* mips.igen (CFC1, CTC1): Pass the correct register numbers to
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35
36 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
37 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
38
39 #include "sim-basics.h"
40
41 typedef address_word sim_cia;
42
43 #include "sim-base.h"
44
45
46 /* Depreciated macros and types for manipulating 64bit values. Use
47 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
48
49 typedef signed64 word64;
50 typedef unsigned64 uword64;
51
52 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
53 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
54 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
55 #define SET64HI(t) (((uword64)(t))<<32)
56 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
57 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
58
59 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
60 assume the HI32bits of the operand are zero, so we must perform a
61 mask to ensure we can use the simple subtraction to sign-extend. */
62 #define SIGNEXTEND(e,b) \
63 ((unsigned_word) \
64 (((e) & ((uword64) 1 << ((b) - 1))) \
65 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
66 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
67
68 /* Check if a value will fit within a halfword: */
69 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
70
71
72
73 /* Floating-point operations: */
74
75 #include "sim-fpu.h"
76
77 /* FPU registers must be one of the following types. All other values
78 are reserved (and undefined). */
79 typedef enum {
80 fmt_single = 0,
81 fmt_double = 1,
82 fmt_word = 4,
83 fmt_long = 5,
84 /* The following are well outside the normal acceptable format
85 range, and are used in the register status vector. */
86 fmt_unknown = 0x10000000,
87 fmt_uninterpreted = 0x20000000,
88 fmt_uninterpreted_32 = 0x40000000,
89 fmt_uninterpreted_64 = 0x80000000U,
90 } FP_formats;
91
92 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
93 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
94
95 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
96 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
97
98 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
99 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
100 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
101 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
102 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
103 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
104 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
105 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
106 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
107 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
108 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
109 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
110 unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111 unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
113 #define Convert(rm,op,from,to) \
114 convert (SD, CPU, cia, rm, op, from, to)
115
116 /* Macro to update FPSR condition-code field. This is complicated by
117 the fact that there is a hole in the index range of the bits within
118 the FCSR register. Also, the number of bits visible depends on the
119 MIPS ISA version being supported. */
120
121 #define SETFCC(cc,v) {\
122 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
123 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
124 }
125 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
126
127 /* This should be the COC1 value at the start of the preceding
128 instruction: */
129 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
130
131 #ifdef TARGET_ENABLE_FR
132 /* FIXME: this should be enabled for all targets, but needs testing first. */
133 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
134 ? ((SR & status_FR) ? 64 : 32) \
135 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
136 #else
137 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
138 #endif
139
140 /* Standard FCRS bits: */
141 #define IR (0) /* Inexact Result */
142 #define UF (1) /* UnderFlow */
143 #define OF (2) /* OverFlow */
144 #define DZ (3) /* Division by Zero */
145 #define IO (4) /* Invalid Operation */
146 #define UO (5) /* Unimplemented Operation */
147
148 /* Get masks for individual flags: */
149 #if 1 /* SAFE version */
150 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
151 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
152 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
153 #else
154 #define FP_FLAGS(b) (1 << ((b) + 2))
155 #define FP_ENABLE(b) (1 << ((b) + 7))
156 #define FP_CAUSE(b) (1 << ((b) + 12))
157 #endif
158
159 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
160
161 #define FP_MASK_RM (0x3)
162 #define FP_SH_RM (0)
163 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
164 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
165 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
166 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
167 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
168
169
170
171
172
173
174 /* HI/LO register accesses */
175
176 /* For some MIPS targets, the HI/LO registers have certain timing
177 restrictions in that, for instance, a read of a HI register must be
178 separated by at least three instructions from a preceeding read.
