This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / sim / mn10300 / interp.c
1 #include <signal.h>
2
3 #if WITH_COMMON
4 #include "sim-main.h"
5 #include "sim-options.h"
6 #include "sim-hw.h"
7 #else
8 #include "mn10300_sim.h"
9 #endif
10
11 #include "sysdep.h"
12 #include "bfd.h"
13 #include "sim-assert.h"
14
15
16 #ifdef HAVE_STDLIB_H
17 #include <stdlib.h>
18 #endif
19
20 #ifdef HAVE_STRING_H
21 #include <string.h>
22 #else
23 #ifdef HAVE_STRINGS_H
24 #include <strings.h>
25 #endif
26 #endif
27
28 #include "bfd.h"
29
30 #ifndef INLINE
31 #ifdef __GNUC__
32 #define INLINE inline
33 #else
34 #define INLINE
35 #endif
36 #endif
37
38
39 host_callback *mn10300_callback;
40 int mn10300_debug;
41 struct _state State;
42
43
44 /* simulation target board. NULL=default configuration */
45 static char* board = NULL;
46
47 static DECLARE_OPTION_HANDLER (mn10300_option_handler);
48
49 enum {
50 OPTION_BOARD = OPTION_START,
51 };
52
53 static SIM_RC
54 mn10300_option_handler (sd, cpu, opt, arg, is_command)
55 SIM_DESC sd;
56 sim_cpu *cpu;
57 int opt;
58 char *arg;
59 int is_command;
60 {
61 int cpu_nr;
62 switch (opt)
63 {
64 case OPTION_BOARD:
65 {
66 if (arg)
67 {
68 board = zalloc(strlen(arg) + 1);
69 strcpy(board, arg);
70 }
71 return SIM_RC_OK;
72 }
73 }
74
75 return SIM_RC_OK;
76 }
77
78 static const OPTION mn10300_options[] =
79 {
80 #define BOARD_AM32 "stdeval1"
81 { {"board", required_argument, NULL, OPTION_BOARD},
82 '\0', "none" /* rely on compile-time string concatenation for other options */
83 "|" BOARD_AM32
84 , "Customize simulation for a particular board.", mn10300_option_handler },
85
86 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
87 };
88
89 #if WITH_COMMON
90 #else
91 static void dispatch PARAMS ((uint32, uint32, int));
92 static long hash PARAMS ((long));
93 static void init_system PARAMS ((void));
94
95 static SIM_OPEN_KIND sim_kind;
96 static char *myname;
97 #define MAX_HASH 127
98
99 struct hash_entry
100 {
101 struct hash_entry *next;
102 long opcode;
103 long mask;
104 struct simops *ops;
105 #ifdef HASH_STAT
106 unsigned long count;
107 #endif
108 };
109
110 static int max_mem = 0;
111 struct hash_entry hash_table[MAX_HASH+1];
112
113
114 /* This probably doesn't do a very good job at bucket filling, but
115 it's simple... */
116 static INLINE long
117 hash(insn)
118 long insn;
119 {
120 /* These are one byte insns, we special case these since, in theory,
121 they should be the most heavily used. */
122 if ((insn & 0xffffff00) == 0)
123 {
124 switch (insn & 0xf0)
125 {
126 case 0x00:
127 return 0x70;
128
129 case 0x40:
130 return 0x71;
131
132 case 0x10:
133 return 0x72;
134
135 case 0x30:
136 return 0x73;
137
138 case 0x50:
139 return 0x74;
140
141 case 0x60:
142 return 0x75;
143
144 case 0x70:
145 return 0x76;
146
147 case 0x80:
148 return 0x77;
149
150 case 0x90:
151 return 0x78;
152
153 case 0xa0:
154 return 0x79;
155
156 case 0xb0:
157 return 0x7a;
158
159 case 0xe0:
160 return 0x7b;
161
162 default:
163 return 0x7c;
164 }
165 }
166
167 /* These are two byte insns */
168 if ((insn & 0xffff0000) == 0)
169 {
170 if ((insn & 0xf000) == 0x2000
171 || (insn & 0xf000) == 0x5000)
172 return ((insn & 0xfc00) >> 8) & 0x7f;
173
174 if ((insn & 0xf000) == 0x4000)
