0c3d17b48d9d6a43c7ed607b52834c491e598663
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35
36 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
37 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
38
39 #include "sim-basics.h"
40
41 typedef address_word sim_cia;
42
43 #include "sim-base.h"
44
45
46 /* Deprecated macros and types for manipulating 64bit values. Use
47 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
48
49 typedef signed64 word64;
50 typedef unsigned64 uword64;
51
52 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
53 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
54 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
55 #define SET64HI(t) (((uword64)(t))<<32)
56 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
57 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
58
59 /* Check if a value will fit within a halfword: */
60 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
61
62
63
64 /* Floating-point operations: */
65
66 #include "sim-fpu.h"
67
68 /* FPU registers must be one of the following types. All other values
69 are reserved (and undefined). */
70 typedef enum {
71 fmt_single = 0,
72 fmt_double = 1,
73 fmt_word = 4,
74 fmt_long = 5,
75 /* The following are well outside the normal acceptable format
76 range, and are used in the register status vector. */
77 fmt_unknown = 0x10000000,
78 fmt_uninterpreted = 0x20000000,
79 fmt_uninterpreted_32 = 0x40000000,
80 fmt_uninterpreted_64 = 0x80000000U,
81 } FP_formats;
82
83 /* Macro to update FPSR condition-code field. This is complicated by
84 the fact that there is a hole in the index range of the bits within
85 the FCSR register. Also, the number of bits visible depends on the
86 MIPS ISA version being supported. */
87
88 #define SETFCC(cc,v) {\
89 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
90 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
91 }
92 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
93
94 /* This should be the COC1 value at the start of the preceding
95 instruction: */
96 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
97
98 #ifdef TARGET_ENABLE_FR
99 /* FIXME: this should be enabled for all targets, but needs testing first. */
100 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
101 ? ((SR & status_FR) ? 64 : 32) \
102 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
103 #else
104 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
105 #endif
106
107 /* Standard FCRS bits: */
108 #define IR (0) /* Inexact Result */
109 #define UF (1) /* UnderFlow */
110 #define OF (2) /* OverFlow */
111 #define DZ (3) /* Division by Zero */
112 #define IO (4) /* Invalid Operation */
113 #define UO (5) /* Unimplemented Operation */
114
115 /* Get masks for individual flags: */
116 #if 1 /* SAFE version */
117 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
118 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
119 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
120 #else
121 #define FP_FLAGS(b) (1 << ((b) + 2))
122 #define FP_ENABLE(b) (1 << ((b) + 7))
123 #define FP_CAUSE(b) (1 << ((b) + 12))
124 #endif
125
126 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
127
128 #define FP_MASK_RM (0x3)
129 #define FP_SH_RM (0)
130 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
131 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
132 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
133 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
134 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
135
136
137
138
139
140
141 /* HI/LO register accesses */
142
143 /* For some MIPS targets, the HI/LO registers have certain timing
144 restrictions in that, for instance, a read of a HI register must be
145 separated by at least three instructions from a preceeding read.
146
147 The struct below is used to record the last access by each of A MT,
148 MF or other OP instruction to a HI/LO register. See mips.igen for
149 more details. */
150
151 typedef struct _hilo_access {
152 signed64 timestamp;
153 address_word cia;
154 } hilo_access;
155
156 typedef struct _hilo_history {
157 hilo_access mt;
158 hilo_access mf;
159 hilo_access op;
160 } hilo_history;
161
162
163
164
165 /* Integer ALU operations: */
166
167 #include "sim-alu.h"
168
169 #define ALU32_END(ANS) \
170 if (ALU32_HAD_OVERFLOW) \
171 SignalExceptionIntegerOverflow (); \
172 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
173
174
175 #define ALU64_END(ANS) \
176 if (ALU64_HAD_OVERFLOW) \
177 SignalExceptionIntegerOverflow (); \
178 (ANS) = ALU64_OVERFLOW_RESULT;
179
180
181
182
183
184 /* The following is probably not used for MIPS IV onwards: */
185 /* Slots for delayed register updates. For the moment we just have a
186 fixed number of slots (rather than a more generic, dynamic
187 system). This keeps the simulator fast. However, we only allow
188 for the register update to be delayed for a single instruction
189 cycle. */
190 #define PSLOTS (8) /* Maximum number of instruction cycles */
191
192 typedef struct _pending_write_queue {
193 int in;
194 int out;
195 int total;
196 int slot_delay[PSLOTS];
197 int slot_size[PSLOTS];
198 int slot_bit[PSLOTS];
199 void *slot_dest[PSLOTS];
200 unsigned64 slot_value[PSLOTS];
201 } pending_write_queue;
202
203 #ifndef PENDING_TRACE
204 #define PENDING_TRACE 0
205 #endif
206 #define PENDING_IN ((CPU)->pending.in)
207 #define PENDING_OUT ((CPU)->pending.out)
208 #define PENDING_TOTAL ((CPU)->pending.total)
209 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
