Make mips registers of type unsigned_word.
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA)
26 #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA)
27
28 #define SIM_HAVE_BIENDIAN
29 #define SIM_HAVE_FLATMEM
30
31
32 /* hobble some common features for moment */
33 #define WITH_PROFILE 0
34 #define WITH_TRACE 0
35 #define WITH_WATCHPOINTS 1
36
37 #include "sim-basics.h"
38
39
40 #if 0
41 /* These are generated files. */
42 #include "itable.h"
43 #include "idecode.h"
44 #include "idecode.h"
45
46 /* dummy - not used */
47 typedef instruction_address sim_cia;
48 static const sim_cia null_cia = {0}; /* dummy */
49 #define NULL_CIA null_cia
50 #else
51 typedef int sim_cia;
52 #endif
53
54
55 #include "sim-base.h"
56
57
58 /* Depreciated macros and types for manipulating 64bit values. Use
59 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
60
61 typedef signed64 word64;
62 typedef unsigned64 uword64;
63
64 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
65 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
66 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
67 #define SET64HI(t) (((uword64)(t))<<32)
68 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
69 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
70
71 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
72 assume the HI32bits of the operand are zero, so we must perform a
73 mask to ensure we can use the simple subtraction to sign-extend. */
74 #define SIGNEXTEND(e,b) \
75 ((unsigned_word) \
76 (((e) & ((uword64) 1 << ((b) - 1))) \
77 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
78 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
79
80 /* Check if a value will fit within a halfword: */
81 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
82
83 /* windows always looses */
84 #include <signal.h>
85 #ifndef SIGBUS
86 #define SIGBUS SIGSEGV
87 #endif
88 #ifdef _WIN32
89 #define SIGTRAP 5
90 #define SIGQUIT 3
91 #endif
92
93
94
95 /* Floating-point operations: */
96
97 /* FPU registers must be one of the following types. All other values
98 are reserved (and undefined). */
99 typedef enum {
100 fmt_single = 0,
101 fmt_double = 1,
102 fmt_word = 4,
103 fmt_long = 5,
104 /* The following are well outside the normal acceptable format
105 range, and are used in the register status vector. */
106 fmt_unknown = 0x10000000,
107 fmt_uninterpreted = 0x20000000,
108 } FP_formats;
109
110 unsigned64 value_fpr PARAMS ((SIM_DESC sd, int fpr, FP_formats));
111 #define ValueFPR(FPR,FMT) value_fpr (sd, (FPR), (FMT))
112
113 void store_fpr PARAMS ((SIM_DESC sd, int fpr, FP_formats fmt, unsigned64 value));
114 #define StoreFPR(FPR,FMT,VALUE) store_fpr (sd, (FPR), (FMT), (VALUE))
115
116 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
117 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
118 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
119 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
120 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
121 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
122 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
123 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
124 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
125 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
126 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
127 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
128 unsigned64 convert PARAMS ((SIM_DESC sd, int rm, unsigned64 op, FP_formats from, FP_formats to));
129 #define Convert(rm,op,from,to) convert(sd,rm,op,from,to)
130
131 /* Macro to update FPSR condition-code field. This is complicated by
132 the fact that there is a hole in the index range of the bits within
133 the FCSR register. Also, the number of bits visible depends on the
134 MIPS ISA version being supported. */
135
136 #define SETFCC(cc,v) {\
137 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
138 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
139 }
140 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
141
142 /* This should be the COC1 value at the start of the preceding
143 instruction: */
144 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
145
146 #if 1
147 #define SizeFGR() (WITH_TARGET_WORD_BITSIZE)
148 #else
149 /* They depend on the CPU being simulated */
150 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
151 #endif
152
153 /* Standard FCRS bits: */
154 #define IR (0) /* Inexact Result */
155 #define UF (1) /* UnderFlow */
156 #define OF (2) /* OverFlow */
157 #define DZ (3) /* Division by Zero */
158 #define IO (4) /* Invalid Operation */
159 #define UO (5) /* Unimplemented Operation */
160
161 /* Get masks for individual flags: */
162 #if 1 /* SAFE version */
163 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
164 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
165 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
166 #else
167 #define FP_FLAGS(b) (1 << ((b) + 2))
168 #define FP_ENABLE(b) (1 << ((b) + 7))
169 #define FP_CAUSE(b) (1 << ((b) + 12))
170 #endif
171
172 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
173
174 #define FP_MASK_RM (0x3)
175 #define FP_SH_RM (0)
176 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
177 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
178 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
179 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
180 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
181
182
183
184 /* Integer ALU operations: */
185
186 #include "sim-alu.h"
187
188 #define ALU32_END(ANS) \
189 if (ALU32_HAD_OVERFLOW) \
190 SignalExceptionIntegerOverflow (); \
191 (ANS) = alu_overflow_val;
192
193
194 #define ALU64_END(ANS) \
