = EXTEND32 (0);
1021 }
1022 else if (n == SIGNED32 (0x80000000) && d == -1)
1023 {
1024 LO = EXTEND32 (0x80000000);
1025 HI = EXTEND32 (0);
1026 }
1027 else
1028 {
1029 LO = EXTEND32 (n / d);
1030 HI = EXTEND32 (n % d);
1031 }
1032 }
1033 TRACE_ALU_RESULT2 (HI, LO);
1034 }
1035
1036 000000,5.RS,5.RT,0000000000,011010:SPECIAL:32::DIV
1037 "div r<RS>, r<RT>"
1038 *mipsI:
1039 *mipsII:
1040 *mipsIII:
1041 *mipsIV:
1042 *mipsV:
1043 *vr4100:
1044 *vr5000:
1045 *r3900:
1046 {
1047 do_div (SD_, RS, RT);
1048 }
1049
1050
1051
1052 :function:::void:do_divu:int rs, int rt
1053 {
1054 check_div_hilo (SD_, HIHISTORY, LOHISTORY);
1055 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
1056 {
1057 unsigned32 n = GPR[rs];
1058 unsigned32 d = GPR[rt];
1059 if (d == 0)
1060 {
1061 LO = EXTEND32 (0x80000000);
1062 HI = EXTEND32 (0);
1063 }
1064 else
1065 {
1066 LO = EXTEND32 (n / d);
1067 HI = EXTEND32 (n % d);
1068 }
1069 }
1070 TRACE_ALU_RESULT2 (HI, LO);
1071 }
1072
1073 000000,5.RS,5.RT,0000000000,011011:SPECIAL:32::DIVU
1074 "divu r<RS>, r<RT>"
1075 *mipsI:
1076 *mipsII:
1077 *mipsIII:
1078 *mipsIV:
1079 *mipsV:
1080 *vr4100:
1081 *vr5000:
1082 *r3900:
1083 {
1084 do_divu (SD_, RS, RT);
1085 }
1086
1087
1088
1089 :function:::void:do_dmultx:int rs, int rt, int rd, int signed_p
1090 {
1091 unsigned64 lo;
1092 unsigned64 hi;
1093 unsigned64 m00;
1094 unsigned64 m01;
1095 unsigned64 m10;
1096 unsigned64 m11;
1097 unsigned64 mid;
1098 int sign;
1099 unsigned64 op1 = GPR[rs];
1100 unsigned64 op2 = GPR[rt];
1101 check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
1102 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
1103 /* make signed multiply unsigned */
1104 sign = 0;
1105 if (signed_p)
1106 {
1107 if (op1 < 0)
1108 {
1109 op1 = - op1;
1110 ++sign;
1111 }
1112 if (op2 < 0)
1113 {
1114 op2 = - op2;
1115 ++sign;
1116 }
1117 }
1118 /* multiply out the 4 sub products */
1119 m00 = ((unsigned64) VL4_8 (op1) * (unsigned64) VL4_8 (op2));
1120 m10 = ((unsigned64) VH4_8 (op1) * (unsigned64) VL4_8 (op2));
1121 m01 = ((unsigned64) VL4_8 (op1) * (unsigned64) VH4_8 (op2));
1122 m11 = ((unsigned64) VH4_8 (op1) * (unsigned64) VH4_8 (op2));
1123 /* add the products */
1124 mid = ((unsigned64) VH4_8 (m00)
1125 + (unsigned64) VL4_8 (m10)
1126 + (unsigned64) VL4_8 (m01));
1127 lo = U8_4 (mid, m00);
1128 hi = (m11
1129 + (unsigned64) VH4_8 (mid)
1130 + (unsigned64) VH4_8 (m01)
1131 + (unsigned64) VH4_8 (m10));
1132 /* fix the sign */
1133 if (sign & 1)
1134 {
1135 lo = -lo;
1136 if (lo == 0)
1137 hi = -hi;
1138 else
1139 hi = -hi - 1;
1140 }
1141 /* save the result HI/LO (and a gpr) */
1142 LO = lo;
1143 HI = hi;
1144 if (rd != 0)
1145 GPR[rd] = lo;
1146 TRACE_ALU_RESULT2 (HI, LO);
1147 }
1148
1149 :function:::void:do_dmult:int rs, int rt, int rd
1150 {
1151 do_dmultx (SD_, rs, rt, rd, 1);
1152 }
1153
1154 000000,5.RS,5.RT,0000000000,011100:SPECIAL:64::DMULT
1155 "dmult r<RS>, r<RT>"
1156 *mipsIII:
1157 *mipsIV:
1158 *mipsV:
1159 *vr4100:
1160 {
1161 check_u64 (SD_, instruction_0);
1162 do_dmult (SD_, RS, RT, 0);
1163 }
1164
1165 000000,5.RS,5.RT,5.RD,00000,011100:SPECIAL:64::DMULT
1166 "dmult r<RS>, r<RT>":RD == 0
1167 "dmult r<RD>, r<RS>, r<RT>"
1168 *vr5000:
1169 {
1170 check_u64 (SD_, instruction_0);
1171 do_dmult (SD_, RS, RT, RD);
1172 }
1173
1174
1175
1176 :function:::void:do_dmultu:int rs, int rt, int rd
1177 {
1178 do_dmultx (SD_, rs, rt, rd, 0);
1179 }
1180
1181 000000,5.RS,5.RT,0000000000,011101:SPECIAL:64::DMULTU
1182 "dmultu r<RS>, r<RT>"
1183 *mipsIII:
1184 *mipsIV:
1185 *mipsV:
1186 *vr4100:
1187 {
1188 check_u64 (SD_, instruction_0);
1189 do_dmultu (SD_, RS, RT, 0);
1190 }
1191
1192 000000,5.RS,5.RT,5.RD,00000,011101:SPECIAL:64::DMULTU
1193 "dmultu r<RD>, r<RS>, r<RT>":RD == 0
1194 "dmultu r<RS>, r<RT>"
1195 *vr5000:
1196 {
1197 check_u64 (SD_, instruction_0);
1198 do_dmultu (SD_, RS, RT, RD);
1199 }
1200
1201 :function:::void:do_dsll:int rt, int rd, int shift
1202 {
1203 TRACE_ALU_INPUT2 (GPR[rt], shift);
1204 GPR[rd] = GPR[rt] << shift;
1205 TRACE_ALU_RESULT (GPR[rd]);
1206 }
1207
1208 000000,00000,5.RT,5.RD,5.SHIFT,111000:SPECIAL:64::DSLL
1209 "dsll r<RD>, r<RT>, <SHIFT>"
1210 *mipsIII:
1211 *mipsIV:
1212 *mipsV:
1213 *vr4100:
1214 *vr5000:
1215 {
1216 check_u64 (SD_, instruction_0);
1217 do_dsll (SD_, RT, RD, SHIFT);
1218 }
1219
1220
1221 000000,00000,5.RT,5.RD,5.SHIFT,111100:SPECIAL:64::DSLL32
1222 "dsll32 r<RD>, r<RT>, <SHIFT>"
1223 *mipsIII:
1224 *mipsIV:
1225 *mipsV:
1226 *vr4100:
1227 *vr5000:
1228 {
1229 int s = 32 + SHIFT;
1230 check_u64 (SD_, instruction_0);
1231 TRACE_ALU_INPUT2 (GPR[RT], s);
1232 GPR[RD] = GPR[RT] << s;
1233 TRACE_ALU_RESULT (GPR[RD]);
1234 }
1235
1236 :function:::void:do_dsllv:int rs, int rt, int rd
1237 {
1238 int s = MASKED64 (GPR[rs], 5, 0);
1239 TRACE_ALU_INPUT2 (GPR[rt], s);
1240 GPR[rd] = GPR[rt] << s;
1241 TRACE_ALU_RESULT (GPR[rd]);
1242 }
1243
1244 000000,5.RS,5.RT,5.RD,00000,010100:SPECIAL:64::DSLLV
1245 "dsllv r<RD>, r<RT>, r<RS>"
1246 *mipsIII:
1247 *mipsIV:
1248 *mipsV:
1249 *vr4100:
1250 *vr5000:
1251 {
1252 check_u64 (SD_, instruction_0);
1253 do_dsllv (SD_, RS, RT, RD);
1254 }
1255
1256 :function:::void:do_dsra:int rt, int rd, int shift
1257 {
1258 TRACE_ALU_INPUT2 (GPR[rt], shift);
1259 GPR[rd] = ((signed64) GPR[rt]) >> shift;
1260 TRACE_ALU_RESULT (GPR[rd]);
1261 }
1262
1263
1264 000000,00000,5.RT,5.RD,5.SHIFT,111011:SPECIAL:64::DSRA
1265 "dsra r<RD>, r<RT>, <SHIFT>"
1266 *mipsIII:
1267 *mipsIV:
1268 *mipsV:
1269 *vr4100:
1270 *vr5000:
1271 {
1272 check_u64 (SD_, instruction_0);
1273 do_dsra (SD_, RT, RD, SHIFT);
1274 }
1275
1276
1277 000000,00000,5.RT,5.RD,5.SHIFT,111111:SPECIAL:64::DSRA32
1278 "dsra32 r<RD>, r<RT>, <SHIFT>"
1279 *mipsIII:
1280 *mipsIV:
1281 *mipsV:
1282 *vr4100:
1283 *vr5000:
1284 {
1285 int s = 32 + SHIFT;
1286 check_u64 (SD_, instruction_0);
1287 TRACE_ALU_INPUT2 (GPR[RT], s);
1288 GPR[RD] = ((signed64) GPR[RT]) >> s;
1289 TRACE_ALU_RESULT (GPR[RD]);
1290 }
1291
1292
1293 :function:::void:do_dsrav:int rs, int rt, int rd
1294 {
1295 int s = MASKED64 (GPR[rs], 5, 0);
1296 TRACE_ALU_INPUT2 (GPR[rt], s);
1297 GPR[rd] = ((signed64) GPR[rt]) >> s;
1298 TRACE_ALU_RESULT (GPR[rd]);
1299 }
1300
1301 000000,5.RS,5.RT,5.RD,00000,010111:SPECIAL:64::DSRAV
1302 "dsrav r<RD>, r<RT>, r<RS>"
1303 *mipsIII:
1304 *mipsIV:
1305 *mipsV:
1306 *vr4100:
1307 *vr5000:
1308 {
1309 check_u64 (SD_, instruction_0);
1310 do_dsrav (SD_, RS, RT, RD);
1311 }
1312
1313 :function:::void:do_dsrl:int rt, int rd, int shift
1314 {
1315 TRACE_ALU_INPUT2 (GPR[rt], shift);
1316 GPR[rd] = (unsigned64) GPR[rt] >> shift;
1317 TRACE_ALU_RESULT (GPR[rd]);
1318 }
1319
1320
1321 000000,00000,5.RT,5.RD,5.SHIFT,111010:SPECIAL:64::DSRL
1322 "dsrl r<RD>, r<RT>, <SHIFT>"
1323 *mipsIII:
1324 *mipsIV:
1325 *mipsV:
1326 *vr4100:
1327 *vr5000:
1328 {
1329 check_u64 (SD_, instruction_0);
1330 do_dsrl (SD_, RT, RD, SHIFT);
1331 }
1332
1333
1334 000000,00000,5.RT,5.RD,5.SHIFT,111110:SPECIAL:64::DSRL32
1335 "dsrl32 r<RD>, r<RT>, <SHIFT>"
1336 *mipsIII:
1337 *mipsIV:
1338 *mipsV:
1339 *vr4100:
1340 *vr5000:
1341 {
1342 int s = 32 + SHIFT;
1343 check_u64 (SD_, instruction_0);
1344 TRACE_ALU_INPUT2 (GPR[RT], s);
1345 GPR[RD] = (unsigned64) GPR[RT] >> s;
1346 TRACE_ALU_RESULT (GPR[RD]);
1347 }
1348
1349
1350 :function:::void:do_dsrlv:int rs, int rt, int rd
1351 {
1352 int s = MASKED64 (GPR[rs], 5, 0);
1353 TRACE_ALU_INPUT2 (GPR[rt], s);
1354 GPR[rd] = (unsigned64) GPR[rt] >> s;
1355 TRACE_ALU_RESULT (GPR[rd]);
1356 }
1357
1358
1359
1360 000000,5.RS,5.RT,5.RD,00000,010110:SPECIAL:64::DSRLV
1361 "dsrlv r<RD>, r<RT>, r<RS>"
1362 *mipsIII:
1363 *mipsIV:
1364 *mipsV:
1365 *vr4100:
1366 *vr5000:
1367 {
1368 check_u64 (SD_, instruction_0);
1369 do_dsrlv (SD_, RS, RT, RD);
1370 }
1371
1372
1373 000000,5.RS,5.RT,5.RD,00000,101110:SPECIAL:64::DSUB
1374 "dsub r<RD>, r<RS>, r<RT>"
1375 *mipsIII:
1376 *mipsIV:
1377 *mipsV:
1378 *vr4100:
1379 *vr5000:
1380 {
1381 check_u64 (SD_, instruction_0);
1382 TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
1383 {
1384 ALU64_BEGIN (GPR[RS]);
1385 ALU64_SUB (GPR[RT]);
1386 ALU64_END (GPR[RD]); /* This checks for overflow. */
1387 }
1388 TRACE_ALU_RESULT (GPR[RD]);
1389 }
1390
1391
1392 :function:::void:do_dsubu:int rs, int rt, int rd
1393 {
1394 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
1395 GPR[rd] = GPR[rs] - GPR[rt];
1396 TRACE_ALU_RESULT (GPR[rd]);
1397 }
1398
1399 000000,5.RS,5.RT,5.RD,00000,101111:SPECIAL:64::DSUBU
1400 "dsubu r<RD>, r<RS>, r<RT>"
1401 *mipsIII:
1402 *mipsIV:
1403 *mipsV:
1404 *vr4100:
1405 *vr5000:
1406 {
1407 check_u64 (SD_, instruction_0);
1408 do_dsubu (SD_, RS, RT, RD);
1409 }
1410
1411
1412 000010,26.INSTR_INDEX:NORMAL:32::J
1413 "j <INSTR_INDEX>"
1414 *mipsI:
1415 *mipsII:
1416 *mipsIII:
1417 *mipsIV:
1418 *mipsV:
1419 *vr4100:
1420 *vr5000:
1421 *r3900:
1422 {
1423 /* NOTE: The region used is that of the delay slot NIA and NOT the
1424 current instruction */
1425 address_word region = (NIA & MASK (63, 28));
1426 DELAY_SLOT (region | (INSTR_INDEX << 2));
1427 }
1428
1429
1430 000011,26.INSTR_INDEX:NORMAL:32::JAL
1431 "jal <INSTR_INDEX>"
1432 *mipsI:
1433 *mipsII:
1434 *mipsIII:
1435 *mipsIV:
1436 *mipsV:
1437 *vr4100:
1438 *vr5000:
1439 *r3900:
1440 {
1441 /* NOTE: The region used is that of the delay slot and NOT the
1442 current instruction */
1443 address_word region = (NIA & MASK (63, 28));
1444 GPR[31] = CIA + 8;
1445 DELAY_SLOT (region | (INSTR_INDEX << 2));
1446 }
1447
1448 000000,5.RS,00000,5.RD,00000,001001:SPECIAL:32::JALR
1449 "jalr r<RS>":RD == 31
1450 "jalr r<RD>, r<RS>"
1451 *mipsI:
1452 *mipsII:
1453 *mipsIII:
1454 *mipsIV:
1455 *mipsV:
1456 *vr4100:
1457 *vr5000:
1458 *r3900:
1459 {
1460 address_word temp = GPR[RS];
1461 GPR[RD] = CIA + 8;
1462 DELAY_SLOT (temp);
1463 }
1464
1465
1466 000000,5.RS,000000000000000,001000:SPECIAL:32::JR
1467 "jr r<RS>"
1468 *mipsI:
1469 *mipsII:
1470 *mipsIII:
1471 *mipsIV:
1472 *mipsV:
1473 *vr4100:
1474 *vr5000:
1475 *r3900:
1476 {
1477 DELAY_SLOT (GPR[RS]);
1478 }
1479
1480
1481 :function:::unsigned_word:do_load:unsigned access, address_word base, address_word offset
