* Patch for PR 17142, brought over from sky branch.
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #if (WITH_IGEN)
40 /* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42 #include "itable.h"
43 #define MAX_INSNS (nr_itable_entries)
44 #define INSN_NAME(cpu,i) itable[(i)].name
45 #endif
46
47 #include "sim-base.h"
48
49
50 /* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53 typedef signed64 word64;
54 typedef unsigned64 uword64;
55
56 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59 #define SET64HI(t) (((uword64)(t))<<32)
60 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66 #define SIGNEXTEND(e,b) \
67 ((unsigned_word) \
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
71
72 /* Check if a value will fit within a halfword: */
73 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
75
76
77 /* Floating-point operations: */
78
79 #include "sim-fpu.h"
80
81 /* FPU registers must be one of the following types. All other values
82 are reserved (and undefined). */
83 typedef enum {
84 fmt_single = 0,
85 fmt_double = 1,
86 fmt_word = 4,
87 fmt_long = 5,
88 /* The following are well outside the normal acceptable format
89 range, and are used in the register status vector. */
90 fmt_unknown = 0x10000000,
91 fmt_uninterpreted = 0x20000000,
92 fmt_uninterpreted_32 = 0x40000000,
93 fmt_uninterpreted_64 = 0x80000000U,
94 } FP_formats;
95
96 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
97 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
98
99 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
100 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
101
102 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
103 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
104 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
105 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
106 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
107 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
108 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
109 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
110 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
113 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
114 unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
115 unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
116 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
117 #define Convert(rm,op,from,to) \
118 convert (SD, CPU, cia, rm, op, from, to)
119
120 /* Macro to update FPSR condition-code field. This is complicated by
121 the fact that there is a hole in the index range of the bits within
122 the FCSR register. Also, the number of bits visible depends on the
123 MIPS ISA version being supported. */
124
125 #define SETFCC(cc,v) {\
126 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
127 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
128 }
129 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
130
131 /* This should be the COC1 value at the start of the preceding
132 instruction: */
133 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
134
135 #if 1
136 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
137 #else
138 /* They depend on the CPU being simulated */
139 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
140 #endif
141
142 /* Standard FCRS bits: */
143 #define IR (0) /* Inexact Result */
144 #define UF (1) /* UnderFlow */
145 #define OF (2) /* OverFlow */
146 #define DZ (3) /* Division by Zero */
147 #define IO (4) /* Invalid Operation */
148 #define UO (5) /* Unimplemented Operation */
149
150 /* Get masks for individual flags: */
151 #if 1 /* SAFE version */
152 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
153 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
154 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
155 #else
156 #define FP_FLAGS(b) (1 << ((b) + 2))
157 #define FP_ENABLE(b) (1 << ((b) + 7))
158 #define FP_CAUSE(b) (1 << ((b) + 12))
159 #endif
160
161 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
162
163 #define FP_MASK_RM (0x3)
164 #define FP_SH_RM (0)
165 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
166 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
167 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
168 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
169 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
170
171 /* start-sanitize-sky */
172 #ifdef TARGET_SKY
173 #ifdef SKY_FUNIT
174 #include <assert.h>
175 #include "wf.h"
176 #endif
177 #endif
178 /* end-sanitize-sky */
179
180
181
182
183
184 /* HI/LO register accesses */
185
186 /* For some MIPS targets, the HI/LO registers have certain timing
187 restrictions in that, for instance, a read of a HI register must be
188 separated by at least three instructions from a preceeding read.
189
190 The struct below is used to record the last access by each of A MT,
191 MF or other OP instruction to a HI/LO register. See mips.igen for
192 more details. */
193
194 typedef struct _hilo_access {
195 signed64 timestamp;
196 address_word cia;
197 } hilo_access;
198
199 typedef struct _hilo_history {
200 hilo_access mt;
201 hilo_access mf;
202 hilo_access op;
203 } hilo_history;
204
205
206
207
208 /* Integer ALU operations: */
209
210 #include "sim-alu.h"
211
212 #define ALU32_END(ANS) \
213 if (ALU32_HAD_OVERFLOW) \
214 SignalExceptionIntegerOverflow (); \
215 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
216
217
218 #define ALU64_END(ANS) \
219 if (ALU64_HAD_OVERFLOW) \
220 SignalExceptionIntegerOverflow (); \
221 (ANS) = ALU64_OVERFLOW_RESULT;
222
223
224 /* start-sanitize-r5900 */
225
226 /* Figure 10-5 FPU Control/Status Register.