175 return ((insn & 0xf300) >> 8) & 0x7f;
176
177 if ((insn & 0xf000) == 0x8000
178 || (insn & 0xf000) == 0x9000
179 || (insn & 0xf000) == 0xa000
180 || (insn & 0xf000) == 0xb000)
181 return ((insn & 0xf000) >> 8) & 0x7f;
182
183 if ((insn & 0xff00) == 0xf000
184 || (insn & 0xff00) == 0xf100
185 || (insn & 0xff00) == 0xf200
186 || (insn & 0xff00) == 0xf500
187 || (insn & 0xff00) == 0xf600)
188 return ((insn & 0xfff0) >> 4) & 0x7f;
189
190 if ((insn & 0xf000) == 0xc000)
191 return ((insn & 0xff00) >> 8) & 0x7f;
192
193 return ((insn & 0xffc0) >> 6) & 0x7f;
194 }
195
196 /* These are three byte insns. */
197 if ((insn & 0xff000000) == 0)
198 {
199 if ((insn & 0xf00000) == 0x000000)
200 return ((insn & 0xf30000) >> 16) & 0x7f;
201
202 if ((insn & 0xf00000) == 0x200000
203 || (insn & 0xf00000) == 0x300000)
204 return ((insn & 0xfc0000) >> 16) & 0x7f;
205
206 if ((insn & 0xff0000) == 0xf80000)
207 return ((insn & 0xfff000) >> 12) & 0x7f;
208
209 if ((insn & 0xff0000) == 0xf90000)
210 return ((insn & 0xfffc00) >> 10) & 0x7f;
211
212 return ((insn & 0xff0000) >> 16) & 0x7f;
213 }
214
215 /* These are four byte or larger insns. */
216 if ((insn & 0xf0000000) == 0xf0000000)
217 return ((insn & 0xfff00000) >> 20) & 0x7f;
218
219 return ((insn & 0xff000000) >> 24) & 0x7f;
220 }
221
222 static INLINE void
223 dispatch (insn, extension, length)
224 uint32 insn;
225 uint32 extension;
226 int length;
227 {
228 struct hash_entry *h;
229
230 h = &hash_table[hash(insn)];
231
232 while ((insn & h->mask) != h->opcode
233 || (length != h->ops->length))
234 {
235 if (!h->next)
236 {
237 (*mn10300_callback->printf_filtered) (mn10300_callback,
238 "ERROR looking up hash for 0x%x, PC=0x%x\n", insn, PC);
239 exit(1);
240 }
241 h = h->next;
242 }
243
244
245 #ifdef HASH_STAT
246 h->count++;
247 #endif
248
249 /* Now call the right function. */
250 (h->ops->func)(insn, extension);
251 PC += length;
252 }
253
254 void
255 sim_size (power)
256 int power;
257
258 {
259 if (State.mem)
260 free (State.mem);
261
262 max_mem = 1 << power;
263 State.mem = (uint8 *) calloc (1, 1 << power);
264 if (!State.mem)
265 {
266 (*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n");
267 exit (1);
268 }
269 }
270
271 static void
272 init_system ()
273 {
274 if (!State.mem)
275 sim_size(19);
276 }
277
278 int
279 sim_write (sd, addr, buffer, size)
280 SIM_DESC sd;
281 SIM_ADDR addr;
282 unsigned char *buffer;
283 int size;
284 {
285 int i;
286
287 init_system ();
288
289 for (i = 0; i < size; i++)
290 store_byte (addr + i, buffer[i]);
291
292 return size;
293 }
294
295 /* Compare two opcode table entries for qsort. */
296 static int
297 compare_simops (arg1, arg2)
298 const PTR arg1;
299 const PTR arg2;
300 {
301 unsigned long code1 = ((struct simops *)arg1)->opcode;
302 unsigned long code2 = ((struct simops *)arg2)->opcode;
303
304 if (code1 < code2)
305 return -1;
306 if (code2 < code1)
307 return 1;
308 return 0;
309 }
310
311 SIM_DESC
312 sim_open (kind, cb, abfd, argv)
313 SIM_OPEN_KIND kind;
314 host_callback *cb;
315 struct _bfd *abfd;
316 char **argv;
317 {
318 struct simops *s;
319 struct hash_entry *h;
320 char **p;
321 int i;
322
323 mn10300_callback = cb;
324
325 /* Sort the opcode array from smallest opcode to largest.