179
180 The struct below is used to record the last access by each of A MT,
181 MF or other OP instruction to a HI/LO register. See mips.igen for
182 more details. */
183
184 typedef struct _hilo_access {
185 signed64 timestamp;
186 address_word cia;
187 } hilo_access;
188
189 typedef struct _hilo_history {
190 hilo_access mt;
191 hilo_access mf;
192 hilo_access op;
193 } hilo_history;
194
195
196
197
198 /* Integer ALU operations: */
199
200 #include "sim-alu.h"
201
202 #define ALU32_END(ANS) \
203 if (ALU32_HAD_OVERFLOW) \
204 SignalExceptionIntegerOverflow (); \
205 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
206
207
208 #define ALU64_END(ANS) \
209 if (ALU64_HAD_OVERFLOW) \
210 SignalExceptionIntegerOverflow (); \
211 (ANS) = ALU64_OVERFLOW_RESULT;
212
213
214
215
216
217 /* The following is probably not used for MIPS IV onwards: */
218 /* Slots for delayed register updates. For the moment we just have a
219 fixed number of slots (rather than a more generic, dynamic
220 system). This keeps the simulator fast. However, we only allow
221 for the register update to be delayed for a single instruction
222 cycle. */
223 #define PSLOTS (8) /* Maximum number of instruction cycles */
224
225 typedef struct _pending_write_queue {
226 int in;
227 int out;
228 int total;
229 int slot_delay[PSLOTS];
230 int slot_size[PSLOTS];
231 int slot_bit[PSLOTS];
232 void *slot_dest[PSLOTS];
233 unsigned64 slot_value[PSLOTS];
234 } pending_write_queue;
235
236 #ifndef PENDING_TRACE
237 #define PENDING_TRACE 0
238 #endif
239 #define PENDING_IN ((CPU)->pending.in)
240 #define PENDING_OUT ((CPU)->pending.out)
241 #define PENDING_TOTAL ((CPU)->pending.total)
242 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
243 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
244 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
245 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
246 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
247
248 /* Invalidate the pending write queue, all pending writes are
249 discarded. */
250
251 #define PENDING_INVALIDATE() \
252 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
253
254 /* Schedule a write to DEST for N cycles time. For 64 bit
255 destinations, schedule two writes. For floating point registers,
256 the caller should schedule a write to both the dest register and
257 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
258 is updated. */
259
260 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
261 do { \
262 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
263 sim_engine_abort (SD, CPU, cia, \
264 "PENDING_SCHED - buffer overflow\n"); \
265 if (PENDING_TRACE) \
266 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
267 (unsigned long) cia, (unsigned long) &(DEST), \
268 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
269 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
270 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
271 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
272 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
273 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
274 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
275 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
276 PENDING_TOTAL += 1; \
277 } while (0)
278
279 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
280 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
281
282 #define PENDING_TICK() pending_tick (SD, CPU, cia)
283
284 #define PENDING_FLUSH() abort () /* think about this one */
285 #define PENDING_FP() abort () /* think about this one */
286
287 /* For backward compatibility */
288 #define PENDING_FILL(R,VAL) \
289 do { \
290 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
291 { \
292 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 1, -1); \
293 PENDING_SCHED(FPR_STATE[(R) - FGRIDX], fmt_uninterpreted, 1, -1); \
294 } \
295 else \
296 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
297 } while (0)
298
299
300
301 struct _sim_cpu {
302
303
304 /* The following are internal simulator state variables: */
305 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
306 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
307 address_word dspc; /* delay-slot PC */
308 #define DSPC ((CPU)->dspc)
309
310 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
311 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
312
313
314 /* State of the simulator */
315 unsigned int state;
316 unsigned int dsstate;
317 #define STATE ((CPU)->state)
318 #define DSSTATE ((CPU)->dsstate)
319
320 /* Flags in the "state" variable: */
321 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
322 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
323 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
324 #define simPCOC0 (1 << 17) /* COC[1] from current */
325 #define simPCOC1 (1 << 18) /* COC[1] from previous */
326 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
327 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
328 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
329 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
330
331 #ifndef ENGINE_ISSUE_PREFIX_HOOK
332 #define ENGINE_ISSUE_PREFIX_HOOK() \
333 { \
334 /* Perform any pending writes */ \
335 PENDING_TICK(); \
336 /* Set previous flag, depending on current: */ \
