IGEN likes to cache the current instruction address (CIA). Change the
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #if (WITH_IGEN)
40 /* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42 #include "itable.h"
43 #define MAX_INSNS (nr_itable_entries)
44 #define INSN_NAME(i) itable[(i)].name
45 #endif
46
47 #include "sim-base.h"
48
49
50 /* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53 typedef signed64 word64;
54 typedef unsigned64 uword64;
55
56 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59 #define SET64HI(t) (((uword64)(t))<<32)
60 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66 #define SIGNEXTEND(e,b) \
67 ((unsigned_word) \
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
71
72 /* Check if a value will fit within a halfword: */
73 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
75 /* windows always looses */
76 #include <signal.h>
77 #ifndef SIGBUS
78 #define SIGBUS SIGSEGV
79 #endif
80 #ifdef _WIN32
81 #define SIGTRAP 5
82 #define SIGQUIT 3
83 #endif
84
85
86
87 /* Floating-point operations: */
88
89 /* FPU registers must be one of the following types. All other values
90 are reserved (and undefined). */
91 typedef enum {
92 fmt_single = 0,
93 fmt_double = 1,
94 fmt_word = 4,
95 fmt_long = 5,
96 /* The following are well outside the normal acceptable format
97 range, and are used in the register status vector. */
98 fmt_unknown = 0x10000000,
99 fmt_uninterpreted = 0x20000000,
100 } FP_formats;
101
102 unsigned64 value_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats));
103 #define ValueFPR(FPR,FMT) value_fpr (sd, cia, (FPR), (FMT))
104
105 void store_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
106 #define StoreFPR(FPR,FMT,VALUE) store_fpr (sd, cia, (FPR), (FMT), (VALUE))
107
108 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
109 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
110 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
113 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
114 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
115 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
116 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
117 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
118 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
119 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
120 unsigned64 convert PARAMS ((SIM_DESC sd, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
121 #define Convert(rm,op,from,to) convert(sd,cia,rm,op,from,to)
122
123 /* Macro to update FPSR condition-code field. This is complicated by
124 the fact that there is a hole in the index range of the bits within
125 the FCSR register. Also, the number of bits visible depends on the
126 MIPS ISA version being supported. */
127
128 #define SETFCC(cc,v) {\
129 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
130 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
131 }
132 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
133
134 /* This should be the COC1 value at the start of the preceding
135 instruction: */
136 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
137
138 #if 1
139 #define SizeFGR() (WITH_TARGET_WORD_BITSIZE)
140 #else
141 /* They depend on the CPU being simulated */
142 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
143 #endif
144
145 /* Standard FCRS bits: */
146 #define IR (0) /* Inexact Result */
147 #define UF (1) /* UnderFlow */
148 #define OF (2) /* OverFlow */
149 #define DZ (3) /* Division by Zero */
150 #define IO (4) /* Invalid Operation */
151 #define UO (5) /* Unimplemented Operation */
152
153 /* Get masks for individual flags: */
154 #if 1 /* SAFE version */
155 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
156 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
157 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
158 #else
159 #define FP_FLAGS(b) (1 << ((b) + 2))
160 #define FP_ENABLE(b) (1 << ((b) + 7))
161 #define FP_CAUSE(b) (1 << ((b) + 12))
162 #endif
163
164 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
165
166 #define FP_MASK_RM (0x3)
167 #define FP_SH_RM (0)
168 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
169 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
170 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
171 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
172 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
173
174
175
176 /* Integer ALU operations: */
177
178 #include "sim-alu.h"
179
180 #define ALU32_END(ANS) \
181 if (ALU32_HAD_OVERFLOW) \
182 SignalExceptionIntegerOverflow (); \
183 (ANS) = ALU32_OVERFLOW_RESULT
184
185
186 #define ALU64_END(ANS) \
187 if (ALU64_HAD_OVERFLOW) \
188 SignalExceptionIntegerOverflow (); \
189 (ANS) = ALU64_OVERFLOW_RESULT;
190
191 /* start-sanitize-r5900 */
192
193 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
194 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
195 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
196 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
197
198 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
199 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
200 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
201 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
202
203 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
204 T - type of the sub part
205 TC - # of T's in the mips part of the "register"
206 I - index (from 0) of desired sub part
207 A - low part of "register"
