Add Solaris and Linux emulations
[deliverable/binutils-gdb.git] / sim / ppc / psim.c
1 /* This file is part of the program psim.
2
3 Copyright (C) 1994-1996, Andrew Cagney <cagney@highland.com.au>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19 */
20
21
22 #ifndef _PSIM_C_
23 #define _PSIM_C_
24
25 #include "inline.c"
26
27 #include <stdio.h>
28 #include <ctype.h>
29
30 #ifdef HAVE_STDLIB_H
31 #include <stdlib.h>
32 #endif
33
34 #include <setjmp.h>
35
36 #include "cpu.h" /* includes psim.h */
37 #include "idecode.h"
38 #include "options.h"
39
40 #ifdef HAVE_STRING_H
41 #include <string.h>
42 #else
43 #ifdef HAVE_STRINGS_H
44 #include <strings.h>
45 #endif
46 #endif
47
48 #include "bfd.h"
49
50
51 /* system structure, actual size of processor array determined at
52 runtime */
53
54 struct _psim {
55 event_queue *events;
56 device *devices;
57 mon *monitor;
58 os_emul *os_emulation;
59 core *memory;
60
61 /* escape routine for inner functions */
62 void *path_to_halt;
63 void *path_to_restart;
64
65 /* status from last halt */
66 psim_status halt_status;
67
68 /* the processors proper */
69 int nr_cpus;
70 int last_cpu; /* CPU that last (tried to) execute an instruction */
71 cpu *processors[MAX_NR_PROCESSORS];
72 };
73
74
75 int current_target_byte_order;
76 int current_host_byte_order;
77 int current_environment;
78 int current_alignment;
79 int current_floating_point;
80 int current_model_issue = MODEL_ISSUE_IGNORE;
81 model_enum current_model = WITH_DEFAULT_MODEL;
82
83
84 /* create the device tree */
85
86 INLINE_PSIM\
87 (device *)
88 psim_tree(void)
89 {
90 device *root = core_device_create();
91 device_tree_add_parsed(root, "/aliases");
92 device_tree_add_parsed(root, "/options");
93 device_tree_add_parsed(root, "/chosen");
94 device_tree_add_parsed(root, "/packages");
95 device_tree_add_parsed(root, "/cpus");
96 device_tree_add_parsed(root, "/openprom");
97 device_tree_add_parsed(root, "/openprom/init");
98 device_tree_add_parsed(root, "/openprom/trace");
99 device_tree_add_parsed(root, "/openprom/options");
100 return root;
101 }
102
103 STATIC_INLINE_PSIM\
104 (char *)
105 find_arg(char *err_msg,
106 int *ptr_to_argp,
107 char **argv)
108 {
109 *ptr_to_argp += 1;
110 if (argv[*ptr_to_argp] == NULL)
111 error(err_msg);
112 return argv[*ptr_to_argp];
113 }
114
115 INLINE_PSIM\
116 (void)
117 psim_usage(int verbose)
118 {
119 printf_filtered("Usage:\n");
120 printf_filtered("\n");
121 printf_filtered("\tpsim [ <psim-option> ... ] <image> [ <image-arg> ... ]\n");
122 printf_filtered("\n");
123 printf_filtered("Where\n");
124 printf_filtered("\n");
125 printf_filtered("\t<image> Name of the PowerPC program to run.\n");
126 if (verbose) {
127 printf_filtered("\t This can either be a PowerPC binary or\n");
128 printf_filtered("\t a text file containing a device tree\n");
129 printf_filtered("\t specification.\n");
130 printf_filtered("\t PSIM will attempt to determine from the\n");
131 printf_filtered("\t specified <image> the intended emulation\n");
132 printf_filtered("\t environment.\n");
133 printf_filtered("\t If PSIM gets it wrong, the emulation\n");
134 printf_filtered("\t environment can be specified using the\n");
135 printf_filtered("\t `-e' option (described below).\n");
136 printf_filtered("\n"); }
137 printf_filtered("\t<image-arg> Argument to be passed to <image>\n");
138 if (verbose) {
139 printf_filtered("\t These arguments will be passed to\n");
140 printf_filtered("\t <image> (as standard C argv, argc)\n");
