Delete sim_io_syscalls and sim_io_getstring
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #if (WITH_IGEN)
40 /* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42 #include "itable.h"
43 #define MAX_INSNS (nr_itable_entries)
44 #define INSN_NAME(i) itable[(i)].name
45 #endif
46
47 #include "sim-base.h"
48
49
50 /* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53 typedef signed64 word64;
54 typedef unsigned64 uword64;
55
56 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59 #define SET64HI(t) (((uword64)(t))<<32)
60 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66 #define SIGNEXTEND(e,b) \
67 ((unsigned_word) \
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
71
72 /* Check if a value will fit within a halfword: */
73 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
75
76
77 /* Floating-point operations: */
78
79 /* FPU registers must be one of the following types. All other values
80 are reserved (and undefined). */
81 typedef enum {
82 fmt_single = 0,
83 fmt_double = 1,
84 fmt_word = 4,
85 fmt_long = 5,
86 /* The following are well outside the normal acceptable format
87 range, and are used in the register status vector. */
88 fmt_unknown = 0x10000000,
89 fmt_uninterpreted = 0x20000000,
90 fmt_uninterpreted_32 = 0x40000000,
91 fmt_uninterpreted_64 = 0x80000000,
92 } FP_formats;
93
94 unsigned64 value_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats));
95 #define ValueFPR(FPR,FMT) value_fpr (sd, cia, (FPR), (FMT))
96
97 void store_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
98 #define StoreFPR(FPR,FMT,VALUE) store_fpr (sd, cia, (FPR), (FMT), (VALUE))
99
100 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
101 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
102 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
103 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
104 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
105 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
106 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
107 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
108 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
109 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
110 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
111 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
112 unsigned64 convert PARAMS ((SIM_DESC sd, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
113 #define Convert(rm,op,from,to) convert(sd,cia,rm,op,from,to)
114
115 /* Macro to update FPSR condition-code field. This is complicated by
116 the fact that there is a hole in the index range of the bits within
117 the FCSR register. Also, the number of bits visible depends on the
118 MIPS ISA version being supported. */
119
120 #define SETFCC(cc,v) {\
121 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
122 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
123 }
124 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
125
126 /* This should be the COC1 value at the start of the preceding
127 instruction: */
128 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
129
130 #if 1
131 #define SizeFGR() (WITH_TARGET_WORD_BITSIZE)
132 #else
133 /* They depend on the CPU being simulated */
134 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
135 #endif
136
137 /* Standard FCRS bits: */
138 #define IR (0) /* Inexact Result */
139 #define UF (1) /* UnderFlow */
140 #define OF (2) /* OverFlow */
141 #define DZ (3) /* Division by Zero */
142 #define IO (4) /* Invalid Operation */
143 #define UO (5) /* Unimplemented Operation */
144
145 /* Get masks for individual flags: */
146 #if 1 /* SAFE version */
147 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
148 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
149 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
150 #else
151 #define FP_FLAGS(b) (1 << ((b) + 2))
152 #define FP_ENABLE(b) (1 << ((b) + 7))
153 #define FP_CAUSE(b) (1 << ((b) + 12))
154 #endif
155
156 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
157
158 #define FP_MASK_RM (0x3)
159 #define FP_SH_RM (0)
160 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
161 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
162 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
163 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
164 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
165
166
167
168 /* Integer ALU operations: */
169
170 #include "sim-alu.h"
171
172 #define ALU32_END(ANS) \
173 if (ALU32_HAD_OVERFLOW) \
174 SignalExceptionIntegerOverflow (); \
175 (ANS) = ALU32_OVERFLOW_RESULT
176
177
178 #define ALU64_END(ANS) \
179 if (ALU64_HAD_OVERFLOW) \
180 SignalExceptionIntegerOverflow (); \
181 (ANS) = ALU64_OVERFLOW_RESULT;
182
183 /* start-sanitize-r5900 */
184
185 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
186 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
187 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
188 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
189
190 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
191 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
192 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
193 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
194
195 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
196 T - type of the sub part
197 TC - # of T's in the mips part of the "register"
198 I - index (from 0) of desired sub part
199 A - low part of "register"
200 A1 - high part of register
201 */
202 #define SUB_REG_FETCH(T,TC,A,A1,I) \
203 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