210 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
211 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
212 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
213 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
214
215 /* Invalidate the pending write queue, all pending writes are
216 discarded. */
217
218 #define PENDING_INVALIDATE() \
219 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
220
221 /* Schedule a write to DEST for N cycles time. For 64 bit
222 destinations, schedule two writes. For floating point registers,
223 the caller should schedule a write to both the dest register and
224 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
225 is updated. */
226
227 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
228 do { \
229 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
230 sim_engine_abort (SD, CPU, cia, \
231 "PENDING_SCHED - buffer overflow\n"); \
232 if (PENDING_TRACE) \
233 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
234 (unsigned long) cia, (unsigned long) &(DEST), \
235 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
236 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
237 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
238 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
239 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
240 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
241 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
242 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
243 PENDING_TOTAL += 1; \
244 } while (0)
245
246 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
247 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
248
249 #define PENDING_TICK() pending_tick (SD, CPU, cia)
250
251 #define PENDING_FLUSH() abort () /* think about this one */
252 #define PENDING_FP() abort () /* think about this one */
253
254 /* For backward compatibility */
255 #define PENDING_FILL(R,VAL) \
256 do { \
257 if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \
258 { \
259 PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \
260 PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
261 } \
262 else \
263 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
264 } while (0)
265
266
267 enum float_operation
268 {
269 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
270 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
271 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
272 };
273
274
275 /* The internal representation of an MDMX accumulator.
276 Note that 24 and 48 bit accumulator elements are represented in
277 32 or 64 bits. Since the accumulators are 2's complement with
278 overflow suppressed, high-order bits can be ignored in most contexts. */
279
280 typedef signed32 signed24;
281 typedef signed64 signed48;
282
283 typedef union {
284 signed24 ob[8];
285 signed48 qh[4];
286 } MDMX_accumulator;
287
288
289 /* Conventional system arguments. */
290 #define SIM_STATE sim_cpu *cpu, address_word cia
291 #define SIM_ARGS CPU, cia
292
293 struct _sim_cpu {
294
295
296 /* The following are internal simulator state variables: */
297 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
298 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
299 address_word dspc; /* delay-slot PC */
300 #define DSPC ((CPU)->dspc)
301
302 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
303 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
304
305
306 /* State of the simulator */
307 unsigned int state;
308 unsigned int dsstate;
309 #define STATE ((CPU)->state)
310 #define DSSTATE ((CPU)->dsstate)
311
312 /* Flags in the "state" variable: */
313 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
314 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
315 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
316 #define simPCOC0 (1 << 17) /* COC[1] from current */
317 #define simPCOC1 (1 << 18) /* COC[1] from previous */
318 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
319 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
320 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
321 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
322
323 #ifndef ENGINE_ISSUE_PREFIX_HOOK
324 #define ENGINE_ISSUE_PREFIX_HOOK() \
325 { \
326 /* Perform any pending writes */ \
327 PENDING_TICK(); \
328 /* Set previous flag, depending on current: */ \
329 if (STATE & simPCOC0) \
330 STATE |= simPCOC1; \
331 else \
332 STATE &= ~simPCOC1; \
333 /* and update the current value: */ \
334 if (GETFCC(0)) \
335 STATE |= simPCOC0; \
336 else \
337 STATE &= ~simPCOC0; \
338 }
339 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
340
341
342 /* This is nasty, since we have to rely on matching the register
343 numbers used by GDB. Unfortunately, depending on the MIPS target
344 GDB uses different register numbers. We cannot just include the
345 relevant "gdb/tm.h" link, since GDB may not be configured before
346 the sim world, and also the GDB header file requires too much other
347 state. */
348
349 #ifndef TM_MIPS_H
350 #define LAST_EMBED_REGNUM (89)
351 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
352
353 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
354 #define FCRCS_REGNUM 70 /* FP control/status */
355 #define FCRIR_REGNUM 71 /* FP implementation/revision */
356 #endif
357
358
359 /* To keep this default simulator simple, and fast, we use a direct
360 vector of registers. The internal simulator engine then uses
361 manifests to access the correct slot. */