326 This will generally improve simulator performance as the smaller
327 opcodes are generally preferred to the larger opcodes. */
328 for (i = 0, s = Simops; s->func; s++, i++)
329 ;
330 qsort (Simops, i, sizeof (Simops[0]), compare_simops);
331
332 sim_kind = kind;
333 myname = argv[0];
334
335 for (p = argv + 1; *p; ++p)
336 {
337 if (strcmp (*p, "-E") == 0)
338 ++p; /* ignore endian spec */
339 else
340 #ifdef DEBUG
341 if (strcmp (*p, "-t") == 0)
342 mn10300_debug = DEBUG;
343 else
344 #endif
345 (*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",*p);
346 }
347
348 /* put all the opcodes in the hash table */
349 for (s = Simops; s->func; s++)
350 {
351 h = &hash_table[hash(s->opcode)];
352
353 /* go to the last entry in the chain */
354 while (h->next)
355 {
356 /* Don't insert the same opcode more than once. */
357 if (h->opcode == s->opcode
358 && h->mask == s->mask
359 && h->ops == s)
360 break;
361 else
362 h = h->next;
363 }
364
365 /* Don't insert the same opcode more than once. */
366 if (h->opcode == s->opcode
367 && h->mask == s->mask
368 && h->ops == s)
369 continue;
370
371 if (h->ops)
372 {
373 h->next = calloc(1,sizeof(struct hash_entry));
374 h = h->next;
375 }
376 h->ops = s;
377 h->mask = s->mask;
378 h->opcode = s->opcode;
379 #if HASH_STAT
380 h->count = 0;
381 #endif
382 }
383
384
385 /* fudge our descriptor for now */
386 return (SIM_DESC) 1;
387 }
388
389
390 void
391 sim_close (sd, quitting)
392 SIM_DESC sd;
393 int quitting;
394 {
395 /* nothing to do */
396 }
397
398 void
399 sim_set_profile (n)
400 int n;
401 {
402 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n);
403 }
404
405 void
406 sim_set_profile_size (n)
407 int n;
408 {
409 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n);
410 }
411
412 int
413 sim_stop (sd)
414 SIM_DESC sd;
415 {
416 return 0;
417 }
418
419 void
420 sim_resume (sd, step, siggnal)
421 SIM_DESC sd;
422 int step, siggnal;
423 {
424 uint32 inst;
425 reg_t oldpc;
426 struct hash_entry *h;
427
428 if (step)
429 State.exception = SIGTRAP;
430 else
431 State.exception = 0;
432
433 State.exited = 0;
434
435 do
436 {
437 unsigned long insn, extension;
438
439 /* Fetch the current instruction. */
440 inst = load_mem_big (PC, 2);
441 oldpc = PC;
442
443 /* Using a giant case statement may seem like a waste because of the
444 code/rodata size the table itself will consume. However, using
445 a giant case statement speeds up the simulator by 10-15% by avoiding
446 cascading if/else statements or cascading case statements. */
447
448 switch ((inst >> 8) & 0xff)
449 {
450 /* All the single byte insns except 0x80, 0x90, 0xa0, 0xb0
451 which must be handled specially. */
452 case 0x00:
453 case 0x04:
454 case 0x08:
455 case 0x0c:
456 case 0x10:
457 case 0x11:
458 case 0x12:
459 case 0x13:
460 case 0x14:
461 case 0x15:
462 case 0x16:
463 case 0x17:
464 case 0x18:
465 case 0x19:
466 case 0x1a:
467 case 0x1b:
468 case 0x1c:
469 case 0x1d:
470 case 0x1e:
471 case 0x1f:
472 case 0x3c:
473 case 0x3d:
474 case 0x3e:
475 case 0x3f:
476 case 0x40:
477 case 0x41:
478 case 0x44:
479 case 0x45:
480 case 0x48:
481 case 0x49:
482 case 0x4c:
483 case 0x4d:
484 case 0x50:
485 case 0x51:
486 case 0x52:
487 case 0x53:
488 case 0x54:
489 case 0x55:
490 case 0x56:
491 case 0x57:
492 case 0x60:
493 case 0x61:
494 case 0x62:
495 case 0x63:
496 case 0x64:
497 case 0x65:
498 case 0x66:
499 case 0x67:
500 case 0x68:
501 case 0x69:
502 case 0x6a:
503 case 0x6b:
504 case 0x6c:
505 case 0x6d:
506 case 0x6e:
507 case 0x6f:
508 case 0x70:
509 case 0x71:
510 case 0x72:
511 case 0x73:
512 case 0x74:
513 case 0x75:
514 case 0x76:
515 case 0x77:
516 case 0x78:
517 case 0x79:
518 case 0x7a:
519 case 0x7b:
520 case 0x7c:
521 case 0x7d:
522 case 0x7e:
523 case 0x7f:
524 case 0xcb:
525 case 0xd0:
526 case 0xd1:
527 case 0xd2:
528 case 0xd3:
529 case 0xd4:
530 case 0xd5:
531 case 0xd6:
532 case 0xd7:
533 case 0xd8:
534 case 0xd9:
535 case 0xda:
536 case 0xdb:
537 case 0xe0:
538 case 0xe1:
539 case 0xe2:
540 case 0xe3:
541 case 0xe4:
542 case 0xe5:
543 case 0xe6:
544 case 0xe7:
545 case 0xe8:
546 case 0xe9:
547 case 0xea:
548 case 0xeb:
549 case 0xec:
550 case 0xed:
551 case 0xee:
552 case 0xef:
553 case 0xff:
554 insn = (inst >> 8) & 0xff;
555 extension = 0;
556 dispatch (insn, extension, 1);
557 break;
558
559 /* Special cases where dm == dn is used to encode a different
560 instruction. */
561 case 0x80:
562 case 0x85:
563 case 0x8a:
564 case 0x8f:
565 case 0x90:
566 case 0x95:
567 case 0x9a:
568 case 0x9f:
569 case 0xa0:
570 case 0xa5:
571 case 0xaa:
572 case 0xaf:
573 case 0xb0:
574 case 0xb5:
575 case 0xba:
576 case 0xbf:
577 insn = inst;
578 extension = 0;
579 dispatch (insn, extension, 2);
580 break;
581
582 case 0x81:
583 case 0x82:
584 case 0x83:
585 case 0x84:
586 case 0x86:
587 case 0x87:
588 case 0x88:
589 case 0x89:
590 case 0x8b:
591 case 0x8c:
592 case 0x8d:
593 case 0x8e:
594 case 0x91:
595 case 0x92:
596 case 0x93:
597 case 0x94:
598 case 0x96:
599 case 0x97:
600 case 0x98:
601 case 0x99:
602 case 0x9b:
603 case 0x9c:
604 case 0x9d:
605 case 0x9e:
606 case 0xa1:
607 case 0xa2:
608 case 0xa3:
609 case 0xa4:
610 case 0xa6:
611 case 0xa7:
612 case 0xa8:
613 case 0xa9:
614 case 0xab:
615 case 0xac:
616 case 0xad:
617 case 0xae:
618 case 0xb1:
619 case 0xb2:
620 case 0xb3:
621 case 0xb4:
622 case 0xb6:
623 case 0xb7:
624 case 0xb8:
625 case 0xb9:
626 case 0xbb:
627 case 0xbc:
628 case 0xbd:
629 case 0xbe:
630 insn = (inst >> 8) & 0xff;
631 extension = 0;
632 dispatch (insn, extension, 1);
633 break;
634
635 /* The two byte instructions. */
636 case 0x20:
637 case 0x21:
638 case 0x22:
639 case 0x23:
640 case 0x28:
641 case 0x29:
642 case 0x2a:
643 case 0x2b:
644 case 0x42:
645 case 0x43:
646 case 0x46:
647 case 0x47:
648 case 0x4a:
649 case 0x4b:
650 case 0x4e:
651 case 0x4f:
652 case 0x58:
653 case 0x59:
654 case 0x5a:
655 case 0x5b:
656 case 0x5c:
657 case 0x5d:
658 case 0x5e:
659 case 0x5f:
660 case 0xc0:
661 case 0xc1:
662 case 0xc2:
663 case 0xc3:
664 case 0xc4:
665 case 0xc5:
666 case 0xc6:
667 case 0xc7:
668 case 0xc8:
669 case 0xc9:
670 case 0xca:
671 case 0xce:
672 case 0xcf:
673 case 0xf0:
674 case 0xf1:
675 case 0xf2:
676 case 0xf3:
677 case 0xf4:
678 case 0xf5:
679 case 0xf6:
680 insn = inst;
681 extension = 0;
682 dispatch (insn, extension, 2);
683 break;
684
685 /* The three byte insns with a 16bit operand in little endian
686 format. */
687 case 0x01:
688 case 0x02:
689 case 0x03:
690 case 0x05:
691 case 0x06:
692 case 0x07:
693 case 0x09:
694 case 0x0a:
695 case 0x0b:
696 case 0x0d:
697 case 0x0e:
698 case 0x0f:
699 case 0x24:
700 case 0x25:
701 case 0x26:
702 case 0x27:
703 case 0x2c:
704 case 0x2d:
705 case 0x2e:
706 case 0x2f:
707 case 0x30:
708 case 0x31:
709 case 0x32:
710 case 0x33:
711 case 0x34:
712 case 0x35:
713 case 0x36:
714 case 0x37:
715 case 0x38:
716 case 0x39:
717 case 0x3a:
718 case 0x3b:
719 case 0xcc:
720 insn = load_byte (PC);
721 insn <<= 16;
722 insn |= load_half (PC + 1);
723 extension = 0;
724 dispatch (insn, extension, 3);
725 break;
726
727 /* The three byte insns without 16bit operand. */
728 case 0xde:
729 case 0xdf:
730 case 0xf8:
731 case 0xf9:
732 insn = load_mem_big (PC, 3);
733 extension = 0;
734 dispatch (insn, extension, 3);
735 break;
736
737 /* Four byte insns. */
738 case 0xfa:
739 case 0xfb:
740 if ((inst & 0xfffc) == 0xfaf0
741 || (inst & 0xfffc) == 0xfaf4
742 || (inst & 0xfffc) == 0xfaf8)
743 insn = load_mem_big (PC, 4);
744 else
745 {
746 insn = inst;
747 insn <<= 16;
748 insn |= load_half (PC + 2);
749 extension = 0;
750 }
751 dispatch (insn, extension, 4);
752 break;
753
754 /* Five byte insns. */
755 case 0xcd:
756 insn = load_byte (PC);
757 insn <<= 24;
758 insn |= (load_half (PC + 1) << 8);
759 insn |= load_byte (PC + 3);
760 extension = load_byte (PC + 4);
761 dispatch (insn, extension, 5);
762 break;
763
764 case 0xdc:
765 insn = load_byte (PC);
766 insn <<= 24;
767 extension = load_word (PC + 1);
768 insn |= (extension & 0xffffff00) >> 8;
769 extension &= 0xff;
770 dispatch (insn, extension, 5);
771 break;
772
773 /* Six byte insns. */
774 case 0xfc:
775 case 0xfd:
776 insn = (inst << 16);
777 extension = load_word (PC + 2);
778 insn |= ((extension & 0xffff0000) >> 16);
779 extension &= 0xffff;
780 dispatch (insn, extension, 6);
781 break;
782
783 case 0xdd:
784 insn = load_byte (PC) << 24;