204 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
205 ? ((TC) - 1 - (I) % (TC)) \
206 : ((I) % (TC)) \
207 ) \
208 ) \
209 )
210
211 /*
212 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
213 where <type> has two letters:
214 1 is S=signed or U=unsigned
215 2 is B=byte H=halfword W=word D=doubleword
216 */
217
218 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
219 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
220 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
221 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
222
223 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
224 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
225 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
226 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
227
228 #define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
229 #define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
230 #define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
231 #define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
232
233 #define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
234 #define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
235 #define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
236 #define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
237
238
239 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
240 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
241 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
242 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
243
244 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
245 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
246 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
247 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
248
249 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
250 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
251 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
252 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
253
254 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
255 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
256 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
257 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
258
259
260
261 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
262 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
263 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
264 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
265
266 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
267 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
268 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
269 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
270
271 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
272 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
273 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
274 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
275
276 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
277 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
278 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
279 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
280
281 /* end-sanitize-r5900 */
282
283
284
285
286 struct _sim_cpu {
287
288
289 /* The following are internal simulator state variables: */
290 #define CPU_CIA(CPU) (PC)
291 address_word dspc; /* delay-slot PC */
292 #define DSPC ((STATE_CPU (sd,0))->dspc)
293
294 /* Issue a delay slot instruction immediatly by re-calling
295 idecode_issue */
296 #define DELAY_SLOT(TARGET) \
297 do { \
298 address_word target = (TARGET); \
299 instruction_word delay_insn; \
300 sim_events_slip (sd, 1); \
301 CIA = CIA + 4; \
302 STATE |= simDELAYSLOT; \
303 delay_insn = IMEM (CIA); \
304 idecode_issue (sd, delay_insn, (CIA)); \
305 STATE &= ~simDELAYSLOT; \
306 NIA = target; \
307 } while (0)
308 #define NULLIFY_NEXT_INSTRUCTION() \
309 do { \
310 sim_events_slip (sd, 1); \
311 dotrace (sd, tracefh, 2, NIA, 4, "load instruction"); \
312 NIA = CIA + 8; \
313 } while (0)
314
315
316
317 /* State of the simulator */
318 unsigned int state;
319 unsigned int dsstate;
320 #define STATE ((STATE_CPU (sd,0))->state)
321 #define DSSTATE ((STATE_CPU (sd,0))->dsstate)
322
323 /* Flags in the "state" variable: */
324 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
325 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
326 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
327 #define simPCOC0 (1 << 17) /* COC[1] from current */
328 #define simPCOC1 (1 << 18) /* COC[1] from previous */
329 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
330 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
331 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
332 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
333
334 #define ENGINE_ISSUE_PREFIX_HOOK() \
335 { \
336 /* Set previous flag, depending on current: */ \
337 if (STATE & simPCOC0) \
338 STATE |= simPCOC1; \
339 else \
340 STATE &= ~simPCOC1; \
341 /* and update the current value: */ \
342 if (GETFCC(0)) \
343 STATE |= simPCOC0; \
344 else \
345 STATE &= ~simPCOC0; \
346 }
347
348
349 /* This is nasty, since we have to rely on matching the register
350 numbers used by GDB. Unfortunately, depending on the MIPS target
351 GDB uses different register numbers. We cannot just include the
352 relevant "gdb/tm.h" link, since GDB may not be configured before
353 the sim world, and also the GDB header file requires too much other
354 state. */
355
356 #ifndef TM_MIPS_H
357 #define LAST_EMBED_REGNUM (89)
358 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