362
363 unsigned_word registers[LAST_EMBED_REGNUM + 1];
364
365 int register_widths[NUM_REGS];
366 #define REGISTERS ((CPU)->registers)
367
368 #define GPR (&REGISTERS[0])
369 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
370
371 #define LO (REGISTERS[33])
372 #define HI (REGISTERS[34])
373 #define PCIDX 37
374 #define PC (REGISTERS[PCIDX])
375 #define CAUSE (REGISTERS[36])
376 #define SRIDX (32)
377 #define SR (REGISTERS[SRIDX]) /* CPU status register */
378 #define FCR0IDX (71)
379 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
380 #define FCR31IDX (70)
381 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
382 #define FCSR (FCR31)
383 #define Debug (REGISTERS[86])
384 #define DEPC (REGISTERS[87])
385 #define EPC (REGISTERS[88])
386
387 /* All internal state modified by signal_exception() that may need to be
388 rolled back for passing moment-of-exception image back to gdb. */
389 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
390 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
391 int exc_suspended;
392
393 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
394 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
395 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
396
397 unsigned_word c0_config_reg;
398 #define C0_CONFIG ((CPU)->c0_config_reg)
399
400 /* The following are pseudonyms for standard registers */
401 #define ZERO (REGISTERS[0])
402 #define V0 (REGISTERS[2])
403 #define A0 (REGISTERS[4])
404 #define A1 (REGISTERS[5])
405 #define A2 (REGISTERS[6])
406 #define A3 (REGISTERS[7])
407 #define T8IDX 24
408 #define T8 (REGISTERS[T8IDX])
409 #define SPIDX 29
410 #define SP (REGISTERS[SPIDX])
411 #define RAIDX 31
412 #define RA (REGISTERS[RAIDX])
413
414 /* While space is allocated in the main registers arrray for some of
415 the COP0 registers, that space isn't sufficient. Unknown COP0
416 registers overflow into the array below */
417
418 #define NR_COP0_GPR 32
419 unsigned_word cop0_gpr[NR_COP0_GPR];
420 #define COP0_GPR ((CPU)->cop0_gpr)
421 #define COP0_BADVADDR ((unsigned32)(COP0_GPR[8]))
422
423 /* While space is allocated for the floating point registers in the
424 main registers array, they are stored separatly. This is because
425 their size may not necessarily match the size of either the
426 general-purpose or system specific registers. */
427 #define NR_FGR (32)
428 #define FGR_BASE FP0_REGNUM
429 fp_word fgr[NR_FGR];
430 #define FGR ((CPU)->fgr)
431
432 /* Keep the current format state for each register: */
433 FP_formats fpr_state[32];
434 #define FPR_STATE ((CPU)->fpr_state)
435
436 pending_write_queue pending;
437
438 /* The MDMX accumulator (used only for MDMX ASE). */
439 MDMX_accumulator acc;
440 #define ACC ((CPU)->acc)
441
442 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
443 read-write instructions. It is set when a linked load occurs. It
444 is tested and cleared by the conditional store. It is cleared
445 (during other CPU operations) when a store to the location would
446 no longer be atomic. In particular, it is cleared by exception
447 return instructions. */
448 int llbit;
449 #define LLBIT ((CPU)->llbit)
450
451
452 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
453 corruptions caused by using the HI or LO register too close to a
454 following operation is spotted. See mips.igen for more details. */
455
456 hilo_history hi_history;
457 #define HIHISTORY (&(CPU)->hi_history)
458 hilo_history lo_history;
459 #define LOHISTORY (&(CPU)->lo_history)
460
461 #define check_branch_bug()
462 #define mark_branch_bug(TARGET)
463
464
465
466 sim_cpu_base base;
467 };
468
469
470 /* MIPS specific simulator watch config */
471
472 void watch_options_install PARAMS ((SIM_DESC sd));
473
474 struct swatch {
475 sim_event *pc;
476 sim_event *clock;
477 sim_event *cycles;
478 };
479
480
481 /* FIXME: At present much of the simulator is still static */
482 struct sim_state {
483
484 struct swatch watch;
485
486 sim_cpu cpu[MAX_NR_PROCESSORS];
487 #if (WITH_SMP)
488 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
489 #else
490 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
491 #endif
492
493
494 sim_state_base base;
495 };
496
497
498
499 /* Status information: */
500
501 /* TODO : these should be the bitmasks for these bits within the
502 status register. At the moment the following are VR4300
503 bit-positions: */
504 #define status_KSU_mask (0x18) /* mask for KSU bits */
505 #define status_KSU_shift (3) /* shift for field */
506 #define ksu_kernel (0x0)
507 #define ksu_supervisor (0x1)
508 #define ksu_user (0x2)
509 #define ksu_unknown (0x3)
510
511 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
512
513 #define status_IE (1 << 0) /* Interrupt enable */
514 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
515 #define status_EXL (1 << 1) /* Exception level */
516 #define status_RE (1 << 25) /* Reverse Endian in user mode */
517 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
518 #define status_SR (1 << 20) /* soft reset or NMI */
519 #define status_BEV (1 << 22) /* Location of general exception vectors */
520 #define status_TS (1 << 21) /* TLB shutdown has occurred */
521 #define status_ERL (1 << 2) /* Error level */
522 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
523 #define status_RP (1 << 27) /* Reduced Power mode */
524
525 /* Specializations for TX39 family */
526 #define status_IEc (1 << 0) /* Interrupt enable (current) */
527 #define status_KUc (1 << 1) /* Kernel/User mode */