195 if (ALU64_HAD_OVERFLOW) \
196 SignalExceptionIntegerOverflow (); \
197 (ANS) = alu_val;
198
199 /* start-sanitize-r5900 */
200
201 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
202 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
203 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
204 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
205
206 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
207 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
208 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
209 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
210
211 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
212 T - type of the sub part
213 TC - # of T's in the mips part of the "register"
214 I - index (from 0) of desired sub part
215 A - low part of "register"
216 A1 - high part of register
217 */
218 #define SUB_REG_FETCH(T,TC,A,A1,I) \
219 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
220 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
221 ? ((TC) - 1 - (I) % (TC)) \
222 : ((I) % (TC)) \
223 ) \
224 ) \
225 )
226
227 /*
228 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
229 where <type> has two letters:
230 1 is S=signed or U=unsigned
231 2 is B=byte H=halfword W=word D=doubleword
232 */
233
234 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
235 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
236 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
237 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
238
239 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
240 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
241 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
242 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
243
244 #define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
245 #define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
246 #define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
247 #define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
248
249 #define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
250 #define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
251 #define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
252 #define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
253
254
255 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
256 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
257 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
258 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
259
260 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
261 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
262 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
263 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
264
265 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
266 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
267 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
268 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
269
270 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
271 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
272 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
273 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
274
275
276
277 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
278 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
279 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
280 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
281
282 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
283 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
284 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
285 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
286
287 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
288 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
289 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
290 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
291
292 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
293 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
294 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
295 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
296
297 /* end-sanitize-r5900 */
298
299
300
301
302 struct _sim_cpu {
303
304
305 /* The following are internal simulator state variables: */
306 sim_cia cia;
307 #define CPU_CIA(CPU) ((CPU)->cia)
308 address_word ipc; /* internal Instruction PC */
309 address_word dspc; /* delay-slot PC */
310 #define IPC ((STATE_CPU (sd,0))->ipc)
311 #define DSPC ((STATE_CPU (sd,0))->dspc)
312
313 #define NULLIFY_NIA() { nia.ip = cia.dp + 4; nia.dp = nia.ip += 4; }
314
315
316
317 /* State of the simulator */
318 unsigned int state;
319 unsigned int dsstate;
320 #define STATE ((STATE_CPU (sd,0))->state)
321 #define DSSTATE ((STATE_CPU (sd,0))->dsstate)
322
323 /* Flags in the "state" variable: */
324 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
325 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
326 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
327 #define simPROFILE (1 << 9) /* 0 = do nothing; 1 = gather profiling samples */
328 #define simPCOC0 (1 << 17) /* COC[1] from current */
329 #define simPCOC1 (1 << 18) /* COC[1] from previous */
330 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
331 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
332 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
333 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
334
335
336
337
338 /* This is nasty, since we have to rely on matching the register
339 numbers used by GDB. Unfortunately, depending on the MIPS target
340 GDB uses different register numbers. We cannot just include the
341 relevant "gdb/tm.h" link, since GDB may not be configured before