141 printf_filtered("\t when <image> is started.\n");
142 printf_filtered("\n"); }
143 printf_filtered("\t<psim-option> See below\n");
144 printf_filtered("\n");
145 printf_filtered("The following are valid <psim-option>s:\n");
146 printf_filtered("\n");
147 printf_filtered("\t-m <model> Specify the processor to model (604)\n");
148 if (verbose) {
149 printf_filtered("\t Selects the processor to use when\n");
150 printf_filtered("\t modeling execution units. Includes:\n");
151 printf_filtered("\t 604, 603 and 603e\n");
152 printf_filtered("\n"); }
153 printf_filtered("\t-e <os-emul> specify an OS or platform to model\n");
154 if (verbose) {
155 printf_filtered("\t Can be any of the following:\n");
156 printf_filtered("\t bug - OEA + MOTO BUG ROM calls\n");
157 printf_filtered("\t netbsd - UEA + NetBSD system calls\n");
158 printf_filtered("\t solaris - UEA + Solaris system calls\n");
159 printf_filtered("\t linux - UEA + Linux system calls\n");
160 printf_filtered("\t chirp - OEA + a few OpenBoot calls\n");
161 printf_filtered("\n"); }
162 printf_filtered("\t-i Print instruction counting statistics\n");
163 if (verbose) { printf_filtered("\n"); }
164 printf_filtered("\t-I Print execution unit statistics\n");
165 if (verbose) { printf_filtered("\n"); }
166 printf_filtered("\t-r <size> Set RAM size in bytes (OEA environments)\n");
167 if (verbose) { printf_filtered("\n"); }
168 printf_filtered("\t-t [!]<trace> Enable (disable) <trace> option\n");
169 if (verbose) { printf_filtered("\n"); }
170 printf_filtered("\t-o <spec> add device <spec> to the device tree\n");
171 if (verbose) { printf_filtered("\n"); }
172 printf_filtered("\t-h -? -H give more detailed usage\n");
173 if (verbose) { printf_filtered("\n"); }
174 printf_filtered("\n");
175 trace_usage(verbose);
176 device_usage(verbose);
177 if (verbose > 1) {
178 printf_filtered("\n");
179 print_options();
180 }
181 error("");
182 }
183
184 INLINE_PSIM\
185 (char **)
186 psim_options(device *root,
187 char **argv)
188 {
189 device *current = root;
190 int argp;
191 if (argv == NULL)
192 return NULL;
193 argp = 0;
194 while (argv[argp] != NULL && argv[argp][0] == '-') {
195 char *p = argv[argp] + 1;
196 char *param;
197 while (*p != '\0') {
198 switch (*p) {
199 default:
200 psim_usage(0);
201 error ("");
202 break;
203 case 'e':
204 param = find_arg("Missing <emul> option for -e\n", &argp, argv);
205 device_tree_add_parsed(root, "/openprom/options/os-emul %s", param);
206 break;
207 case 'h':
208 case '?':
209 psim_usage(1);
210 break;
211 case 'H':
212 psim_usage(2);
213 break;
214 case 'i':
215 device_tree_add_parsed(root, "/openprom/trace/print-info 1");
216 break;
217 case 'I':
218 device_tree_add_parsed(root, "/openprom/trace/print-info 2");
219 device_tree_add_parsed(root, "/openprom/options/model-issue %d",
220 MODEL_ISSUE_PROCESS);
221 break;
222 case 'm':
223 param = find_arg("Missing <model> option for -m\n", &argp, argv);
224 device_tree_add_parsed(root, "/openprom/options/model \"%s", param);
225 break;
226 case 'o':
227 param = find_arg("Missing <device> option for -o\n", &argp, argv);
228 current = device_tree_add_parsed(current, "%s", param);
229 break;
230 case 'r':
231 param = find_arg("Missing <ram-size> option for -r\n", &argp, argv);
232 device_tree_add_parsed(root, "/openprom/options/oea-memory-size 0x%lx",
233 atol(param));
234 break;
235 case 't':
236 param = find_arg("Missing <trace> option for -t\n", &argp, argv);
237 if (param[0] == '!')