359 /* start-sanitize-r5900 */
360 #undef NUM_REGS
361 #define NUM_REGS (128)
362 /* end-sanitize-r5900 */
363 #endif
364
365 /* To keep this default simulator simple, and fast, we use a direct
366 vector of registers. The internal simulator engine then uses
367 manifests to access the correct slot. */
368
369 unsigned_word registers[LAST_EMBED_REGNUM + 1];
370 int register_widths[NUM_REGS];
371 #define REGISTERS ((STATE_CPU (sd,0))->registers)
372
373 #define GPR (&REGISTERS[0])
374 #define FGRIDX (38)
375 #define FGR (&REGISTERS[FGRIDX])
376 #define LO (REGISTERS[33])
377 #define HI (REGISTERS[34])
378 #define PC (REGISTERS[37])
379 #define CAUSE (REGISTERS[36])
380 #define SRIDX (32)
381 #define SR (REGISTERS[SRIDX]) /* CPU status register */
382 #define FCR0IDX (71)
383 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
384 #define FCR31IDX (70)
385 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
386 #define FCSR (FCR31)
387 #define Debug (REGISTERS[86])
388 #define DEPC (REGISTERS[87])
389 #define EPC (REGISTERS[88])
390 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
391
392 unsigned_word c0_config_reg;
393 #define C0_CONFIG ((STATE_CPU (sd,0))->c0_config_reg)
394
395 /* The following are pseudonyms for standard registers */
396 #define ZERO (REGISTERS[0])
397 #define V0 (REGISTERS[2])
398 #define A0 (REGISTERS[4])
399 #define A1 (REGISTERS[5])
400 #define A2 (REGISTERS[6])
401 #define A3 (REGISTERS[7])
402 #define SP (REGISTERS[29])
403 #define RA (REGISTERS[31])
404
405 /* Keep the current format state for each register: */
406 FP_formats fpr_state[32];
407 #define FPR_STATE ((STATE_CPU (sd, 0))->fpr_state)
408
409
410 /* Slots for delayed register updates. For the moment we just have a
411 fixed number of slots (rather than a more generic, dynamic
412 system). This keeps the simulator fast. However, we only allow
413 for the register update to be delayed for a single instruction
414 cycle. */
415 #define PSLOTS (5) /* Maximum number of instruction cycles */
416 int pending_in;
417 int pending_out;
418 int pending_total;
419 int pending_slot_count[PSLOTS];
420 int pending_slot_reg[PSLOTS];
421 unsigned_word pending_slot_value[PSLOTS];
422 #define PENDING_IN ((STATE_CPU (sd, 0))->pending_in)
423 #define PENDING_OUT ((STATE_CPU (sd, 0))->pending_out)
424 #define PENDING_TOTAL ((STATE_CPU (sd, 0))->pending_total)
425 #define PENDING_SLOT_COUNT ((STATE_CPU (sd, 0))->pending_slot_count)
426 #define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg)
427 #define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value)
428
429 /* The following are not used for MIPS IV onwards: */
430 #define PENDING_FILL(r,v) {\
431 /* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
432 if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
433 sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
434 PENDING_SLOT_COUNT[PENDING_IN] = 2;\
435 PENDING_SLOT_REG[PENDING_IN] = (r);\
436 PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
437 /*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\
438 PENDING_TOTAL++;\
439 PENDING_IN++;\
440 if (PENDING_IN == PSLOTS)\
441 PENDING_IN = 0;\
442 /*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
443 }
444
445
446 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
447 read-write instructions. It is set when a linked load occurs. It
448 is tested and cleared by the conditional store. It is cleared
449 (during other CPU operations) when a store to the location would
450 no longer be atomic. In particular, it is cleared by exception
451 return instructions. */
452 int llbit;
453 #define LLBIT ((STATE_CPU (sd, 0))->llbit)
454
455
456 /* The HIACCESS and LOACCESS counts are used to ensure that
457 corruptions caused by using the HI or LO register to close to a
458 following operation are spotted. */
459
460 int hiaccess;
461 int loaccess;
462 #define HIACCESS ((STATE_CPU (sd, 0))->hiaccess)
463 #define LOACCESS ((STATE_CPU (sd, 0))->loaccess)
464 /* start-sanitize-r5900 */
465 int hi1access;
466 int lo1access;
467 #define HI1ACCESS ((STATE_CPU (sd, 0))->hi1access)
468 #define LO1ACCESS ((STATE_CPU (sd, 0))->lo1access)
469 /* end-sanitize-r5900 */
470 #if 1
471 /* The 4300 and a few other processors have interlocks on hi/lo
472 register reads, and hence do not have this problem. To avoid
473 spurious warnings, we just disable this always. */
474 #define CHECKHILO(s)
475 #else
476 unsigned_word HLPC;
477 /* If either of the preceding two instructions have accessed the HI
478 or LO registers, then the values they see should be
479 undefined. However, to keep the simulator world simple, we just
480 let them use the value read and raise a warning to notify the
481 user: */
482 #define CHECKHILO(s) {\
483 if ((HIACCESS != 0) || (LOACCESS != 0)) \
484 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
485 }
486 /* start-sanitize-r5900 */
487 #undef CHECKHILO
488 #define CHECKHILO(s) {\
489 if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
490 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
491 }
492 /* end-sanitize-r5900 */
493 #endif
494
495
496 /* start-sanitize-r5900 */
497 /* The R5900 has 128 bit registers, but the hi 64 bits are only
498 touched by multimedia (MMI) instructions. The normal mips
499 instructions just use the lower 64 bits. To avoid changing the
500 older parts of the simulator to handle this weirdness, the high
501 64 bits of each register are kept in a separate array
502 (registers1). The high 64 bits of any register are by convention
503 refered by adding a '1' to the end of the normal register's name.