528 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
529 #define status_KUp (1 << 3) /* Kernel/User mode */
530 #define status_IEo (1 << 4) /* Interrupt enable (old) */
531 #define status_KUo (1 << 5) /* Kernel/User mode */
532 #define status_IM_mask (0xff) /* Interrupt mask */
533 #define status_IM_shift (8)
534 #define status_NMI (1 << 20) /* NMI */
535 #define status_NMI (1 << 20) /* NMI */
536
537 /* Status bits used by MIPS32/MIPS64. */
538 #define status_UX (1 << 5) /* 64-bit user addrs */
539 #define status_SX (1 << 6) /* 64-bit supervisor addrs */
540 #define status_KX (1 << 7) /* 64-bit kernel addrs */
541 #define status_TS (1 << 21) /* TLB shutdown has occurred */
542 #define status_PX (1 << 23) /* Enable 64 bit operations */
543 #define status_MX (1 << 24) /* Enable MDMX resources */
544 #define status_CU0 (1 << 28) /* Coprocessor 0 usable */
545 #define status_CU1 (1 << 29) /* Coprocessor 1 usable */
546 #define status_CU2 (1 << 30) /* Coprocessor 2 usable */
547 #define status_CU3 (1 << 31) /* Coprocessor 3 usable */
548 /* Bits reserved for implementations: */
549 #define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
550
551 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
552 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
553 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
554 #define cause_CE_shift 28
555 #define cause_EXC2_mask 0x00070000
556 #define cause_EXC2_shift 16
557 #define cause_IP7 (1 << 15) /* Interrupt pending */
558 #define cause_SIOP (1 << 12) /* SIO pending */
559 #define cause_IP3 (1 << 11) /* Int 0 pending */
560 #define cause_IP2 (1 << 10) /* Int 1 pending */
561
562 #define cause_EXC_mask (0x1c) /* Exception code */
563 #define cause_EXC_shift (2)
564
565 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
566 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
567 #define cause_IP_mask (0x3f) /* Interrupt pending field */
568 #define cause_IP_shift (10)
569
570 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
571 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
572
573
574 /* NOTE: We keep the following status flags as bit values (1 for true,
575 0 for false). This allows them to be used in binary boolean
576 operations without worrying about what exactly the non-zero true
577 value is. */
578
579 /* UserMode */
580 #ifdef SUBTARGET_R3900
581 #define UserMode ((SR & status_KUc) ? 1 : 0)
582 #else
583 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
584 #endif /* SUBTARGET_R3900 */
585
586 /* BigEndianMem */
587 /* Hardware configuration. Affects endianness of LoadMemory and
588 StoreMemory and the endianness of Kernel and Supervisor mode
589 execution. The value is 0 for little-endian; 1 for big-endian. */
590 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
591 /*(state & simBE) ? 1 : 0)*/
592
593 /* ReverseEndian */
594 /* This mode is selected if in User mode with the RE bit being set in
595 SR (Status Register). It reverses the endianness of load and store
596 instructions. */
597 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
598
599 /* BigEndianCPU */
600 /* The endianness for load and store instructions (0=little;1=big). In
601 User mode this endianness may be switched by setting the state_RE
602 bit in the SR register. Thus, BigEndianCPU may be computed as
603 (BigEndianMem EOR ReverseEndian). */
604 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
605
606
607
608 /* Exceptions: */
609
610 /* NOTE: These numbers depend on the processor architecture being
611 simulated: */
612 enum ExceptionCause {
613 Interrupt = 0,
614 TLBModification = 1,
615 TLBLoad = 2,
616 TLBStore = 3,
617 AddressLoad = 4,
618 AddressStore = 5,
619 InstructionFetch = 6,
620 DataReference = 7,
621 SystemCall = 8,
622 BreakPoint = 9,
623 ReservedInstruction = 10,
624 CoProcessorUnusable = 11,
625 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
626 Trap = 13,
627 FPE = 15,
628 DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
629 MDMX = 22,
630 Watch = 23,
631 MCheck = 24,
632 CacheErr = 30,
633 NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
634
635
636 /* The following exception code is actually private to the simulator
637 world. It is *NOT* a processor feature, and is used to signal
638 run-time errors in the simulator. */
639 SimulatorFault = 0xFFFFFFFF
640 };
641
642 #define TLB_REFILL (0)
643 #define TLB_INVALID (1)
644
645
646 /* The following break instructions are reserved for use by the
647 simulator. The first is used to halt the simulation. The second
648 is used by gdb for break-points. NOTE: Care must be taken, since
649 this value may be used in later revisions of the MIPS ISA. */
650 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
651
652 #define HALT_INSTRUCTION (0x03ff000d)
653 #define HALT_INSTRUCTION2 (0x0000ffcd)
654
655
656 #define BREAKPOINT_INSTRUCTION (0x0005000d)
657 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
658
659
660
661 void interrupt_event (SIM_DESC sd, void *data);
662
663 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
664 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
665 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
666 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
667 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
668 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
669 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
670 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
671 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
