137f08dadc6bd0da318051b0290f39edef231667
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #if (WITH_IGEN)
40 /* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42 #include "itable.h"
43 #define MAX_INSNS (nr_itable_entries)
44 #define INSN_NAME(i) itable[(i)].name
45 #endif
46
47 #include "sim-base.h"
48
49
50 /* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53 typedef signed64 word64;
54 typedef unsigned64 uword64;
55
56 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59 #define SET64HI(t) (((uword64)(t))<<32)
60 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66 #define SIGNEXTEND(e,b) \
67 ((unsigned_word) \
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
71
72 /* Check if a value will fit within a halfword: */
73 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
75
76
77 /* Floating-point operations: */
78
79 #include "sim-fpu.h"
80
81 /* FPU registers must be one of the following types. All other values
82 are reserved (and undefined). */
83 typedef enum {
84 fmt_single = 0,
85 fmt_double = 1,
86 fmt_word = 4,
87 fmt_long = 5,
88 /* The following are well outside the normal acceptable format
89 range, and are used in the register status vector. */
90 fmt_unknown = 0x10000000,
91 fmt_uninterpreted = 0x20000000,
92 fmt_uninterpreted_32 = 0x40000000,
93 fmt_uninterpreted_64 = 0x80000000,
94 } FP_formats;
95
96 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
97 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
98
99 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
100 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
101
102 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
103 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
104 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
105 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
106 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
107 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
108 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
109 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
110 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
113 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
114 unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
115 unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
116 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
117 #define Convert(rm,op,from,to) \
118 convert (SD, CPU, cia, rm, op, from, to)
119
120 /* Macro to update FPSR condition-code field. This is complicated by
121 the fact that there is a hole in the index range of the bits within
122 the FCSR register. Also, the number of bits visible depends on the
123 MIPS ISA version being supported. */
124
125 #define SETFCC(cc,v) {\
126 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
127 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
128 }
129 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
130
131 /* This should be the COC1 value at the start of the preceding
132 instruction: */
133 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
134
135 #if 1
136 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
137 #else
138 /* They depend on the CPU being simulated */
139 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
140 #endif
141
142 /* Standard FCRS bits: */
143 #define IR (0) /* Inexact Result */
144 #define UF (1) /* UnderFlow */
145 #define OF (2) /* OverFlow */
146 #define DZ (3) /* Division by Zero */
147 #define IO (4) /* Invalid Operation */
148 #define UO (5) /* Unimplemented Operation */
149
150 /* Get masks for individual flags: */
151 #if 1 /* SAFE version */
152 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
153 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
154 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
155 #else
156 #define FP_FLAGS(b) (1 << ((b) + 2))
157 #define FP_ENABLE(b) (1 << ((b) + 7))
158 #define FP_CAUSE(b) (1 << ((b) + 12))
159 #endif
160
161 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
162
163 #define FP_MASK_RM (0x3)
164 #define FP_SH_RM (0)
165 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
166 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
167 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
168 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
169 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
170
171 /* start-sanitize-sky */
172 #ifdef TARGET_SKY
173 #ifdef SKY_FUNIT
174 #include <assert.h>
175 #include "wf.h"
176 #endif
177 #endif
178 /* end-sanitize-sky */
179
180
181
182
183
184 /* HI/LO register accesses */
185
186 /* For some MIPS targets, the HI/LO registers have certain timing
187 restrictions in that, for instance, a read of a HI register must be
188 separated by at least three instructions from a preceeding read.
189
190 The struct below is used to record the last access by each of A MT,
191 MF or other OP instruction to a HI/LO register. See mips.igen for
192 more details. */
193
194 typedef struct _hilo_access {
195 signed64 timestamp;
196 address_word cia;
197 } hilo_access;
198
199 typedef struct _hilo_history {
200 hilo_access mt;
201 hilo_access mf;
202 hilo_access op;
203 } hilo_history;
204
205
206
207
208 /* Integer ALU operations: */
209
210 #include "sim-alu.h"
211
212 #define ALU32_END(ANS) \
213 if (ALU32_HAD_OVERFLOW) \
214 SignalExceptionIntegerOverflow (); \
215 (ANS) = ALU32_OVERFLOW_RESULT
216
217
218 #define ALU64_END(ANS) \
219 if (ALU64_HAD_OVERFLOW) \
220 SignalExceptionIntegerOverflow (); \
221 (ANS) = ALU64_OVERFLOW_RESULT;
222
223
224 /* start-sanitize-r5900 */
225
226 /* Figure 10-5 FPU Control/Status Register.
