For new IGEN simulators, rewrite checks validating correct use of the
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #if (WITH_IGEN)
40 /* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42 #include "itable.h"
43 #define MAX_INSNS (nr_itable_entries)
44 #define INSN_NAME(i) itable[(i)].name
45 #endif
46
47 #include "sim-base.h"
48
49
50 /* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53 typedef signed64 word64;
54 typedef unsigned64 uword64;
55
56 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59 #define SET64HI(t) (((uword64)(t))<<32)
60 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66 #define SIGNEXTEND(e,b) \
67 ((unsigned_word) \
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
71
72 /* Check if a value will fit within a halfword: */
73 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
75
76
77 /* Floating-point operations: */
78
79 #include "sim-fpu.h"
80
81 /* FPU registers must be one of the following types. All other values
82 are reserved (and undefined). */
83 typedef enum {
84 fmt_single = 0,
85 fmt_double = 1,
86 fmt_word = 4,
87 fmt_long = 5,
88 /* The following are well outside the normal acceptable format
89 range, and are used in the register status vector. */
90 fmt_unknown = 0x10000000,
91 fmt_uninterpreted = 0x20000000,
92 fmt_uninterpreted_32 = 0x40000000,
93 fmt_uninterpreted_64 = 0x80000000,
94 } FP_formats;
95
96 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
97 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
98
99 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
100 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
101
102 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
103 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
104 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
105 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
106 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
107 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
108 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
109 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
110 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
113 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
114 unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
115 unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
116 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
117 #define Convert(rm,op,from,to) \
118 convert (SD, CPU, cia, rm, op, from, to)
119
120 /* Macro to update FPSR condition-code field. This is complicated by
121 the fact that there is a hole in the index range of the bits within
122 the FCSR register. Also, the number of bits visible depends on the
123 MIPS ISA version being supported. */
124
125 #define SETFCC(cc,v) {\
126 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
127 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
128 }
129 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
130
131 /* This should be the COC1 value at the start of the preceding
132 instruction: */
133 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
134
135 #if 1
136 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
137 #else
138 /* They depend on the CPU being simulated */
139 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
140 #endif
141
142 /* Standard FCRS bits: */
143 #define IR (0) /* Inexact Result */
144 #define UF (1) /* UnderFlow */
145 #define OF (2) /* OverFlow */
146 #define DZ (3) /* Division by Zero */
147 #define IO (4) /* Invalid Operation */
148 #define UO (5) /* Unimplemented Operation */
149
150 /* Get masks for individual flags: */
151 #if 1 /* SAFE version */
152 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
153 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
154 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
155 #else
156 #define FP_FLAGS(b) (1 << ((b) + 2))
157 #define FP_ENABLE(b) (1 << ((b) + 7))
158 #define FP_CAUSE(b) (1 << ((b) + 12))
159 #endif
160
161 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
162
163 #define FP_MASK_RM (0x3)
164 #define FP_SH_RM (0)
165 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
166 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
167 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
168 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
169 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
170
171
172
173 /* HI/LO register accesses */
174
175 /* For some MIPS targets, the HI/LO registers have certain timing
176 restrictions in that, for instance, a read of a HI register must be
177 separated by at least three instructions from a preceeding read.
178
179 The struct below is used to record the last access by each of A MT,
180 MF or other OP instruction to a HI/LO register. See mips.igen for
181 more details. */
182
183 typedef struct _hilo_access {
184 signed64 timestamp;
185 address_word cia;
186 } hilo_access;
187
188 typedef struct _hilo_history {
189 hilo_access mt;
190 hilo_access mf;
191 hilo_access op;
192 } hilo_history;
193
194
195
196
197 /* Integer ALU operations: */
198
199 #include "sim-alu.h"
200
201 #define ALU32_END(ANS) \
202 if (ALU32_HAD_OVERFLOW) \
203 SignalExceptionIntegerOverflow (); \
204 (ANS) = ALU32_OVERFLOW_RESULT
205
206
207 #define ALU64_END(ANS) \
208 if (ALU64_HAD_OVERFLOW) \
209 SignalExceptionIntegerOverflow (); \
210 (ANS) = ALU64_OVERFLOW_RESULT;
211
212
213 /* start-sanitize-r5900 */
214
215 /* Figure 10-5 FPU Control/Status Register.