672 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
673 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
674 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
675 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
676 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
677 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
678 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
679 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
680 #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
681 #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
682 #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
683 #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
684
685 /* Co-processor accesses */
686
687 /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
688 #define COP_Usable(coproc_num) (coproc_num == 1)
689
690 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
691 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
692 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
693 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
694
695 #define COP_LW(coproc_num,coproc_reg,memword) \
696 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
697 #define COP_LD(coproc_num,coproc_reg,memword) \
698 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
699 #define COP_SW(coproc_num,coproc_reg) \
700 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
701 #define COP_SD(coproc_num,coproc_reg) \
702 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
703
704
705 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
706 #define DecodeCoproc(instruction) \
707 decode_coproc (SD, CPU, cia, (instruction))
708
709 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
710
711
712 /* FPR access. */
713 unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
714 #define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
715 void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
716 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
717
718
719 /* FPU operations. */
720 int NaN (unsigned64 op, FP_formats fmt);
721 int Less (unsigned64 op1, unsigned64 op2, FP_formats fmt);
722 int Equal (unsigned64 op1, unsigned64 op2, FP_formats fmt);
723 unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
724 #define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
725 unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
726 #define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
727 unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
728 #define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
729 unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
730 #define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
731 unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
732 #define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
733 unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
734 #define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
735 unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
736 #define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
737 unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
738 #define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
739 unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
740 #define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
741
742
743 /* MDMX access. */
744
745 typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
746 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
747 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
748
749 #define fmt_mdmx fmt_uninterpreted
750
751 #define MX_VECT_AND (0)
752 #define MX_VECT_NOR (1)
753 #define MX_VECT_OR (2)
754 #define MX_VECT_XOR (3)
755 #define MX_VECT_SLL (4)
756 #define MX_VECT_SRL (5)
757 #define MX_VECT_ADD (6)
758 #define MX_VECT_SUB (7)
759 #define MX_VECT_MIN (8)
760 #define MX_VECT_MAX (9)
761 #define MX_VECT_MUL (10)
762 #define MX_VECT_MSGN (11)
763 #define MX_VECT_SRA (12)
764 #define MX_VECT_ABSD (13) /* SB-1 only. */
765 #define MX_VECT_AVG (14) /* SB-1 only. */
766
767 unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
768 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
769 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
770 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
771 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
772 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
773 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
774 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
775 #define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
776 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
777 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
778 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
779 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
780 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
781 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
782 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
783
784 #define MX_C_EQ 0x1
785 #define MX_C_LT 0x4
786
787 void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
788 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
789
790 unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
791 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
792
793 #define MX_VECT_ADDA (0)
794 #define MX_VECT_ADDL (1)
795 #define MX_VECT_MULA (2)
796 #define MX_VECT_MULL (3)
797 #define MX_VECT_MULS (4)
798 #define MX_VECT_MULSL (5)
799 #define MX_VECT_SUBA (6)