238 device_tree_add_parsed(root, "/openprom/trace/%s 0", param+1);
239 else
240 device_tree_add_parsed(root, "/openprom/trace/%s 1", param);
241 break;
242 }
243 p += 1;
244 }
245 argp += 1;
246 }
247 /* force the trace node to (re)process its options */
248 device_init_data(device_tree_find_device(root, "/openprom/trace"), NULL);
249 /* return where the options end */
250 return argv + argp;
251 }
252
253
254 /* create the simulator proper from the device tree and executable */
255
256 INLINE_PSIM\
257 (psim *)
258 psim_create(const char *file_name,
259 device *root)
260 {
261 int cpu_nr;
262 const char *env;
263 psim *system;
264 os_emul *os_emulation;
265 int nr_cpus;
266
267 /* given this partially populated device tree, os_emul_create() uses
268 it and file_name to determine the selected emulation and hence
269 further populate the tree with any other required nodes. */
270
271 os_emulation = os_emul_create(file_name, root);
272 if (os_emulation == NULL)
273 error("psim: either file %s was not reconized or unreconized or unknown os-emulation type\n", file_name);
274
275 /* fill in the missing real number of CPU's */
276 nr_cpus = device_find_integer_property(root, "/openprom/options/smp");
277 if (MAX_NR_PROCESSORS < nr_cpus)
278 error("target and configured number of cpus conflict\n");
279
280 /* fill in the missing TARGET BYTE ORDER information */
281 current_target_byte_order
282 = (device_find_boolean_property(root, "/options/little-endian?")
283 ? LITTLE_ENDIAN
284 : BIG_ENDIAN);
285 if (CURRENT_TARGET_BYTE_ORDER != current_target_byte_order)
286 error("target and configured byte order conflict\n");
287
288 /* fill in the missing HOST BYTE ORDER information */
289 current_host_byte_order = (current_host_byte_order = 1,
290 (*(char*)(&current_host_byte_order)
291 ? LITTLE_ENDIAN
292 : BIG_ENDIAN));
293 if (CURRENT_HOST_BYTE_ORDER != current_host_byte_order)
294 error("host and configured byte order conflict\n");
295
296 /* fill in the missing OEA/VEA information */
297 env = device_find_string_property(root, "/openprom/options/env");
298 current_environment = ((strcmp(env, "user") == 0
299 || strcmp(env, "uea") == 0)
300 ? USER_ENVIRONMENT
301 : (strcmp(env, "virtual") == 0
302 || strcmp(env, "vea") == 0)
303 ? VIRTUAL_ENVIRONMENT
304 : (strcmp(env, "operating") == 0
305 || strcmp(env, "oea") == 0)
306 ? OPERATING_ENVIRONMENT
307 : 0);
308 if (current_environment == 0)
309 error("unreconized /options env property\n");
310 if (CURRENT_ENVIRONMENT != current_environment)
311 error("target and configured environment conflict\n");
312
313 /* fill in the missing ALLIGNMENT information */
314 current_alignment
315 = (device_find_boolean_property(root, "/openprom/options/strict-alignment?")
316 ? STRICT_ALIGNMENT
317 : NONSTRICT_ALIGNMENT);
318 if (CURRENT_ALIGNMENT != current_alignment)
319 error("target and configured alignment conflict\n");
320
321 /* fill in the missing FLOATING POINT information */
322 current_floating_point
323 = (device_find_boolean_property(root, "/openprom/options/floating-point?")