208 A1 - high part of register
209 */
210 #define SUB_REG_FETCH(T,TC,A,A1,I) \
211 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
212 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
213 ? ((TC) - 1 - (I) % (TC)) \
214 : ((I) % (TC)) \
215 ) \
216 ) \
217 )
218
219 /*
220 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
221 where <type> has two letters:
222 1 is S=signed or U=unsigned
223 2 is B=byte H=halfword W=word D=doubleword
224 */
225
226 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
227 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
228 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
229 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
230
231 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
232 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
233 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
234 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
235
236 #define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
237 #define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
238 #define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
239 #define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
240
241 #define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
242 #define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
243 #define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
244 #define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
245
246
247 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
248 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
249 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
250 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
251
252 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
253 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
254 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
255 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
256
257 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
258 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
259 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
260 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
261
262 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
263 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
264 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
265 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
266
267
268
269 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
270 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
271 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
272 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
273
274 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
275 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
276 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
277 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
278
279 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
280 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
281 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
282 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
283
284 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
285 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
286 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
287 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
288
289 /* end-sanitize-r5900 */
290
291
292
293
294 struct _sim_cpu {
295
296
297 /* The following are internal simulator state variables: */
298 #define CPU_CIA(CPU) (PC)
299 address_word ipc; /* internal Instruction PC */
300 address_word dspc; /* delay-slot PC */
301 #define IPC ((STATE_CPU (sd,0))->ipc)
302 #define DSPC ((STATE_CPU (sd,0))->dspc)
303
304 /* Issue a delay slot instruction immediatly by re-calling
305 idecode_issue */
306 #define DELAY_SLOT(TARGET) \
307 do { \
308 address_word target = (TARGET); \
309 instruction_word delay_insn; \
310 sim_events_slip (sd, 1); \
311 CIA = CIA + 4; \
312 STATE |= simDELAYSLOT; \
313 delay_insn = IMEM (CIA); \
314 idecode_issue (sd, delay_insn, (CIA)); \
315 STATE &= ~simDELAYSLOT; \
316 NIA = target; \
317 } while (0)
318 #define NULLIFY_NEXT_INSTRUCTION() \
319 do { \
320 sim_events_slip (sd, 1); \
321 NIA = CIA + 8; \
322 } while (0)
323
324
325
326 /* State of the simulator */
327 unsigned int state;
328 unsigned int dsstate;
329 #define STATE ((STATE_CPU (sd,0))->state)
330 #define DSSTATE ((STATE_CPU (sd,0))->dsstate)
331
332 /* Flags in the "state" variable: */
333 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
334 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
335 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
336 #define simPCOC0 (1 << 17) /* COC[1] from current */
337 #define simPCOC1 (1 << 18) /* COC[1] from previous */
338 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
339 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
340 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
341 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
342
343
344
345
346 /* This is nasty, since we have to rely on matching the register
347 numbers used by GDB. Unfortunately, depending on the MIPS target
348 GDB uses different register numbers. We cannot just include the
349 relevant "gdb/tm.h" link, since GDB may not be configured before
350 the sim world, and also the GDB header file requires too much other
351 state. */
352
353 #ifndef TM_MIPS_H
354 #define LAST_EMBED_REGNUM (89)
355 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