1482 {
1483 address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
1484 address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
1485 address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
1486 unsigned int byte;
1487 address_word paddr;
1488 int uncached;
1489 unsigned64 memval;
1490 address_word vaddr;
1491
1492 vaddr = loadstore_ea (SD_, base, offset);
1493 if ((vaddr & access) != 0)
1494 {
1495 SIM_CORE_SIGNAL (SD, STATE_CPU (SD, 0), cia, read_map, access+1, vaddr, read_transfer, sim_core_unaligned_signal);
1496 }
1497 AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
1498 paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
1499 LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isDATA, isREAL);
1500 byte = ((vaddr & mask) ^ bigendiancpu);
1501 return (memval >> (8 * byte));
1502 }
1503
1504 :function:::unsigned_word:do_load_left:unsigned access, address_word base, address_word offset, unsigned_word rt
1505 {
1506 address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
1507 address_word reverseendian = (ReverseEndian ? -1 : 0);
1508 address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
1509 unsigned int byte;
1510 unsigned int word;
1511 address_word paddr;
1512 int uncached;
1513 unsigned64 memval;
1514 address_word vaddr;
1515 int nr_lhs_bits;
1516 int nr_rhs_bits;
1517 unsigned_word lhs_mask;
1518 unsigned_word temp;
1519
1520 vaddr = loadstore_ea (SD_, base, offset);
1521 AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
1522 paddr = (paddr ^ (reverseendian & mask));
1523 if (BigEndianMem == 0)
1524 paddr = paddr & ~access;
1525
1526 /* compute where within the word/mem we are */
1527 byte = ((vaddr ^ bigendiancpu) & access); /* 0..access */
1528 word = ((vaddr ^ bigendiancpu) & (mask & ~access)) / (access + 1); /* 0..1 */
1529 nr_lhs_bits = 8 * byte + 8;
1530 nr_rhs_bits = 8 * access - 8 * byte;
1531 /* nr_lhs_bits + nr_rhs_bits == 8 * (accesss + 1) */
1532
1533 /* fprintf (stderr, "l[wd]l: 0x%08lx%08lx 0x%08lx%08lx %d:%d %d+%d\n",
1534 (long) ((unsigned64) vaddr >> 32), (long) vaddr,
1535 (long) ((unsigned64) paddr >> 32), (long) paddr,
1536 word, byte, nr_lhs_bits, nr_rhs_bits); */
1537
1538 LoadMemory (&memval, NULL, uncached, byte, paddr, vaddr, isDATA, isREAL);
1539 if (word == 0)
1540 {
1541 /* GPR{31..32-NR_LHS_BITS} = memval{NR_LHS_BITS-1..0} */
1542 temp = (memval << nr_rhs_bits);
1543 }
1544 else
1545 {
1546 /* GPR{31..32-NR_LHS_BITS = memval{32+NR_LHS_BITS..32} */
1547 temp = (memval >> nr_lhs_bits);
1548 }
1549 lhs_mask = LSMASK (nr_lhs_bits + nr_rhs_bits - 1, nr_rhs_bits);
1550 rt = (rt & ~lhs_mask) | (temp & lhs_mask);
1551
1552 /* fprintf (stderr, "l[wd]l: 0x%08lx%08lx -> 0x%08lx%08lx & 0x%08lx%08lx -> 0x%08lx%08lx\n",
1553 (long) ((unsigned64) memval >> 32), (long) memval,
1554 (long) ((unsigned64) temp >> 32), (long) temp,
1555 (long) ((unsigned64) lhs_mask >> 32), (long) lhs_mask,
1556 (long) (rt >> 32), (long) rt); */
1557 return rt;
1558 }
1559
1560 :function:::unsigned_word:do_load_right:unsigned access, address_word base, address_word offset, unsigned_word rt
1561 {
1562 address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
1563 address_word reverseendian = (ReverseEndian ? -1 : 0);
1564 address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
1565 unsigned int byte;
1566 address_word paddr;
1567 int uncached;
1568 unsigned64 memval;
1569 address_word vaddr;
1570
1571 vaddr = loadstore_ea (SD_, base, offset);
1572 AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
1573 /* NOTE: SPEC is wrong, has `BigEndianMem == 0' not `BigEndianMem != 0' */
1574 paddr = (paddr ^ (reverseendian & mask));
1575 if (BigEndianMem != 0)
1576 paddr = paddr & ~access;
1577 byte = ((vaddr & mask) ^ (bigendiancpu & mask));
1578 /* NOTE: SPEC is wrong, had `byte' not `access - byte'. See SW. */
1579 LoadMemory (&memval, NULL, uncached, access - (access & byte), paddr, vaddr, isDATA, isREAL);
1580 /* printf ("lr: 0x%08lx %d@0x%08lx 0x%08lx\n",
1581 (long) paddr, byte, (long) paddr, (long) memval); */
1582 {
1583 unsigned_word screen = LSMASK (8 * (access - (byte & access) + 1) - 1, 0);
1584 rt &= ~screen;
1585 rt |= (memval >> (8 * byte)) & screen;
1586 }
1587 return rt;
1588 }
1589
1590
1591 100000,5.BASE,5.RT,16.OFFSET:NORMAL:32::LB
1592 "lb r<RT>, <OFFSET>(r<BASE>)"
1593 *mipsI:
1594 *mipsII:
1595 *mipsIII:
1596 *mipsIV:
1597 *mipsV:
1598 *vr4100:
1599 *vr5000:
1600 *r3900:
1601 {
1602 GPR[RT] = EXTEND8 (do_load (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET)));
1603 }
1604
1605
1606 100100,5.BASE,5.RT,16.OFFSET:NORMAL:32::LBU
1607 "lbu r<RT>, <OFFSET>(r<BASE>)"
1608 *mipsI:
1609 *mipsII:
1610 *mipsIII:
1611 *mipsIV:
1612 *mipsV:
1613 *vr4100:
1614 *vr5000:
1615 *r3900:
1616 {
1617 GPR[RT] = do_load (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET));
1618 }
1619
1620
1621 110111,5.BASE,5.RT,16.OFFSET:NORMAL:64::LD
1622 "ld r<RT>, <OFFSET>(r<BASE>)"
1623 *mipsIII:
1624 *mipsIV:
1625 *mipsV:
1626 *vr4100:
1627 *vr5000:
1628 {
1629 check_u64 (SD_, instruction_0);
1630 GPR[RT] = EXTEND64 (do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
1631 }
1632
1633
1634 1101,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDCz
1635 "ldc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
1636 *mipsII:
1637 *mipsIII:
1638 *mipsIV:
1639 *mipsV:
1640 *vr4100:
1641 *vr5000:
1642 *r3900:
1643 {
1644 COP_LD (ZZ, RT, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
1645 }
1646
1647
1648
1649
1650 011010,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDL
1651 "ldl r<RT>, <OFFSET>(r<BASE>)"
1652 *mipsIII:
1653 *mipsIV:
1654 *mipsV:
1655 *vr4100:
1656 *vr5000:
1657 {
1658 check_u64 (SD_, instruction_0);
1659 GPR[RT] = do_load_left (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
1660 }
1661
1662
1663 011011,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDR
1664 "ldr r<RT>, <OFFSET>(r<BASE>)"
1665 *mipsIII:
1666 *mipsIV:
1667 *mipsV:
1668 *vr4100:
1669 *vr5000:
1670 {
1671 check_u64 (SD_, instruction_0);
1672 GPR[RT] = do_load_right (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
1673 }
1674
1675
1676 100001,5.BASE,5.RT,16.OFFSET:NORMAL:32::LH
1677 "lh r<RT>, <OFFSET>(r<BASE>)"
1678 *mipsI:
1679 *mipsII:
1680 *mipsIII:
1681 *mipsIV:
1682 *mipsV:
1683 *vr4100:
1684 *vr5000:
1685 *r3900:
1686 {
1687 GPR[RT] = EXTEND16 (do_load (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET)));
1688 }
1689
1690
1691 100101,5.BASE,5.RT,16.OFFSET:NORMAL:32::LHU
1692 "lhu r<RT>, <OFFSET>(r<BASE>)"
1693 *mipsI:
1694 *mipsII:
1695 *mipsIII:
1696 *mipsIV:
1697 *mipsV:
1698 *vr4100:
1699 *vr5000:
1700 *r3900:
1701 {
1702 GPR[RT] = do_load (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET));
1703 }
1704
1705
1706 110000,5.BASE,5.RT,16.OFFSET:NORMAL:32::LL
1707 "ll r<RT>, <OFFSET>(r<BASE>)"
1708 *mipsII:
1709 *mipsIII:
1710 *mipsIV:
1711 *mipsV:
1712 *vr4100:
1713 *vr5000:
1714 {
1715 address_word base = GPR[BASE];
1716 address_word offset = EXTEND16 (OFFSET);
1717 {
1718 address_word vaddr = loadstore_ea (SD_, base, offset);
1719 address_word paddr;
1720 int uncached;
1721 if ((vaddr & 3) != 0)
1722 {
1723 SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, read_transfer, sim_core_unaligned_signal);
1724 }
1725 else
1726 {
1727 if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
1728 {
1729 unsigned64 memval = 0;
1730 unsigned64 memval1 = 0;
1731 unsigned64 mask = 0x7;
1732 unsigned int shift = 2;
1733 unsigned int reverse = (ReverseEndian ? (mask >> shift) : 0);
1734 unsigned int bigend = (BigEndianCPU ? (mask >> shift) : 0);
1735 unsigned int byte;
1736 paddr = ((paddr & ~mask) | ((paddr & mask) ^ (reverse << shift)));
1737 LoadMemory(&memval,&memval1,uncached,AccessLength_WORD,paddr,vaddr,isDATA,isREAL);
1738 byte = ((vaddr & mask) ^ (bigend << shift));
1739 GPR[RT] = EXTEND32 (memval >> (8 * byte));
1740 LLBIT = 1;
1741 }
1742 }
1743 }
1744 }
1745
1746
1747 110100,5.BASE,5.RT,16.OFFSET:NORMAL:64::LLD
1748 "lld r<RT>, <OFFSET>(r<BASE>)"
1749 *mipsIII:
1750 *mipsIV:
1751 *mipsV:
1752 *vr4100:
1753 *vr5000:
1754 {
1755 address_word base = GPR[BASE];
1756 address_word offset = EXTEND16 (OFFSET);
1757 check_u64 (SD_, instruction_0);
1758 {
1759 address_word vaddr = loadstore_ea (SD_, base, offset);
1760 address_word paddr;
1761 int uncached;
1762 if ((vaddr & 7) != 0)
1763 {
1764 SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 8, vaddr, read_transfer, sim_core_unaligned_signal);
1765 }
1766 else
1767 {
1768 if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
1769 {
1770 unsigned64 memval = 0;
1771 unsigned64 memval1 = 0;
1772 LoadMemory(&memval,&memval1,uncached,AccessLength_DOUBLEWORD,paddr,vaddr,isDATA,isREAL);
1773 GPR[RT] = memval;
1774 LLBIT = 1;
1775 }
1776 }
1777 }
1778 }
1779
1780
1781 001111,00000,5.RT,16.IMMEDIATE:NORMAL:32::LUI
1782 "lui r<RT>, <IMMEDIATE>"
1783 *mipsI:
1784 *mipsII:
1785 *mipsIII:
1786 *mipsIV:
1787 *mipsV:
1788 *vr4100:
1789 *vr5000:
1790 *r3900:
1791 {
1792 TRACE_ALU_INPUT1 (IMMEDIATE);
1793 GPR[RT] = EXTEND32 (IMMEDIATE << 16);
1794 TRACE_ALU_RESULT (GPR[RT]);
1795 }
1796
1797
1798 100011,5.BASE,5.RT,16.OFFSET:NORMAL:32::LW
1799 "lw r<RT>, <OFFSET>(r<BASE>)"
1800 *mipsI:
1801 *mipsII:
1802 *mipsIII:
1803 *mipsIV:
1804 *mipsV:
1805 *vr4100:
1806 *vr5000:
1807 *r3900:
1808 {
1809 GPR[RT] = EXTEND32 (do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
1810 }
1811
1812
1813 1100,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWCz
1814 "lwc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
1815 *mipsI:
1816 *mipsII:
1817 *mipsIII:
1818 *mipsIV:
1819 *mipsV:
1820 *vr4100:
1821 *vr5000:
1822 *r3900:
1823 {
1824 COP_LW (ZZ, RT, do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
1825 }
1826
1827
1828 100010,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWL
1829 "lwl r<RT>, <OFFSET>(r<BASE>)"
1830 *mipsI:
1831 *mipsII:
1832 *mipsIII:
1833 *mipsIV:
1834 *mipsV:
1835 *vr4100:
1836 *vr5000:
1837 *r3900:
1838 {
1839 GPR[RT] = EXTEND32 (do_load_left (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]));
1840 }
1841
1842