227 Note: some of these bits are different to what is found in a
228 standard MIPS manual. */
229 enum {
230 R5900_FCSR_C = BIT (23), /* OK */
231 R5900_FCSR_I = BIT (17),
232 R5900_FCSR_D = BIT (16),
233 R5900_FCSR_O = BIT (15),
234 R5900_FCSR_U = BIT (14),
235 R5900_FCSR_CAUSE = MASK (16,14),
236 R5900_FCSR_SI = BIT (6),
237 R5900_FCSR_SD = BIT (5),
238 R5900_FCSR_SO = BIT (4),
239 R5900_FCSR_SU = BIT (3),
240 };
241
242 /* Table 10-1 FP format values.
243 Note: some of these bits are different to what is found in a
244 standard MIPS manual. */
245 enum {
246 R5900_EXPMAX = 128,
247 R5900_EXPMIN = -127,
248 R5900_EXPBIAS = 127,
249 };
250
251
252
253 typedef struct _sim_r5900_cpu {
254
255 /* The R5900 has 32 x 128bit general purpose registers.
256 Fortunatly, the high 64 bits are only touched by multimedia (MMI)
257 instructions. The normal mips instructions just use the lower 64
258 bits. To avoid changing the older parts of the simulator to
259 handle this weirdness, the high 64 bits of each register are kept
260 in a separate array (registers1). The high 64 bits of any
261 register are by convention refered by adding a '1' to the end of
262 the normal register's name. So LO still refers to the low 64
263 bits of the LO register, LO1 refers to the high 64 bits of that
264 same register. */
265 signed_word gpr1[32];
266 #define GPR1 ((CPU)->r5900.gpr1)
267 signed_word lo1;
268 signed_word hi1;
269 #define LO1 ((CPU)->r5900.lo1)
270 #define HI1 ((CPU)->r5900.hi1)
271
272 /* The R5900 defines a shift amount register, that controls the
273 amount of certain shift instructions */
274 unsigned_word sa; /* the shift amount register */
275 #define REGISTER_SA (124) /* GET RID IF THIS! */
276 #define SA ((CPU)->r5900.sa)
277
278 /* The R5900, in addition to the (almost) standard floating point
279 registers, defines a 32 bit accumulator. This is used in
280 multiply/accumulate style instructions */
281 fp_word acc; /* floating-point accumulator */
282 #define ACC ((CPU)->r5900.acc)
283
284 /* See comments below about needing to count cycles between updating
285 and setting HI/LO registers */
286 hilo_history hi1_history;
287 #define HI1HISTORY (&(CPU)->r5900.hi1_history)
288 hilo_history lo1_history;
289 #define LO1HISTORY (&(CPU)->r5900.lo1_history)
290
291 } sim_r5900_cpu;
292
293 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
294 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
295 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
296 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
297
298 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
299 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
300 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
301 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
302
303 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
304 T - type of the sub part
305 TC - # of T's in the mips part of the "register"
306 I - index (from 0) of desired sub part
307 A - low part of "register"
308 A1 - high part of register
309 */
310 #define SUB_REG_FETCH(T,TC,A,A1,I) \
311 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
312 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
313 ? ((TC) - 1 - (I) % (TC)) \
314 : ((I) % (TC)) \
315 ) \
316 ) \
317 )
318
319 /*
320 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
321 where <type> has two letters:
322 1 is S=signed or U=unsigned
323 2 is B=byte H=halfword W=word D=doubleword
324 */
325
326 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
327 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
328 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
329 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
330
331 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
332 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
333 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
334 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
335
336 #define GPR_SB(R,I) SUB_REG_SB(&GPR[R], &GPR1[R], I)
337 #define GPR_SH(R,I) SUB_REG_SH(&GPR[R], &GPR1[R], I)
338 #define GPR_SW(R,I) SUB_REG_SW(&GPR[R], &GPR1[R], I)
339 #define GPR_SD(R,I) SUB_REG_SD(&GPR[R], &GPR1[R], I)
340
341 #define GPR_UB(R,I) SUB_REG_UB(&GPR[R], &GPR1[R], I)
342 #define GPR_UH(R,I) SUB_REG_UH(&GPR[R], &GPR1[R], I)
343 #define GPR_UW(R,I) SUB_REG_UW(&GPR[R], &GPR1[R], I)
344 #define GPR_UD(R,I) SUB_REG_UD(&GPR[R], &GPR1[R], I)
345
346
347 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
348 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
349 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
350 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
351
352 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
353 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
354 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
355 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
356
357 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
358 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
359 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