785 extension = load_word (PC + 1);
786 insn |= ((extension >> 8) & 0xffffff);
787 extension = (extension & 0xff) << 16;
788 extension |= load_byte (PC + 5) << 8;
789 extension |= load_byte (PC + 6);
790 dispatch (insn, extension, 7);
791 break;
792
793 case 0xfe:
794 insn = inst << 16;
795 extension = load_word (PC + 2);
796 insn |= ((extension >> 16) & 0xffff);
797 extension <<= 8;
798 extension &= 0xffff00;
799 extension |= load_byte (PC + 6);
800 dispatch (insn, extension, 7);
801 break;
802
803 default:
804 abort ();
805 }
806 }
807 while (!State.exception);
808
809 #ifdef HASH_STAT
810 {
811 int i;
812 for (i = 0; i < MAX_HASH; i++)
813 {
814 struct hash_entry *h;
815 h = &hash_table[i];
816
817 printf("hash 0x%x:\n", i);
818
819 while (h)
820 {
821 printf("h->opcode = 0x%x, count = 0x%x\n", h->opcode, h->count);
822 h = h->next;
823 }
824
825 printf("\n\n");
826 }
827 fflush (stdout);
828 }
829 #endif
830
831 }
832
833 int
834 sim_trace (sd)
835 SIM_DESC sd;
836 {
837 #ifdef DEBUG
838 mn10300_debug = DEBUG;
839 #endif
840 sim_resume (sd, 0, 0);
841 return 1;
842 }
843
844 void
845 sim_info (sd, verbose)
846 SIM_DESC sd;
847 int verbose;
848 {
849 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n");
850 }
851
852 SIM_RC
853 sim_create_inferior (sd, abfd, argv, env)
854 SIM_DESC sd;
855 struct _bfd *abfd;
856 char **argv;
857 char **env;
858 {
859 if (abfd != NULL)
860 PC = bfd_get_start_address (abfd);
861 else
862 PC = 0;
863 return SIM_RC_OK;
864 }
865
866 void
867 sim_set_callbacks (p)
868 host_callback *p;
869 {
870 mn10300_callback = p;
871 }
872
873 /* All the code for exiting, signals, etc needs to be revamped.
874
875 This is enough to get c-torture limping though. */
876
877 void
878 sim_stop_reason (sd, reason, sigrc)
879 SIM_DESC sd;
880 enum sim_stop *reason;
881 int *sigrc;
882 {
883 if (State.exited)
884 *reason = sim_exited;
885 else
886 *reason = sim_stopped;
887
888 if (State.exception == SIGQUIT)
889 *sigrc = 0;
890 else
891 *sigrc = State.exception;
892 }
893
894 int
895 sim_read (sd, addr, buffer, size)
896 SIM_DESC sd;
897 SIM_ADDR addr;
898 unsigned char *buffer;
899 int size;
900 {
901 int i;
902 for (i = 0; i < size; i++)
903 buffer[i] = load_byte (addr + i);
904
905 return size;
906 }
907
908 void
909 sim_do_command (sd, cmd)
910 SIM_DESC sd;
911 char *cmd;
912 {
913 (*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd);
914 }
915
916 SIM_RC
917 sim_load (sd, prog, abfd, from_tty)
918 SIM_DESC sd;
919 char *prog;
920 bfd *abfd;
921 int from_tty;
922 {
923 extern bfd *sim_load_file (); /* ??? Don't know where this should live. */
924 bfd *prog_bfd;
925
926 prog_bfd = sim_load_file (sd, myname, mn10300_callback, prog, abfd,
927 sim_kind == SIM_OPEN_DEBUG,
928 0, sim_write);
929 if (prog_bfd == NULL)
930 return SIM_RC_FAIL;
931 if (abfd == NULL)
932 bfd_close (prog_bfd);
933 return SIM_RC_OK;
934 }
935 #endif /* not WITH_COMMON */
936
937
938 #if WITH_COMMON
939
940 /* For compatibility */
941 SIM_DESC simulator;
942
943 /* These default values correspond to expected usage for the chip. */
944
945 SIM_DESC
946 sim_open (kind, cb, abfd, argv)
947 SIM_OPEN_KIND kind;
948 host_callback *cb;
949 struct _bfd *abfd;
950 char **argv;
951 {
952 SIM_DESC sd = sim_state_alloc (kind, cb);
953 mn10300_callback = cb;
954
955 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
956
957 /* for compatibility */
958 simulator = sd;
959
960 /* FIXME: should be better way of setting up interrupts. For
961 moment, only support watchpoints causing a breakpoint (gdb
962 halt). */
963 STATE_WATCHPOINTS (sd)->pc = &(PC);
964 STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
965 STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
966 STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
967
968 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
969 return 0;
970 sim_add_option_table (sd, NULL, mn10300_options);
971
972 /* Allocate core managed memory */
973 sim_do_command (sd, "memory region 0,0x100000");
974 sim_do_command (sd, "memory region 0x40000000,0x200000");
975
976 /* getopt will print the error message so we just have to exit if this fails.