216 Note: some of these bits are different to what is found in a
217 standard MIPS manual. */
218 enum {
219 R5900_FCSR_C = BIT (23), /* OK */
220 R5900_FCSR_I = BIT (17),
221 R5900_FCSR_D = BIT (16),
222 R5900_FCSR_O = BIT (15),
223 R5900_FCSR_U = BIT (14),
224 R5900_FCSR_CAUSE = MASK (16,14),
225 R5900_FCSR_SI = BIT (6),
226 R5900_FCSR_SD = BIT (5),
227 R5900_FCSR_SO = BIT (4),
228 R5900_FCSR_SU = BIT (3),
229 };
230
231 /* Table 10-1 FP format values.
232 Note: some of these bits are different to what is found in a
233 standard MIPS manual. */
234 enum {
235 R5900_EXPMAX = 128,
236 R5900_EXPMIN = -127,
237 R5900_EXPBIAS = 127,
238 };
239
240
241
242 typedef struct _sim_r5900_cpu {
243
244 /* The R5900 has 32 x 128bit general purpose registers.
245 Fortunatly, the high 64 bits are only touched by multimedia (MMI)
246 instructions. The normal mips instructions just use the lower 64
247 bits. To avoid changing the older parts of the simulator to
248 handle this weirdness, the high 64 bits of each register are kept
249 in a separate array (registers1). The high 64 bits of any
250 register are by convention refered by adding a '1' to the end of
251 the normal register's name. So LO still refers to the low 64
252 bits of the LO register, LO1 refers to the high 64 bits of that
253 same register. */
254 signed_word gpr1[32];
255 #define GPR1 ((CPU)->r5900.gpr1)
256 signed_word lo1;
257 signed_word hi1;
258 #define LO1 ((CPU)->r5900.lo1)
259 #define HI1 ((CPU)->r5900.hi1)
260
261 /* The R5900 defines a shift amount register, that controls the
262 amount of certain shift instructions */
263 unsigned_word sa; /* the shift amount register */
264 #define REGISTER_SA (124) /* GET RID IF THIS! */
265 #define SA ((CPU)->r5900.sa)
266
267 /* The R5900, in addition to the (almost) standard floating point
268 registers, defines a 32 bit accumulator. This is used in
269 multiply/accumulate style instructions */
270 fp_word acc; /* floating-point accumulator */
271 #define ACC ((CPU)->r5900.acc)
272
273 /* See comments below about needing to count cycles between updating
274 and setting HI/LO registers */
275 hilo_history hi1_history;
276 #define HI1HISTORY (&(CPU)->r5900.hi1_history)
277 hilo_history lo1_history;
278 #define LO1HISTORY (&(CPU)->r5900.lo1_history)
279
280 } sim_r5900_cpu;
281
282 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
283 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
284 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
285 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
286
287 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
288 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
289 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
290 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
291
292 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
293 T - type of the sub part
294 TC - # of T's in the mips part of the "register"
295 I - index (from 0) of desired sub part
296 A - low part of "register"
297 A1 - high part of register
298 */
299 #define SUB_REG_FETCH(T,TC,A,A1,I) \
300 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
301 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
302 ? ((TC) - 1 - (I) % (TC)) \
303 : ((I) % (TC)) \
304 ) \
305 ) \
306 )
307
308 /*
309 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
310 where <type> has two letters:
311 1 is S=signed or U=unsigned
312 2 is B=byte H=halfword W=word D=doubleword
313 */
314
315 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
316 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
317 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
318 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
319
320 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
321 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
322 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
323 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
324
325 #define GPR_SB(R,I) SUB_REG_SB(&GPR[R], &GPR1[R], I)
326 #define GPR_SH(R,I) SUB_REG_SH(&GPR[R], &GPR1[R], I)
327 #define GPR_SW(R,I) SUB_REG_SW(&GPR[R], &GPR1[R], I)
328 #define GPR_SD(R,I) SUB_REG_SD(&GPR[R], &GPR1[R], I)
329
330 #define GPR_UB(R,I) SUB_REG_UB(&GPR[R], &GPR1[R], I)
331 #define GPR_UH(R,I) SUB_REG_UH(&GPR[R], &GPR1[R], I)
332 #define GPR_UW(R,I) SUB_REG_UW(&GPR[R], &GPR1[R], I)
333 #define GPR_UD(R,I) SUB_REG_UD(&GPR[R], &GPR1[R], I)
334
335
336 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
337 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
338 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
339 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
340
341 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
342 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
343 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
344 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
345
346 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