227 Note: some of these bits are different to what is found in a
228 standard MIPS manual. */
229 enum {
230 R5900_FCSR_C = BIT (23), /* OK */
231 R5900_FCSR_I = BIT (17),
232 R5900_FCSR_D = BIT (16),
233 R5900_FCSR_O = BIT (15),
234 R5900_FCSR_U = BIT (14),
235 R5900_FCSR_CAUSE = MASK (16,14),
236 R5900_FCSR_SI = BIT (6),
237 R5900_FCSR_SD = BIT (5),
238 R5900_FCSR_SO = BIT (4),
239 R5900_FCSR_SU = BIT (3),
240 };
241
242 /* Table 10-1 FP format values.
243 Note: some of these bits are different to what is found in a
244 standard MIPS manual. */
245 enum {
246 R5900_EXPMAX = 128,
247 R5900_EXPMIN = -127,
248 R5900_EXPBIAS = 127,
249 };
250
251 /* MAX and MIN FP values */
252 enum {
253 R5900_FPMAX = LSMASK32 (30, 0),
254 R5900_FPMIN = LSMASK32 (31, 0),
255 };
256
257
258
259 typedef struct _sim_r5900_cpu {
260
261 /* The R5900 has 32 x 128bit general purpose registers.
262 Fortunatly, the high 64 bits are only touched by multimedia (MMI)
263 instructions. The normal mips instructions just use the lower 64
264 bits. To avoid changing the older parts of the simulator to
265 handle this weirdness, the high 64 bits of each register are kept
266 in a separate array (registers1). The high 64 bits of any
267 register are by convention refered by adding a '1' to the end of
268 the normal register's name. So LO still refers to the low 64
269 bits of the LO register, LO1 refers to the high 64 bits of that
270 same register. */
271 signed_word gpr1[32];
272 #define GPR1 ((CPU)->r5900.gpr1)
273 signed_word lo1;
274 signed_word hi1;
275 #define LO1 ((CPU)->r5900.lo1)
276 #define HI1 ((CPU)->r5900.hi1)
277
278 /* The R5900 defines a shift amount register, that controls the
279 amount of certain shift instructions */
280 unsigned_word sa; /* the shift amount register */
281 #define REGISTER_SA (124) /* GET RID IF THIS! */
282 #define SA ((CPU)->r5900.sa)
283
284 /* The R5900, in addition to the (almost) standard floating point
285 registers, defines a 32 bit accumulator. This is used in
286 multiply/accumulate style instructions */
287 fp_word acc; /* floating-point accumulator */
288 #define ACC ((CPU)->r5900.acc)
289
290 /* See comments below about needing to count cycles between updating
291 and setting HI/LO registers */
292 hilo_history hi1_history;
293 #define HI1HISTORY (&(CPU)->r5900.hi1_history)
294 hilo_history lo1_history;
295 #define LO1HISTORY (&(CPU)->r5900.lo1_history)
296
297 } sim_r5900_cpu;
298
299 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
300 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
301 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
302 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
303
304 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
305 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
306 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
307 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
308
309 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
310 T - type of the sub part
311 TC - # of T's in the mips part of the "register"
312 I - index (from 0) of desired sub part
313 A - low part of "register"
314 A1 - high part of register
315 */
316 #define SUB_REG_FETCH(T,TC,A,A1,I) \
317 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
318 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
319 ? ((TC) - 1 - (I) % (TC)) \
320 : ((I) % (TC)) \
321 ) \
322 ) \
323 )
324
325 /*
326 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
327 where <type> has two letters:
328 1 is S=signed or U=unsigned
329 2 is B=byte H=halfword W=word D=doubleword
330 */
331
332 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
333 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
334 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
335 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
336
337 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
338 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
339 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
340 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
341
342 #define GPR_SB(R,I) SUB_REG_SB(&GPR[R], &GPR1[R], I)
343 #define GPR_SH(R,I) SUB_REG_SH(&GPR[R], &GPR1[R], I)
344 #define GPR_SW(R,I) SUB_REG_SW(&GPR[R], &GPR1[R], I)
345 #define GPR_SD(R,I) SUB_REG_SD(&GPR[R], &GPR1[R], I)
346
347 #define GPR_UB(R,I) SUB_REG_UB(&GPR[R], &GPR1[R], I)
348 #define GPR_UH(R,I) SUB_REG_UH(&GPR[R], &GPR1[R], I)
349 #define GPR_UW(R,I) SUB_REG_UW(&GPR[R], &GPR1[R], I)