342 the sim world, and also the GDB header file requires too much other
343 state. */
344
345 #ifndef TM_MIPS_H
346 #define LAST_EMBED_REGNUM (89)
347 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
348 /* start-sanitize-r5900 */
349 #undef NUM_REGS
350 #define NUM_REGS (128)
351 /* end-sanitize-r5900 */
352 #endif
353
354 /* To keep this default simulator simple, and fast, we use a direct
355 vector of registers. The internal simulator engine then uses
356 manifests to access the correct slot. */
357
358 unsigned_word registers[LAST_EMBED_REGNUM + 1];
359 int register_widths[NUM_REGS];
360 #define REGISTERS ((STATE_CPU (sd,0))->registers)
361
362 #define GPR (&REGISTERS[0])
363 #define FGRIDX (38)
364 #define FGR (&REGISTERS[FGRIDX])
365 #define LO (REGISTERS[33])
366 #define HI (REGISTERS[34])
367 #define PC (REGISTERS[37])
368 #define CAUSE (REGISTERS[36])
369 #define SRIDX (32)
370 #define SR (REGISTERS[SRIDX]) /* CPU status register */
371 #define FCR0IDX (71)
372 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
373 #define FCR31IDX (70)
374 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
375 #define FCSR (FCR31)
376 #define Debug (REGISTERS[86])
377 #define DEPC (REGISTERS[87])
378 #define EPC (REGISTERS[88])
379 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
380
381 /* The following are pseudonyms for standard registers */
382 #define ZERO (REGISTERS[0])
383 #define V0 (REGISTERS[2])
384 #define A0 (REGISTERS[4])
385 #define A1 (REGISTERS[5])
386 #define A2 (REGISTERS[6])
387 #define A3 (REGISTERS[7])
388 #define SP (REGISTERS[29])
389 #define RA (REGISTERS[31])
390
391 /* Keep the current format state for each register: */
392 FP_formats fpr_state[32];
393 #define FPR_STATE ((STATE_CPU (sd, 0))->fpr_state)
394
395
396 /* Slots for delayed register updates. For the moment we just have a
397 fixed number of slots (rather than a more generic, dynamic
398 system). This keeps the simulator fast. However, we only allow
399 for the register update to be delayed for a single instruction
400 cycle. */
401 #define PSLOTS (5) /* Maximum number of instruction cycles */
402 int pending_in;
403 int pending_out;
404 int pending_total;
405 int pending_slot_count[PSLOTS];
406 int pending_slot_reg[PSLOTS];
407 unsigned_word pending_slot_value[PSLOTS];
408 #define PENDING_IN ((STATE_CPU (sd, 0))->pending_in)
409 #define PENDING_OUT ((STATE_CPU (sd, 0))->pending_out)
410 #define PENDING_TOTAL ((STATE_CPU (sd, 0))->pending_total)
411 #define PENDING_SLOT_COUNT ((STATE_CPU (sd, 0))->pending_slot_count)
412 #define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg)
413 #define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value)
414
415 /* The following are not used for MIPS IV onwards: */
416 #define PENDING_FILL(r,v) {\
417 /* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
418 if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
419 sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
420 PENDING_SLOT_COUNT[PENDING_IN] = 2;\
421 PENDING_SLOT_REG[PENDING_IN] = (r);\
422 PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
423 /*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\
424 PENDING_TOTAL++;\
425 PENDING_IN++;\
426 if (PENDING_IN == PSLOTS)\
427 PENDING_IN = 0;\
428 /*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
429 }
430
431
432 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
433 read-write instructions. It is set when a linked load occurs. It
434 is tested and cleared by the conditional store. It is cleared
435 (during other CPU operations) when a store to the location would
436 no longer be atomic. In particular, it is cleared by exception
437 return instructions. */
438 int llbit;
439 #define LLBIT ((STATE_CPU (sd, 0))->llbit)
440
441
442 /* The HIACCESS and LOACCESS counts are used to ensure that
443 corruptions caused by using the HI or LO register to close to a
444 following operation are spotted. */
445
446 int hiaccess;
447 int loaccess;
448 #define HIACCESS ((STATE_CPU (sd, 0))->hiaccess)
449 #define LOACCESS ((STATE_CPU (sd, 0))->loaccess)
450 /* start-sanitize-r5900 */
451 int hi1access;
452 int lo1access;
453 #define HI1ACCESS ((STATE_CPU (sd, 0))->hi1access)
454 #define LO1ACCESS ((STATE_CPU (sd, 0))->lo1access)
455 /* end-sanitize-r5900 */
456 #if 1
457 /* The 4300 and a few other processors have interlocks on hi/lo
458 register reads, and hence do not have this problem. To avoid
459 spurious warnings, we just disable this always. */
460 #define CHECKHILO(s)
461 #else
462 unsigned_word HLPC;
463 /* If either of the preceding two instructions have accessed the HI
464 or LO registers, then the values they see should be
465 undefined. However, to keep the simulator world simple, we just
466 let them use the value read and raise a warning to notify the
467 user: */
468 #define CHECKHILO(s) {\
469 if ((HIACCESS != 0) || (LOACCESS != 0)) \
470 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
471 }
472 /* end-sanitize-r5900 */
473 #undef CHECKHILO
474 #define CHECKHILO(s) {\
475 if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
476 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
477 }
478 /* end-sanitize-r5900 */
479 #endif
480
481
482 /* start-sanitize-r5900 */
483 /* The R5900 has 128 bit registers, but the hi 64 bits are only
484 touched by multimedia (MMI) instructions. The normal mips
485 instructions just use the lower 64 bits. To avoid changing the
486 older parts of the simulator to handle this weirdness, the high
487 64 bits of each register are kept in a separate array
488 (registers1). The high 64 bits of any register are by convention
489 refered by adding a '1' to the end of the normal register's name.