1843 100110,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWR
1844 "lwr r<RT>, <OFFSET>(r<BASE>)"
1845 *mipsI:
1846 *mipsII:
1847 *mipsIII:
1848 *mipsIV:
1849 *mipsV:
1850 *vr4100:
1851 *vr5000:
1852 *r3900:
1853 {
1854 GPR[RT] = EXTEND32 (do_load_right (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]));
1855 }
1856
1857
1858 100111,5.BASE,5.RT,16.OFFSET:NORMAL:64::LWU
1859 "lwu r<RT>, <OFFSET>(r<BASE>)"
1860 *mipsIII:
1861 *mipsIV:
1862 *mipsV:
1863 *vr4100:
1864 *vr5000:
1865 {
1866 check_u64 (SD_, instruction_0);
1867 GPR[RT] = do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET));
1868 }
1869
1870
1871 :function:::void:do_mfhi:int rd
1872 {
1873 check_mf_hilo (SD_, HIHISTORY, LOHISTORY);
1874 TRACE_ALU_INPUT1 (HI);
1875 GPR[rd] = HI;
1876 TRACE_ALU_RESULT (GPR[rd]);
1877 }
1878
1879 000000,0000000000,5.RD,00000,010000:SPECIAL:32::MFHI
1880 "mfhi r<RD>"
1881 *mipsI:
1882 *mipsII:
1883 *mipsIII:
1884 *mipsIV:
1885 *mipsV:
1886 *vr4100:
1887 *vr5000:
1888 *r3900:
1889 {
1890 do_mfhi (SD_, RD);
1891 }
1892
1893
1894
1895 :function:::void:do_mflo:int rd
1896 {
1897 check_mf_hilo (SD_, LOHISTORY, HIHISTORY);
1898 TRACE_ALU_INPUT1 (LO);
1899 GPR[rd] = LO;
1900 TRACE_ALU_RESULT (GPR[rd]);
1901 }
1902
1903 000000,0000000000,5.RD,00000,010010:SPECIAL:32::MFLO
1904 "mflo r<RD>"
1905 *mipsI:
1906 *mipsII:
1907 *mipsIII:
1908 *mipsIV:
1909 *mipsV:
1910 *vr4100:
1911 *vr5000:
1912 *r3900:
1913 {
1914 do_mflo (SD_, RD);
1915 }
1916
1917
1918
1919 000000,5.RS,5.RT,5.RD,00000,001011:SPECIAL:32::MOVN
1920 "movn r<RD>, r<RS>, r<RT>"
1921 *mipsIV:
1922 *mipsV:
1923 *vr5000:
1924 {
1925 if (GPR[RT] != 0)
1926 GPR[RD] = GPR[RS];
1927 }
1928
1929
1930
1931 000000,5.RS,5.RT,5.RD,00000,001010:SPECIAL:32::MOVZ
1932 "movz r<RD>, r<RS>, r<RT>"
1933 *mipsIV:
1934 *mipsV:
1935 *vr5000:
1936 {
1937 if (GPR[RT] == 0)
1938 GPR[RD] = GPR[RS];
1939 }
1940
1941
1942
1943 000000,5.RS,000000000000000,010001:SPECIAL:32::MTHI
1944 "mthi r<RS>"
1945 *mipsI:
1946 *mipsII:
1947 *mipsIII:
1948 *mipsIV:
1949 *mipsV:
1950 *vr4100:
1951 *vr5000:
1952 *r3900:
1953 {
1954 check_mt_hilo (SD_, HIHISTORY);
1955 HI = GPR[RS];
1956 }
1957
1958
1959
1960 000000,5.RS,000000000000000,010011:SPECIAL:32::MTLO
1961 "mtlo r<RS>"
1962 *mipsI:
1963 *mipsII:
1964 *mipsIII:
1965 *mipsIV:
1966 *mipsV:
1967 *vr4100:
1968 *vr5000:
1969 *r3900:
1970 {
1971 check_mt_hilo (SD_, LOHISTORY);
1972 LO = GPR[RS];
1973 }
1974
1975
1976
1977 :function:::void:do_mult:int rs, int rt, int rd
1978 {
1979 signed64 prod;
1980 check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
1981 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
1982 prod = (((signed64)(signed32) GPR[rs])
1983 * ((signed64)(signed32) GPR[rt]));
1984 LO = EXTEND32 (VL4_8 (prod));
1985 HI = EXTEND32 (VH4_8 (prod));
1986 if (rd != 0)
1987 GPR[rd] = LO;
1988 TRACE_ALU_RESULT2 (HI, LO);
1989 }
1990
1991 000000,5.RS,5.RT,0000000000,011000:SPECIAL:32::MULT
1992 "mult r<RS>, r<RT>"
1993 *mipsI:
1994 *mipsII:
1995 *mipsIII:
1996 *mipsIV:
1997 *mipsV:
1998 *vr4100:
1999 {
2000 do_mult (SD_, RS, RT, 0);
2001 }
2002
2003
2004 000000,5.RS,5.RT,5.RD,00000,011000:SPECIAL:32::MULT
2005 "mult r<RS>, r<RT>":RD == 0
2006 "mult r<RD>, r<RS>, r<RT>"
2007 *vr5000:
2008 *r3900:
2009 {
2010 do_mult (SD_, RS, RT, RD);
2011 }
2012
2013
2014 :function:::void:do_multu:int rs, int rt, int rd
2015 {
2016 unsigned64 prod;
2017 check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
2018 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
2019 prod = (((unsigned64)(unsigned32) GPR[rs])
2020 * ((unsigned64)(unsigned32) GPR[rt]));
2021 LO = EXTEND32 (VL4_8 (prod));
2022 HI = EXTEND32 (VH4_8 (prod));
2023 if (rd != 0)
2024 GPR[rd] = LO;
2025 TRACE_ALU_RESULT2 (HI, LO);
2026 }
2027
2028 000000,5.RS,5.RT,0000000000,011001:SPECIAL:32::MULTU
2029 "multu r<RS>, r<RT>"
2030 *mipsI:
2031 *mipsII:
2032 *mipsIII:
2033 *mipsIV:
2034 *mipsV:
2035 *vr4100:
2036 {
2037 do_multu (SD_, RS, RT, 0);
2038 }
2039
2040 000000,5.RS,5.RT,5.RD,00000,011001:SPECIAL:32::MULTU
2041 "multu r<RS>, r<RT>":RD == 0
2042 "multu r<RD>, r<RS>, r<RT>"
2043 *vr5000:
2044 *r3900:
2045 {
2046 do_multu (SD_, RS, RT, RD);
2047 }
2048
2049
2050 :function:::void:do_nor:int rs, int rt, int rd
2051 {
2052 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
2053 GPR[rd] = ~ (GPR[rs] | GPR[rt]);
2054 TRACE_ALU_RESULT (GPR[rd]);
2055 }
2056
2057 000000,5.RS,5.RT,5.RD,00000,100111:SPECIAL:32::NOR
2058 "nor r<RD>, r<RS>, r<RT>"
2059 *mipsI:
2060 *mipsII:
2061 *mipsIII:
2062 *mipsIV:
2063 *mipsV:
2064 *vr4100:
2065 *vr5000:
2066 *r3900:
2067 {
2068 do_nor (SD_, RS, RT, RD);
2069 }
2070
2071
2072 :function:::void:do_or:int rs, int rt, int rd
2073 {
2074 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
2075 GPR[rd] = (GPR[rs] | GPR[rt]);
2076 TRACE_ALU_RESULT (GPR[rd]);
2077 }
2078
2079 000000,5.RS,5.RT,5.RD,00000,100101:SPECIAL:32::OR
2080 "or r<RD>, r<RS>, r<RT>"
2081 *mipsI:
2082 *mipsII:
2083 *mipsIII:
2084 *mipsIV:
2085 *mipsV:
2086 *vr4100:
2087 *vr5000:
2088 *r3900:
2089 {
2090 do_or (SD_, RS, RT, RD);
2091 }
2092
2093
2094
2095 :function:::void:do_ori:int rs, int rt, unsigned immediate
2096 {
2097 TRACE_ALU_INPUT2 (GPR[rs], immediate);
2098 GPR[rt] = (GPR[rs] | immediate);
2099 TRACE_ALU_RESULT (GPR[rt]);
2100 }
2101
2102 001101,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ORI
2103 "ori r<RT>, r<RS>, <IMMEDIATE>"
2104 *mipsI:
2105 *mipsII:
2106 *mipsIII:
2107 *mipsIV:
2108 *mipsV:
2109 *vr4100:
2110 *vr5000:
2111 *r3900:
2112 {
2113 do_ori (SD_, RS, RT, IMMEDIATE);
2114 }
2115
2116
2117 110011,5.BASE,5.HINT,16.OFFSET:NORMAL:32::PREF
2118 "pref <HINT>, <OFFSET>(r<BASE>)"
2119 *mipsIV:
2120 *mipsV:
2121 *vr5000:
2122 {
2123 address_word base = GPR[BASE];
2124 address_word offset = EXTEND16 (OFFSET);
2125 {
2126 address_word vaddr = loadstore_ea (SD_, base, offset);
2127 address_word paddr;
2128 int uncached;
2129 {
2130 if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
2131 Prefetch(uncached,paddr,vaddr,isDATA,HINT);
2132 }
2133 }
2134 }
2135
2136
2137 :function:::void:do_store:unsigned access, address_word base, address_word offset, unsigned_word word
2138 {
2139 address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
2140 address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
2141 address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
2142 unsigned int byte;
2143 address_word paddr;
2144 int uncached;
2145 unsigned64 memval;
2146 address_word vaddr;
2147
2148 vaddr = loadstore_ea (SD_, base, offset);
2149 if ((vaddr & access) != 0)
2150 {
2151 SIM_CORE_SIGNAL (SD, STATE_CPU(SD, 0), cia, read_map, access+1, vaddr, write_transfer, sim_core_unaligned_signal);
2152 }
2153 AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
2154 paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
2155 byte = ((vaddr & mask) ^ bigendiancpu);
2156 memval = (word << (8 * byte));
2157 StoreMemory (uncached, access, memval, 0, paddr, vaddr, isREAL);
2158 }
2159
2160 :function:::void:do_store_left:unsigned access, address_word base, address_word offset, unsigned_word rt
2161 {
2162 address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
2163 address_word reverseendian = (ReverseEndian ? -1 : 0);
2164 address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
2165 unsigned int byte;
2166 unsigned int word;
2167 address_word paddr;
2168 int uncached;
2169 unsigned64 memval;
2170 address_word vaddr;
2171 int nr_lhs_bits;
2172 int nr_rhs_bits;
2173
2174 vaddr = loadstore_ea (SD_, base, offset);
2175 AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
2176 paddr = (paddr ^ (reverseendian & mask));
2177 if (BigEndianMem == 0)
2178 paddr = paddr & ~access;
2179
2180 /* compute where within the word/mem we are */
2181 byte = ((vaddr ^ bigendiancpu) & access); /* 0..access */
2182 word = ((vaddr ^ bigendiancpu) & (mask & ~access)) / (access + 1); /* 0..1 */
2183 nr_lhs_bits = 8 * byte + 8;
2184 nr_rhs_bits = 8 * access - 8 * byte;
2185 /* nr_lhs_bits + nr_rhs_bits == 8 * (accesss + 1) */
2186 /* fprintf (stderr, "s[wd]l: 0x%08lx%08lx 0x%08lx%08lx %d:%d %d+%d\n",
2187 (long) ((unsigned64) vaddr >> 32), (long) vaddr,
2188 (long) ((unsigned64) paddr >> 32), (long) paddr,
2189 word, byte, nr_lhs_bits, nr_rhs_bits); */
2190
2191 if (word == 0)
2192 {
2193 memval = (rt >> nr_rhs_bits);
2194 }
2195 else
2196 {
2197 memval = (rt << nr_lhs_bits);
2198 }
2199 /* fprintf (stderr, "s[wd]l: 0x%08lx%08lx -> 0x%08lx%08lx\n",
2200 (long) ((unsigned64) rt >> 32), (long) rt,
2201 (long) ((unsigned64) memval >> 32), (long) memval); */
2202 StoreMemory (uncached, byte, memval, 0, paddr, vaddr, isREAL);
2203 }
2204
2205 :function:::void:do_store_right:unsigned access, address_word base, address_word offset, unsigned_word rt
2206 {
2207 address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
2208 address_word reverseendian = (ReverseEndian ? -1 : 0);
2209 address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
2210 unsigned int byte;
2211 address_word paddr;
2212 int uncached;
2213 unsigned64 memval;
2214 address_word vaddr;
2215
2216 vaddr = loadstore_ea (SD_, base, offset);
2217 AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
2218 paddr = (paddr ^ (reverseendian & mask));
2219 if (BigEndianMem != 0)
2220 paddr &= ~access;
2221 byte = ((vaddr & mask) ^ (bigendiancpu & mask));
2222 memval = (rt << (byte * 8));
2223 StoreMemory (uncached, access - (access & byte), memval, 0, paddr, vaddr, isREAL);
2224 }
2225
2226
2227 101000,5.BASE,5.RT,16.OFFSET:NORMAL:32::SB
2228 "sb r<RT>, <OFFSET>(r<BASE>)"
2229 *mipsI:
2230 *mipsII:
2231 *mipsIII:
2232 *mipsIV:
2233 *mipsV:
2234 *vr4100:
2235 *vr5000:
2236 *r3900:
2237 {
2238 do_store (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
2239 }
2240
2241
2242 111000,5.BASE,5.RT,16.OFFSET:NORMAL:32::SC
2243 "sc r<RT>, <OFFSET>(r<BASE>)"
2244 *mipsII:
2245 *mipsIII:
2246 *mipsIV:
2247 *mipsV:
2248 *vr4100:
2249 *vr5000:
2250 {
2251 unsigned32 instruction = instruction_0;
2252 address_word base = GPR[BASE];
2253 address_word offset = EXTEND16 (OFFSET);
2254 {
2255 address_word vaddr = loadstore_ea (SD_, base, offset);