360 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
361
362 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
363 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
364 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
365 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
366
367
368
369 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
370 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
371 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
372 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
373
374 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
375 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
376 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
377 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
378
379 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
380 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
381 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
382 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
383
384 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
385 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
386 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
387 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
388
389 /* end-sanitize-r5900 */
390
391
392
393 /* The following is probably not used for MIPS IV onwards: */
394 /* Slots for delayed register updates. For the moment we just have a
395 fixed number of slots (rather than a more generic, dynamic
396 system). This keeps the simulator fast. However, we only allow
397 for the register update to be delayed for a single instruction
398 cycle. */
399 #define PSLOTS (8) /* Maximum number of instruction cycles */
400
401 typedef struct _pending_write_queue {
402 int in;
403 int out;
404 int total;
405 int slot_delay[PSLOTS];
406 int slot_size[PSLOTS];
407 int slot_bit[PSLOTS];
408 void *slot_dest[PSLOTS];
409 unsigned64 slot_value[PSLOTS];
410 } pending_write_queue;
411
412 #ifndef PENDING_TRACE
413 #define PENDING_TRACE 0
414 #endif
415 #define PENDING_IN ((CPU)->pending.in)
416 #define PENDING_OUT ((CPU)->pending.out)
417 #define PENDING_TOTAL ((CPU)->pending.total)
418 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
419 #define PENDING_SLOT_BIT ((CPU)->pending.slot_size)
420 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
421 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
422 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
423
424 /* Invalidate the pending write queue, all pending writes are
425 discarded. */
426
427 #define PENDING_INVALIDATE() \
428 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
429
430 /* Schedule a write to DEST for N cycles time. For 64 bit
431 destinations, schedule two writes. For floating point registers,
432 the caller should schedule a write to both the dest register and
433 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
434 is updated. */
435
436 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
437 do { \
438 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
439 sim_engine_abort (SD, CPU, cia, \
440 "PENDING_SCHED - buffer overflow\n"); \
441 if (PENDING_TRACE) \
442 sim_io_printf (SD, "PENDING_SCHED - dest 0x%lx, val 0x%lx, pending_in %d, pending_out %d, pending_total %d\n", (unsigned long) (DEST), (unsigned long) (VAL), PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
443 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
444 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
445 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
446 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
447 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
448 } while (0)
449
450 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
451 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
452
453 #define PENDING_TICK() pending_tick (SD, CPU, cia)
454
455 #define PENDING_FLUSH() abort () /* think about this one */
456 #define PENDING_FP() abort () /* think about this one */
457
458 /* For backward compatibility */
459 #define PENDING_FILL(R,VAL) \
460 { \
461 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
462 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 2, -1); \
463 else \
464 PENDING_SCHED(GPR[(R)], VAL, 2, -1); \
465 }
466
467
468
469 struct _sim_cpu {
470
471
472 /* The following are internal simulator state variables: */
473 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
474 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
475 address_word dspc; /* delay-slot PC */
476 #define DSPC ((CPU)->dspc)
477
478 #if !WITH_IGEN
479 /* Issue a delay slot instruction immediatly by re-calling
480 idecode_issue */
481 #define DELAY_SLOT(TARGET) \
482 do { \
483 address_word target = (TARGET); \
484 instruction_word delay_insn; \
485 sim_events_slip (SD, 1); \
486 CIA = CIA + 4; /* NOTE not mips16 */ \
487 STATE |= simDELAYSLOT; \
488 delay_insn = IMEM32 (CIA); /* NOTE not mips16 */ \
489 idecode_issue (CPU_, delay_insn, (CIA)); \
490 STATE &= ~simDELAYSLOT; \
491 NIA = target; \
492 } while (0)
493 #define NULLIFY_NEXT_INSTRUCTION() \