504 So LO still refers to the low 64 bits of the LO register, LO1
505 refers to the high 64 bits of that same register. */
506
507 signed_word registers1[LAST_EMBED_REGNUM + 1];
508 #define REGISTERS1 ((STATE_CPU (sd, 0))->registers1)
509 #define GPR1 (&REGISTERS1[0])
510 #define LO1 (REGISTERS1[32])
511 #define HI1 (REGISTERS1[33])
512 #define REGISTER_SA (124)
513
514 unsigned_word sa; /* the shift amount register */
515 #define SA ((STATE_CPU (sd, 0))->sa)
516
517 /* end-sanitize-r5900 */
518 /* start-sanitize-vr5400 */
519
520 /* end-sanitize-vr5400 */
521
522
523
524 sim_cpu_base base;
525 };
526
527
528 /* MIPS specific simulator watch config */
529
530 void watch_options_install PARAMS ((SIM_DESC sd));
531
532 struct swatch {
533 sim_event *pc;
534 sim_event *clock;
535 sim_event *cycles;
536 };
537
538
539 /* FIXME: At present much of the simulator is still static */
540 struct sim_state {
541
542 struct swatch watch;
543
544 sim_cpu cpu[1];
545 #if (WITH_SMP)
546 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
547 #else
548 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
549 #endif
550
551 sim_state_base base;
552 };
553
554
555
556 /* Status information: */
557
558 /* TODO : these should be the bitmasks for these bits within the
559 status register. At the moment the following are VR4300
560 bit-positions: */
561 #define status_KSU_mask (0x3) /* mask for KSU bits */
562 #define status_KSU_shift (3) /* shift for field */
563 #define ksu_kernel (0x0)
564 #define ksu_supervisor (0x1)
565 #define ksu_user (0x2)
566 #define ksu_unknown (0x3)
567
568 #define status_IE (1 << 0) /* Interrupt enable */
569 #define status_EXL (1 << 1) /* Exception level */
570 #define status_RE (1 << 25) /* Reverse Endian in user mode */
571 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
572 #define status_SR (1 << 20) /* soft reset or NMI */
573 #define status_BEV (1 << 22) /* Location of general exception vectors */
574 #define status_TS (1 << 21) /* TLB shutdown has occurred */
575 #define status_ERL (1 << 2) /* Error level */
576 #define status_RP (1 << 27) /* Reduced Power mode */
577
578 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
579
580 /* NOTE: We keep the following status flags as bit values (1 for true,
581 0 for false). This allows them to be used in binary boolean
582 operations without worrying about what exactly the non-zero true
583 value is. */
584
585 /* UserMode */
586 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
587
588 /* BigEndianMem */
589 /* Hardware configuration. Affects endianness of LoadMemory and
590 StoreMemory and the endianness of Kernel and Supervisor mode
591 execution. The value is 0 for little-endian; 1 for big-endian. */
592 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
593 /*(state & simBE) ? 1 : 0)*/
594
595 /* ReverseEndian */
596 /* This mode is selected if in User mode with the RE bit being set in
597 SR (Status Register). It reverses the endianness of load and store
598 instructions. */
599 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
600
601 /* BigEndianCPU */
602 /* The endianness for load and store instructions (0=little;1=big). In
603 User mode this endianness may be switched by setting the state_RE
604 bit in the SR register. Thus, BigEndianCPU may be computed as
605 (BigEndianMem EOR ReverseEndian). */
606 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
607
608
609
610 /* Exceptions: */
611
612 /* NOTE: These numbers depend on the processor architecture being
613 simulated: */
614 #define Interrupt (0)
615 #define TLBModification (1)
616 #define TLBLoad (2)
617 #define TLBStore (3)
618 #define AddressLoad (4)
619 #define AddressStore (5)
620 #define InstructionFetch (6)
621 #define DataReference (7)
622 #define SystemCall (8)
623 #define BreakPoint (9)
624 #define ReservedInstruction (10)
625 #define CoProcessorUnusable (11)
626 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
627 #define Trap (13)
628 #define FPE (15)
629 #define DebugBreakPoint (16)
630 #define Watch (23)
631
632 /* The following exception code is actually private to the simulator
633 world. It is *NOT* a processor feature, and is used to signal
634 run-time errors in the simulator. */
635 #define SimulatorFault (0xFFFFFFFF)
636
637 void signal_exception (SIM_DESC sd, address_word cia, int exception, ...);