977 FIXME: Hmmm... in the case of gdb we need getopt to call
978 print_filtered. */
979 if (sim_parse_args (sd, argv) != SIM_RC_OK)
980 {
981 /* Uninstall the modules to avoid memory leaks,
982 file descriptor leaks, etc. */
983 sim_module_uninstall (sd);
984 return 0;
985 }
986
987 if ( NULL != board
988 && (strcmp(board, BOARD_AM32) == 0 ) )
989 {
990 /* environment */
991 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
992
993 sim_do_command (sd, "memory region 0x44000000,0x40000");
994 sim_do_command (sd, "memory region 0x48000000,0x400000");
995
996 /* device support for mn1030002 */
997 /* interrupt controller */
998
999 sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8");
1000
1001 /* DEBUG: NMI input's */
1002 sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12");
1003 sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int");
1004 sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int");
1005 sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int");
1006
1007 /* DEBUG: ACK input */
1008 sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4");
1009 sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int");
1010
1011 /* DEBUG: LEVEL output */
1012 sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8");
1013 sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000");
1014 sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000");
1015
1016 /* DEBUG: A bunch of interrupt inputs */
1017 sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32");
1018 sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int");
1019 sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int");
1020 sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int");
1021 sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int");
1022 sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int");
1023 sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int");
1024 sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int");
1025 sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int");
1026
1027 /* processor interrupt device */
1028
1029 /* the device */
1030 sim_hw_parse (sd, "/mn103cpu@0x20000000");
1031 sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
1032
1033 /* DEBUG: ACK output wired upto a glue device */
1034 sim_hw_parse (sd, "/glue@0x20002000");
1035 sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4");
1036 sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000");
1037
1038 /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
1039 sim_hw_parse (sd, "/glue@0x20004000");
1040 sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12");
1041 sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu");
1042 sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu");
1043 sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu");
1044
1045 /* REAL: The processor wired up to the real interrupt controller */
1046 sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int");
1047 sim_hw_parse (sd, "/mn103int > level level /mn103cpu");
1048 sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu");
1049
1050
1051 /* PAL */
1052
1053 /* the device */
1054 sim_hw_parse (sd, "/pal@0x31000000");
1055 sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64");
1056 sim_hw_parse (sd, "/pal@0x31000000/poll? true");
1057
1058 /* DEBUG: PAL wired up to a glue device */
1059 sim_hw_parse (sd, "/glue@0x31002000");
1060 sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16");
1061 sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
1062 sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000");
1063 sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000");
1064 sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
1065 sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
1066 sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
1067
1068 /* REAL: The PAL wired up to the real interrupt controller */
1069 sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int");
1070 sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int");
1071 sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int");
1072
1073 /* 8 and 16 bit timers */
1074 sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16");
1075
1076 /* Hook timer interrupts up to interrupt controller */
1077 sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int");
1078 sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int");
1079 sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int");
1080 sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int");
1081 sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int");