494 do { \
495 sim_events_slip (SD, 1); \
496 dotrace (SD, CPU, tracefh, 2, NIA, 4, "load instruction"); \
497 NIA = CIA + 8; \
498 } while (0)
499 #else
500 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
501 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
502 #endif
503
504
505 /* State of the simulator */
506 unsigned int state;
507 unsigned int dsstate;
508 #define STATE ((CPU)->state)
509 #define DSSTATE ((CPU)->dsstate)
510
511 /* Flags in the "state" variable: */
512 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
513 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
514 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
515 #define simPCOC0 (1 << 17) /* COC[1] from current */
516 #define simPCOC1 (1 << 18) /* COC[1] from previous */
517 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
518 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
519 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
520 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
521
522 #define ENGINE_ISSUE_PREFIX_HOOK() \
523 { \
524 /* Perform any pending writes */ \
525 PENDING_TICK(); \
526 /* Set previous flag, depending on current: */ \
527 if (STATE & simPCOC0) \
528 STATE |= simPCOC1; \
529 else \
530 STATE &= ~simPCOC1; \
531 /* and update the current value: */ \
532 if (GETFCC(0)) \
533 STATE |= simPCOC0; \
534 else \
535 STATE &= ~simPCOC0; \
536 }
537
538
539 /* This is nasty, since we have to rely on matching the register
540 numbers used by GDB. Unfortunately, depending on the MIPS target
541 GDB uses different register numbers. We cannot just include the
542 relevant "gdb/tm.h" link, since GDB may not be configured before
543 the sim world, and also the GDB header file requires too much other
544 state. */
545
546 #ifndef TM_MIPS_H
547 #define LAST_EMBED_REGNUM (89)
548 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
549 /* start-sanitize-r5900 */
550 #undef NUM_REGS
551 #define NUM_REGS (128)
552 /* end-sanitize-r5900 */
553 #endif
554
555 /* start-sanitize-sky */
556 #ifdef TARGET_SKY
557 #ifndef TM_TXVU_H
558
559 /* Number of machine registers */
560 #define NUM_VU_REGS 153
561 #define NUM_VU_INTEGER_REGS 16
562
563 #define NUM_VIF_REGS 25
564
565 #define FIRST_VEC_REG 25
566 #define NUM_R5900_REGS 128
567
568 #undef NUM_REGS
569 #define NUM_REGS (NUM_R5900_REGS + 2*(NUM_VU_REGS) + 2*(NUM_VIF_REGS))
570 #endif /* no tm-txvu.h */
571 #endif
572
573 enum float_operation
574 /* start-sanitize-sky */
575 /* NOTE: THE VALUES of THESE CONSTANTS MUST BE IN SYNC WITH THOSE IN WF.H */
576 /* end-sanitize-sky */
577 {
578 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
579 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
580 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
581 };
582
583 /* To keep this default simulator simple, and fast, we use a direct
584 vector of registers. The internal simulator engine then uses
585 manifests to access the correct slot. */
586
587 unsigned_word registers[LAST_EMBED_REGNUM + 1];
588 int register_widths[NUM_REGS];
589 #define REGISTERS ((CPU)->registers)
590
591 #define GPR (&REGISTERS[0])
592 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
593
594 /* While space is allocated for the floating point registers in the
595 main registers array, they are stored separatly. This is because
596 their size may not necessarily match the size of either the
597 general-purpose or system specific registers */
598 #define NR_FGR (32)
599 #define FGRIDX (38)
600 fp_word fgr[NR_FGR];
601 #define FGR ((CPU)->fgr)
602
603 #define LO (REGISTERS[33])
604 #define HI (REGISTERS[34])
605 #define PCIDX 37
606 #define PC (REGISTERS[PCIDX])
607 #define CAUSE (REGISTERS[36])
608 #define SRIDX (32)
609 #define SR (REGISTERS[SRIDX]) /* CPU status register */
610 #define FCR0IDX (71)
611 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
612 #define FCR31IDX (70)
613 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
614 #define FCSR (FCR31)
615 #define Debug (REGISTERS[86])
616 #define DEPC (REGISTERS[87])
617 #define EPC (REGISTERS[88])
618 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
619
620 unsigned_word c0_config_reg;
621 #define C0_CONFIG ((CPU)->c0_config_reg)
622
623 /* The following are pseudonyms for standard registers */
624 #define ZERO (REGISTERS[0])
625 #define V0 (REGISTERS[2])
626 #define A0 (REGISTERS[4])
627 #define A1 (REGISTERS[5])
628 #define A2 (REGISTERS[6])
629 #define A3 (REGISTERS[7])
630 #define T8IDX 24
631 #define T8 (REGISTERS[T8IDX])
632 #define SPIDX 29
633 #define SP (REGISTERS[SPIDX])
634 #define RAIDX 31
635 #define RA (REGISTERS[RAIDX])
636
637 /* Keep the current format state for each register: */
638 FP_formats fpr_state[32];
639 #define FPR_STATE ((CPU)->fpr_state)
640
641 pending_write_queue pending;
642
643 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
644 read-write instructions. It is set when a linked load occurs. It
645 is tested and cleared by the conditional store. It is cleared
646 (during other CPU operations) when a store to the location would