490 So LO still refers to the low 64 bits of the LO register, LO1
491 refers to the high 64 bits of that same register. */
492
493 signed_word registers1[LAST_EMBED_REGNUM + 1];
494 #define REGISTERS1 ((STATE_CPU (sd, 0))->registers1)
495 #define GPR1 (&REGISTERS1[0])
496 #define LO1 (REGISTERS1[32])
497 #define HI1 (REGISTERS1[33])
498 #define REGISTER_SA (124)
499
500 unsigned_word sa; /* the shift amount register */
501 #define SA ((STATE_CPU (sd, 0))->sa)
502
503 /* end-sanitize-r5900 */
504
505
506
507 sim_cpu_base base;
508 };
509
510
511 /* MIPS specific simulator watch config */
512
513 void watch_options_install PARAMS ((SIM_DESC sd));
514
515 struct swatch {
516 sim_event *pc;
517 sim_event *clock;
518 sim_event *cycles;
519 };
520
521
522 /* FIXME: At present much of the simulator is still static */
523 struct sim_state {
524
525 struct swatch watch;
526
527 sim_cpu cpu[1];
528 #if (WITH_SMP)
529 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
530 #else
531 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
532 #endif
533
534 sim_state_base base;
535 };
536
537
538
539 /* Status information: */
540
541 /* TODO : these should be the bitmasks for these bits within the
542 status register. At the moment the following are VR4300
543 bit-positions: */
544 #define status_KSU_mask (0x3) /* mask for KSU bits */
545 #define status_KSU_shift (3) /* shift for field */
546 #define ksu_kernel (0x0)
547 #define ksu_supervisor (0x1)
548 #define ksu_user (0x2)
549 #define ksu_unknown (0x3)
550
551 #define status_IE (1 << 0) /* Interrupt enable */
552 #define status_EXL (1 << 1) /* Exception level */
553 #define status_RE (1 << 25) /* Reverse Endian in user mode */
554 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
555 #define status_SR (1 << 20) /* soft reset or NMI */
556 #define status_BEV (1 << 22) /* Location of general exception vectors */
557 #define status_TS (1 << 21) /* TLB shutdown has occurred */
558 #define status_ERL (1 << 2) /* Error level */
559 #define status_RP (1 << 27) /* Reduced Power mode */
560
561 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
562
563 /* NOTE: We keep the following status flags as bit values (1 for true,
564 0 for false). This allows them to be used in binary boolean
565 operations without worrying about what exactly the non-zero true
566 value is. */
567
568 /* UserMode */
569 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
570
571 /* BigEndianMem */
572 /* Hardware configuration. Affects endianness of LoadMemory and
573 StoreMemory and the endianness of Kernel and Supervisor mode
574 execution. The value is 0 for little-endian; 1 for big-endian. */
575 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
576 /*(state & simBE) ? 1 : 0)*/
577
578 /* ByteSwapMem */
579 /* This is true if the host and target have different endianness. */
580 #define ByteSwapMem (CURRENT_TARGET_BYTE_ORDER != CURRENT_HOST_BYTE_ORDER)
581
582 /* ReverseEndian */
583 /* This mode is selected if in User mode with the RE bit being set in
584 SR (Status Register). It reverses the endianness of load and store
585 instructions. */
586 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
587
588 /* BigEndianCPU */
589 /* The endianness for load and store instructions (0=little;1=big). In
590 User mode this endianness may be switched by setting the state_RE
591 bit in the SR register. Thus, BigEndianCPU may be computed as
592 (BigEndianMem EOR ReverseEndian). */
593 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
594
595
596
597 /* Exceptions: */
598
599 /* NOTE: These numbers depend on the processor architecture being
600 simulated: */
601 #define Interrupt (0)
602 #define TLBModification (1)
603 #define TLBLoad (2)
604 #define TLBStore (3)
605 #define AddressLoad (4)
606 #define AddressStore (5)
607 #define InstructionFetch (6)
608 #define DataReference (7)
609 #define SystemCall (8)
610 #define BreakPoint (9)
611 #define ReservedInstruction (10)
612 #define CoProcessorUnusable (11)
613 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
614 #define Trap (13)
615 #define FPE (15)
616 #define DebugBreakPoint (16)
617 #define Watch (23)
618
619 /* The following exception code is actually private to the simulator
620 world. It is *NOT* a processor feature, and is used to signal