2256 address_word paddr;
2257 int uncached;
2258 if ((vaddr & 3) != 0)
2259 {
2260 SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, write_transfer, sim_core_unaligned_signal);
2261 }
2262 else
2263 {
2264 if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
2265 {
2266 unsigned64 memval = 0;
2267 unsigned64 memval1 = 0;
2268 unsigned64 mask = 0x7;
2269 unsigned int byte;
2270 paddr = ((paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2)));
2271 byte = ((vaddr & mask) ^ (BigEndianCPU << 2));
2272 memval = ((unsigned64) GPR[RT] << (8 * byte));
2273 if (LLBIT)
2274 {
2275 StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
2276 }
2277 GPR[RT] = LLBIT;
2278 }
2279 }
2280 }
2281 }
2282
2283
2284 111100,5.BASE,5.RT,16.OFFSET:NORMAL:64::SCD
2285 "scd r<RT>, <OFFSET>(r<BASE>)"
2286 *mipsIII:
2287 *mipsIV:
2288 *mipsV:
2289 *vr4100:
2290 *vr5000:
2291 {
2292 address_word base = GPR[BASE];
2293 address_word offset = EXTEND16 (OFFSET);
2294 check_u64 (SD_, instruction_0);
2295 {
2296 address_word vaddr = loadstore_ea (SD_, base, offset);
2297 address_word paddr;
2298 int uncached;
2299 if ((vaddr & 7) != 0)
2300 {
2301 SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 8, vaddr, write_transfer, sim_core_unaligned_signal);
2302 }
2303 else
2304 {
2305 if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
2306 {
2307 unsigned64 memval = 0;
2308 unsigned64 memval1 = 0;
2309 memval = GPR[RT];
2310 if (LLBIT)
2311 {
2312 StoreMemory(uncached,AccessLength_DOUBLEWORD,memval,memval1,paddr,vaddr,isREAL);
2313 }
2314 GPR[RT] = LLBIT;
2315 }
2316 }
2317 }
2318 }
2319
2320
2321 111111,5.BASE,5.RT,16.OFFSET:NORMAL:64::SD
2322 "sd r<RT>, <OFFSET>(r<BASE>)"
2323 *mipsIII:
2324 *mipsIV:
2325 *mipsV:
2326 *vr4100:
2327 *vr5000:
2328 {
2329 check_u64 (SD_, instruction_0);
2330 do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
2331 }
2332
2333
2334 1111,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDCz
2335 "sdc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
2336 *mipsII:
2337 *mipsIII:
2338 *mipsIV:
2339 *mipsV:
2340 *vr4100:
2341 *vr5000:
2342 {
2343 do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), COP_SD (ZZ, RT));
2344 }
2345
2346
2347 101100,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDL
2348 "sdl r<RT>, <OFFSET>(r<BASE>)"
2349 *mipsIII:
2350 *mipsIV:
2351 *mipsV:
2352 *vr4100:
2353 *vr5000:
2354 {
2355 check_u64 (SD_, instruction_0);
2356 do_store_left (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
2357 }
2358
2359
2360 101101,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDR
2361 "sdr r<RT>, <OFFSET>(r<BASE>)"
2362 *mipsIII:
2363 *mipsIV:
2364 *mipsV:
2365 *vr4100:
2366 *vr5000:
2367 {
2368 check_u64 (SD_, instruction_0);
2369 do_store_right (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
2370 }
2371
2372
2373 101001,5.BASE,5.RT,16.OFFSET:NORMAL:32::SH
2374 "sh r<RT>, <OFFSET>(r<BASE>)"
2375 *mipsI:
2376 *mipsII:
2377 *mipsIII:
2378 *mipsIV:
2379 *mipsV:
2380 *vr4100:
2381 *vr5000:
2382 *r3900:
2383 {
2384 do_store (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
2385 }
2386
2387
2388 :function:::void:do_sll:int rt, int rd, int shift
2389 {
2390 unsigned32 temp = (GPR[rt] << shift);
2391 TRACE_ALU_INPUT2 (GPR[rt], shift);
2392 GPR[rd] = EXTEND32 (temp);
2393 TRACE_ALU_RESULT (GPR[rd]);
2394 }
2395
2396 000000,00000,5.RT,5.RD,5.SHIFT,000000:SPECIAL:32::SLL
2397 "nop":RD == 0 && RT == 0 && SHIFT == 0
2398 "sll r<RD>, r<RT>, <SHIFT>"
2399 *mipsI:
2400 *mipsII:
2401 *mipsIII:
2402 *mipsIV:
2403 *mipsV:
2404 *vr4100:
2405 *vr5000:
2406 *r3900:
2407 {
2408 /* Skip shift for NOP, so that there won't be lots of extraneous
2409 trace output. */
2410 if (RD != 0 || RT != 0 || SHIFT != 0)
2411 do_sll (SD_, RT, RD, SHIFT);
2412 }
2413
2414
2415 :function:::void:do_sllv:int rs, int rt, int rd
2416 {
2417 int s = MASKED (GPR[rs], 4, 0);
2418 unsigned32 temp = (GPR[rt] << s);
2419 TRACE_ALU_INPUT2 (GPR[rt], s);
2420 GPR[rd] = EXTEND32 (temp);
2421 TRACE_ALU_RESULT (GPR[rd]);
2422 }
2423
2424 000000,5.RS,5.RT,5.RD,00000,000100:SPECIAL:32::SLLV
2425 "sllv r<RD>, r<RT>, r<RS>"
2426 *mipsI:
2427 *mipsII:
2428 *mipsIII:
2429 *mipsIV:
2430 *mipsV:
2431 *vr4100:
2432 *vr5000:
2433 *r3900:
2434 {
2435 do_sllv (SD_, RS, RT, RD);
2436 }
2437
2438
2439 :function:::void:do_slt:int rs, int rt, int rd
2440 {
2441 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
2442 GPR[rd] = ((signed_word) GPR[rs] < (signed_word) GPR[rt]);
2443 TRACE_ALU_RESULT (GPR[rd]);
2444 }
2445
2446 000000,5.RS,5.RT,5.RD,00000,101010:SPECIAL:32::SLT
2447 "slt r<RD>, r<RS>, r<RT>"
2448 *mipsI:
2449 *mipsII:
2450 *mipsIII:
2451 *mipsIV:
2452 *mipsV:
2453 *vr4100:
2454 *vr5000:
2455 *r3900:
2456 {
2457 do_slt (SD_, RS, RT, RD);
2458 }
2459
2460
2461 :function:::void:do_slti:int rs, int rt, unsigned16 immediate
2462 {
2463 TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
2464 GPR[rt] = ((signed_word) GPR[rs] < (signed_word) EXTEND16 (immediate));
2465 TRACE_ALU_RESULT (GPR[rt]);
2466 }
2467
2468 001010,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::SLTI
2469 "slti r<RT>, r<RS>, <IMMEDIATE>"
2470 *mipsI:
2471 *mipsII:
2472 *mipsIII:
2473 *mipsIV:
2474 *mipsV:
2475 *vr4100:
2476 *vr5000:
2477 *r3900:
2478 {
2479 do_slti (SD_, RS, RT, IMMEDIATE);
2480 }
2481
2482
2483 :function:::void:do_sltiu:int rs, int rt, unsigned16 immediate
2484 {
2485 TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
2486 GPR[rt] = ((unsigned_word) GPR[rs] < (unsigned_word) EXTEND16 (immediate));
2487 TRACE_ALU_RESULT (GPR[rt]);
2488 }
2489
2490 001011,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::SLTIU
2491 "sltiu r<RT>, r<RS>, <IMMEDIATE>"
2492 *mipsI:
2493 *mipsII:
2494 *mipsIII:
2495 *mipsIV:
2496 *mipsV:
2497 *vr4100:
2498 *vr5000:
2499 *r3900:
2500 {
2501 do_sltiu (SD_, RS, RT, IMMEDIATE);
2502 }
2503
2504
2505
2506 :function:::void:do_sltu:int rs, int rt, int rd
2507 {
2508 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
2509 GPR[rd] = ((unsigned_word) GPR[rs] < (unsigned_word) GPR[rt]);
2510 TRACE_ALU_RESULT (GPR[rd]);
2511 }
2512
2513 000000,5.RS,5.RT,5.RD,00000,101011:SPECIAL:32::SLTU
2514 "sltu r<RD>, r<RS>, r<RT>"
2515 *mipsI:
2516 *mipsII:
2517 *mipsIII:
2518 *mipsIV:
2519 *mipsV:
2520 *vr4100:
2521 *vr5000:
2522 *r3900:
2523 {
2524 do_sltu (SD_, RS, RT, RD);
2525 }
2526
2527
2528 :function:::void:do_sra:int rt, int rd, int shift
2529 {
2530 signed32 temp = (signed32) GPR[rt] >> shift;
2531 TRACE_ALU_INPUT2 (GPR[rt], shift);
2532 GPR[rd] = EXTEND32 (temp);
2533 TRACE_ALU_RESULT (GPR[rd]);
2534 }
2535
2536 000000,00000,5.RT,5.RD,5.SHIFT,000011:SPECIAL:32::SRA
2537 "sra r<RD>, r<RT>, <SHIFT>"
2538 *mipsI:
2539 *mipsII:
2540 *mipsIII:
2541 *mipsIV:
2542 *mipsV:
2543 *vr4100:
2544 *vr5000:
2545 *r3900:
2546 {
2547 do_sra (SD_, RT, RD, SHIFT);
2548 }
2549
2550
2551
2552 :function:::void:do_srav:int rs, int rt, int rd
2553 {
2554 int s = MASKED (GPR[rs], 4, 0);
2555 signed32 temp = (signed32) GPR[rt] >> s;
2556 TRACE_ALU_INPUT2 (GPR[rt], s);
2557 GPR[rd] = EXTEND32 (temp);
2558 TRACE_ALU_RESULT (GPR[rd]);
2559 }
2560
2561 000000,5.RS,5.RT,5.RD,00000,000111:SPECIAL:32::SRAV
2562 "srav r<RD>, r<RT>, r<RS>"
2563 *mipsI:
2564 *mipsII:
2565 *mipsIII:
2566 *mipsIV:
2567 *mipsV:
2568 *vr4100:
2569 *vr5000:
2570 *r3900:
2571 {
2572 do_srav (SD_, RS, RT, RD);
2573 }
2574
2575
2576
2577 :function:::void:do_srl:int rt, int rd, int shift
2578 {
2579 unsigned32 temp = (unsigned32) GPR[rt] >> shift;
2580 TRACE_ALU_INPUT2 (GPR[rt], shift);
2581 GPR[rd] = EXTEND32 (temp);
2582 TRACE_ALU_RESULT (GPR[rd]);
2583 }
2584
2585 000000,00000,5.RT,5.RD,5.SHIFT,000010:SPECIAL:32::SRL
2586 "srl r<RD>, r<RT>, <SHIFT>"
2587 *mipsI:
2588 *mipsII:
2589 *mipsIII:
2590 *mipsIV:
2591 *mipsV:
2592 *vr4100:
2593 *vr5000:
2594 *r3900:
2595 {
2596 do_srl (SD_, RT, RD, SHIFT);
2597 }
2598
2599
2600 :function:::void:do_srlv:int rs, int rt, int rd
2601 {
2602 int s = MASKED (GPR[rs], 4, 0);
2603 unsigned32 temp = (unsigned32) GPR[rt] >> s;
2604 TRACE_ALU_INPUT2 (GPR[rt], s);
2605 GPR[rd] = EXTEND32 (temp);
2606 TRACE_ALU_RESULT (GPR[rd]);
2607 }
2608
2609 000000,5.RS,5.RT,5.RD,00000,000110:SPECIAL:32::SRLV
2610 "srlv r<RD>, r<RT>, r<RS>"
2611 *mipsI:
2612 *mipsII:
2613 *mipsIII:
2614 *mipsIV:
2615 *mipsV:
2616 *vr4100:
2617 *vr5000:
2618 *r3900:
2619 {
2620 do_srlv (SD_, RS, RT, RD);
2621 }
2622
2623
2624 000000,5.RS,5.RT,5.RD,00000,100010:SPECIAL:32::SUB
2625 "sub r<RD>, r<RS>, r<RT>"
2626 *mipsI:
2627 *mipsII:
2628 *mipsIII:
2629 *mipsIV:
2630 *mipsV:
2631 *vr4100:
2632 *vr5000:
2633 *r3900:
2634 {
2635 TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
2636 {
2637 ALU32_BEGIN (GPR[RS]);
2638 ALU32_SUB (GPR[RT]);
2639 ALU32_END (GPR[RD]); /* This checks for overflow. */
2640 }
2641 TRACE_ALU_RESULT (GPR[RD]);
2642 }
2643
2644
2645 :function:::void:do_subu:int rs, int rt, int rd
2646 {
2647 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
2648 GPR[rd] = EXTEND32 (GPR[rs] - GPR[rt]);
2649 TRACE_ALU_RESULT (GPR[rd]);
2650 }
2651
2652 000000,5.RS,5.RT,5.RD,00000,100011:SPECIAL:32::SUBU
2653 "subu r<RD>, r<RS>, r<RT>"
2654 *mipsI:
2655 *mipsII:
2656 *mipsIII:
2657 *mipsIV:
2658 *mipsV:
2659 *vr4100:
2660 *vr5000:
2661 *r3900:
2662 {
2663 do_subu (SD_, RS, RT, RD);
2664 }
2665
2666
2667 101011,5.BASE,5.RT,16.OFFSET:NORMAL:32::SW
2668 "sw r<RT>, <OFFSET>(r<BASE>)"
2669 *mipsI:
2670 *mipsII:
2671 *mipsIII:
2672 *mipsIV:
2673 *mipsV:
2674 *vr4100:
2675 *r3900:
2676 *vr5000:
2677 {
2678 do_store (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
2679 }
2680
2681
2682 1110,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWCz
2683 "swc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
2684 *mipsI:
2685 *mipsII:
2686 *mipsIII:
2687 *mipsIV:
2688 *mipsV:
2689 *vr4100:
2690 *vr5000:
2691 *r3900:
2692 {
2693 do_store (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), COP_SW (ZZ, RT));
2694 }
2695
2696
2697 101010,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWL
2698 "swl r<RT>, <OFFSET>(r<BASE>)"
2699 *mipsI:
2700 *mipsII:
2701 *mipsIII:
2702 *mipsIV:
2703 *mipsV:
2704 *vr4100:
2705 *vr5000:
2706 *r3900:
2707 {
2708 do_store_left (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
2709 }
2710
2711
2712 101110,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWR
2713 "swr r<RT>, <OFFSET>(r<BASE>)"
2714 *mipsI:
2715 *mipsII:
2716 *mipsIII:
2717 *mipsIV:
2718 *mipsV:
2719 *vr4100:
2720 *vr5000:
2721 *r3900:
2722 {
2723 do_store_right (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
2724 }
2725
2726
2727 000000,000000000000000,5.STYPE,001111:SPECIAL:32::SYNC
2728 "sync":STYPE == 0
2729 "sync <STYPE>"
2730 *mipsII:
2731 *mipsIII:
2732 *mipsIV:
2733 *mipsV:
2734 *vr4100:
2735 *vr5000:
2736 *r3900:
2737 {
2738 SyncOperation (STYPE);
2739 }
2740
2741
2742 000000,20.CODE,001100:SPECIAL:32::SYSCALL
2743 "syscall <CODE>"
2744 *mipsI:
2745 *mipsII:
2746 *mipsIII:
2747 *mipsIV:
2748 *mipsV:
2749 *vr4100:
2750 *vr5000:
2751 *r3900:
2752 {
2753 SignalException(SystemCall, instruction_0);
2754 }
2755
2756
2757 000000,5.RS,5.RT,10.CODE,110100:SPECIAL:32::TEQ
2758 "teq r<RS>, r<RT>"
2759 *mipsII:
2760 *mipsIII:
2761 *mipsIV:
2762 *mipsV:
2763 *vr4100:
2764 *vr5000:
2765 {
2766 if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
2767 SignalException(Trap, instruction_0);
2768 }
2769
2770
2771 000001,5.RS,01100,16.IMMEDIATE:REGIMM:32::TEQI
2772 "teqi r<RS>, <IMMEDIATE>"
2773 *mipsII:
2774 *mipsIII:
2775 *mipsIV:
2776 *mipsV:
2777 *vr4100:
2778 *vr5000:
2779 {
2780 if ((signed_word) GPR[RS] == (signed_word) EXTEND16 (IMMEDIATE))
2781 SignalException(Trap, instruction_0);
2782 }
2783
2784
2785 000000,5.RS,5.RT,10.CODE,110000:SPECIAL:32::TGE
2786 "tge r<RS>, r<RT>"
2787 *mipsII:
2788 *mipsIII:
2789 *mipsIV:
2790 *mipsV:
2791 *vr4100:
2792 *vr5000:
2793 {
2794 if ((signed_word) GPR[RS] >= (signed_word) GPR[RT])
2795 SignalException(Trap, instruction_0);
2796 }
2797
2798
2799 000001,5.RS,01000,16.IMMEDIATE:REGIMM:32::TGEI
2800 "tgei r<RS>, <IMMEDIATE>"
2801 *mipsII:
2802 *mipsIII:
2803 *mipsIV:
2804 *mipsV:
2805 *vr4100:
2806 *vr5000:
2807 {
2808 if ((signed_word) GPR[RS] >= (signed_word) EXTEND16 (IMMEDIATE))
2809 SignalException(Trap, instruction_0);
2810 }
2811
2812
2813 000001,5.RS,01001,16.IMMEDIATE:REGIMM:32::TGEIU
2814 "tgeiu r<RS>, <IMMEDIATE>"
2815 *mipsII:
2816 *mipsIII:
2817 *mipsIV:
2818 *mipsV:
2819 *vr4100:
2820 *vr5000:
2821 {
2822 if ((unsigned_word) GPR[RS] >= (unsigned_word) EXTEND16 (IMMEDIATE))
2823 SignalException(Trap, instruction_0);
2824 }
2825
2826
2827 000000,5.RS,5.RT,10.CODE,110001:SPECIAL:32::TGEU
2828 "tgeu r<RS>, r<RT>"
2829 *mipsII:
2830 *mipsIII:
2831 *mipsIV:
2832 *mipsV:
2833 *vr4100:
2834 *vr5000:
2835 {
2836 if ((unsigned_word) GPR[RS] >= (unsigned_word) GPR[RT])
2837 SignalException(Trap, instruction_0);
2838 }
2839
2840
2841 000000,5.RS,5.RT,10.CODE,110010:SPECIAL:32::TLT
2842 "tlt r<RS>, r<RT>"
2843 *mipsII:
2844 *mipsIII:
2845 *mipsIV:
2846 *mipsV:
2847 *vr4100:
2848 *vr5000:
2849 {
2850 if ((signed_word) GPR[RS] < (signed_word) GPR[RT])
2851 SignalException(Trap, instruction_0);
2852 }
2853
2854
2855 000001,5.RS,01010,16.IMMEDIATE:REGIMM:32::TLTI
2856 "tlti r<RS>, <IMMEDIATE>"
2857 *mipsII:
2858 *mipsIII:
2859 *mipsIV:
2860 *mipsV:
2861 *vr4100:
2862 *vr5000:
2863 {
2864 if ((signed_word) GPR[RS] < (signed_word) EXTEND16 (IMMEDIATE))
2865 SignalException(Trap, instruction_0);
2866 }
2867
2868
2869 000001,5.RS,01011,16.IMMEDIATE:REGIMM:32::TLTIU
2870 "tltiu r<RS>, <IMMEDIATE>"
2871 *mipsII:
2872 *mipsIII:
2873 *mipsIV:
2874 *mipsV:
2875 *vr4100:
2876 *vr5000:
2877 {
2878 if ((unsigned_word) GPR[RS] < (unsigned_word) EXTEND16 (IMMEDIATE))
2879 SignalException(Trap, instruction_0);
2880 }
2881
2882
2883 000000,5.RS,5.RT,10.CODE,110011:SPECIAL:32::TLTU
2884 "tltu r<RS>, r<RT>"
2885 *mipsII:
2886 *mipsIII:
2887 *mipsIV:
2888 *mipsV:
2889 *vr4100:
2890 *vr5000:
2891 {
2892 if ((unsigned_word) GPR[RS] < (unsigned_word) GPR[RT])
2893 SignalException(Trap, instruction_0);
2894 }
2895
2896
2897 000000,5.RS,5.RT,10.CODE,110110:SPECIAL:32::TNE
2898 "tne r<RS>, r<RT>"
2899 *mipsII:
2900 *mipsIII:
2901 *mipsIV:
2902 *mipsV:
2903 *vr4100:
2904 *vr5000:
2905 {
2906 if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
2907 SignalException(Trap, instruction_0);
2908 }
2909
2910
2911 000001,5.RS,01110,16.IMMEDIATE:REGIMM:32::TNEI
2912 "tne r<RS>, <IMMEDIATE>"
2913 *mipsII:
2914 *mipsIII:
2915 *mipsIV:
2916 *mipsV:
2917 *vr4100:
2918 *vr5000:
2919 {
2920 if ((signed_word) GPR[RS] != (signed_word) EXTEND16 (IMMEDIATE))
2921 SignalException(Trap, instruction_0);
2922 }
2923
2924
2925 :function:::void:do_xor:int rs, int rt, int rd
2926 {
2927 TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
2928 GPR[rd] = GPR[rs] ^ GPR[rt];
2929 TRACE_ALU_RESULT (GPR[rd]);
2930 }
2931
2932 000000,5.RS,5.RT,5.RD,00000,100110:SPECIAL:32::XOR
2933 "xor r<RD>, r<RS>, r<RT>"
2934 *mipsI:
2935 *mipsII:
2936 *mipsIII:
2937 *mipsIV:
2938 *mipsV:
2939 *vr4100:
2940 *vr5000:
2941 *r3900:
2942 {
2943 do_xor (SD_, RS, RT, RD);
2944 }
2945
2946
2947 :function:::void:do_xori:int rs, int rt, unsigned16 immediate
2948 {
2949 TRACE_ALU_INPUT2 (GPR[rs], immediate);
2950 GPR[rt] = GPR[rs] ^ immediate;
2951 TRACE_ALU_RESULT (GPR[rt]);
2952 }
2953
2954 001110,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::XORI
2955 "xori r<RT>, r<RS>, <IMMEDIATE>"
2956 *mipsI:
2957 *mipsII:
2958 *mipsIII:
2959 *mipsIV:
2960 *mipsV:
2961 *vr4100:
2962 *vr5000:
2963 *r3900:
2964 {
2965 do_xori (SD_, RS, RT, IMMEDIATE);
2966 }
2967
2968 \f
2969 //
2970 // MIPS Architecture:
2971 //
2972 // FPU Instruction Set (COP1 & COP1X)
2973 //
2974
2975
2976 :%s::::FMT:int fmt
2977 {
2978 switch (fmt)
2979 {
2980 case fmt_single: return "s";
2981 case fmt_double: return "d";
2982 case fmt_word: return "w";
2983 case fmt_long: return "l";
2984 default: return "?";
2985 }
2986 }
2987
2988 :%s::::X:int x
2989 {
2990 switch (x)
2991 {
2992 case 0: return "f";
2993 case 1: return "t";
2994 default: return "?";
2995 }
2996 }
2997
2998 :%s::::TF:int tf
2999 {
3000 if (tf)
3001 return "t";
3002 else
3003 return "f";
3004 }
3005
3006 :%s::::ND:int nd
3007 {
3008 if (nd)
3009 return "l";
3010 else
3011 return "";
3012 }
3013
3014 :%s::::COND:int cond
3015 {
3016 switch (cond)
3017 {
3018 case 00: return "f";
3019 case 01: return "un";
3020 case 02: return "eq";
3021 case 03: return "ueq";
3022 case 04: return "olt";
3023 case 05: return "ult";
3024 case 06: return "ole";
3025 case 07: return "ule";
3026 case 010: return "sf";
3027 case 011: return "ngle";
3028 case 012: return "seq";
3029 case 013: return "ngl";
3030 case 014: return "lt";
3031 case 015: return "nge";
3032 case 016: return "le";
3033 case 017: return "ngt";
3034 default: return "?";
3035 }
3036 }
3037
3038
3039 // Helpers:
3040 //
3041 // Check that the given FPU format is usable, and signal a
3042 // ReservedInstruction exception if not.
3043 //
3044
3045 // check_fmt checks that the format is single or double.
3046 :function:::void:check_fmt:int fmt, instruction_word insn
3047 *mipsI:
3048 *mipsII:
3049 *mipsIII:
3050 *mipsIV:
3051 *mipsV:
3052 *vr4100:
3053 *vr5000:
3054 *r3900:
3055 {
3056 if ((fmt != fmt_single) && (fmt != fmt_double))
3057 SignalException (ReservedInstruction, insn);
3058 }
3059
3060 // check_fmt_p checks that the format is single, double, or paired single.
3061 :function:::void:check_fmt_p:int fmt, instruction_word insn
3062 *mipsI:
3063 *mipsII:
3064 *mipsIII:
3065 *mipsIV:
3066 *mipsV:
3067 *vr4100:
3068 *vr5000:
3069 *r3900:
3070 {
3071 /* None of these ISAs support Paired Single, so just fall back to
3072 the single/double check. */
3073 /* XXX FIXME: not true for mipsV, but we don't support .ps insns yet. */
3074 check_fmt (SD_, fmt, insn);
3075 }
3076
3077
3078 // Helper:
3079 //
3080 // Check that the FPU is currently usable, and signal a CoProcessorUnusable
3081 // exception if not.
3082 //
3083
3084 :function:::void:check_fpu:
3085 *mipsI:
3086 *mipsII:
3087 *mipsIII:
3088 *mipsIV:
3089 *mipsV:
3090 *vr4100:
3091 *vr5000:
3092 *r3900:
3093 {
3094 #if 0 /* XXX FIXME: For now, never treat the FPU as disabled. */
3095 if (! COP_Usable (1))
3096 SignalExceptionCoProcessorUnusable (1);
3097 #endif
3098 }
3099
3100
3101 010001,10,3.FMT,00000,5.FS,5.FD,000101:COP1:32,f::ABS.fmt
3102 "abs.%s<FMT> f<FD>, f<FS>"
3103 *mipsI:
3104 *mipsII:
3105 *mipsIII:
3106 *mipsIV:
3107 *mipsV:
3108 *vr4100:
3109 *vr5000:
3110 *r3900:
3111 {
3112 int fmt = FMT;
3113 check_fpu (SD_);
3114 check_fmt_p (SD_, fmt, instruction_0);
3115 StoreFPR(FD,fmt,AbsoluteValue(ValueFPR(FS,fmt),fmt));
3116 }
3117
3118
3119
3120 010001,10,3.FMT,5.FT,5.FS,5.FD,000000:COP1:32,f::ADD.fmt
3121 "add.%s<FMT> f<FD>, f<FS>, f<FT>"
3122 *mipsI:
3123 *mipsII:
3124 *mipsIII:
3125 *mipsIV:
3126 *mipsV:
3127 *vr4100:
3128 *vr5000:
3129 *r3900:
3130 {
3131 int fmt = FMT;
3132 check_fpu (SD_);
3133 check_fmt_p (SD_, fmt, instruction_0);
3134 StoreFPR(FD,fmt,Add(ValueFPR(FS,fmt),ValueFPR(FT,fmt),fmt));
3135 }
3136
3137
3138
3139 // BC1F
3140 // BC1FL
3141 // BC1T
3142 // BC1TL
3143
3144 010001,01000,3.0,1.ND,1.TF,16.OFFSET:COP1S:32,f::BC1a
3145 "bc1%s<TF>%s<ND> <OFFSET>"
3146 *mipsI:
3147 *mipsII:
3148 *mipsIII:
3149 {
3150 check_fpu (SD_);
3151 check_branch_bug ();
3152 TRACE_BRANCH_INPUT (PREVCOC1());
3153 if (PREVCOC1() == TF)
3154 {
3155 address_word dest = NIA + (EXTEND16 (OFFSET) << 2);
3156 TRACE_BRANCH_RESULT (dest);
3157 mark_branch_bug (dest);
3158 DELAY_SLOT (dest);
3159 }
3160 else if (ND)
3161 {
3162 TRACE_BRANCH_RESULT (0);
3163 NULLIFY_NEXT_INSTRUCTION ();
3164 }
3165 else
3166 {
3167 TRACE_BRANCH_RESULT (NIA);
3168 }
3169 }
3170
3171 010001,01000,3.CC,1.ND,1.TF,16.OFFSET:COP1S:32,f::BC1b
3172 "bc1%s<TF>%s<ND> <OFFSET>":CC == 0
3173 "bc1%s<TF>%s<ND> <CC>, <OFFSET>"
3174 *mipsIV:
3175 *mipsV:
3176 #*vr4100:
3177 *vr5000:
3178 *r3900:
3179 {
3180 check_fpu (SD_);
3181 check_branch_bug ();
3182 if (GETFCC(CC) == TF)
3183 {
3184 address_word dest = NIA + (EXTEND16 (OFFSET) << 2);
3185 mark_branch_bug (dest);
3186 DELAY_SLOT (dest);
3187 }
3188 else if (ND)
3189 {
3190 NULLIFY_NEXT_INSTRUCTION ();
3191 }
3192 }
3193
3194
3195
3196
3197
3198
3199 // C.EQ.S
3200 // C.EQ.D
3201 // ...