324 ? HARD_FLOATING_POINT
325 : SOFT_FLOATING_POINT);
326 if (CURRENT_FLOATING_POINT != current_floating_point)
327 error("target and configured floating-point conflict\n");
328
329 /* sort out the level of detail for issue modeling */
330 current_model_issue
331 = device_find_integer_property(root, "/openprom/options/model-issue");
332 if (CURRENT_MODEL_ISSUE != current_model_issue)
333 error("target and configured model-issue conflict\n");
334
335 /* sort out our model architecture - wrong.
336
337 FIXME: this should be obtaining the required information from the
338 device tree via the "/chosen" property "cpu" which is an instance
339 (ihandle) for the only executing processor. By converting that
340 ihandle into the corresponding cpu's phandle and then querying
341 the "name" property, the cpu type can be determined. Ok? */
342
343 model_set(device_find_string_property(root, "/openprom/options/model"));
344
345 /* create things */
346 system = ZALLOC(psim);
347 system->events = event_queue_create();
348 system->memory = core_create(root);
349 system->monitor = mon_create();
350 system->nr_cpus = nr_cpus;
351 system->os_emulation = os_emulation;
352 system->devices = root;
353
354 /* now all the processors attaching to each their per-cpu information */
355 for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++) {
356 system->processors[cpu_nr] = cpu_create(system,
357 system->memory,
358 mon_cpu(system->monitor,
359 cpu_nr),
360 system->os_emulation,
361 cpu_nr);
362 }
363
364 /* dump out the contents of the device tree */
365 if (ppc_trace[trace_print_device_tree] || ppc_trace[trace_dump_device_tree])
366 device_tree_traverse(root, device_tree_print_device, NULL, NULL);
367 if (ppc_trace[trace_dump_device_tree])
368 error("");
369
370 return system;
371 }
372
373
374 /* allow the simulation to stop/restart abnormaly */
375
376 STATIC_INLINE_PSIM\
377 (void)
378 psim_set_halt_and_restart(psim *system,
379 void *halt_jmp_buf,
380 void *restart_jmp_buf)
381 {
382 system->path_to_halt = halt_jmp_buf;
383 system->path_to_restart = restart_jmp_buf;
384 }
385
386 STATIC_INLINE_PSIM\
387 (void)
388 psim_clear_halt_and_restart(psim *system)
389 {
390 system->path_to_halt = NULL;
391 system->path_to_restart = NULL;
392 }
393
394 INLINE_PSIM\
395 (void)
396 psim_restart(psim *system,
397 int current_cpu)
398 {
399 system->last_cpu = current_cpu;
400 longjmp(*(jmp_buf*)(system->path_to_restart), current_cpu + 1);
401 }
402
403
404 INLINE_PSIM\
405 (void)
406 psim_halt(psim *system,
407 int current_cpu,
408 stop_reason reason,
409 int signal)
410 {
411 ASSERT(current_cpu >= 0 && current_cpu < system->nr_cpus);
412 system->last_cpu = current_cpu;
413 system->halt_status.cpu_nr = current_cpu;
414 system->halt_status.reason = reason;
415 system->halt_status.signal = signal;
416 system->halt_status.program_counter =
417 cpu_get_program_counter(system->processors[current_cpu]);
418 longjmp(*(jmp_buf*)(system->path_to_halt), current_cpu + 1);
419 }
420
421 INLINE_PSIM\
422 (psim_status)
423 psim_get_status(psim *system)
424 {
425 return system->halt_status;
426 }
427
428
429 INLINE_PSIM\
430 (cpu *)
431 psim_cpu(psim *system,
432 int cpu_nr)
433 {
434 if (cpu_nr < 0 || cpu_nr >= system->nr_cpus)
435 return NULL;
436 else