350 #define GPR_UD(R,I) SUB_REG_UD(&GPR[R], &GPR1[R], I)
351
352 #define TMP_DCL unsigned64 tmp_reg, tmp_reg1
353
354 #define TMP_SB(I) SUB_REG_SB(&tmp_reg, &tmp_reg1, I)
355 #define TMP_SH(I) SUB_REG_SH(&tmp_reg, &tmp_reg1, I)
356 #define TMP_SW(I) SUB_REG_SW(&tmp_reg, &tmp_reg1, I)
357 #define TMP_SD(I) SUB_REG_SD(&tmp_reg, &tmp_reg1, I)
358
359 #define TMP_UB(I) SUB_REG_UB(&tmp_reg, &tmp_reg1, I)
360 #define TMP_UH(I) SUB_REG_UH(&tmp_reg, &tmp_reg1, I)
361 #define TMP_UW(I) SUB_REG_UW(&tmp_reg, &tmp_reg1, I)
362 #define TMP_UD(I) SUB_REG_UD(&tmp_reg, &tmp_reg1, I)
363
364 #define TMP_WRT(R) do { GPR[R] = tmp_reg; GPR1[R] = tmp_reg1; } while(0)
365
366 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
367 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
368 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
369 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
370
371 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
372 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
373 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
374 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
375
376 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
377 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
378 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
379 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
380
381 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
382 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
383 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
384 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
385
386
387
388 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
389 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
390 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
391 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
392
393 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
394 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
395 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
396 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
397
398 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
399 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
400 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
401 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
402
403 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
404 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
405 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
406 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
407
408 /* end-sanitize-r5900 */
409
410
411
412 /* The following is probably not used for MIPS IV onwards: */
413 /* Slots for delayed register updates. For the moment we just have a
414 fixed number of slots (rather than a more generic, dynamic
415 system). This keeps the simulator fast. However, we only allow
416 for the register update to be delayed for a single instruction
417 cycle. */
418 #define PSLOTS (8) /* Maximum number of instruction cycles */
419
420 typedef struct _pending_write_queue {
421 int in;
422 int out;
423 int total;
424 int slot_delay[PSLOTS];
425 int slot_size[PSLOTS];
426 int slot_bit[PSLOTS];
427 void *slot_dest[PSLOTS];
428 unsigned64 slot_value[PSLOTS];
429 } pending_write_queue;
430
431 #ifndef PENDING_TRACE
432 #define PENDING_TRACE 0
433 #endif
434 #define PENDING_IN ((CPU)->pending.in)
435 #define PENDING_OUT ((CPU)->pending.out)
436 #define PENDING_TOTAL ((CPU)->pending.total)
437 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
438 #define PENDING_SLOT_BIT ((CPU)->pending.slot_size)
439 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
440 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
441 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
442
443 /* Invalidate the pending write queue, all pending writes are
444 discarded. */
445
446 #define PENDING_INVALIDATE() \
447 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
448
449 /* Schedule a write to DEST for N cycles time. For 64 bit
450 destinations, schedule two writes. For floating point registers,
451 the caller should schedule a write to both the dest register and
452 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
453 is updated. */
454
455 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
456 do { \
457 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
458 sim_engine_abort (SD, CPU, cia, \
459 "PENDING_SCHED - buffer overflow\n"); \
460 if (PENDING_TRACE) \