647 no longer be atomic. In particular, it is cleared by exception
648 return instructions. */
649 int llbit;
650 #define LLBIT ((CPU)->llbit)
651
652
653 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
654 corruptions caused by using the HI or LO register too close to a
655 following operation is spotted. See mips.igen for more details. */
656
657 hilo_history hi_history;
658 #define HIHISTORY (&(CPU)->hi_history)
659 hilo_history lo_history;
660 #define LOHISTORY (&(CPU)->lo_history)
661
662
663 /* start-sanitize-r5900 */
664 sim_r5900_cpu r5900;
665
666 /* end-sanitize-r5900 */
667 /* start-sanitize-vr5400 */
668
669 /* The MDMX ISA has a very very large accumulator */
670 unsigned8 acc[3 * 8];
671 /* end-sanitize-vr5400 */
672
673 sim_cpu_base base;
674 };
675
676
677 /* MIPS specific simulator watch config */
678
679 void watch_options_install PARAMS ((SIM_DESC sd));
680
681 struct swatch {
682 sim_event *pc;
683 sim_event *clock;
684 sim_event *cycles;
685 };
686
687
688 /* FIXME: At present much of the simulator is still static */
689 struct sim_state {
690
691 struct swatch watch;
692
693 sim_cpu cpu[MAX_NR_PROCESSORS];
694 #if (WITH_SMP)
695 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
696 #else
697 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
698 #endif
699
700 /* start-sanitize-sky */
701 #ifdef TARGET_SKY
702 #ifdef SKY_FUNIT
703 /* Record of option for floating point implementation type. */
704 int fp_type_opt;
705 #define STATE_FP_TYPE_OPT(sd) ((sd)->fp_type_opt)
706 #define STATE_FP_TYPE_OPT_TARGET 0x80000000
707 #endif
708 #endif
709 /* end-sanitize-sky */
710
711 sim_state_base base;
712 };
713
714
715
716 /* Status information: */
717
718 /* TODO : these should be the bitmasks for these bits within the
719 status register. At the moment the following are VR4300
720 bit-positions: */
721 #define status_KSU_mask (0x3) /* mask for KSU bits */
722 #define status_KSU_shift (3) /* shift for field */
723 #define ksu_kernel (0x0)
724 #define ksu_supervisor (0x1)
725 #define ksu_user (0x2)
726 #define ksu_unknown (0x3)
727
728 #define status_IE (1 << 0) /* Interrupt enable */
729 #define status_EXL (1 << 1) /* Exception level */
730 #define status_RE (1 << 25) /* Reverse Endian in user mode */
731 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
732 #define status_SR (1 << 20) /* soft reset or NMI */
733 #define status_BEV (1 << 22) /* Location of general exception vectors */
734 #define status_TS (1 << 21) /* TLB shutdown has occurred */
735 #define status_ERL (1 << 2) /* Error level */
736 #define status_RP (1 << 27) /* Reduced Power mode */
737 /* start-sanitize-r5900 */
738 #define status_CU0 (1 << 28) /* COP0 usable */
739 #define status_CU1 (1 << 29) /* COP1 usable */
740 #define status_CU2 (1 << 30) /* COP2 usable */
741 /* end-sanitize-r5900 */
742
743 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
744
745 /* NOTE: We keep the following status flags as bit values (1 for true,
746 0 for false). This allows them to be used in binary boolean
747 operations without worrying about what exactly the non-zero true
748 value is. */
749
750 /* UserMode */
751 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
752
753 /* BigEndianMem */
754 /* Hardware configuration. Affects endianness of LoadMemory and
755 StoreMemory and the endianness of Kernel and Supervisor mode
756 execution. The value is 0 for little-endian; 1 for big-endian. */
757 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
758 /*(state & simBE) ? 1 : 0)*/
759
760 /* ReverseEndian */
761 /* This mode is selected if in User mode with the RE bit being set in
762 SR (Status Register). It reverses the endianness of load and store
763 instructions. */
764 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
765
766 /* BigEndianCPU */
767 /* The endianness for load and store instructions (0=little;1=big). In
768 User mode this endianness may be switched by setting the state_RE
769 bit in the SR register. Thus, BigEndianCPU may be computed as
770 (BigEndianMem EOR ReverseEndian). */
771 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
772
773
774
775 /* Exceptions: */
776
777 /* NOTE: These numbers depend on the processor architecture being
778 simulated: */
779 #define Interrupt (0)
780 #define TLBModification (1)
781 #define TLBLoad (2)
782 #define TLBStore (3)
783 #define AddressLoad (4)
784 #define AddressStore (5)
785 #define InstructionFetch (6)
786 #define DataReference (7)
787 #define SystemCall (8)
788 #define BreakPoint (9)
789 #define ReservedInstruction (10)
790 #define CoProcessorUnusable (11)
791 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
792 #define Trap (13)
793 #define FPE (15)
794 #define DebugBreakPoint (16)
795 #define Watch (23)
796
797 /* The following exception code is actually private to the simulator
798 world. It is *NOT* a processor feature, and is used to signal
799 run-time errors in the simulator. */
800 #define SimulatorFault (0xFFFFFFFF)
801
802 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