1082 sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int");
1083 sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int");
1084 sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int");
1085 sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int");
1086
1087
1088 /* Serial devices 0,1,2 */
1089 sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48");
1090 sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true");
1091
1092 /* Hook serial interrupts up to interrupt controller */
1093 sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int");
1094 sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int");
1095 sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int");
1096 sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int");
1097 sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int");
1098 sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int");
1099
1100 sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8");
1101
1102 /* Memory control registers */
1103 sim_do_command (sd, "memory region 0x32000020,0x30");
1104 /* Cache control register */
1105 sim_do_command (sd, "memory region 0x20000070,0x4");
1106 /* Cache purge regions */
1107 sim_do_command (sd, "memory region 0x28400000,0x800");
1108 sim_do_command (sd, "memory region 0x28401000,0x800");
1109 /* DMA registers */
1110 sim_do_command (sd, "memory region 0x32000100,0xF");
1111 sim_do_command (sd, "memory region 0x32000200,0xF");
1112 sim_do_command (sd, "memory region 0x32000400,0xF");
1113 sim_do_command (sd, "memory region 0x32000800,0xF");
1114 }
1115 else
1116 {
1117 if (board != NULL)
1118 {
1119 sim_io_eprintf (sd, "Error: Board `%s' unknown.\n", board);
1120 return 0;
1121 }
1122 }
1123
1124
1125
1126 /* check for/establish the a reference program image */
1127 if (sim_analyze_program (sd,
1128 (STATE_PROG_ARGV (sd) != NULL
1129 ? *STATE_PROG_ARGV (sd)
1130 : NULL),
1131 abfd) != SIM_RC_OK)
1132 {
1133 sim_module_uninstall (sd);
1134 return 0;
1135 }
1136
1137 /* establish any remaining configuration options */
1138 if (sim_config (sd) != SIM_RC_OK)
1139 {
1140 sim_module_uninstall (sd);
1141 return 0;
1142 }
1143
1144 if (sim_post_argv_init (sd) != SIM_RC_OK)
1145 {
1146 /* Uninstall the modules to avoid memory leaks,
1147 file descriptor leaks, etc. */
1148 sim_module_uninstall (sd);
1149 return 0;
1150 }
1151
1152
1153 /* set machine specific configuration */
1154 /* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
1155 /* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */
1156
1157 return sd;
1158 }
1159
1160
1161 void
1162 sim_close (sd, quitting)
1163 SIM_DESC sd;
1164 int quitting;
1165 {
1166 sim_module_uninstall (sd);
1167 }
1168
1169
1170 SIM_RC
1171 sim_create_inferior (sd, prog_bfd, argv, env)
1172 SIM_DESC sd;
1173 struct _bfd *prog_bfd;
1174 char **argv;
1175 char **env;
1176 {
1177 memset (&State, 0, sizeof (State));
1178 if (prog_bfd != NULL) {
1179 PC = bfd_get_start_address (prog_bfd);
1180 } else {
1181 PC = 0;
1182 }
1183 CIA_SET (STATE_CPU (sd, 0), (unsigned64) PC);
1184
1185 return SIM_RC_OK;
1186 }
1187
1188 void
1189 sim_do_command (sd, cmd)
1190 SIM_DESC sd;
1191 char *cmd;
1192 {
1193 char *mm_cmd = "memory-map";
1194 char *int_cmd = "interrupt";
1195
1196 if (sim_args_command (sd, cmd) != SIM_RC_OK)
1197 {
1198 if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
1199 sim_io_eprintf (sd, "`memory-map' command replaced by `sim memory'\n");
1200 else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
1201 sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
1202 else
1203 sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
1204 }
1205 }
1206 #endif /* WITH_COMMON */
1207
1208 /* FIXME These would more efficient to use than load_mem/store_mem,
1209 but need to be changed to use the memory map. */
1210
1211 uint8
1212 get_byte (x)
1213 uint8 *x;
1214 {
1215 return *x;
1216 }
1217
1218 uint16
1219 get_half (x)
1220 uint8 *x;
1221 {
1222 uint8 *a = x;
1223 return (a[1] << 8) + (a[0]);
1224 }
1225
1226 uint32
1227 get_word (x)
1228 uint8 *x;
1229 {
1230 uint8 *a = x;
1231 return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
1232 }
1233
1234 void
1235 put_byte (addr, data)
1236 uint8 *addr;
1237 uint8 data;
1238 {
1239 uint8 *a = addr;
1240 a[0] = data;
1241 }
1242
1243 void
1244 put_half (addr, data)
1245 uint8 *addr;
1246 uint16 data;
1247 {
1248 uint8 *a = addr;
1249 a[0] = data & 0xff;
1250 a[1] = (data >> 8) & 0xff;
1251 }
1252
1253 void
1254 put_word (addr, data)
1255 uint8 *addr;
1256 uint32 data;
1257 {
1258 uint8 *a = addr;