347 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
348 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
349 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
350
351 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
352 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
353 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
354 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
355
356
357
358 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
359 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
360 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
361 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
362
363 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
364 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
365 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
366 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
367
368 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
369 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
370 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
371 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
372
373 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
374 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
375 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
376 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
377
378 /* end-sanitize-r5900 */
379
380
381
382 /* The following is probably not used for MIPS IV onwards: */
383 /* Slots for delayed register updates. For the moment we just have a
384 fixed number of slots (rather than a more generic, dynamic
385 system). This keeps the simulator fast. However, we only allow
386 for the register update to be delayed for a single instruction
387 cycle. */
388 #define PSLOTS (8) /* Maximum number of instruction cycles */
389
390 typedef struct _pending_write_queue {
391 int in;
392 int out;
393 int total;
394 int slot_delay[PSLOTS];
395 int slot_size[PSLOTS];
396 int slot_bit[PSLOTS];
397 void *slot_dest[PSLOTS];
398 unsigned64 slot_value[PSLOTS];
399 } pending_write_queue;
400
401 #ifndef PENDING_TRACE
402 #define PENDING_TRACE 0
403 #endif
404 #define PENDING_IN ((CPU)->pending.in)
405 #define PENDING_OUT ((CPU)->pending.out)
406 #define PENDING_TOTAL ((CPU)->pending.total)
407 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
408 #define PENDING_SLOT_BIT ((CPU)->pending.slot_size)
409 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
410 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
411 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
412
413 /* Invalidate the pending write queue, all pending writes are
414 discarded. */
415
416 #define PENDING_INVALIDATE() \
417 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
418
419 /* Schedule a write to DEST for N cycles time. For 64 bit
420 destinations, schedule two writes. For floating point registers,
421 the caller should schedule a write to both the dest register and
422 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
423 is updated. */
424
425 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
426 do { \
427 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
428 sim_engine_abort (SD, CPU, cia, \
429 "PENDING_SCHED - buffer overflow\n"); \
430 if (PENDING_TRACE) \
431 sim_io_printf (SD, "PENDING_SCHED - dest 0x%lx, val 0x%lx, pending_in %d, pending_out %d, pending_total %d\n", (unsigned long) (DEST), (unsigned long) (VAL), PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
432 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
433 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
434 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
435 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
436 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
437 } while (0)
438
439 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
440 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
441
442 #define PENDING_TICK() pending_tick (SD, CPU, cia)
443
444 #define PENDING_FLUSH() abort () /* think about this one */
445 #define PENDING_FP() abort () /* think about this one */
446
447 /* For backward compatibility */
448 #define PENDING_FILL(R,VAL) \
449 { \
450 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
451 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 2, -1); \
452 else \
453 PENDING_SCHED(GPR[(R)], VAL, 2, -1); \
454 }
455
456
457
458 struct _sim_cpu {
459
460
461 /* The following are internal simulator state variables: */
462 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
463 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
464 address_word dspc; /* delay-slot PC */
465 #define DSPC ((CPU)->dspc)
466
467 #if !WITH_IGEN
468 /* Issue a delay slot instruction immediatly by re-calling
469 idecode_issue */
470 #define DELAY_SLOT(TARGET) \
471 do { \
472 address_word target = (TARGET); \
473 instruction_word delay_insn; \
474 sim_events_slip (SD, 1); \