356 /* start-sanitize-r5900 */
357 #undef NUM_REGS
358 #define NUM_REGS (128)
359 /* end-sanitize-r5900 */
360 #endif
361
362 /* To keep this default simulator simple, and fast, we use a direct
363 vector of registers. The internal simulator engine then uses
364 manifests to access the correct slot. */
365
366 unsigned_word registers[LAST_EMBED_REGNUM + 1];
367 int register_widths[NUM_REGS];
368 #define REGISTERS ((STATE_CPU (sd,0))->registers)
369
370 #define GPR (&REGISTERS[0])
371 #define FGRIDX (38)
372 #define FGR (&REGISTERS[FGRIDX])
373 #define LO (REGISTERS[33])
374 #define HI (REGISTERS[34])
375 #define PC (REGISTERS[37])
376 #define CAUSE (REGISTERS[36])
377 #define SRIDX (32)
378 #define SR (REGISTERS[SRIDX]) /* CPU status register */
379 #define FCR0IDX (71)
380 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
381 #define FCR31IDX (70)
382 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
383 #define FCSR (FCR31)
384 #define Debug (REGISTERS[86])
385 #define DEPC (REGISTERS[87])
386 #define EPC (REGISTERS[88])
387 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
388
389 /* The following are pseudonyms for standard registers */
390 #define ZERO (REGISTERS[0])
391 #define V0 (REGISTERS[2])
392 #define A0 (REGISTERS[4])
393 #define A1 (REGISTERS[5])
394 #define A2 (REGISTERS[6])
395 #define A3 (REGISTERS[7])
396 #define SP (REGISTERS[29])
397 #define RA (REGISTERS[31])
398
399 /* Keep the current format state for each register: */
400 FP_formats fpr_state[32];
401 #define FPR_STATE ((STATE_CPU (sd, 0))->fpr_state)
402
403
404 /* Slots for delayed register updates. For the moment we just have a
405 fixed number of slots (rather than a more generic, dynamic
406 system). This keeps the simulator fast. However, we only allow
407 for the register update to be delayed for a single instruction
408 cycle. */
409 #define PSLOTS (5) /* Maximum number of instruction cycles */
410 int pending_in;
411 int pending_out;
412 int pending_total;
413 int pending_slot_count[PSLOTS];
414 int pending_slot_reg[PSLOTS];
415 unsigned_word pending_slot_value[PSLOTS];
416 #define PENDING_IN ((STATE_CPU (sd, 0))->pending_in)
417 #define PENDING_OUT ((STATE_CPU (sd, 0))->pending_out)
418 #define PENDING_TOTAL ((STATE_CPU (sd, 0))->pending_total)
419 #define PENDING_SLOT_COUNT ((STATE_CPU (sd, 0))->pending_slot_count)
420 #define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg)
421 #define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value)
422
423 /* The following are not used for MIPS IV onwards: */
424 #define PENDING_FILL(r,v) {\
425 /* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
426 if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
427 sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
428 PENDING_SLOT_COUNT[PENDING_IN] = 2;\
429 PENDING_SLOT_REG[PENDING_IN] = (r);\
430 PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
431 /*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\
432 PENDING_TOTAL++;\
433 PENDING_IN++;\
434 if (PENDING_IN == PSLOTS)\
435 PENDING_IN = 0;\
436 /*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
437 }
438
439
440 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
441 read-write instructions. It is set when a linked load occurs. It
442 is tested and cleared by the conditional store. It is cleared
443 (during other CPU operations) when a store to the location would
444 no longer be atomic. In particular, it is cleared by exception
445 return instructions. */
446 int llbit;
447 #define LLBIT ((STATE_CPU (sd, 0))->llbit)
448
449
450 /* The HIACCESS and LOACCESS counts are used to ensure that
451 corruptions caused by using the HI or LO register to close to a
452 following operation are spotted. */
453
454 int hiaccess;
455 int loaccess;
456 #define HIACCESS ((STATE_CPU (sd, 0))->hiaccess)
457 #define LOACCESS ((STATE_CPU (sd, 0))->loaccess)
458 /* start-sanitize-r5900 */
459 int hi1access;
460 int lo1access;
461 #define HI1ACCESS ((STATE_CPU (sd, 0))->hi1access)
462 #define LO1ACCESS ((STATE_CPU (sd, 0))->lo1access)
463 /* end-sanitize-r5900 */
464 #if 1
465 /* The 4300 and a few other processors have interlocks on hi/lo
466 register reads, and hence do not have this problem. To avoid
467 spurious warnings, we just disable this always. */
468 #define CHECKHILO(s)
469 #else
470 unsigned_word HLPC;
471 /* If either of the preceding two instructions have accessed the HI
472 or LO registers, then the values they see should be
473 undefined. However, to keep the simulator world simple, we just
474 let them use the value read and raise a warning to notify the
475 user: */
476 #define CHECKHILO(s) {\
477 if ((HIACCESS != 0) || (LOACCESS != 0)) \
478 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
479 }
480 /* start-sanitize-r5900 */
481 #undef CHECKHILO
482 #define CHECKHILO(s) {\
483 if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
484 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
485 }
486 /* end-sanitize-r5900 */
487 #endif
488
489
490 /* start-sanitize-r5900 */
491 /* The R5900 has 128 bit registers, but the hi 64 bits are only
492 touched by multimedia (MMI) instructions. The normal mips
493 instructions just use the lower 64 bits. To avoid changing the
494 older parts of the simulator to handle this weirdness, the high
495 64 bits of each register are kept in a separate array
496 (registers1). The high 64 bits of any register are by convention
497 refered by adding a '1' to the end of the normal register's name.