1259 a[0] = data & 0xff;
1260 a[1] = (data >> 8) & 0xff;
1261 a[2] = (data >> 16) & 0xff;
1262 a[3] = (data >> 24) & 0xff;
1263 }
1264
1265 int
1266 sim_fetch_register (sd, rn, memory, length)
1267 SIM_DESC sd;
1268 int rn;
1269 unsigned char *memory;
1270 int length;
1271 {
1272 put_word (memory, State.regs[rn]);
1273 return -1;
1274 }
1275
1276 int
1277 sim_store_register (sd, rn, memory, length)
1278 SIM_DESC sd;
1279 int rn;
1280 unsigned char *memory;
1281 int length;
1282 {
1283 State.regs[rn] = get_word (memory);
1284 return -1;
1285 }
1286
1287
1288 void
1289 mn10300_core_signal (SIM_DESC sd,
1290 sim_cpu *cpu,
1291 sim_cia cia,
1292 unsigned map,
1293 int nr_bytes,
1294 address_word addr,
1295 transfer_type transfer,
1296 sim_core_signals sig)
1297 {
1298 const char *copy = (transfer == read_transfer ? "read" : "write");
1299 address_word ip = CIA_ADDR (cia);
1300
1301 switch (sig)
1302 {
1303 case sim_core_unmapped_signal:
1304 sim_io_eprintf (sd, "mn10300-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
1305 nr_bytes, copy,
1306 (unsigned long) addr, (unsigned long) ip);
1307 program_interrupt(sd, cpu, cia, SIM_SIGSEGV);
1308 break;
1309
1310 case sim_core_unaligned_signal:
1311 sim_io_eprintf (sd, "mn10300-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
1312 nr_bytes, copy,
1313 (unsigned long) addr, (unsigned long) ip);
1314 program_interrupt(sd, cpu, cia, SIM_SIGBUS);
1315 break;
1316
1317 default:
1318 sim_engine_abort (sd, cpu, cia,
1319 "mn10300_core_signal - internal error - bad switch");
1320 }
1321 }
1322
1323
1324 void
1325 program_interrupt (SIM_DESC sd,
1326 sim_cpu *cpu,
1327 sim_cia cia,
1328 SIM_SIGNAL sig)
1329 {
1330 int status;
1331 struct hw *device;
1332 static int in_interrupt = 0;
1333
1334 #ifdef SIM_CPU_EXCEPTION_TRIGGER
1335 SIM_CPU_EXCEPTION_TRIGGER(sd,cpu,cia);
1336 #endif
1337
1338 /* avoid infinite recursion */
1339 if (in_interrupt)
1340 {
1341 (*mn10300_callback->printf_filtered) (mn10300_callback,
1342 "ERROR: recursion in program_interrupt during software exception dispatch.");
1343 }
1344 else
1345 {
1346 in_interrupt = 1;
1347 /* copy NMI handler code from dv-mn103cpu.c */
1348 store_word (SP - 4, CIA_GET (cpu));
1349 store_half (SP - 8, PSW);
1350
1351 /* Set the SYSEF flag in NMICR by backdoor method. See
1352 dv-mn103int.c:write_icr(). This is necessary because
1353 software exceptions are not modelled by actually talking to
1354 the interrupt controller, so it cannot set its own SYSEF
1355 flag. */
1356 if ((NULL != board) && (strcmp(board, BOARD_AM32) == 0))
1357 store_byte (0x34000103, 0x04);
1358 }
1359
1360 PSW &= ~PSW_IE;
1361 SP = SP - 8;
1362 CIA_SET (cpu, 0x40000008);
1363
1364 in_interrupt = 0;
1365 sim_engine_halt(sd, cpu, NULL, cia, sim_stopped, sig);
1366 }
1367
1368
1369 void
1370 mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
1371 {
1372 ASSERT(cpu != NULL);
1373
1374 if(State.exc_suspended > 0)
1375 sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", State.exc_suspended);
1376
1377 CIA_SET (cpu, cia);
1378 memcpy(State.exc_trigger_regs, State.regs, sizeof(State.exc_trigger_regs));
1379 State.exc_suspended = 0;
1380 }
1381
1382 void
1383 mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
1384 {
1385 ASSERT(cpu != NULL);
1386
1387 if(State.exc_suspended > 0)
1388 sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
1389 State.exc_suspended, exception);
1390
1391 memcpy(State.exc_suspend_regs, State.regs, sizeof(State.exc_suspend_regs));
1392 memcpy(State.regs, State.exc_trigger_regs, sizeof(State.regs));
1393 CIA_SET (cpu, PC); /* copy PC back from new State.regs */
1394 State.exc_suspended = exception;
1395 }
1396
1397 void
1398 mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
1399 {
1400 ASSERT(cpu != NULL);
1401
1402 if(exception == 0 && State.exc_suspended > 0)
1403 {
1404 if(State.exc_suspended != SIGTRAP) /* warn not for breakpoints */
1405 sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
1406 State.exc_suspended);
1407 }
1408 else if(exception != 0 && State.exc_suspended > 0)
1409 {
1410 if(exception != State.exc_suspended)
1411 sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
1412 State.exc_suspended, exception);
1413
1414 memcpy(State.regs, State.exc_suspend_regs, sizeof(State.regs));
1415 CIA_SET (cpu, PC); /* copy PC back from new State.regs */
1416 }
1417 else if(exception != 0 && State.exc_suspended == 0)
1418 {
1419 sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
1420 }
1421 State.exc_suspended = 0;
1422 }
This page took 0.058219 seconds and 5 git commands to generate.