475 CIA = CIA + 4; /* NOTE not mips16 */ \
476 STATE |= simDELAYSLOT; \
477 delay_insn = IMEM32 (CIA); /* NOTE not mips16 */ \
478 idecode_issue (CPU_, delay_insn, (CIA)); \
479 STATE &= ~simDELAYSLOT; \
480 NIA = target; \
481 } while (0)
482 #define NULLIFY_NEXT_INSTRUCTION() \
483 do { \
484 sim_events_slip (SD, 1); \
485 dotrace (SD, CPU, tracefh, 2, NIA, 4, "load instruction"); \
486 NIA = CIA + 8; \
487 } while (0)
488 #else
489 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
490 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
491 #endif
492
493
494 /* State of the simulator */
495 unsigned int state;
496 unsigned int dsstate;
497 #define STATE ((CPU)->state)
498 #define DSSTATE ((CPU)->dsstate)
499
500 /* Flags in the "state" variable: */
501 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
502 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
503 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
504 #define simPCOC0 (1 << 17) /* COC[1] from current */
505 #define simPCOC1 (1 << 18) /* COC[1] from previous */
506 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
507 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
508 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
509 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
510
511 #define ENGINE_ISSUE_PREFIX_HOOK() \
512 { \
513 /* Perform any pending writes */ \
514 PENDING_TICK(); \
515 /* Set previous flag, depending on current: */ \
516 if (STATE & simPCOC0) \
517 STATE |= simPCOC1; \
518 else \
519 STATE &= ~simPCOC1; \
520 /* and update the current value: */ \
521 if (GETFCC(0)) \
522 STATE |= simPCOC0; \
523 else \
524 STATE &= ~simPCOC0; \
525 }
526
527
528 /* This is nasty, since we have to rely on matching the register
529 numbers used by GDB. Unfortunately, depending on the MIPS target
530 GDB uses different register numbers. We cannot just include the
531 relevant "gdb/tm.h" link, since GDB may not be configured before
532 the sim world, and also the GDB header file requires too much other
533 state. */
534
535 #ifndef TM_MIPS_H
536 #define LAST_EMBED_REGNUM (89)
537 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
538 /* start-sanitize-r5900 */
539 #undef NUM_REGS
540 #define NUM_REGS (128)
541 /* end-sanitize-r5900 */
542 #endif
543
544 /* start-sanitize-sky */
545 #ifdef TARGET_SKY
546 #ifndef TM_TXVU_H
547
548 /* Number of machine registers */
549 #define NUM_VU_REGS 153
550 #define NUM_VU_INTEGER_REGS 16
551
552 #define NUM_VIF_REGS 25
553
554 #define FIRST_VEC_REG 25
555 #define NUM_R5900_REGS 128
556
557 #undef NUM_REGS
558 #define NUM_REGS (NUM_R5900_REGS + 2*(NUM_VU_REGS) + 2*(NUM_VIF_REGS))
559 #endif /* no tm-txvu.h */
560 #endif
561 /* end-sanitize-sky */
562
563 /* To keep this default simulator simple, and fast, we use a direct
564 vector of registers. The internal simulator engine then uses
565 manifests to access the correct slot. */
566
567 unsigned_word registers[LAST_EMBED_REGNUM + 1];
568 int register_widths[NUM_REGS];
569 #define REGISTERS ((CPU)->registers)
570
571 #define GPR (&REGISTERS[0])
572 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
573
574 /* While space is allocated for the floating point registers in the
575 main registers array, they are stored separatly. This is because
576 their size may not necessarily match the size of either the
577 general-purpose or system specific registers */
578 #define NR_FGR (32)
579 #define FGRIDX (38)
580 fp_word fgr[NR_FGR];
581 #define FGR ((CPU)->fgr)
582
583 #define LO (REGISTERS[33])
584 #define HI (REGISTERS[34])
585 #define PCIDX 37
586 #define PC (REGISTERS[PCIDX])
587 #define CAUSE (REGISTERS[36])
588 #define SRIDX (32)
589 #define SR (REGISTERS[SRIDX]) /* CPU status register */
590 #define FCR0IDX (71)
591 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
592 #define FCR31IDX (70)
593 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
594 #define FCSR (FCR31)
595 #define Debug (REGISTERS[86])
596 #define DEPC (REGISTERS[87])
597 #define EPC (REGISTERS[88])
598 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
599
600 unsigned_word c0_config_reg;
601 #define C0_CONFIG ((CPU)->c0_config_reg)
602
603 /* The following are pseudonyms for standard registers */
604 #define ZERO (REGISTERS[0])
605 #define V0 (REGISTERS[2])
606 #define A0 (REGISTERS[4])
607 #define A1 (REGISTERS[5])
608 #define A2 (REGISTERS[6])
609 #define A3 (REGISTERS[7])
610 #define T8IDX 24
611 #define T8 (REGISTERS[T8IDX])
612 #define SPIDX 29
613 #define SP (REGISTERS[SPIDX])
614 #define RAIDX 31
615 #define RA (REGISTERS[RAIDX])
616
617 /* Keep the current format state for each register: */
618 FP_formats fpr_state[32];
619 #define FPR_STATE ((CPU)->fpr_state)
620
621 pending_write_queue pending;
622
623 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
624 read-write instructions. It is set when a linked load occurs. It
625 is tested and cleared by the conditional store. It is cleared