803 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
804 #define SignalExceptionInterrupt() signal_exception (SD, CPU, NULL_CIA, Interrupt)
805 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
806 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
807 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
808 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
809 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
810 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
811 #define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable)
812
813
814 /* Co-processor accesses */
815
816 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
817 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
818 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
819 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
820
821 #define COP_LW(coproc_num,coproc_reg,memword) \
822 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
823 #define COP_LD(coproc_num,coproc_reg,memword) \
824 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
825 #define COP_SW(coproc_num,coproc_reg) \
826 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
827 #define COP_SD(coproc_num,coproc_reg) \
828 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
829
830 /* start-sanitize-sky */
831 #ifdef TARGET_SKY
832 void cop_lq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
833 int coproc_num, int coproc_reg, unsigned128 memword));
834 unsigned128 cop_sq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
835 int coproc_num, int coproc_reg));
836 #define COP_LQ(coproc_num,coproc_reg,memword) \
837 cop_lq (SD, CPU, cia, coproc_num, coproc_reg, memword)
838 #define COP_SQ(coproc_num,coproc_reg) \
839 cop_sq (SD, CPU, cia, coproc_num, coproc_reg)
840 #endif /* TARGET_SKY */
841 /* end-sanitize-sky */
842
843 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
844 #define DecodeCoproc(instruction) \
845 decode_coproc (SD, CPU, cia, (instruction))
846
847
848
849 /* Memory accesses */
850
851 /* The following are generic to all versions of the MIPS architecture
852 to date: */
853
854 /* Memory Access Types (for CCA): */
855 #define Uncached (0)
856 #define CachedNoncoherent (1)
857 #define CachedCoherent (2)
858 #define Cached (3)
859
860 #define isINSTRUCTION (1 == 0) /* FALSE */
861 #define isDATA (1 == 1) /* TRUE */
862 #define isLOAD (1 == 0) /* FALSE */
863 #define isSTORE (1 == 1) /* TRUE */
864 #define isREAL (1 == 0) /* FALSE */
865 #define isRAW (1 == 1) /* TRUE */
866 /* The parameter HOST (isTARGET / isHOST) is ignored */
867 #define isTARGET (1 == 0) /* FALSE */
868 /* #define isHOST (1 == 1) TRUE */
869
870 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
871 is the number of bytes minus 1. */
872 #define AccessLength_BYTE (0)
873 #define AccessLength_HALFWORD (1)
874 #define AccessLength_TRIPLEBYTE (2)
875 #define AccessLength_WORD (3)
876 #define AccessLength_QUINTIBYTE (4)
877 #define AccessLength_SEXTIBYTE (5)
878 #define AccessLength_SEPTIBYTE (6)
879 #define AccessLength_DOUBLEWORD (7)
880 #define AccessLength_QUADWORD (15)
881
882 #if (WITH_IGEN)
883 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
884 ? AccessLength_DOUBLEWORD /*7*/ \
885 : AccessLength_WORD /*3*/)
886 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
887 #endif
888
889
890 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
891 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
892 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
893
894 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
895 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
896 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
897
898 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
899 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
900 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
901
902 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
903 #define CacheOp(op,pAddr,vAddr,instruction) \
904 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
905
906 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
907 #define SyncOperation(stype) \
908 sync_operation (SD, CPU, cia, (stype))
909
910 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
911 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
912 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
913
914 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
915 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
916 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
917 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
918 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
919
920 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
921 FILE *tracefh;
922
923 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
924
925 char* pr_addr PARAMS ((SIM_ADDR addr));
926 char* pr_uword64 PARAMS ((uword64 addr));
927
928
929 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
930 #include "sim-main.c"
931 #endif
932
933 #endif
This page took 0.04959 seconds and 4 git commands to generate.