461 sim_io_printf (SD, "PENDING_SCHED - dest 0x%lx, val 0x%lx, pending_in %d, pending_out %d, pending_total %d\n", (unsigned long) (DEST), (unsigned long) (VAL), PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
462 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
463 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
464 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
465 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
466 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
467 } while (0)
468
469 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
470 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
471
472 #define PENDING_TICK() pending_tick (SD, CPU, cia)
473
474 #define PENDING_FLUSH() abort () /* think about this one */
475 #define PENDING_FP() abort () /* think about this one */
476
477 /* For backward compatibility */
478 #define PENDING_FILL(R,VAL) \
479 { \
480 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
481 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 2, -1); \
482 else \
483 PENDING_SCHED(GPR[(R)], VAL, 2, -1); \
484 }
485
486
487
488 struct _sim_cpu {
489
490
491 /* The following are internal simulator state variables: */
492 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
493 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
494 address_word dspc; /* delay-slot PC */
495 #define DSPC ((CPU)->dspc)
496
497 #if !WITH_IGEN
498 /* Issue a delay slot instruction immediatly by re-calling
499 idecode_issue */
500 #define DELAY_SLOT(TARGET) \
501 do { \
502 address_word target = (TARGET); \
503 instruction_word delay_insn; \
504 sim_events_slip (SD, 1); \
505 CIA = CIA + 4; /* NOTE not mips16 */ \
506 STATE |= simDELAYSLOT; \
507 delay_insn = IMEM32 (CIA); /* NOTE not mips16 */ \
508 idecode_issue (CPU_, delay_insn, (CIA)); \
509 STATE &= ~simDELAYSLOT; \
510 NIA = target; \
511 } while (0)
512 #define NULLIFY_NEXT_INSTRUCTION() \
513 do { \
514 sim_events_slip (SD, 1); \
515 dotrace (SD, CPU, tracefh, 2, NIA, 4, "load instruction"); \
516 NIA = CIA + 8; \
517 } while (0)
518 #else
519 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
520 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
521 #endif
522
523
524 /* State of the simulator */
525 unsigned int state;
526 unsigned int dsstate;
527 #define STATE ((CPU)->state)
528 #define DSSTATE ((CPU)->dsstate)
529
530 /* Flags in the "state" variable: */
531 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
532 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
533 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
534 #define simPCOC0 (1 << 17) /* COC[1] from current */
535 #define simPCOC1 (1 << 18) /* COC[1] from previous */
536 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
537 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
538 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
539 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
540
541 #define ENGINE_ISSUE_PREFIX_HOOK() \
542 { \
543 /* Perform any pending writes */ \
544 PENDING_TICK(); \
545 /* Set previous flag, depending on current: */ \
546 if (STATE & simPCOC0) \
547 STATE |= simPCOC1; \
548 else \
549 STATE &= ~simPCOC1; \
550 /* and update the current value: */ \
551 if (GETFCC(0)) \
552 STATE |= simPCOC0; \
553 else \
554 STATE &= ~simPCOC0; \
555 }
556
557
558 /* This is nasty, since we have to rely on matching the register
559 numbers used by GDB. Unfortunately, depending on the MIPS target
560 GDB uses different register numbers. We cannot just include the
561 relevant "gdb/tm.h" link, since GDB may not be configured before
562 the sim world, and also the GDB header file requires too much other
563 state. */
564
565 #ifndef TM_MIPS_H
566 #define LAST_EMBED_REGNUM (89)
567 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
568 /* start-sanitize-r5900 */
569 #undef NUM_REGS
570 #define NUM_REGS (128)
571 /* end-sanitize-r5900 */
572 #endif
573
574 /* start-sanitize-sky */
575 #ifdef TARGET_SKY
576 #ifndef TM_TXVU_H
577 /* Number of machine registers */
578 #define NUM_VU_REGS 160
579
580 #define NUM_VU_INTEGER_REGS 16
581 #define FIRST_VEC_REG 32
582
583 #define NUM_VIF_REGS 26
584
585 #define NUM_CORE_REGS 128
586
587 #undef NUM_REGS
588 #define NUM_REGS (NUM_CORE_REGS + 2*(NUM_VU_REGS) + 2*(NUM_VIF_REGS))
589 #endif /* no tm-txvu.h */
590 #endif /* TARGET_SKY */
591 /* end-sanitize-sky */
592
593 enum float_operation
594 /* start-sanitize-sky */
595 /* NOTE: THE VALUES of THESE CONSTANTS MUST BE IN SYNC WITH THOSE IN WF.H */