626 (during other CPU operations) when a store to the location would
627 no longer be atomic. In particular, it is cleared by exception
628 return instructions. */
629 int llbit;
630 #define LLBIT ((CPU)->llbit)
631
632
633 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
634 corruptions caused by using the HI or LO register too close to a
635 following operation is spotted. See mips.igen for more details. */
636
637 hilo_history hi_history;
638 #define HIHISTORY (&(CPU)->hi_history)
639 hilo_history lo_history;
640 #define LOHISTORY (&(CPU)->lo_history)
641
642
643 /* start-sanitize-r5900 */
644 sim_r5900_cpu r5900;
645
646 /* end-sanitize-r5900 */
647 /* start-sanitize-vr5400 */
648
649 /* The MDMX ISA has a very very large accumulator */
650 unsigned8 acc[3 * 8];
651 /* end-sanitize-vr5400 */
652
653 sim_cpu_base base;
654 };
655
656
657 /* MIPS specific simulator watch config */
658
659 void watch_options_install PARAMS ((SIM_DESC sd));
660
661 struct swatch {
662 sim_event *pc;
663 sim_event *clock;
664 sim_event *cycles;
665 };
666
667
668 /* FIXME: At present much of the simulator is still static */
669 struct sim_state {
670
671 struct swatch watch;
672
673 sim_cpu cpu[MAX_NR_PROCESSORS];
674 #if (WITH_SMP)
675 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
676 #else
677 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
678 #endif
679
680 sim_state_base base;
681 };
682
683
684
685 /* Status information: */
686
687 /* TODO : these should be the bitmasks for these bits within the
688 status register. At the moment the following are VR4300
689 bit-positions: */
690 #define status_KSU_mask (0x3) /* mask for KSU bits */
691 #define status_KSU_shift (3) /* shift for field */
692 #define ksu_kernel (0x0)
693 #define ksu_supervisor (0x1)
694 #define ksu_user (0x2)
695 #define ksu_unknown (0x3)
696
697 #define status_IE (1 << 0) /* Interrupt enable */
698 #define status_EXL (1 << 1) /* Exception level */
699 #define status_RE (1 << 25) /* Reverse Endian in user mode */
700 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
701 #define status_SR (1 << 20) /* soft reset or NMI */
702 #define status_BEV (1 << 22) /* Location of general exception vectors */
703 #define status_TS (1 << 21) /* TLB shutdown has occurred */
704 #define status_ERL (1 << 2) /* Error level */
705 #define status_RP (1 << 27) /* Reduced Power mode */
706 /* begin-sanitize-r5900 */
707 #define status_CU0 (1 << 28) /* COP0 usable */
708 #define status_CU1 (1 << 29) /* COP1 usable */
709 #define status_CU2 (1 << 30) /* COP2 usable */
710 /* begin-sanitize-r5900 */
711
712 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
713
714 /* NOTE: We keep the following status flags as bit values (1 for true,
715 0 for false). This allows them to be used in binary boolean
716 operations without worrying about what exactly the non-zero true
717 value is. */
718
719 /* UserMode */
720 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
721
722 /* BigEndianMem */
723 /* Hardware configuration. Affects endianness of LoadMemory and
724 StoreMemory and the endianness of Kernel and Supervisor mode
725 execution. The value is 0 for little-endian; 1 for big-endian. */
726 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
727 /*(state & simBE) ? 1 : 0)*/
728
729 /* ReverseEndian */
730 /* This mode is selected if in User mode with the RE bit being set in
731 SR (Status Register). It reverses the endianness of load and store
732 instructions. */
733 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
734
735 /* BigEndianCPU */
736 /* The endianness for load and store instructions (0=little;1=big). In
737 User mode this endianness may be switched by setting the state_RE
738 bit in the SR register. Thus, BigEndianCPU may be computed as
739 (BigEndianMem EOR ReverseEndian). */
740 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
741
742
743
744 /* Exceptions: */
745
746 /* NOTE: These numbers depend on the processor architecture being
747 simulated: */
748 #define Interrupt (0)
749 #define TLBModification (1)
750 #define TLBLoad (2)
751 #define TLBStore (3)
752 #define AddressLoad (4)
753 #define AddressStore (5)
754 #define InstructionFetch (6)
755 #define DataReference (7)
756 #define SystemCall (8)
757 #define BreakPoint (9)
758 #define ReservedInstruction (10)
759 #define CoProcessorUnusable (11)
760 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
761 #define Trap (13)
762 #define FPE (15)
763 #define DebugBreakPoint (16)
764 #define Watch (23)
765
766 /* The following exception code is actually private to the simulator
767 world. It is *NOT* a processor feature, and is used to signal
768 run-time errors in the simulator. */
769 #define SimulatorFault (0xFFFFFFFF)
770
771 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
772 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
773 #define SignalExceptionInterrupt() signal_exception (SD, CPU, NULL_CIA, Interrupt)