498 So LO still refers to the low 64 bits of the LO register, LO1
499 refers to the high 64 bits of that same register. */
500
501 signed_word registers1[LAST_EMBED_REGNUM + 1];
502 #define REGISTERS1 ((STATE_CPU (sd, 0))->registers1)
503 #define GPR1 (&REGISTERS1[0])
504 #define LO1 (REGISTERS1[32])
505 #define HI1 (REGISTERS1[33])
506 #define REGISTER_SA (124)
507
508 unsigned_word sa; /* the shift amount register */
509 #define SA ((STATE_CPU (sd, 0))->sa)
510
511 /* end-sanitize-r5900 */
512 /* start-sanitize-vr5400 */
513
514 /* end-sanitize-vr5400 */
515
516
517
518 sim_cpu_base base;
519 };
520
521
522 /* MIPS specific simulator watch config */
523
524 void watch_options_install PARAMS ((SIM_DESC sd));
525
526 struct swatch {
527 sim_event *pc;
528 sim_event *clock;
529 sim_event *cycles;
530 };
531
532
533 /* FIXME: At present much of the simulator is still static */
534 struct sim_state {
535
536 struct swatch watch;
537
538 sim_cpu cpu[1];
539 #if (WITH_SMP)
540 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
541 #else
542 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
543 #endif
544
545 sim_state_base base;
546 };
547
548
549
550 /* Status information: */
551
552 /* TODO : these should be the bitmasks for these bits within the
553 status register. At the moment the following are VR4300
554 bit-positions: */
555 #define status_KSU_mask (0x3) /* mask for KSU bits */
556 #define status_KSU_shift (3) /* shift for field */
557 #define ksu_kernel (0x0)
558 #define ksu_supervisor (0x1)
559 #define ksu_user (0x2)
560 #define ksu_unknown (0x3)
561
562 #define status_IE (1 << 0) /* Interrupt enable */
563 #define status_EXL (1 << 1) /* Exception level */
564 #define status_RE (1 << 25) /* Reverse Endian in user mode */
565 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
566 #define status_SR (1 << 20) /* soft reset or NMI */
567 #define status_BEV (1 << 22) /* Location of general exception vectors */
568 #define status_TS (1 << 21) /* TLB shutdown has occurred */
569 #define status_ERL (1 << 2) /* Error level */
570 #define status_RP (1 << 27) /* Reduced Power mode */
571
572 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
573
574 /* NOTE: We keep the following status flags as bit values (1 for true,
575 0 for false). This allows them to be used in binary boolean
576 operations without worrying about what exactly the non-zero true
577 value is. */
578
579 /* UserMode */
580 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
581
582 /* BigEndianMem */
583 /* Hardware configuration. Affects endianness of LoadMemory and
584 StoreMemory and the endianness of Kernel and Supervisor mode
585 execution. The value is 0 for little-endian; 1 for big-endian. */
586 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
587 /*(state & simBE) ? 1 : 0)*/
588
589 /* ReverseEndian */
590 /* This mode is selected if in User mode with the RE bit being set in
591 SR (Status Register). It reverses the endianness of load and store
592 instructions. */
593 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
594
595 /* BigEndianCPU */
596 /* The endianness for load and store instructions (0=little;1=big). In
597 User mode this endianness may be switched by setting the state_RE
598 bit in the SR register. Thus, BigEndianCPU may be computed as
599 (BigEndianMem EOR ReverseEndian). */
600 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
601
602
603
604 /* Exceptions: */
605
606 /* NOTE: These numbers depend on the processor architecture being
607 simulated: */
608 #define Interrupt (0)
609 #define TLBModification (1)
610 #define TLBLoad (2)
611 #define TLBStore (3)
612 #define AddressLoad (4)
613 #define AddressStore (5)
614 #define InstructionFetch (6)
615 #define DataReference (7)
616 #define SystemCall (8)
617 #define BreakPoint (9)
618 #define ReservedInstruction (10)
619 #define CoProcessorUnusable (11)
620 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
621 #define Trap (13)
622 #define FPE (15)
623 #define DebugBreakPoint (16)
624 #define Watch (23)
625
626 /* The following exception code is actually private to the simulator
627 world. It is *NOT* a processor feature, and is used to signal
628 run-time errors in the simulator. */
629 #define SimulatorFault (0xFFFFFFFF)
630
631 void signal_exception (SIM_DESC sd, address_word cia, int exception, ...);