596 /* end-sanitize-sky */
597 {
598 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
599 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
600 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
601 };
602
603 /* To keep this default simulator simple, and fast, we use a direct
604 vector of registers. The internal simulator engine then uses
605 manifests to access the correct slot. */
606
607 unsigned_word registers[LAST_EMBED_REGNUM + 1];
608 int register_widths[NUM_REGS];
609 #define REGISTERS ((CPU)->registers)
610
611 #define GPR (&REGISTERS[0])
612 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
613
614 /* While space is allocated for the floating point registers in the
615 main registers array, they are stored separatly. This is because
616 their size may not necessarily match the size of either the
617 general-purpose or system specific registers */
618 #define NR_FGR (32)
619 #define FGRIDX (38)
620 fp_word fgr[NR_FGR];
621 #define FGR ((CPU)->fgr)
622
623 #define LO (REGISTERS[33])
624 #define HI (REGISTERS[34])
625 #define PCIDX 37
626 #define PC (REGISTERS[PCIDX])
627 #define CAUSE (REGISTERS[36])
628 #define SRIDX (32)
629 #define SR (REGISTERS[SRIDX]) /* CPU status register */
630 #define FCR0IDX (71)
631 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
632 #define FCR31IDX (70)
633 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
634 #define FCSR (FCR31)
635 #define Debug (REGISTERS[86])
636 #define DEPC (REGISTERS[87])
637 #define EPC (REGISTERS[88])
638 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
639
640 unsigned_word c0_config_reg;
641 #define C0_CONFIG ((CPU)->c0_config_reg)
642
643 /* The following are pseudonyms for standard registers */
644 #define ZERO (REGISTERS[0])
645 #define V0 (REGISTERS[2])
646 #define A0 (REGISTERS[4])
647 #define A1 (REGISTERS[5])
648 #define A2 (REGISTERS[6])
649 #define A3 (REGISTERS[7])
650 #define T8IDX 24
651 #define T8 (REGISTERS[T8IDX])
652 #define SPIDX 29
653 #define SP (REGISTERS[SPIDX])
654 #define RAIDX 31
655 #define RA (REGISTERS[RAIDX])
656
657 /* While space is allocated in the main registers arrray for some of
658 the COP0 registers, that space isn't sufficient. Unknown COP0
659 registers overflow into the array below */
660
661 #define NR_COP0_GPR 32
662 unsigned_word cop0_gpr[NR_COP0_GPR];
663 #define COP0_GPR ((CPU)->cop0_gpr)
664 /* start-sanitize-r5900 */
665 #define NR_COP0_BP 8
666 unsigned_word cop0_bp[NR_COP0_BP];
667 #define COP0_BP ((CPU)->cop0_bp)
668 #define NR_COP0_P 64
669 unsigned_word cop0_p[NR_COP0_P];
670 #define COP0_P ((CPU)->cop0_p)
671 /* end-sanitize-r5900 */
672
673
674 /* Keep the current format state for each register: */
675 FP_formats fpr_state[32];
676 #define FPR_STATE ((CPU)->fpr_state)
677
678 pending_write_queue pending;
679
680 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
681 read-write instructions. It is set when a linked load occurs. It
682 is tested and cleared by the conditional store. It is cleared
683 (during other CPU operations) when a store to the location would
684 no longer be atomic. In particular, it is cleared by exception
685 return instructions. */
686 int llbit;
687 #define LLBIT ((CPU)->llbit)
688
689
690 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
691 corruptions caused by using the HI or LO register too close to a
692 following operation is spotted. See mips.igen for more details. */
693
694 hilo_history hi_history;
695 #define HIHISTORY (&(CPU)->hi_history)
696 hilo_history lo_history;
697 #define LOHISTORY (&(CPU)->lo_history)
698
699 /* start-sanitize-branchbug4011 */
700 #if 1
701 int branchbug4011_option;
702 #define BRANCHBUG4011_OPTION ((CPU)->branchbug4011_option)
703 address_word branchbug4011_last_target;
704 #define BRANCHBUG4011_LAST_TARGET ((CPU)->branchbug4011_last_target)
705 address_word branchbug4011_last_cia;
706 #define BRANCHBUG4011_LAST_CIA ((CPU)->branchbug4011_last_cia)
707
708 #define check_branch_bug() (check_4011_branch_bug (_SD))
709 #define mark_branch_bug(TARGET) (mark_4011_branch_bug (_SD,TARGET))
710 #else
711 /* end-sanitize-branchbug4011 */
712 #define check_branch_bug()
713 #define mark_branch_bug(TARGET)
714 /* start-sanitize-branchbug4011 */
715 #endif
716 /* end-sanitize-branchbug4011 */
717 /* start-sanitize-r5900 */
718 sim_r5900_cpu r5900;
719
720 /* end-sanitize-r5900 */
721 /* start-sanitize-cygnus */
722
723 /* The MDMX ISA has a very very large accumulator */
724 unsigned8 acc[3 * 8];