3202
3203 :function:::void:do_c_cond_fmt:int fmt, int ft, int fs, int cc, int cond, instruction_word insn
3204 {
3205 int less;
3206 int equal;
3207 int unordered;
3208 int condition;
3209 unsigned64 ofs = ValueFPR (fs, fmt);
3210 unsigned64 oft = ValueFPR (ft, fmt);
3211 if (NaN (ofs, fmt) || NaN (oft, fmt))
3212 {
3213 if (FCSR & FP_ENABLE (IO))
3214 {
3215 FCSR |= FP_CAUSE (IO);
3216 SignalExceptionFPE ();
3217 }
3218 less = 0;
3219 equal = 0;
3220 unordered = 1;
3221 }
3222 else
3223 {
3224 less = Less (ofs, oft, fmt);
3225 equal = Equal (ofs, oft, fmt);
3226 unordered = 0;
3227 }
3228 condition = (((cond & (1 << 2)) && less)
3229 || ((cond & (1 << 1)) && equal)
3230 || ((cond & (1 << 0)) && unordered));
3231 SETFCC (cc, condition);
3232 }
3233
3234 010001,10,3.FMT,5.FT,5.FS,3.0,00,11,4.COND:COP1:32,f::C.cond.fmta
3235 "c.%s<COND>.%s<FMT> f<FS>, f<FT>"
3236 *mipsI:
3237 *mipsII:
3238 *mipsIII:
3239 {
3240 int fmt = FMT;
3241 check_fpu (SD_);
3242 check_fmt_p (SD_, fmt, instruction_0);
3243 do_c_cond_fmt (SD_, fmt, FT, FS, 0, COND, instruction_0);
3244 }
3245
3246 010001,10,3.FMT,5.FT,5.FS,3.CC,00,11,4.COND:COP1:32,f::C.cond.fmtb
3247 "c.%s<COND>.%s<FMT> f<FS>, f<FT>":CC == 0
3248 "c.%s<COND>.%s<FMT> <CC>, f<FS>, f<FT>"
3249 *mipsIV:
3250 *mipsV:
3251 *vr4100:
3252 *vr5000:
3253 *r3900:
3254 {
3255 int fmt = FMT;
3256 check_fpu (SD_);
3257 check_fmt_p (SD_, fmt, instruction_0);
3258 do_c_cond_fmt (SD_, fmt, FT, FS, CC, COND, instruction_0);
3259 }
3260
3261
3262 010001,10,3.FMT,00000,5.FS,5.FD,001010:COP1:64,f::CEIL.L.fmt
3263 "ceil.l.%s<FMT> f<FD>, f<FS>"
3264 *mipsIII:
3265 *mipsIV:
3266 *mipsV:
3267 *vr4100:
3268 *vr5000:
3269 *r3900:
3270 {
3271 int fmt = FMT;
3272 check_fpu (SD_);
3273 check_fmt (SD_, fmt, instruction_0);
3274 StoreFPR(FD,fmt_long,Convert(FP_RM_TOPINF,ValueFPR(FS,fmt),fmt,fmt_long));
3275 }
3276
3277
3278 010001,10,3.FMT,00000,5.FS,5.FD,001110:COP1:32,f::CEIL.W
3279 *mipsII:
3280 *mipsIII:
3281 *mipsIV:
3282 *mipsV:
3283 *vr4100:
3284 *vr5000:
3285 *r3900:
3286 {
3287 int fmt = FMT;
3288 check_fpu (SD_);
3289 check_fmt (SD_, fmt, instruction_0);
3290 StoreFPR(FD,fmt_word,Convert(FP_RM_TOPINF,ValueFPR(FS,fmt),fmt,fmt_word));
3291 }
3292
3293
3294 // CFC1
3295 // CTC1
3296 010001,00,X,10,5.RT,5.FS,00000000000:COP1Sa:32,f::CxC1
3297 "c%s<X>c1 r<RT>, f<FS>"
3298 *mipsI:
3299 *mipsII:
3300 *mipsIII:
3301 {
3302 check_fpu (SD_);
3303 if (X)
3304 {
3305 if (FS == 0)
3306 PENDING_FILL(FCR0IDX,VL4_8(GPR[RT]));
3307 else if (FS == 31)
3308 PENDING_FILL(FCR31IDX,VL4_8(GPR[RT]));
3309 /* else NOP */
3310 PENDING_SCHED(FCSR, FCR31 & (1<<23), 1, 23);
3311 }
3312 else
3313 { /* control from */
3314 if (FS == 0)
3315 PENDING_FILL(RT, EXTEND32 (FCR0));
3316 else if (FS == 31)
3317 PENDING_FILL(RT, EXTEND32 (FCR31));
3318 /* else NOP */
3319 }
3320 }
3321 010001,00,X,10,5.RT,5.FS,00000000000:COP1Sb:32,f::CxC1
3322 "c%s<X>c1 r<RT>, f<FS>"
3323 *mipsIV:
3324 *mipsV:
3325 *vr4100:
3326 *vr5000:
3327 *r3900:
3328 {
3329 check_fpu (SD_);
3330 if (X)
3331 {
3332 /* control to */
3333 TRACE_ALU_INPUT1 (GPR[RT]);
3334 if (FS == 0)
3335 {
3336 FCR0 = VL4_8(GPR[RT]);
3337 TRACE_ALU_RESULT (FCR0);
3338 }
3339 else if (FS == 31)
3340 {
3341 FCR31 = VL4_8(GPR[RT]);
3342 SETFCC(0,((FCR31 & (1 << 23)) ? 1 : 0));
3343 TRACE_ALU_RESULT (FCR31);
3344 }
3345 else
3346 {
3347 TRACE_ALU_RESULT0 ();
3348 }
3349 /* else NOP */
3350 }
3351 else
3352 { /* control from */
3353 if (FS == 0)
3354 {
3355 TRACE_ALU_INPUT1 (FCR0);
3356 GPR[RT] = EXTEND32 (FCR0);
3357 }
3358 else if (FS == 31)
3359 {
3360 TRACE_ALU_INPUT1 (FCR31);
3361 GPR[RT] = EXTEND32 (FCR31);
3362 }
3363 TRACE_ALU_RESULT (GPR[RT]);
3364 /* else NOP */
3365 }
3366 }
3367
3368
3369 //
3370 // FIXME: Does not correctly differentiate between mips*
3371 //
3372 010001,10,3.FMT,00000,5.FS,5.FD,100001:COP1:32,f::CVT.D.fmt
3373 "cvt.d.%s<FMT> f<FD>, f<FS>"
3374 *mipsI:
3375 *mipsII:
3376 *mipsIII:
3377 *mipsIV:
3378 *mipsV:
3379 *vr4100:
3380 *vr5000:
3381 *r3900:
3382 {
3383 int fmt = FMT;
3384 check_fpu (SD_);
3385 {
3386 if ((fmt == fmt_double) | 0)
3387 SignalException(ReservedInstruction,instruction_0);
3388 else
3389 StoreFPR(FD,fmt_double,Convert(GETRM(),ValueFPR(FS,fmt),fmt,fmt_double));
3390 }
3391 }
3392
3393
3394 010001,10,3.FMT,00000,5.FS,5.FD,100101:COP1:64,f::CVT.L.fmt
3395 "cvt.l.%s<FMT> f<FD>, f<FS>"
3396 *mipsIII:
3397 *mipsIV:
3398 *mipsV:
3399 *vr4100:
3400 *vr5000:
3401 *r3900:
3402 {
3403 int fmt = FMT;
3404 check_fpu (SD_);
3405 {
3406 if ((fmt == fmt_long) | ((fmt == fmt_long) || (fmt == fmt_word)))
3407 SignalException(ReservedInstruction,instruction_0);
3408 else
3409 StoreFPR(FD,fmt_long,Convert(GETRM(),ValueFPR(FS,fmt),fmt,fmt_long));
3410 }
3411 }
3412
3413
3414 //
3415 // FIXME: Does not correctly differentiate between mips*
3416 //
3417 010001,10,3.FMT,00000,5.FS,5.FD,100000:COP1:32,f::CVT.S.fmt
3418 "cvt.s.%s<FMT> f<FD>, f<FS>"
3419 *mipsI:
3420 *mipsII:
3421 *mipsIII:
3422 *mipsIV:
3423 *mipsV:
3424 *vr4100:
3425 *vr5000:
3426 *r3900:
3427 {
3428 int fmt = FMT;
3429 check_fpu (SD_);
3430 {
3431 if ((fmt == fmt_single) | 0)
3432 SignalException(ReservedInstruction,instruction_0);
3433 else
3434 StoreFPR(FD,fmt_single,Convert(GETRM(),ValueFPR(FS,fmt),fmt,fmt_single));
3435 }
3436 }
3437
3438
3439 010001,10,3.FMT,00000,5.FS,5.FD,100100:COP1:32,f::CVT.W.fmt
3440 "cvt.w.%s<FMT> f<FD>, f<FS>"
3441 *mipsI:
3442 *mipsII:
3443 *mipsIII:
3444 *mipsIV:
3445 *mipsV:
3446 *vr4100:
3447 *vr5000:
3448 *r3900:
3449 {
3450 int fmt = FMT;
3451 check_fpu (SD_);
3452 {
3453 if ((fmt == fmt_word) | ((fmt == fmt_long) || (fmt == fmt_word)))
3454 SignalException(ReservedInstruction,instruction_0);
3455 else
3456 StoreFPR(FD,fmt_word,Convert(GETRM(),ValueFPR(FS,fmt),fmt,fmt_word));
3457 }
3458 }
3459
3460
3461 010001,10,3.FMT,5.FT,5.FS,5.FD,000011:COP1:32,f::DIV.fmt
3462 "div.%s<FMT> f<FD>, f<FS>, f<FT>"
3463 *mipsI:
3464 *mipsII:
3465 *mipsIII:
3466 *mipsIV:
3467 *mipsV:
3468 *vr4100:
3469 *vr5000:
3470 *r3900:
3471 {
3472 int fmt = FMT;
3473 check_fpu (SD_);
3474 check_fmt (SD_, fmt, instruction_0);
3475 StoreFPR(FD,fmt,Divide(ValueFPR(FS,fmt),ValueFPR(FT,fmt),fmt));
3476 }
3477
3478
3479 // DMFC1
3480 // DMTC1
3481 010001,00,X,01,5.RT,5.FS,00000000000:COP1Sa:64,f::DMxC1
3482 "dm%s<X>c1 r<RT>, f<FS>"
3483 *mipsIII:
3484 {
3485 check_fpu (SD_);
3486 check_u64 (SD_, instruction_0);
3487 if (X)
3488 {
3489 if (SizeFGR() == 64)
3490 PENDING_FILL((FS + FGRIDX),GPR[RT]);
3491 else if ((FS & 0x1) == 0)
3492 {
3493 PENDING_FILL(((FS + 1) + FGRIDX),VH4_8(GPR[RT]));
3494 PENDING_FILL((FS + FGRIDX),VL4_8(GPR[RT]));
3495 }
3496 }
3497 else
3498 {
3499 if (SizeFGR() == 64)
3500 PENDING_FILL(RT,FGR[FS]);
3501 else if ((FS & 0x1) == 0)
3502 PENDING_FILL(RT,(SET64HI(FGR[FS+1]) | FGR[FS]));
3503 else
3504 {
3505 if (STATE_VERBOSE_P(SD))
3506 sim_io_eprintf (SD,
3507 "Warning: PC 0x%lx: semantic_DMxC1_COP1Sa 32-bit use of odd FPR number\n",
3508 (long) CIA);
3509 PENDING_FILL(RT,SET64HI(0xDEADC0DE) | 0xBAD0BAD0);
3510 }
3511 }
3512 }
3513 010001,00,X,01,5.RT,5.FS,00000000000:COP1Sb:64,f::DMxC1
3514 "dm%s<X>c1 r<RT>, f<FS>"
3515 *mipsIV:
3516 *mipsV:
3517 *vr4100:
3518 *vr5000:
3519 *r3900:
3520 {
3521 check_fpu (SD_);
3522 check_u64 (SD_, instruction_0);
3523 if (X)
3524 {
3525 if (SizeFGR() == 64)
3526 StoreFPR (FS, fmt_uninterpreted_64, GPR[RT]);
3527 else if ((FS & 0x1) == 0)
3528 StoreFPR (FS, fmt_uninterpreted_64, SET64HI (FGR[FS+1]) | FGR[FS]);
3529 }
3530 else
3531 {
3532 if (SizeFGR() == 64)
3533 GPR[RT] = FGR[FS];
3534 else if ((FS & 0x1) == 0)
3535 GPR[RT] = SET64HI (FGR[FS+1]) | FGR[FS];
3536 else
3537 {
3538 if (STATE_VERBOSE_P(SD))
3539 sim_io_eprintf (SD,
3540 "Warning: PC 0x%lx: DMxC1 32-bit use of odd FPR number\n",
3541 (long) CIA);
3542 GPR[RT] = SET64HI (0xDEADC0DE) | 0xBAD0BAD0;
3543 }
3544 }
3545 }
3546
3547
3548 010001,10,3.FMT,00000,5.FS,5.FD,001011:COP1:64,f::FLOOR.L.fmt
3549 "floor.l.%s<FMT> f<FD>, f<FS>"
3550 *mipsIII:
3551 *mipsIV:
3552 *mipsV:
3553 *vr4100:
3554 *vr5000:
3555 *r3900:
3556 {
3557 int fmt = FMT;
3558 check_fpu (SD_);
3559 check_fmt (SD_, fmt, instruction_0);
3560 StoreFPR(FD,fmt_long,Convert(FP_RM_TOMINF,ValueFPR(FS,fmt),fmt,fmt_long));
3561 }
3562
3563
3564 010001,10,3.FMT,00000,5.FS,5.FD,001111:COP1:32,f::FLOOR.W.fmt
3565 "floor.w.%s<FMT> f<FD>, f<FS>"
3566 *mipsII:
3567 *mipsIII:
3568 *mipsIV:
3569 *mipsV:
3570 *vr4100:
3571 *vr5000:
3572 *r3900:
3573 {
3574 int fmt = FMT;
3575 check_fpu (SD_);
3576 check_fmt (SD_, fmt, instruction_0);
3577 StoreFPR(FD,fmt_word,Convert(FP_RM_TOMINF,ValueFPR(FS,fmt),fmt,fmt_word));
3578 }
3579
3580
3581 110101,5.BASE,5.FT,16.OFFSET:COP1:32,f::LDC1
3582 "ldc1 f<FT>, <OFFSET>(r<BASE>)"
3583 *mipsII:
3584 *mipsIII:
3585 *mipsIV:
3586 *mipsV:
3587 *vr4100:
3588 *vr5000:
3589 *r3900:
3590 {
3591 check_fpu (SD_);
3592 COP_LD (1, FT, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
3593 }
3594
3595
3596 010011,5.BASE,5.INDEX,5.0,5.FD,000001:COP1X:64,f::LDXC1
3597 "ldxc1 f<FD>, r<INDEX>(r<BASE>)"
3598 *mipsIV:
3599 *mipsV:
3600 *vr5000:
3601 {
3602 check_fpu (SD_);
3603 check_u64 (SD_, instruction_0);
3604 COP_LD (1, FD, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], GPR[INDEX]));
3605 }
3606
3607
3608
3609 110001,5.BASE,5.FT,16.OFFSET:COP1:32,f::LWC1
3610 "lwc1 f<FT>, <OFFSET>(r<BASE>)"
3611 *mipsI:
3612 *mipsII:
3613 *mipsIII:
3614 *mipsIV:
3615 *mipsV:
3616 *vr4100:
3617 *vr5000:
3618 *r3900:
3619 {
3620 check_fpu (SD_);
3621 COP_LW (1, FT, do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
3622 }
3623
3624
3625 010011,5.BASE,5.INDEX,5.0,5.FD,000000:COP1X:64,f::LWXC1
3626 "lwxc1 f<FD>, r<INDEX>(r<BASE>)"
3627 *mipsIV:
3628 *mipsV:
3629 *vr5000:
3630 {
3631 check_fpu (SD_);
3632 check_u64 (SD_, instruction_0);
3633 COP_LW (1, FD, do_load (SD_, AccessLength_WORD, GPR[BASE], GPR[INDEX]));
3634 }
3635
3636
3637
3638 //
3639 // FIXME: Not correct for mips*
3640 //
3641 010011,5.FR,5.FT,5.FS,5.FD,100,001:COP1X:32,f::MADD.D
3642 "madd.d f<FD>, f<FR>, f<FS>, f<FT>"
3643 *mipsIV:
3644 *mipsV:
3645 *vr5000:
3646 {
3647 check_fpu (SD_);
3648 {
3649 StoreFPR(FD,fmt_double,Add(Multiply(ValueFPR(FS,fmt_double),ValueFPR(FT,fmt_double),fmt_double),ValueFPR(FR,fmt_double),fmt_double));
3650 }
3651 }
3652
3653
3654 010011,5.FR,5.FT,5.FS,5.FD,100,000:COP1X:32,f::MADD.S
3655 "madd.s f<FD>, f<FR>, f<FS>, f<FT>"
3656 *mipsIV:
3657 *mipsV:
3658 *vr5000:
3659 {
3660 check_fpu (SD_);
3661 {
3662 StoreFPR(FD,fmt_single,Add(Multiply(ValueFPR(FS,fmt_single),ValueFPR(FT,fmt_single),fmt_single),ValueFPR(FR,fmt_single),fmt_single));
3663 }
3664 }
3665
3666
3667 // MFC1
3668 // MTC1
3669 010001,00,X,00,5.RT,5.FS,00000000000:COP1Sa:32,f::MxC1
3670 "m%s<X>c1 r<RT>, f<FS>"
3671 *mipsI:
3672 *mipsII:
3673 *mipsIII:
3674 {
3675 check_fpu (SD_);
3676 if (X)
3677 { /*MTC1*/
3678 if (SizeFGR() == 64)
3679 {
3680 if (STATE_VERBOSE_P(SD))
3681 sim_io_eprintf (SD,
3682 "Warning: PC 0x%lx: MTC1 not DMTC1 with 64 bit regs\n",
3683 (long) CIA);
3684 PENDING_FILL ((FS + FGRIDX), (SET64HI(0xDEADC0DE) | VL4_8(GPR[RT])));
3685 }
3686 else
3687 PENDING_FILL ((FS + FGRIDX), VL4_8(GPR[RT]));
3688 }
3689 else /*MFC1*/
3690 PENDING_FILL (RT, EXTEND32 (FGR[FS]));
3691 }
3692 010001,00,X,00,5.RT,5.FS,00000000000:COP1Sb:32,f::MxC1
3693 "m%s<X>c1 r<RT>, f<FS>"
3694 *mipsIV:
3695 *mipsV:
3696 *vr4100:
3697 *vr5000:
3698 *r3900:
3699 {
3700 int fs = FS;
3701 check_fpu (SD_);
3702 if (X)
3703 /*MTC1*/
3704 StoreFPR (FS, fmt_uninterpreted_32, VL4_8 (GPR[RT]));
3705 else /*MFC1*/
3706 GPR[RT] = EXTEND32 (FGR[FS]);
3707 }
3708
3709
3710 010001,10,3.FMT,00000,5.FS,5.FD,000110:COP1:32,f::MOV.fmt
3711 "mov.%s<FMT> f<FD>, f<FS>"
3712 *mipsI:
3713 *mipsII:
3714 *mipsIII:
3715 *mipsIV:
3716 *mipsV:
3717 *vr4100:
3718 *vr5000:
3719 *r3900:
3720 {
3721 int fmt = FMT;
3722 check_fpu (SD_);
3723 check_fmt_p (SD_, fmt, instruction_0);
3724 StoreFPR(FD,fmt,ValueFPR(FS,fmt));
3725 }
3726
3727
3728 // MOVF
3729 // MOVT
3730 000000,5.RS,3.CC,0,1.TF,5.RD,00000,000001:SPECIAL:32,f::MOVtf
3731 "mov%s<TF> r<RD>, r<RS>, <CC>"
3732 *mipsIV:
3733 *mipsV:
3734 *vr5000:
3735 {
3736 check_fpu (SD_);
3737 if (GETFCC(CC) == TF)
3738 GPR[RD] = GPR[RS];
3739 }
3740
3741
3742 // MOVF.fmt
3743 // MOVT.fmt
3744 010001,10,3.FMT,3.CC,0,1.TF,5.FS,5.FD,010001:COP1:32,f::MOVtf.fmt
3745 "mov%s<TF>.%s<FMT> f<FD>, f<FS>, <CC>"
3746 *mipsIV:
3747 *mipsV:
3748 *vr5000:
3749 {
3750 int fmt = FMT;
3751 check_fpu (SD_);
3752 {
3753 if (GETFCC(CC) == TF)
3754 StoreFPR (FD, fmt, ValueFPR (FS, fmt));
3755 else
3756 StoreFPR (FD, fmt, ValueFPR (FD, fmt));
3757 }
3758 }
3759
3760
3761 010001,10,3.FMT,5.RT,5.FS,5.FD,010011:COP1:32,f::MOVN.fmt
3762 "movn.%s<FMT> f<FD>, f<FS>, r<RT>"
3763 *mipsIV:
3764 *mipsV:
3765 *vr5000:
3766 {
3767 check_fpu (SD_);
3768 if (GPR[RT] != 0)
3769 StoreFPR (FD, FMT, ValueFPR (FS, FMT));
3770 else
3771 StoreFPR (FD, FMT, ValueFPR (FD, FMT));
3772 }
3773
3774
3775 // MOVT see MOVtf
3776
3777
3778 // MOVT.fmt see MOVtf.fmt
3779
3780
3781
3782 010001,10,3.FMT,5.RT,5.FS,5.FD,010010:COP1:32,f::MOVZ.fmt
3783 "movz.%s<FMT> f<FD>, f<FS>, r<RT>"
3784 *mipsIV:
3785 *mipsV:
3786 *vr5000:
3787 {
3788 check_fpu (SD_);
3789 if (GPR[RT] == 0)
3790 StoreFPR (FD, FMT, ValueFPR (FS, FMT));
3791 else
3792 StoreFPR (FD, FMT, ValueFPR (FD, FMT));
3793 }
3794
3795
3796 // MSUB.fmt
3797 010011,5.FR,5.FT,5.FS,5.FD,101,001:COP1X:32,f::MSUB.D
3798 "msub.d f<FD>, f<FR>, f<FS>, f<FT>"
3799 *mipsIV:
3800 *mipsV:
3801 *vr5000:
3802 {
3803 check_fpu (SD_);
3804 StoreFPR(FD,fmt_double,Sub(Multiply(ValueFPR(FS,fmt_double),ValueFPR(FT,fmt_double),fmt_double),ValueFPR(FR,fmt_double),fmt_double));
3805 }
3806
3807
3808 // MSUB.fmt
3809 010011,5.FR,5.FT,5.FS,5.FD,101000:COP1X:32,f::MSUB.S
3810 "msub.s f<FD>, f<FR>, f<FS>, f<FT>"
3811 *mipsIV:
3812 *mipsV:
3813 *vr5000:
3814 {
3815 check_fpu (SD_);
3816 StoreFPR(FD,fmt_single,Sub(Multiply(ValueFPR(FS,fmt_single),ValueFPR(FT,fmt_single),fmt_single),ValueFPR(FR,fmt_single),fmt_single));
3817 }
3818
3819
3820 // MTC1 see MxC1
3821
3822
3823 010001,10,3.FMT,5.FT,5.FS,5.FD,000010:COP1:32,f::MUL.fmt
3824 "mul.%s<FMT> f<FD>, f<FS>, f<FT>"
3825 *mipsI:
3826 *mipsII:
3827 *mipsIII:
3828 *mipsIV:
3829 *mipsV:
3830 *vr4100:
3831 *vr5000:
3832 *r3900:
3833 {
3834 int fmt = FMT;
3835 check_fpu (SD_);
3836 check_fmt_p (SD_, fmt, instruction_0);
3837 StoreFPR(FD,fmt,Multiply(ValueFPR(FS,fmt),ValueFPR(FT,fmt),fmt));
3838 }
3839
3840
3841 010001,10,3.FMT,00000,5.FS,5.FD,000111:COP1:32,f::NEG.fmt
3842 "neg.%s<FMT> f<FD>, f<FS>"
3843 *mipsI:
3844 *mipsII:
3845 *mipsIII:
3846 *mipsIV:
3847 *mipsV:
3848 *vr4100:
3849 *vr5000:
3850 *r3900:
3851 {
3852 int fmt = FMT;
3853 check_fpu (SD_);
3854 check_fmt_p (SD_, fmt, instruction_0);
3855 StoreFPR(FD,fmt,Negate(ValueFPR(FS,fmt),fmt));
3856 }
3857
3858
3859 // NMADD.fmt
3860 010011,5.FR,5.FT,5.FS,5.FD,110001:COP1X:32,f::NMADD.D
3861 "nmadd.d f<FD>, f<FR>, f<FS>, f<FT>"
3862 *mipsIV:
3863 *mipsV:
3864 *vr5000:
3865 {
3866 check_fpu (SD_);
3867 StoreFPR(FD,fmt_double,Negate(Add(Multiply(ValueFPR(FS,fmt_double),ValueFPR(FT,fmt_double),fmt_double),ValueFPR(FR,fmt_double),fmt_double),fmt_double));
3868 }
3869
3870
3871 // NMADD.fmt
3872 010011,5.FR,5.FT,5.FS,5.FD,110000:COP1X:32,f::NMADD.S
3873 "nmadd.s f<FD>, f<FR>, f<FS>, f<FT>"
3874 *mipsIV:
3875 *mipsV:
3876 *vr5000:
3877 {
3878 check_fpu (SD_);
3879 StoreFPR(FD,fmt_single,Negate(Add(Multiply(ValueFPR(FS,fmt_single),ValueFPR(FT,fmt_single),fmt_single),ValueFPR(FR,fmt_single),fmt_single),fmt_single));
3880 }
3881
3882
3883 // NMSUB.fmt
3884 010011,5.FR,5.FT,5.FS,5.FD,111001:COP1X:32,f::NMSUB.D
3885 "nmsub.d f<FD>, f<FR>, f<FS>, f<FT>"
3886 *mipsIV:
3887 *mipsV:
3888 *vr5000:
3889 {
3890 check_fpu (SD_);
3891 StoreFPR(FD,fmt_double,Negate(Sub(Multiply(ValueFPR(FS,fmt_double),ValueFPR(FT,fmt_double),fmt_double),ValueFPR(FR,fmt_double),fmt_double),fmt_double));
3892 }
3893
3894
3895 // NMSUB.fmt
3896 010011,5.FR,5.FT,5.FS,5.FD,111000:COP1X:32,f::NMSUB.S
3897 "nmsub.s f<FD>, f<FR>, f<FS>, f<FT>"
3898 *mipsIV:
3899 *mipsV:
3900 *vr5000:
3901 {
3902 check_fpu (SD_);
3903 StoreFPR(FD,fmt_single,Negate(Sub(Multiply(ValueFPR(FS,fmt_single),ValueFPR(FT,fmt_single),fmt_single),ValueFPR(FR,fmt_single),fmt_single),fmt_single));
3904 }
3905
3906
3907 010011,5.BASE,5.INDEX,5.HINT,00000,001111:COP1X:64::PREFX
3908 "prefx <HINT>, r<INDEX>(r<BASE>)"
3909 *mipsIV:
3910 *mipsV:
3911 *vr5000:
3912 {
3913 address_word base = GPR[BASE];
3914 address_word index = GPR[INDEX];
3915 {
3916 address_word vaddr = loadstore_ea (SD_, base, index);
3917 address_word paddr;
3918 int uncached;
3919 if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
3920 Prefetch(uncached,paddr,vaddr,isDATA,HINT);
3921 }
3922 }
3923
3924 010001,10,3.FMT,00000,5.FS,5.FD,010101:COP1:32,f::RECIP.fmt
3925 "recip.%s<FMT> f<FD>, f<FS>"
3926 *mipsIV:
3927 *mipsV:
3928 *vr5000:
3929 {
3930 int fmt = FMT;
3931 check_fpu (SD_);
3932 check_fmt (SD_, fmt, instruction_0);
3933 StoreFPR(FD,fmt,Recip(ValueFPR(FS,fmt),fmt));
3934 }
3935
3936
3937 010001,10,3.FMT,00000,5.FS,5.FD,001000:COP1:64,f::ROUND.L.fmt
3938 "round.l.%s<FMT> f<FD>, f<FS>"
3939 *mipsIII:
3940 *mipsIV:
3941 *mipsV:
3942 *vr4100:
3943 *vr5000:
3944 *r3900:
3945 {
3946 int fmt = FMT;
3947 check_fpu (SD_);
3948 check_fmt (SD_, fmt, instruction_0);
3949 StoreFPR(FD,fmt_long,Convert(FP_RM_NEAREST,ValueFPR(FS,fmt),fmt,fmt_long));
3950 }
3951
3952
3953 010001,10,3.FMT,00000,5.FS,5.FD,001100:COP1:32,f::ROUND.W.fmt
3954 "round.w.%s<FMT> f<FD>, f<FS>"
3955 *mipsII:
3956 *mipsIII:
3957 *mipsIV:
3958 *mipsV:
3959 *vr4100:
3960 *vr5000:
3961 *r3900:
3962 {
3963 int fmt = FMT;
3964 check_fpu (SD_);
3965 check_fmt (SD_, fmt, instruction_0);
3966 StoreFPR(FD,fmt_word,Convert(FP_RM_NEAREST,ValueFPR(FS,fmt),fmt,fmt_word));
3967 }
3968
3969
3970 010001,10,3.FMT,00000,5.FS,5.FD,010110:COP1:32,f::RSQRT.fmt
3971 *mipsIV:
3972 *mipsV:
3973 "rsqrt.%s<FMT> f<FD>, f<FS>"
3974 *vr5000:
3975 {
3976 int fmt = FMT;
3977 check_fpu (SD_);
3978 check_fmt (SD_, fmt, instruction_0);
3979 StoreFPR(FD,fmt,Recip(SquareRoot(ValueFPR(FS,fmt),fmt),fmt));
3980 }
3981
3982