632 #define SignalException(exc,instruction) signal_exception (sd, cia, (exc), (instruction))
633 #define SignalExceptionInterrupt() signal_exception (sd, NULL_CIA, Interrupt)
634 #define SignalExceptionInstructionFetch() signal_exception (sd, cia, InstructionFetch)
635 #define SignalExceptionAddressStore() signal_exception (sd, cia, AddressStore)
636 #define SignalExceptionAddressLoad() signal_exception (sd, cia, AddressLoad)
637 #define SignalExceptionSimulatorFault(buf) signal_exception (sd, cia, SimulatorFault, buf)
638 #define SignalExceptionFPE() signal_exception (sd, cia, FPE)
639 #define SignalExceptionIntegerOverflow() signal_exception (sd, cia, IntegerOverflow)
640 #define SignalExceptionCoProcessorUnusable() signal_exception (sd, cia, CoProcessorUnusable)
641
642
643 /* Co-processor accesses */
644
645 void cop_lw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
646 void cop_ld PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
647 unsigned int cop_sw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg));
648 uword64 cop_sd PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg));
649
650 #define COP_LW(coproc_num,coproc_reg,memword) cop_lw(sd,cia,coproc_num,coproc_reg,memword)
651 #define COP_LD(coproc_num,coproc_reg,memword) cop_ld(sd,cia,coproc_num,coproc_reg,memword)
652 #define COP_SW(coproc_num,coproc_reg) cop_sw(sd,cia,coproc_num,coproc_reg)
653 #define COP_SD(coproc_num,coproc_reg) cop_sd(sd,cia,coproc_num,coproc_reg)
654
655 void decode_coproc PARAMS ((SIM_DESC sd, address_word cia, unsigned int instruction));
656 #define DecodeCoproc(instruction) decode_coproc(sd, cia, (instruction))
657
658
659
660 /* Memory accesses */
661
662 /* The following are generic to all versions of the MIPS architecture
663 to date: */
664
665 /* Memory Access Types (for CCA): */
666 #define Uncached (0)
667 #define CachedNoncoherent (1)
668 #define CachedCoherent (2)
669 #define Cached (3)
670
671 #define isINSTRUCTION (1 == 0) /* FALSE */
672 #define isDATA (1 == 1) /* TRUE */
673 #define isLOAD (1 == 0) /* FALSE */
674 #define isSTORE (1 == 1) /* TRUE */
675 #define isREAL (1 == 0) /* FALSE */
676 #define isRAW (1 == 1) /* TRUE */
677 /* The parameter HOST (isTARGET / isHOST) is ignored */
678 #define isTARGET (1 == 0) /* FALSE */
679 /* #define isHOST (1 == 1) TRUE */
680
681 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
682 is the number of bytes minus 1. */
683 #define AccessLength_BYTE (0)
684 #define AccessLength_HALFWORD (1)
685 #define AccessLength_TRIPLEBYTE (2)
686 #define AccessLength_WORD (3)
687 #define AccessLength_QUINTIBYTE (4)
688 #define AccessLength_SEXTIBYTE (5)
689 #define AccessLength_SEPTIBYTE (6)
690 #define AccessLength_DOUBLEWORD (7)
691 #define AccessLength_QUADWORD (15)
692
693 int address_translation PARAMS ((SIM_DESC sd, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
694 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
695 address_translation(sd,cia,vAddr,IorD,LorS,pAddr,CCA,raw)
696
697 void load_memory PARAMS ((SIM_DESC sd, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, int AccessLength, address_word pAddr, address_word vAddr, int IorD));
698 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
699 load_memory(sd,cia,memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD)
700
701 void store_memory PARAMS ((SIM_DESC sd, address_word cia, int CCA, int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
702 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
703 store_memory(sd,cia,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr)
704
705 void cache_op PARAMS ((SIM_DESC sd, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
706 #define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,cia,op,pAddr,vAddr,instruction)
707
708 void sync_operation PARAMS ((SIM_DESC sd, address_word cia, int stype));
709 #define SyncOperation(stype) sync_operation (sd, cia, (stype))
710
711 void prefetch PARAMS ((SIM_DESC sd, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
712 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,cia,CCA,pAddr,vAddr,DATA,hint)
713
714 unsigned32 ifetch32 PARAMS ((SIM_DESC sd, address_word cia, address_word vaddr));
715 #define IMEM(CIA) ifetch32 (SD, (CIA), (CIA))
716
717
718 #endif
This page took 0.04935 seconds and 4 git commands to generate.