774 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
775 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
776 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
777 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
778 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
779 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
780 #define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable)
781
782
783 /* Co-processor accesses */
784
785 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
786 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
787 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
788 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
789
790 #define COP_LW(coproc_num,coproc_reg,memword) \
791 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
792 #define COP_LD(coproc_num,coproc_reg,memword) \
793 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
794 #define COP_SW(coproc_num,coproc_reg) \
795 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
796 #define COP_SD(coproc_num,coproc_reg) \
797 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
798
799 /* start-sanitize-sky */
800 #ifdef TARGET_SKY
801 void cop_lq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
802 int coproc_num, int coproc_reg, unsigned128 memword));
803 unsigned128 cop_sq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
804 int coproc_num, int coproc_reg));
805 #define COP_LQ(coproc_num,coproc_reg,memword) \
806 cop_lq (SD, CPU, cia, coproc_num, coproc_reg, memword)
807 #define COP_SQ(coproc_num,coproc_reg) \
808 cop_sq (SD, CPU, cia, coproc_num, coproc_reg)
809 #endif /* TARGET_SKY */
810 /* end-sanitize-sky */
811
812 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
813 #define DecodeCoproc(instruction) \
814 decode_coproc (SD, CPU, cia, (instruction))
815
816
817
818 /* Memory accesses */
819
820 /* The following are generic to all versions of the MIPS architecture
821 to date: */
822
823 /* Memory Access Types (for CCA): */
824 #define Uncached (0)
825 #define CachedNoncoherent (1)
826 #define CachedCoherent (2)
827 #define Cached (3)
828
829 #define isINSTRUCTION (1 == 0) /* FALSE */
830 #define isDATA (1 == 1) /* TRUE */
831 #define isLOAD (1 == 0) /* FALSE */
832 #define isSTORE (1 == 1) /* TRUE */
833 #define isREAL (1 == 0) /* FALSE */
834 #define isRAW (1 == 1) /* TRUE */
835 /* The parameter HOST (isTARGET / isHOST) is ignored */
836 #define isTARGET (1 == 0) /* FALSE */
837 /* #define isHOST (1 == 1) TRUE */
838
839 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
840 is the number of bytes minus 1. */
841 #define AccessLength_BYTE (0)
842 #define AccessLength_HALFWORD (1)
843 #define AccessLength_TRIPLEBYTE (2)
844 #define AccessLength_WORD (3)
845 #define AccessLength_QUINTIBYTE (4)
846 #define AccessLength_SEXTIBYTE (5)
847 #define AccessLength_SEPTIBYTE (6)
848 #define AccessLength_DOUBLEWORD (7)
849 #define AccessLength_QUADWORD (15)
850
851 #if (WITH_IGEN)
852 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
853 ? AccessLength_DOUBLEWORD /*7*/ \
854 : AccessLength_WORD /*3*/)
855 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
856 #endif
857
858
859 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
860 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
861 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
862
863 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
864 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
865 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
866
867 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
868 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
869 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
870
871 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
872 #define CacheOp(op,pAddr,vAddr,instruction) \
873 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
874
875 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
876 #define SyncOperation(stype) \
877 sync_operation (SD, CPU, cia, (stype))
878
879 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
880 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
881 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
882
883 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
884 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
885 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
886 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
887 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
888
889 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
890 FILE *tracefh;
891
892 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
893
894 char* pr_addr PARAMS ((SIM_ADDR addr));
895 char* pr_uword64 PARAMS ((uword64 addr));
896
897
898 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
899 #include "sim-main.c"
900 #endif
901
902 #endif
This page took 0.052274 seconds and 5 git commands to generate.