3983 111101,5.BASE,5.FT,16.OFFSET:COP1:32,f::SDC1
3984 "sdc1 f<FT>, <OFFSET>(r<BASE>)"
3985 *mipsII:
3986 *mipsIII:
3987 *mipsIV:
3988 *mipsV:
3989 *vr4100:
3990 *vr5000:
3991 *r3900:
3992 {
3993 check_fpu (SD_);
3994 do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), COP_SD (1, FT));
3995 }
3996
3997
3998 010011,5.BASE,5.INDEX,5.FS,00000001001:COP1X:64,f::SDXC1
3999 "sdxc1 f<FS>, r<INDEX>(r<BASE>)"
4000 *mipsIV:
4001 *mipsV:
4002 *vr5000:
4003 {
4004 check_fpu (SD_);
4005 check_u64 (SD_, instruction_0);
4006 do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], GPR[INDEX], COP_SD (1, FS));
4007 }
4008
4009
4010 010001,10,3.FMT,00000,5.FS,5.FD,000100:COP1:32,f::SQRT.fmt
4011 "sqrt.%s<FMT> f<FD>, f<FS>"
4012 *mipsII:
4013 *mipsIII:
4014 *mipsIV:
4015 *mipsV:
4016 *vr4100:
4017 *vr5000:
4018 *r3900:
4019 {
4020 int fmt = FMT;
4021 check_fpu (SD_);
4022 check_fmt (SD_, fmt, instruction_0);
4023 StoreFPR(FD,fmt,(SquareRoot(ValueFPR(FS,fmt),fmt)));
4024 }
4025
4026
4027 010001,10,3.FMT,5.FT,5.FS,5.FD,000001:COP1:32,f::SUB.fmt
4028 "sub.%s<FMT> f<FD>, f<FS>, f<FT>"
4029 *mipsI:
4030 *mipsII:
4031 *mipsIII:
4032 *mipsIV:
4033 *mipsV:
4034 *vr4100:
4035 *vr5000:
4036 *r3900:
4037 {
4038 int fmt = FMT;
4039 check_fpu (SD_);
4040 check_fmt_p (SD_, fmt, instruction_0);
4041 StoreFPR(FD,fmt,Sub(ValueFPR(FS,fmt),ValueFPR(FT,fmt),fmt));
4042 }
4043
4044
4045
4046 111001,5.BASE,5.FT,16.OFFSET:COP1:32,f::SWC1
4047 "swc1 f<FT>, <OFFSET>(r<BASE>)"
4048 *mipsI:
4049 *mipsII:
4050 *mipsIII:
4051 *mipsIV:
4052 *mipsV:
4053 *vr4100:
4054 *vr5000:
4055 *r3900:
4056 {
4057 address_word base = GPR[BASE];
4058 address_word offset = EXTEND16 (OFFSET);
4059 check_fpu (SD_);
4060 {
4061 address_word vaddr = loadstore_ea (SD_, base, offset);
4062 address_word paddr;
4063 int uncached;
4064 if ((vaddr & 3) != 0)
4065 {
4066 SIM_CORE_SIGNAL (SD, CPU, cia, read_map, AccessLength_WORD+1, vaddr, write_transfer, sim_core_unaligned_signal);
4067 }
4068 else
4069 {
4070 if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
4071 {
4072 uword64 memval = 0;
4073 uword64 memval1 = 0;
4074 uword64 mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
4075 address_word reverseendian = (ReverseEndian ?(mask ^ AccessLength_WORD): 0);
4076 address_word bigendiancpu = (BigEndianCPU ?(mask ^ AccessLength_WORD): 0);
4077 unsigned int byte;
4078 paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
4079 byte = ((vaddr & mask) ^ bigendiancpu);
4080 memval = (((uword64)COP_SW(((instruction_0 >> 26) & 0x3),FT)) << (8 * byte));
4081 StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
4082 }
4083 }
4084 }
4085 }
4086
4087
4088 010011,5.BASE,5.INDEX,5.FS,00000,001000:COP1X:32,f::SWXC1
4089 "swxc1 f<FS>, r<INDEX>(r<BASE>)"
4090 *mipsIV:
4091 *mipsV:
4092 *vr5000:
4093 {
4094
4095 address_word base = GPR[BASE];
4096 address_word index = GPR[INDEX];
4097 check_fpu (SD_);
4098 check_u64 (SD_, instruction_0);
4099 {
4100 address_word vaddr = loadstore_ea (SD_, base, index);
4101 address_word paddr;
4102 int uncached;
4103 if ((vaddr & 3) != 0)
4104 {
4105 SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, write_transfer, sim_core_unaligned_signal);
4106 }
4107 else
4108 {
4109 if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
4110 {
4111 unsigned64 memval = 0;
4112 unsigned64 memval1 = 0;
4113 unsigned64 mask = 0x7;
4114 unsigned int byte;
4115 paddr = ((paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2)));
4116 byte = ((vaddr & mask) ^ (BigEndianCPU << 2));
4117 memval = (((unsigned64)COP_SW(1,FS)) << (8 * byte));
4118 {
4119 StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
4120 }
4121 }
4122 }
4123 }
4124 }
4125
4126
4127 010001,10,3.FMT,00000,5.FS,5.FD,001001:COP1:64,f::TRUNC.L.fmt
4128 "trunc.l.%s<FMT> f<FD>, f<FS>"
4129 *mipsIII:
4130 *mipsIV:
4131 *mipsV:
4132 *vr4100:
4133 *vr5000:
4134 *r3900:
4135 {
4136 int fmt = FMT;
4137 check_fpu (SD_);
4138 check_fmt (SD_, fmt, instruction_0);
4139 StoreFPR(FD,fmt_long,Convert(FP_RM_TOZERO,ValueFPR(FS,fmt),fmt,fmt_long));
4140 }
4141
4142
4143 010001,10,3.FMT,00000,5.FS,5.FD,001101:COP1:32,f::TRUNC.W
4144 "trunc.w.%s<FMT> f<FD>, f<FS>"
4145 *mipsII:
4146 *mipsIII:
4147 *mipsIV:
4148 *mipsV:
4149 *vr4100:
4150 *vr5000:
4151 *r3900:
4152 {
4153 int fmt = FMT;
4154 check_fpu (SD_);
4155 check_fmt (SD_, fmt, instruction_0);
4156 StoreFPR(FD,fmt_word,Convert(FP_RM_TOZERO,ValueFPR(FS,fmt),fmt,fmt_word));
4157 }
4158
4159 \f
4160 //
4161 // MIPS Architecture:
4162 //
4163 // System Control Instruction Set (COP0)
4164 //
4165
4166
4167 010000,01000,00000,16.OFFSET:COP0:32::BC0F
4168 "bc0f <OFFSET>"
4169 *mipsI:
4170 *mipsII:
4171 *mipsIII:
4172 *mipsIV:
4173 *mipsV:
4174 *vr4100:
4175 *vr5000:
4176
4177 010000,01000,00000,16.OFFSET:COP0:32::BC0F
4178 "bc0f <OFFSET>"
4179 // stub needed for eCos as tx39 hardware bug workaround
4180 *r3900:
4181 {
4182 /* do nothing */
4183 }
4184
4185
4186 010000,01000,00010,16.OFFSET:COP0:32::BC0FL
4187 "bc0fl <OFFSET>"
4188 *mipsI:
4189 *mipsII:
4190 *mipsIII:
4191 *mipsIV:
4192 *mipsV:
4193 *vr4100:
4194 *vr5000:
4195
4196
4197 010000,01000,00001,16.OFFSET:COP0:32::BC0T
4198 "bc0t <OFFSET>"
4199 *mipsI:
4200 *mipsII:
4201 *mipsIII:
4202 *mipsIV:
4203 *mipsV:
4204 *vr4100:
4205
4206
4207 010000,01000,00011,16.OFFSET:COP0:32::BC0TL
4208 "bc0tl <OFFSET>"
4209 *mipsI:
4210 *mipsII:
4211 *mipsIII:
4212 *mipsIV:
4213 *mipsV:
4214 *vr4100:
4215 *vr5000:
4216
4217
4218 101111,5.BASE,5.OP,16.OFFSET:NORMAL:32::CACHE
4219 "cache <OP>, <OFFSET>(r<BASE>)"
4220 *mipsIII:
4221 *mipsIV:
4222 *mipsV:
4223 *vr4100:
4224 *vr5000:
4225 *r3900:
4226 {
4227 address_word base = GPR[BASE];
4228 address_word offset = EXTEND16 (OFFSET);
4229 {
4230 address_word vaddr = loadstore_ea (SD_, base, offset);
4231 address_word paddr;
4232 int uncached;
4233 if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
4234 CacheOp(OP,vaddr,paddr,instruction_0);
4235 }
4236 }
4237
4238
4239 010000,1,0000000000000000000,111001:COP0:32::DI
4240 "di"
4241 *mipsI:
4242 *mipsII:
4243 *mipsIII:
4244 *mipsIV:
4245 *mipsV:
4246 *vr4100:
4247 *vr5000:
4248
4249
4250 010000,00001,5.RT,5.RD,00000000000:COP0:64::DMFC0
4251 "dmfc0 r<RT>, r<RD>"
4252 *mipsIII:
4253 *mipsIV:
4254 *mipsV:
4255 {
4256 check_u64 (SD_, instruction_0);
4257 DecodeCoproc (instruction_0);
4258 }
4259
4260
4261 010000,00101,5.RT,5.RD,00000000000:COP0:64::DMTC0
4262 "dmtc0 r<RT>, r<RD>"
4263 *mipsIII:
4264 *mipsIV:
4265 *mipsV:
4266 {
4267 check_u64 (SD_, instruction_0);
4268 DecodeCoproc (instruction_0);
4269 }
4270
4271
4272 010000,1,0000000000000000000,111000:COP0:32::EI
4273 "ei"
4274 *mipsI:
4275 *mipsII:
4276 *mipsIII:
4277 *mipsIV:
4278 *mipsV:
4279 *vr4100:
4280 *vr5000:
4281
4282
4283 010000,1,0000000000000000000,011000:COP0:32::ERET
4284 "eret"
4285 *mipsIII:
4286 *mipsIV:
4287 *mipsV:
4288 *vr4100:
4289 *vr5000:
4290 {
4291 if (SR & status_ERL)
4292 {
4293 /* Oops, not yet available */
4294 sim_io_printf (SD, "Warning: ERET when SR[ERL] set not supported");
4295 NIA = EPC;
4296 SR &= ~status_ERL;
4297 }
4298 else
4299 {
4300 NIA = EPC;
4301 SR &= ~status_EXL;
4302 }
4303 }
4304
4305
4306 010000,00000,5.RT,5.RD,00000,6.REGX:COP0:32::MFC0
4307 "mfc0 r<RT>, r<RD> # <REGX>"
4308 *mipsI:
4309 *mipsII:
4310 *mipsIII:
4311 *mipsIV:
4312 *mipsV:
4313 *vr4100:
4314 *vr5000:
4315 *r3900:
4316 {
4317 TRACE_ALU_INPUT0 ();
4318 DecodeCoproc (instruction_0);
4319 TRACE_ALU_RESULT (GPR[RT]);
4320 }
4321
4322 010000,00100,5.RT,5.RD,00000,6.REGX:COP0:32::MTC0
4323 "mtc0 r<RT>, r<RD> # <REGX>"
4324 *mipsI:
4325 *mipsII:
4326 *mipsIII:
4327 *mipsIV:
4328 *mipsV:
4329 *vr4100:
4330 *vr5000:
4331 *r3900:
4332 {
4333 DecodeCoproc (instruction_0);
4334 }
4335
4336
4337 010000,1,0000000000000000000,010000:COP0:32::RFE
4338 "rfe"
4339 *mipsI:
4340 *mipsII:
4341 *mipsIII:
4342 *mipsIV:
4343 *mipsV:
4344 *vr4100:
4345 *vr5000:
4346 *r3900:
4347 {
4348 DecodeCoproc (instruction_0);
4349 }
4350
4351
4352 0100,ZZ!0!1!3,5.COP_FUN0!8,5.COP_FUN1,16.COP_FUN2:NORMAL:32::COPz
4353 "cop<ZZ> <COP_FUN0><COP_FUN1><COP_FUN2>"
4354 *mipsI:
4355 *mipsII:
4356 *mipsIII:
4357 *mipsIV:
4358 *mipsV:
4359 *vr4100:
4360 *r3900:
4361 {
4362 DecodeCoproc (instruction_0);
4363 }
4364
4365
4366
4367 010000,1,0000000000000000000,001000:COP0:32::TLBP
4368 "tlbp"
4369 *mipsI:
4370 *mipsII:
4371 *mipsIII:
4372 *mipsIV:
4373 *mipsV:
4374 *vr4100:
4375 *vr5000:
4376
4377
4378 010000,1,0000000000000000000,000001:COP0:32::TLBR
4379 "tlbr"
4380 *mipsI:
4381 *mipsII:
4382 *mipsIII:
4383 *mipsIV:
4384 *mipsV:
4385 *vr4100:
4386 *vr5000:
4387
4388
4389 010000,1,0000000000000000000,000010:COP0:32::TLBWI
4390 "tlbwi"
4391 *mipsI:
4392 *mipsII:
4393 *mipsIII:
4394 *mipsIV:
4395 *mipsV:
4396 *vr4100:
4397 *vr5000:
4398
4399
4400 010000,1,0000000000000000000,000110:COP0:32::TLBWR
4401 "tlbwr"
4402 *mipsI:
4403 *mipsII:
4404 *mipsIII:
4405 *mipsIV:
4406 *mipsV:
4407 *vr4100:
4408 *vr5000:
4409
4410 \f
4411 :include:::m16.igen
4412 :include:::tx.igen
4413 :include:::vr.igen
4414 \f
This page took 0.126283 seconds and 4 git commands to generate.