621 run-time errors in the simulator. */
622 #define SimulatorFault (0xFFFFFFFF)
623
624 void signal_exception (SIM_DESC sd, int exception, ...);
625 #define SignalException(exc,instruction) signal_exception (sd, (exc), (instruction))
626 #define SignalExceptionInterrupt() signal_exception (sd, Interrupt)
627 #define SignalExceptionInstructionFetch() signal_exception (sd, InstructionFetch)
628 #define SignalExceptionAddressStore() signal_exception (sd, AddressStore)
629 #define SignalExceptionAddressLoad() signal_exception (sd, AddressLoad)
630 #define SignalExceptionSimulatorFault(buf) signal_exception (sd, SimulatorFault, buf)
631 #define SignalExceptionFPE() signal_exception (sd, FPE)
632 #define SignalExceptionIntegerOverflow() signal_exception (sd, IntegerOverflow)
633 #define SignalExceptionCoProcessorUnusable() signal_exception (sd, CoProcessorUnusable)
634
635
636 /* Co-processor accesses */
637
638 void cop_lw PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg, unsigned int memword));
639 void cop_ld PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg, uword64 memword));
640 unsigned int cop_sw PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg));
641 uword64 cop_sd PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg));
642
643 #define COP_LW(coproc_num,coproc_reg,memword) cop_lw(sd,coproc_num,coproc_reg,memword)
644 #define COP_LD(coproc_num,coproc_reg,memword) cop_ld(sd,coproc_num,coproc_reg,memword)
645 #define COP_SW(coproc_num,coproc_reg) cop_sw(sd,coproc_num,coproc_reg)
646 #define COP_SD(coproc_num,coproc_reg) cop_sd(sd,coproc_num,coproc_reg)
647
648 void decode_coproc PARAMS ((SIM_DESC sd,unsigned int instruction));
649 #define DecodeCoproc(instruction) decode_coproc(sd, (instruction))
650
651
652
653 /* Memory accesses */
654
655 /* The following are generic to all versions of the MIPS architecture
656 to date: */
657
658 /* Memory Access Types (for CCA): */
659 #define Uncached (0)
660 #define CachedNoncoherent (1)
661 #define CachedCoherent (2)
662 #define Cached (3)
663
664 #define isINSTRUCTION (1 == 0) /* FALSE */
665 #define isDATA (1 == 1) /* TRUE */
666 #define isLOAD (1 == 0) /* FALSE */
667 #define isSTORE (1 == 1) /* TRUE */
668 #define isREAL (1 == 0) /* FALSE */
669 #define isRAW (1 == 1) /* TRUE */
670 #define isTARGET (1 == 0) /* FALSE */
671 #define isHOST (1 == 1) /* TRUE */
672
673 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
674 is the number of bytes minus 1. */
675 #define AccessLength_BYTE (0)
676 #define AccessLength_HALFWORD (1)
677 #define AccessLength_TRIPLEBYTE (2)
678 #define AccessLength_WORD (3)
679 #define AccessLength_QUINTIBYTE (4)
680 #define AccessLength_SEXTIBYTE (5)
681 #define AccessLength_SEPTIBYTE (6)
682 #define AccessLength_DOUBLEWORD (7)
683 #define AccessLength_QUADWORD (15)
684
685 int address_translation PARAMS ((SIM_DESC sd, uword64 vAddr, int IorD, int LorS, uword64 *pAddr, int *CCA, int host, int raw));
686 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
687 address_translation(sd, vAddr,IorD,LorS,pAddr,CCA,host,raw)
688
689 void load_memory PARAMS ((SIM_DESC sd, uword64* memvalp, uword64* memval1p, int CCA, int AccessLength, uword64 pAddr, uword64 vAddr, int IorD, int raw));
690 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
691 load_memory(sd,memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw)
692
693 void store_memory PARAMS ((SIM_DESC sd, int CCA, int AccessLength, uword64 MemElem, uword64 MemElem1, uword64 pAddr, uword64 vAddr, int raw));
694 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
695 store_memory(sd,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw)
696
697 void cache_op PARAMS ((SIM_DESC sd, int op, uword64 pAddr, uword64 vAddr, unsigned int instruction));
698 #define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,op,pAddr,vAddr,instruction)
699
700 void sync_operation PARAMS ((SIM_DESC sd, int stype));
701 #define SyncOperation(stype) sync_operation (sd, (stype))
702
703 void prefetch PARAMS ((SIM_DESC sd, int CCA, uword64 pAddr, uword64 vAddr, int DATA, int hint));
704 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,CCA,pAddr,vAddr,DATA,hint)
705
706 #define IMEM(CIA) 0 /* FIXME */
707
708
709 #endif
This page took 0.066527 seconds and 5 git commands to generate.