800 #define MX_VECT_SUBL (7)
801 #define MX_VECT_ABSDA (8) /* SB-1 only. */
802
803 void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
804 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
805 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
806 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
807 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
808 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
809 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
810 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
811 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
812 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
813
814 #define MX_FMT_OB (0)
815 #define MX_FMT_QH (1)
816
817 /* The following codes chosen to indicate the units of shift. */
818 #define MX_RAC_L (0)
819 #define MX_RAC_M (1)
820 #define MX_RAC_H (2)
821
822 unsigned64 mdmx_rac_op (SIM_STATE, int, int);
823 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
824
825 void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
826 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
827 void mdmx_wach (SIM_STATE, int, unsigned64);
828 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
829
830 #define MX_RND_AS (0)
831 #define MX_RND_AU (1)
832 #define MX_RND_ES (2)
833 #define MX_RND_EU (3)
834 #define MX_RND_ZS (4)
835 #define MX_RND_ZU (5)
836
837 unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
838 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
839 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
840 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
841 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
842 #define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
843 #define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
844
845 unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
846 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
847
848
849
850 /* Memory accesses */
851
852 /* The following are generic to all versions of the MIPS architecture
853 to date: */
854
855 /* Memory Access Types (for CCA): */
856 #define Uncached (0)
857 #define CachedNoncoherent (1)
858 #define CachedCoherent (2)
859 #define Cached (3)
860
861 #define isINSTRUCTION (1 == 0) /* FALSE */
862 #define isDATA (1 == 1) /* TRUE */
863 #define isLOAD (1 == 0) /* FALSE */
864 #define isSTORE (1 == 1) /* TRUE */
865 #define isREAL (1 == 0) /* FALSE */
866 #define isRAW (1 == 1) /* TRUE */
867 /* The parameter HOST (isTARGET / isHOST) is ignored */
868 #define isTARGET (1 == 0) /* FALSE */
869 /* #define isHOST (1 == 1) TRUE */
870
871 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
872 is the number of bytes minus 1. */
873 #define AccessLength_BYTE (0)
874 #define AccessLength_HALFWORD (1)
875 #define AccessLength_TRIPLEBYTE (2)
876 #define AccessLength_WORD (3)
877 #define AccessLength_QUINTIBYTE (4)
878 #define AccessLength_SEXTIBYTE (5)
879 #define AccessLength_SEPTIBYTE (6)
880 #define AccessLength_DOUBLEWORD (7)
881 #define AccessLength_QUADWORD (15)
882
883 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
884 ? AccessLength_DOUBLEWORD /*7*/ \
885 : AccessLength_WORD /*3*/)
886 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
887
888
889 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
890 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
891 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
892
893 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
894 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
895 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
896
897 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
898 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
899 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
900
901 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
902 #define CacheOp(op,pAddr,vAddr,instruction) \
903 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
904
905 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
906 #define SyncOperation(stype) \
907 sync_operation (SD, CPU, cia, (stype))
908
909 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
910 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
911 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
912
913 void unpredictable_action (sim_cpu *cpu, address_word cia);
914 #define NotWordValue(val) not_word_value (SD_, (val))
915 #define Unpredictable() unpredictable (SD_)
916 #define UnpredictableResult() /* For now, do nothing. */
917
918 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
919 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
920 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
921 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
922 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
923
924 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
925 extern FILE *tracefh;
926
927 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
928 extern SIM_CORE_SIGNAL_FN mips_core_signal;
929
930 char* pr_addr PARAMS ((SIM_ADDR addr));
931 char* pr_uword64 PARAMS ((uword64 addr));
932
933
934 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
935
936 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
937 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
938 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
939
940
941 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
942 #include "sim-main.c"
943 #endif
944
945 #endif
This page took 0.05016 seconds and 4 git commands to generate.