437 return system->processors[cpu_nr];
438 }
439
440
441 INLINE_PSIM\
442 (device *)
443 psim_device(psim *system,
444 const char *path)
445 {
446 return device_tree_find_device(system->devices, path);
447 }
448
449 INLINE_PSIM\
450 (event_queue *)
451 psim_event_queue(psim *system)
452 {
453 return system->events;
454 }
455
456
457
458 INLINE_PSIM\
459 (void)
460 psim_init(psim *system)
461 {
462 int cpu_nr;
463
464 /* scrub the monitor */
465 mon_init(system->monitor, system->nr_cpus);
466 os_emul_init(system->os_emulation, system->nr_cpus);
467 event_queue_init(system->events);
468
469 /* scrub all the cpus */
470 for (cpu_nr = 0; cpu_nr < system->nr_cpus; cpu_nr++)
471 cpu_init(system->processors[cpu_nr]);
472
473 /* init all the devices (which updates the cpus) */
474 device_tree_init(system->devices, system);
475
476 /* now sync each cpu against the initialized state of its registers */
477 for (cpu_nr = 0; cpu_nr < system->nr_cpus; cpu_nr++) {
478 cpu_synchronize_context(system->processors[cpu_nr]);
479 cpu_page_tlb_invalidate_all(system->processors[cpu_nr]);
480 }
481
482 /* force loop to restart */
483 system->last_cpu = system->nr_cpus - 1;
484 }
485
486 INLINE_PSIM\
487 (void)
488 psim_stack(psim *system,
489 char **argv,
490 char **envp)
491 {
492 /* pass the stack device the argv/envp and let it work out what to
493 do with it */
494 device *stack_device = device_tree_find_device(system->devices,
495 "/openprom/init/stack");
496 if (stack_device != (device*)0) {
497 unsigned_word stack_pointer;
498 psim_read_register(system, 0, &stack_pointer, "sp", cooked_transfer);
499 device_ioctl(stack_device,
500 system,
501 NULL, /*cpu*/
502 0, /*cia*/
503 stack_pointer,
504 argv,
505 envp);
506 }
507 }
508
509
510
511 /* EXECUTE REAL CODE:
512
513 Unfortunatly, there are multiple cases to consider vis:
514
515 <icache> X <smp> X <events> X <keep-running-flag> X ...
516
517 Consequently this function is written in multiple different ways */
518
519 STATIC_INLINE_PSIM\
520 (void)
521 run_until_stop(psim *system,
522 volatile int *keep_running)
523 {
524 jmp_buf halt;
525 jmp_buf restart;
526 #if WITH_IDECODE_CACHE_SIZE
527 int cpu_nr;
528 for (cpu_nr = 0; cpu_nr < system->nr_cpus; cpu_nr++)
529 cpu_flush_icache(system->processors[cpu_nr]);
530 #endif
531 psim_set_halt_and_restart(system, &halt, &restart);
532
533 #if (!WITH_IDECODE_CACHE_SIZE && WITH_SMP == 0)
534
535 /* CASE 1: No instruction cache and no SMP.
536
537 In this case, we can take advantage of the fact that the current
538 instruction address does not need to be returned to the cpu
539 object after every execution of an instruction. Instead it only
540 needs to be saved when either A. the main loop exits or B. a
541 cpu-{halt,restart} call forces the loop to be re-entered. The
542 later functions always save the current cpu instruction
543 address. */
544
545 if (!setjmp(halt)) {
546 do {
547 if (!setjmp(restart)) {
548 cpu *const processor = system->processors[0];
549 unsigned_word cia = cpu_get_program_counter(processor);
550 do {
551 if (WITH_EVENTS) {
552 if (event_queue_tick(system->events)) {
553 cpu_set_program_counter(processor, cia);
554 event_queue_process(system->events);
555 cia = cpu_get_program_counter(processor);
556 }
557 }
558 {
559 instruction_word const instruction