725 /* end-sanitize-cygnus */
726 /* start-sanitize-sky */
727
728 #ifdef TARGET_SKY
729 /* Device on which instruction issue last occured. */
730 char cur_device;
731 #endif
732 /* end-sanitize-sky */
733 sim_cpu_base base;
734 };
735
736
737 /* MIPS specific simulator watch config */
738
739 void watch_options_install PARAMS ((SIM_DESC sd));
740
741 struct swatch {
742 sim_event *pc;
743 sim_event *clock;
744 sim_event *cycles;
745 };
746
747
748 /* FIXME: At present much of the simulator is still static */
749 struct sim_state {
750
751 struct swatch watch;
752
753 sim_cpu cpu[MAX_NR_PROCESSORS];
754 #if (WITH_SMP)
755 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
756 #else
757 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
758 #endif
759
760 /* start-sanitize-sky */
761 #ifdef TARGET_SKY
762 #ifdef SKY_FUNIT
763 /* Record of option for floating point implementation type. */
764 int fp_type_opt;
765 #define STATE_FP_TYPE_OPT(sd) ((sd)->fp_type_opt)
766 #define STATE_FP_TYPE_OPT_ACCURATE 0x80000000
767 #endif
768 #endif
769 /* end-sanitize-sky */
770
771 sim_state_base base;
772 };
773
774
775
776 /* Status information: */
777
778 /* TODO : these should be the bitmasks for these bits within the
779 status register. At the moment the following are VR4300
780 bit-positions: */
781 #define status_KSU_mask (0x3) /* mask for KSU bits */
782 #define status_KSU_shift (3) /* shift for field */
783 #define ksu_kernel (0x0)
784 #define ksu_supervisor (0x1)
785 #define ksu_user (0x2)
786 #define ksu_unknown (0x3)
787
788 #define status_IE (1 << 0) /* Interrupt enable */
789 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
790 #define status_EXL (1 << 1) /* Exception level */
791 #define status_RE (1 << 25) /* Reverse Endian in user mode */
792 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
793 #define status_SR (1 << 20) /* soft reset or NMI */
794 #define status_BEV (1 << 22) /* Location of general exception vectors */
795 #define status_TS (1 << 21) /* TLB shutdown has occurred */
796 #define status_ERL (1 << 2) /* Error level */
797 #define status_RP (1 << 27) /* Reduced Power mode */
798 /* start-sanitize-r5900 */
799 #define status_CU0 (1 << 28) /* COP0 usable */
800 #define status_CU1 (1 << 29) /* COP1 usable */
801 #define status_CU2 (1 << 30) /* COP2 usable */
802 /* end-sanitize-r5900 */
803
804 /* Specializations for TX39 family */
805 #define status_IEc (1 << 0) /* Interrupt enable (current) */
806 #define status_KUc (1 << 1) /* Kernel/User mode */
807 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
808 #define status_KUp (1 << 3) /* Kernel/User mode */
809 #define status_IEo (1 << 4) /* Interrupt enable (old) */
810 #define status_KUo (1 << 5) /* Kernel/User mode */
811 #define status_IM_mask (0xff) /* Interrupt mask */
812 #define status_IM_shift (8)
813 #define status_NMI (1 << 20) /* NMI */
814 #define status_NMI (1 << 20) /* NMI */
815
816 #define cause_EXC_mask (0x1f) /* Exception code */
817 #define cause_EXC_shift (2)
818 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
819 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
820 #define cause_IP_mask (0x3f) /* Interrupt pending field */
821 #define cause_IP_shift (10)
822 #define cause_CE_mask (0x3) /* Coprocessor error */
823 #define cause_CE_shift (28)
824
825 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
826
827
828 /* NOTE: We keep the following status flags as bit values (1 for true,
829 0 for false). This allows them to be used in binary boolean
830 operations without worrying about what exactly the non-zero true
831 value is. */
832
833 /* UserMode */
834 #ifdef SUBTARGET_R3900
835 #define UserMode ((SR & status_KUc) ? 1 : 0)
836 #else
837 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
838 #endif /* SUBTARGET_R3900 */
839
840 /* BigEndianMem */
841 /* Hardware configuration. Affects endianness of LoadMemory and
842 StoreMemory and the endianness of Kernel and Supervisor mode
843 execution. The value is 0 for little-endian; 1 for big-endian. */
844 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
845 /*(state & simBE) ? 1 : 0)*/
846
847 /* ReverseEndian */
848 /* This mode is selected if in User mode with the RE bit being set in
849 SR (Status Register). It reverses the endianness of load and store
850 instructions. */
851 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
852
853 /* BigEndianCPU */
854 /* The endianness for load and store instructions (0=little;1=big). In