337 if (STATE & simPCOC0) \
338 STATE |= simPCOC1; \
339 else \
340 STATE &= ~simPCOC1; \
341 /* and update the current value: */ \
342 if (GETFCC(0)) \
343 STATE |= simPCOC0; \
344 else \
345 STATE &= ~simPCOC0; \
346 }
347 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
348
349
350 /* This is nasty, since we have to rely on matching the register
351 numbers used by GDB. Unfortunately, depending on the MIPS target
352 GDB uses different register numbers. We cannot just include the
353 relevant "gdb/tm.h" link, since GDB may not be configured before
354 the sim world, and also the GDB header file requires too much other
355 state. */
356
357 #ifndef TM_MIPS_H
358 #define LAST_EMBED_REGNUM (89)
359 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
360
361
362 #endif
363
364
365 enum float_operation
366 {
367 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
368 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
369 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
370 };
371
372 /* To keep this default simulator simple, and fast, we use a direct
373 vector of registers. The internal simulator engine then uses
374 manifests to access the correct slot. */
375
376 unsigned_word registers[LAST_EMBED_REGNUM + 1];
377
378 int register_widths[NUM_REGS];
379 #define REGISTERS ((CPU)->registers)
380
381 #define GPR (&REGISTERS[0])
382 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
383
384 /* While space is allocated for the floating point registers in the
385 main registers array, they are stored separatly. This is because
386 their size may not necessarily match the size of either the
387 general-purpose or system specific registers */
388 #define NR_FGR (32)
389 #define FGRIDX (38)
390 fp_word fgr[NR_FGR];
391 #define FGR ((CPU)->fgr)
392
393 #define LO (REGISTERS[33])
394 #define HI (REGISTERS[34])
395 #define PCIDX 37
396 #define PC (REGISTERS[PCIDX])
397 #define CAUSE (REGISTERS[36])
398 #define SRIDX (32)
399 #define SR (REGISTERS[SRIDX]) /* CPU status register */
400 #define FCR0IDX (71)
401 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
402 #define FCR31IDX (70)
403 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
404 #define FCSR (FCR31)
405 #define Debug (REGISTERS[86])
406 #define DEPC (REGISTERS[87])
407 #define EPC (REGISTERS[88])
408
409 /* All internal state modified by signal_exception() that may need to be
410 rolled back for passing moment-of-exception image back to gdb. */
411 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
412 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
413 int exc_suspended;
414
415 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
416 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
417 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
418
419 unsigned_word c0_config_reg;
420 #define C0_CONFIG ((CPU)->c0_config_reg)
421
422 /* The following are pseudonyms for standard registers */
423 #define ZERO (REGISTERS[0])
424 #define V0 (REGISTERS[2])
425 #define A0 (REGISTERS[4])
426 #define A1 (REGISTERS[5])
427 #define A2 (REGISTERS[6])
428 #define A3 (REGISTERS[7])
429 #define T8IDX 24
430 #define T8 (REGISTERS[T8IDX])
431 #define SPIDX 29
432 #define SP (REGISTERS[SPIDX])
433 #define RAIDX 31
434 #define RA (REGISTERS[RAIDX])
435
436 /* While space is allocated in the main registers arrray for some of
437 the COP0 registers, that space isn't sufficient. Unknown COP0
438 registers overflow into the array below */
439
440 #define NR_COP0_GPR 32
441 unsigned_word cop0_gpr[NR_COP0_GPR];
442 #define COP0_GPR ((CPU)->cop0_gpr)
443 #define COP0_BADVADDR ((unsigned32)(COP0_GPR[8]))
444
445 /* Keep the current format state for each register: */
446 FP_formats fpr_state[32];
447 #define FPR_STATE ((CPU)->fpr_state)
448
449 pending_write_queue pending;
450
451 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
452 read-write instructions. It is set when a linked load occurs. It
453 is tested and cleared by the conditional store. It is cleared
454 (during other CPU operations) when a store to the location would
455 no longer be atomic. In particular, it is cleared by exception
456 return instructions. */
457 int llbit;
458 #define LLBIT ((CPU)->llbit)
459
460
461 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
462 corruptions caused by using the HI or LO register too close to a
463 following operation is spotted. See mips.igen for more details. */
464
465 hilo_history hi_history;
466 #define HIHISTORY (&(CPU)->hi_history)
467 hilo_history lo_history;
468 #define LOHISTORY (&(CPU)->lo_history)
469
470 #define check_branch_bug()
471 #define mark_branch_bug(TARGET)
472
473
474
475 sim_cpu_base base;
476 };
477
478
479 /* MIPS specific simulator watch config */
480
481 void watch_options_install PARAMS ((SIM_DESC sd));
482
483 struct swatch {
484 sim_event *pc;
485 sim_event *clock;
486 sim_event *cycles;
487 };
488
489
490 /* FIXME: At present much of the simulator is still static */
491 struct sim_state {
492
493 struct swatch watch;
494
495 sim_cpu cpu[MAX_NR_PROCESSORS];
496 #if (WITH_SMP)
497 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
498 #else
499 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
500 #endif
501
502
503 sim_state_base base;
504 };
505
506
507
508 /* Status information: */
509