638 #define SignalException(exc,instruction) signal_exception (sd, cia, (exc), (instruction))
639 #define SignalExceptionInterrupt() signal_exception (sd, NULL_CIA, Interrupt)
640 #define SignalExceptionInstructionFetch() signal_exception (sd, cia, InstructionFetch)
641 #define SignalExceptionAddressStore() signal_exception (sd, cia, AddressStore)
642 #define SignalExceptionAddressLoad() signal_exception (sd, cia, AddressLoad)
643 #define SignalExceptionSimulatorFault(buf) signal_exception (sd, cia, SimulatorFault, buf)
644 #define SignalExceptionFPE() signal_exception (sd, cia, FPE)
645 #define SignalExceptionIntegerOverflow() signal_exception (sd, cia, IntegerOverflow)
646 #define SignalExceptionCoProcessorUnusable() signal_exception (sd, cia, CoProcessorUnusable)
647
648
649 /* Co-processor accesses */
650
651 void cop_lw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
652 void cop_ld PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
653 unsigned int cop_sw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg));
654 uword64 cop_sd PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg));
655
656 #define COP_LW(coproc_num,coproc_reg,memword) cop_lw(sd,cia,coproc_num,coproc_reg,memword)
657 #define COP_LD(coproc_num,coproc_reg,memword) cop_ld(sd,cia,coproc_num,coproc_reg,memword)
658 #define COP_SW(coproc_num,coproc_reg) cop_sw(sd,cia,coproc_num,coproc_reg)
659 #define COP_SD(coproc_num,coproc_reg) cop_sd(sd,cia,coproc_num,coproc_reg)
660
661 void decode_coproc PARAMS ((SIM_DESC sd, address_word cia, unsigned int instruction));
662 #define DecodeCoproc(instruction) decode_coproc(sd, cia, (instruction))
663
664
665
666 /* Memory accesses */
667
668 /* The following are generic to all versions of the MIPS architecture
669 to date: */
670
671 /* Memory Access Types (for CCA): */
672 #define Uncached (0)
673 #define CachedNoncoherent (1)
674 #define CachedCoherent (2)
675 #define Cached (3)
676
677 #define isINSTRUCTION (1 == 0) /* FALSE */
678 #define isDATA (1 == 1) /* TRUE */
679 #define isLOAD (1 == 0) /* FALSE */
680 #define isSTORE (1 == 1) /* TRUE */
681 #define isREAL (1 == 0) /* FALSE */
682 #define isRAW (1 == 1) /* TRUE */
683 /* The parameter HOST (isTARGET / isHOST) is ignored */
684 #define isTARGET (1 == 0) /* FALSE */
685 /* #define isHOST (1 == 1) TRUE */
686
687 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
688 is the number of bytes minus 1. */
689 #define AccessLength_BYTE (0)
690 #define AccessLength_HALFWORD (1)
691 #define AccessLength_TRIPLEBYTE (2)
692 #define AccessLength_WORD (3)
693 #define AccessLength_QUINTIBYTE (4)
694 #define AccessLength_SEXTIBYTE (5)
695 #define AccessLength_SEPTIBYTE (6)
696 #define AccessLength_DOUBLEWORD (7)
697 #define AccessLength_QUADWORD (15)
698
699 int address_translation PARAMS ((SIM_DESC sd, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
700 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
701 address_translation(sd,cia,vAddr,IorD,LorS,pAddr,CCA,raw)
702
703 void load_memory PARAMS ((SIM_DESC sd, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, int AccessLength, address_word pAddr, address_word vAddr, int IorD));
704 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
705 load_memory(sd,cia,memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD)
706
707 void store_memory PARAMS ((SIM_DESC sd, address_word cia, int CCA, int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
708 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
709 store_memory(sd,cia,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr)
710
711 void cache_op PARAMS ((SIM_DESC sd, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
712 #define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,cia,op,pAddr,vAddr,instruction)
713
714 void sync_operation PARAMS ((SIM_DESC sd, address_word cia, int stype));
715 #define SyncOperation(stype) sync_operation (sd, cia, (stype))
716
717 void prefetch PARAMS ((SIM_DESC sd, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
718 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,cia,CCA,pAddr,vAddr,DATA,hint)
719
720 unsigned32 ifetch32 PARAMS ((SIM_DESC sd, address_word cia, address_word vaddr));
721 #define IMEM(CIA) ifetch32 (SD, (CIA), (CIA))
722
723 void dotrace PARAMS ((SIM_DESC sd, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
724 FILE *tracefh;
725
726 #endif
This page took 0.044186 seconds and 4 git commands to generate.