855 User mode this endianness may be switched by setting the state_RE
856 bit in the SR register. Thus, BigEndianCPU may be computed as
857 (BigEndianMem EOR ReverseEndian). */
858 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
859
860
861
862 /* Exceptions: */
863
864 /* NOTE: These numbers depend on the processor architecture being
865 simulated: */
866 #define Interrupt (0)
867 #define TLBModification (1)
868 #define TLBLoad (2)
869 #define TLBStore (3)
870 #define AddressLoad (4)
871 #define AddressStore (5)
872 #define InstructionFetch (6)
873 #define DataReference (7)
874 #define SystemCall (8)
875 #define BreakPoint (9)
876 #define ReservedInstruction (10)
877 #define CoProcessorUnusable (11)
878 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
879 #define Trap (13)
880 #define FPE (15)
881 #define DebugBreakPoint (16)
882 #define Watch (23)
883 #define NMIReset (31)
884
885
886 /* The following exception code is actually private to the simulator
887 world. It is *NOT* a processor feature, and is used to signal
888 run-time errors in the simulator. */
889 #define SimulatorFault (0xFFFFFFFF)
890
891 /* The following break instructions are reserved for use by the
892 simulator. The first is used to halt the simulation. The second
893 is used by gdb for break-points. NOTE: Care must be taken, since
894 this value may be used in later revisions of the MIPS ISA. */
895 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
896
897 #define HALT_INSTRUCTION (0x03ff000d)
898 #define HALT_INSTRUCTION2 (0x0000ffcd)
899
900 /* start-sanitize-sky */
901 #define HALT_INSTRUCTION_PASS (0x03fffc0d)
902 #define HALT_INSTRUCTION_FAIL (0x03ffffcd)
903 /* end-sanitize-sky */
904
905 #define BREAKPOINT_INSTRUCTION (0x0005000d)
906 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
907
908
909 void interrupt_event (SIM_DESC sd, void *data);
910
911 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
912 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
913 #define SignalExceptionInterrupt() signal_exception (SD, CPU, cia, Interrupt)
914 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
915 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
916 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
917 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
918 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
919 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
920 #define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable)
921 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
922
923 /* Co-processor accesses */
924
925 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
926 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
927 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
928 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
929
930 #define COP_LW(coproc_num,coproc_reg,memword) \
931 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
932 #define COP_LD(coproc_num,coproc_reg,memword) \
933 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
934 #define COP_SW(coproc_num,coproc_reg) \
935 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
936 #define COP_SD(coproc_num,coproc_reg) \
937 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
938
939 /* start-sanitize-sky */
940 #ifdef TARGET_SKY
941 void cop_lq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
942 int coproc_num, int coproc_reg, unsigned128 memword));
943 unsigned128 cop_sq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
944 int coproc_num, int coproc_reg));
945 #define COP_LQ(coproc_num,coproc_reg,memword) \
946 cop_lq (SD, CPU, cia, coproc_num, coproc_reg, memword)
947 #define COP_SQ(coproc_num,coproc_reg) \
948 cop_sq (SD, CPU, cia, coproc_num, coproc_reg)
949 #endif /* TARGET_SKY */
950 /* end-sanitize-sky */
951
952 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
953 #define DecodeCoproc(instruction) \
954 decode_coproc (SD, CPU, cia, (instruction))
955
956
957
958 /* Memory accesses */
959
960 /* The following are generic to all versions of the MIPS architecture
961 to date: */
962
963 /* Memory Access Types (for CCA): */
964 #define Uncached (0)
965 #define CachedNoncoherent (1)
966 #define CachedCoherent (2)
967 #define Cached (3)
968
969 #define isINSTRUCTION (1 == 0) /* FALSE */
970 #define isDATA (1 == 1) /* TRUE */
971 #define isLOAD (1 == 0) /* FALSE */
972 #define isSTORE (1 == 1) /* TRUE */
973 #define isREAL (1 == 0) /* FALSE */
974 #define isRAW (1 == 1) /* TRUE */