560 = vm_instruction_map_read(cpu_instruction_map(processor),
561 processor, cia);
562 cia = idecode_issue(processor, instruction, cia);
563 }
564 } while (keep_running == NULL || *keep_running);
565 cpu_set_program_counter(processor, cia);
566 }
567 } while(keep_running == NULL || *keep_running);
568 }
569 #endif
570
571
572 #if (WITH_IDECODE_CACHE_SIZE && WITH_SMP == 0)
573
574 /* CASE 2: Instruction case but no SMP
575
576 Here, the additional complexity comes from there being two
577 different cache implementations. A simple function address cache
578 or a full cracked instruction cache */
579
580 if (!setjmp(halt)) {
581 do {
582 if (!setjmp(restart)) {
583 cpu *const processor = system->processors[0];
584 unsigned_word cia = cpu_get_program_counter(processor);
585 do {
586 if (WITH_EVENTS)
587 if (event_queue_tick(system->events)) {
588 cpu_set_program_counter(processor, cia);
589 event_queue_process(system->events);
590 cia = cpu_get_program_counter(processor);
591 }
592 {
593 idecode_cache *const cache_entry = cpu_icache_entry(processor,
594 cia);
595 if (cache_entry->address == cia) {
596 idecode_semantic *const semantic = cache_entry->semantic;
597 cia = semantic(processor, cache_entry, cia);
598 }
599 else {
600 instruction_word const instruction
601 = vm_instruction_map_read(cpu_instruction_map(processor),
602 processor,
603 cia);
604 idecode_semantic *const semantic = idecode(processor,
605 instruction,
606 cia,
607 cache_entry);
608
609 if (WITH_MON != 0)
610 mon_event(mon_event_icache_miss, processor, cia);
611 cache_entry->address = cia;
612 cache_entry->semantic = semantic;
613 cia = semantic(processor, cache_entry, cia);
614 }
615 }
616 } while (keep_running == NULL || *keep_running);
617 cpu_set_program_counter(processor, cia);
618 }
619 } while(keep_running == NULL || *keep_running);
620 }
621 #endif
622
623
624 #if (!WITH_IDECODE_CACHE_SIZE && WITH_SMP > 0)
625
626 /* CASE 3: No ICACHE but SMP
627
628 The complexity here comes from needing to correctly restart the
629 system when it is aborted. In particular if cpu0 requests a
630 restart, the next cpu is still cpu1. Cpu0 being restarted after
631 all the other CPU's and the event queue have been processed */
632
633 if (!setjmp(halt)) {
634 int first_cpu = setjmp(restart);
635 if (first_cpu == 0)
636 first_cpu = system->last_cpu + 1;
637 do {
638 int current_cpu;
639 for (current_cpu = first_cpu, first_cpu = 0;
640 current_cpu < system->nr_cpus + (WITH_EVENTS ? 1 : 0);
641 current_cpu++) {
642 if (WITH_EVENTS && current_cpu == system->nr_cpus) {
643 if (event_queue_tick(system->events))
644 event_queue_process(system->events);
645 }
646 else {
647 cpu *const processor = system->processors[current_cpu];
648 unsigned_word const cia = cpu_get_program_counter(processor);
649 instruction_word instruction =
650 vm_instruction_map_read(cpu_instruction_map(processor),
651 processor,
652 cia);
653 cpu_set_program_counter(processor,
654 idecode_issue(processor, instruction, cia));
655 }
656 if (!(keep_running == NULL || *keep_running)) {
657 system->last_cpu = current_cpu;
658 break;
659 }
660 }
661 } while (keep_running == NULL || *keep_running);
662 }
663 #endif
664
665 #if (WITH_IDECODE_CACHE_SIZE && WITH_SMP > 0)
666
667 /* CASE 4: ICACHE and SMP ...