510 /* TODO : these should be the bitmasks for these bits within the
511 status register. At the moment the following are VR4300
512 bit-positions: */
513 #define status_KSU_mask (0x18) /* mask for KSU bits */
514 #define status_KSU_shift (3) /* shift for field */
515 #define ksu_kernel (0x0)
516 #define ksu_supervisor (0x1)
517 #define ksu_user (0x2)
518 #define ksu_unknown (0x3)
519
520 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
521
522 #define status_IE (1 << 0) /* Interrupt enable */
523 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
524 #define status_EXL (1 << 1) /* Exception level */
525 #define status_RE (1 << 25) /* Reverse Endian in user mode */
526 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
527 #define status_SR (1 << 20) /* soft reset or NMI */
528 #define status_BEV (1 << 22) /* Location of general exception vectors */
529 #define status_TS (1 << 21) /* TLB shutdown has occurred */
530 #define status_ERL (1 << 2) /* Error level */
531 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
532 #define status_RP (1 << 27) /* Reduced Power mode */
533
534 /* Specializations for TX39 family */
535 #define status_IEc (1 << 0) /* Interrupt enable (current) */
536 #define status_KUc (1 << 1) /* Kernel/User mode */
537 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
538 #define status_KUp (1 << 3) /* Kernel/User mode */
539 #define status_IEo (1 << 4) /* Interrupt enable (old) */
540 #define status_KUo (1 << 5) /* Kernel/User mode */
541 #define status_IM_mask (0xff) /* Interrupt mask */
542 #define status_IM_shift (8)
543 #define status_NMI (1 << 20) /* NMI */
544 #define status_NMI (1 << 20) /* NMI */
545
546 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
547 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
548 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
549 #define cause_CE_shift 28
550 #define cause_EXC2_mask 0x00070000
551 #define cause_EXC2_shift 16
552 #define cause_IP7 (1 << 15) /* Interrupt pending */
553 #define cause_SIOP (1 << 12) /* SIO pending */
554 #define cause_IP3 (1 << 11) /* Int 0 pending */
555 #define cause_IP2 (1 << 10) /* Int 1 pending */
556
557 #define cause_EXC_mask (0x1c) /* Exception code */
558 #define cause_EXC_shift (2)
559
560 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
561 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
562 #define cause_IP_mask (0x3f) /* Interrupt pending field */
563 #define cause_IP_shift (10)
564
565 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
566 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
567
568
569 /* NOTE: We keep the following status flags as bit values (1 for true,
570 0 for false). This allows them to be used in binary boolean
571 operations without worrying about what exactly the non-zero true
572 value is. */
573
574 /* UserMode */
575 #ifdef SUBTARGET_R3900
576 #define UserMode ((SR & status_KUc) ? 1 : 0)
577 #else
578 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
579 #endif /* SUBTARGET_R3900 */
580
581 /* BigEndianMem */
582 /* Hardware configuration. Affects endianness of LoadMemory and
583 StoreMemory and the endianness of Kernel and Supervisor mode
584 execution. The value is 0 for little-endian; 1 for big-endian. */
585 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
586 /*(state & simBE) ? 1 : 0)*/
587
588 /* ReverseEndian */
589 /* This mode is selected if in User mode with the RE bit being set in
590 SR (Status Register). It reverses the endianness of load and store
591 instructions. */
592 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
593
594 /* BigEndianCPU */
595 /* The endianness for load and store instructions (0=little;1=big). In
596 User mode this endianness may be switched by setting the state_RE
597 bit in the SR register. Thus, BigEndianCPU may be computed as
598 (BigEndianMem EOR ReverseEndian). */
599 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
600
601
602
603 /* Exceptions: */
604
605 /* NOTE: These numbers depend on the processor architecture being
606 simulated: */
607 enum ExceptionCause {
608 Interrupt = 0,
609 TLBModification = 1,
610 TLBLoad = 2,
611 TLBStore = 3,
612 AddressLoad = 4,
613 AddressStore = 5,
614 InstructionFetch = 6,
615 DataReference = 7,
616 SystemCall = 8,
617 BreakPoint = 9,
618 ReservedInstruction = 10,
619 CoProcessorUnusable = 11,
620 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
621 Trap = 13,
622 FPE = 15,
623 DebugBreakPoint = 16,
624 Watch = 23,
625 NMIReset = 31,
626
627
628 /* The following exception code is actually private to the simulator
629 world. It is *NOT* a processor feature, and is used to signal
630 run-time errors in the simulator. */
631 SimulatorFault = 0xFFFFFFFF
632 };
633
634 #define TLB_REFILL (0)
635 #define TLB_INVALID (1)
636
637
638 /* The following break instructions are reserved for use by the
639 simulator. The first is used to halt the simulation. The second
640 is used by gdb for break-points. NOTE: Care must be taken, since
641 this value may be used in later revisions of the MIPS ISA. */
642 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
643
644 #define HALT_INSTRUCTION (0x03ff000d)
645 #define HALT_INSTRUCTION2 (0x0000ffcd)
646
647
648 #define BREAKPOINT_INSTRUCTION (0x0005000d)
649 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
650
651
652