975 /* The parameter HOST (isTARGET / isHOST) is ignored */
976 #define isTARGET (1 == 0) /* FALSE */
977 /* #define isHOST (1 == 1) TRUE */
978
979 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
980 is the number of bytes minus 1. */
981 #define AccessLength_BYTE (0)
982 #define AccessLength_HALFWORD (1)
983 #define AccessLength_TRIPLEBYTE (2)
984 #define AccessLength_WORD (3)
985 #define AccessLength_QUINTIBYTE (4)
986 #define AccessLength_SEXTIBYTE (5)
987 #define AccessLength_SEPTIBYTE (6)
988 #define AccessLength_DOUBLEWORD (7)
989 #define AccessLength_QUADWORD (15)
990
991 #if (WITH_IGEN)
992 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
993 ? AccessLength_DOUBLEWORD /*7*/ \
994 : AccessLength_WORD /*3*/)
995 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
996 #endif
997
998
999 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
1000 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
1001 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
1002
1003 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
1004 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
1005 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
1006
1007 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
1008 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
1009 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
1010
1011 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
1012 #define CacheOp(op,pAddr,vAddr,instruction) \
1013 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
1014
1015 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
1016 #define SyncOperation(stype) \
1017 sync_operation (SD, CPU, cia, (stype))
1018
1019 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
1020 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
1021 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
1022
1023 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
1024 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
1025 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
1026 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
1027 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
1028
1029 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
1030 extern FILE *tracefh;
1031
1032 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
1033
1034 char* pr_addr PARAMS ((SIM_ADDR addr));
1035 char* pr_uword64 PARAMS ((uword64 addr));
1036
1037 /* start-sanitize-sky */
1038 #ifdef TARGET_SKY
1039 #ifdef SIM_ENGINE_HALT_HOOK
1040 #undef SIM_ENGINE_HALT_HOOK
1041 #endif
1042
1043 void sky_sim_engine_halt PARAMS ((SIM_DESC sd, sim_cpu *last, sim_cia cia));
1044 #define SIM_ENGINE_HALT_HOOK(sd, last, cia) sky_sim_engine_halt(sd, last, cia)
1045
1046 #ifdef SIM_ENGINE_RESTART_HOOK
1047 #undef SIM_ENGINE_RESTART_HOOK
1048 #endif
1049
1050 void sky_sim_engine_restart PARAMS ((SIM_DESC sd, sim_cpu *last, sim_cia cia));
1051 #define SIM_ENGINE_RESTART_HOOK(sd, L, pc) sky_sim_engine_restart(sd, L, pc)
1052
1053 /* for resume/suspend modules */
1054 SIM_RC sky_sim_module_install PARAMS ((SIM_DESC sd));
1055
1056 #define MODULE_LIST sky_sim_module_install,
1057
1058 #ifndef TM_TXVU_H /* In case GDB hasn't been configured yet */
1059 enum txvu_cpu_context
1060 {
1061 TXVU_CPU_AUTO = -1, /* context-sensitive context */
1062 TXVU_CPU_MASTER = 0, /* R5900 core */
1063 TXVU_CPU_VU0 = 1, /* Vector units */
1064 TXVU_CPU_VU1 = 2,
1065 TXVU_CPU_VIF0 = 3, /* FIFO's */
1066 TXVU_CPU_VIF1 = 4,
1067 TXVU_CPU_LAST /* Count of context types */
1068 };
1069
1070 /* memory segment for communication with GDB */
1071 #define VIO_BASE 0xa0000000
1072 #define GDB_COMM_AREA 0x19810000 /* Random choice */
1073 #define GDB_COMM_SIZE 0x4000
1074
1075 /* Memory address containing last device to execute */
1076 #define LAST_DEVICE GDB_COMM_AREA
1077
1078 /* The FIFO breakpoint count and table */
1079 #define FIFO_BPT_CNT (GDB_COMM_AREA + 4)
1080 #define FIFO_BPT_TBL (GDB_COMM_AREA + 8)
1081
1082 /* Each element of the breakpoint table is three four-byte integers. */
1083 #define BPT_ELEM_SZ 4*3
1084
1085 #define TXVU_VU_BRK_MASK 0x02 /* Breakpoint bit is #57 for VU insns */
1086 #define TXVU_VIF_BRK_MASK 0x80 /* Use interrupt bit for VIF insns */
1087
1088 #endif /* !TM_TXVU_H */
1089 #endif /* TARGET_SKY */
1090 /* end-sanitize-sky */
1091
1092 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1093 #include "sim-main.c"
1094 #endif
1095
1096 #endif
This page took 0.05241 seconds and 5 git commands to generate.