653 void interrupt_event (SIM_DESC sd, void *data);
654
655 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
656 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
657 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
658 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
659 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
660 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
661 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
662 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
663 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
664 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
665 #define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable)
666 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
667 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
668 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
669 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
670 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
671 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
672
673 /* Co-processor accesses */
674
675 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
676 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
677 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
678 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
679
680 #define COP_LW(coproc_num,coproc_reg,memword) \
681 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
682 #define COP_LD(coproc_num,coproc_reg,memword) \
683 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
684 #define COP_SW(coproc_num,coproc_reg) \
685 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
686 #define COP_SD(coproc_num,coproc_reg) \
687 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
688
689
690 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
691 #define DecodeCoproc(instruction) \
692 decode_coproc (SD, CPU, cia, (instruction))
693
694 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
695
696
697
698 /* Memory accesses */
699
700 /* The following are generic to all versions of the MIPS architecture
701 to date: */
702
703 /* Memory Access Types (for CCA): */
704 #define Uncached (0)
705 #define CachedNoncoherent (1)
706 #define CachedCoherent (2)
707 #define Cached (3)
708
709 #define isINSTRUCTION (1 == 0) /* FALSE */
710 #define isDATA (1 == 1) /* TRUE */
711 #define isLOAD (1 == 0) /* FALSE */
712 #define isSTORE (1 == 1) /* TRUE */
713 #define isREAL (1 == 0) /* FALSE */
714 #define isRAW (1 == 1) /* TRUE */
715 /* The parameter HOST (isTARGET / isHOST) is ignored */
716 #define isTARGET (1 == 0) /* FALSE */
717 /* #define isHOST (1 == 1) TRUE */
718
719 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
720 is the number of bytes minus 1. */
721 #define AccessLength_BYTE (0)
722 #define AccessLength_HALFWORD (1)
723 #define AccessLength_TRIPLEBYTE (2)
724 #define AccessLength_WORD (3)
725 #define AccessLength_QUINTIBYTE (4)
726 #define AccessLength_SEXTIBYTE (5)
727 #define AccessLength_SEPTIBYTE (6)
728 #define AccessLength_DOUBLEWORD (7)
729 #define AccessLength_QUADWORD (15)
730
731 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
732 ? AccessLength_DOUBLEWORD /*7*/ \
733 : AccessLength_WORD /*3*/)
734 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
735
736
737 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
738 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
739 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
740
741 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
742 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
743 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
744
745 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
746 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
747 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
748
749 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
750 #define CacheOp(op,pAddr,vAddr,instruction) \
751 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
752
753 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
754 #define SyncOperation(stype) \
755 sync_operation (SD, CPU, cia, (stype))
756
757 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
758 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
759 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
760
761 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
762 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
763 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
764 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
765 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
766
767 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
768 extern FILE *tracefh;
769
770 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
771 extern SIM_CORE_SIGNAL_FN mips_core_signal;
772
773 char* pr_addr PARAMS ((SIM_ADDR addr));
774 char* pr_uword64 PARAMS ((uword64 addr));
775
776
777 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
778
779 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
780 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
781 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
782
783
784 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
785 #include "sim-main.c"
786 #endif
787
788 #endif
This page took 0.047605 seconds and 5 git commands to generate.