668
669 This time, everything goes wrong. Need to restart loops
670 correctly, need to save the program counter and finally need to
671 keep track of each processors current address! */
672
673 if (!setjmp(halt)) {
674 int first_cpu = setjmp(restart);
675 if (!first_cpu)
676 first_cpu = system->last_cpu + 1;
677 do {
678 int current_cpu;
679 for (current_cpu = first_cpu, first_cpu = 0;
680 current_cpu < system->nr_cpus + (WITH_EVENTS ? 1 : 0);
681 current_cpu++) {
682 if (WITH_EVENTS && current_cpu == system->nr_cpus) {
683 if (event_queue_tick(system->events))
684 event_queue_process(system->events);
685 }
686 else {
687 cpu *processor = system->processors[current_cpu];
688 unsigned_word const cia = cpu_get_program_counter(processor);
689 idecode_cache *cache_entry = cpu_icache_entry(processor, cia);
690 if (cache_entry->address == cia) {
691 idecode_semantic *semantic = cache_entry->semantic;
692 cpu_set_program_counter(processor,
693 semantic(processor, cache_entry, cia));
694 }
695 else {
696 instruction_word instruction =
697 vm_instruction_map_read(cpu_instruction_map(processor),
698 processor,
699 cia);
700 idecode_semantic *semantic = idecode(processor,
701 instruction,
702 cia,
703 cache_entry);
704
705 if (WITH_MON != 0)
706 mon_event(mon_event_icache_miss, system->processors[current_cpu], cia);
707 cache_entry->address = cia;
708 cache_entry->semantic = semantic;
709 cpu_set_program_counter(processor,
710 semantic(processor, cache_entry, cia));
711 }
712 }
713 if (!(keep_running == NULL || *keep_running))
714 break;
715 }
716 } while (keep_running == NULL || *keep_running);
717 }
718 #endif
719
720 psim_clear_halt_and_restart(system);
721 }
722
723
724 /* SIMULATE INSTRUCTIONS, various different ways of achieving the same
725 thing */
726
727 INLINE_PSIM\
728 (void)
729 psim_step(psim *system)
730 {
731 volatile int keep_running = 0;
732 run_until_stop(system, &keep_running);
733 }
734
735 INLINE_PSIM\
736 (void)
737 psim_run(psim *system)
738 {
739 run_until_stop(system, NULL);
740 }
741
742 INLINE_PSIM\
743 (void)
744 psim_run_until_stop(psim *system,
745 volatile int *keep_running)
746 {
747 run_until_stop(system, keep_running);
748 }
749
750
751
752 /* storage manipulation functions */
753
754 INLINE_PSIM\
755 (void)
756 psim_read_register(psim *system,
757 int which_cpu,
758 void *buf,
759 const char reg[],
760 transfer_mode mode)
761 {
762 register_descriptions description;
763 char cooked_buf[sizeof(unsigned_8)];
764 cpu *processor;
765
766 /* find our processor */
767 if (which_cpu == MAX_NR_PROCESSORS)
768 which_cpu = system->last_cpu;
769 if (which_cpu < 0 || which_cpu >= system->nr_cpus)
770 error("psim_read_register() - invalid processor %d\n", which_cpu);
771 processor = system->processors[which_cpu];
772
773 /* find the register description */
774 description = register_description(reg);
775 if (description.type == reg_invalid)
776 error("psim_read_register() invalid register name `%s'\n", reg);
777
778 /* get the cooked value */
779 switch (description.type) {
780
781 case reg_gpr:
782 *(gpreg*)cooked_buf = cpu_registers(processor)->gpr[description.index];
783 break;
784
785 case reg_spr:
786 *(spreg*)cooked_buf = cpu_registers(processor)->spr[description.index];
787 break;
788
789 case reg_sr:
790 *(sreg*)cooked_buf = cpu_registers(processor)->sr[description.index];
791 break;
792
793 case reg_fpr:
794 *(fpreg*)cooked_buf = cpu_registers(processor)->fpr[description.index];
795 break;
796
797 case reg_pc:
798 *(unsigned_word*)cooked_buf = cpu_get_program_counter(processor);
799 break;
800
801 case reg_cr:
802 *(creg*)cooked_buf = cpu_registers(processor)->cr;
803 break;
804
805 case reg_msr:
806 *(msreg*)cooked_buf = cpu_registers(processor)->msr;
807 break;
808
809 default:
810 printf_filtered("psim_read_register(processor=0x%lx,buf=0x%lx,reg=%s) %s\n",
811 (unsigned long)processor, (unsigned long)buf, reg,
812 "read of this register unimplemented");
813 break;
814
815 }
816
817 /* the PSIM internal values are in host order. To fetch raw data,
818 they need to be converted into target order and then returned */
819 if (mode == raw_transfer) {
820 /* FIXME - assumes that all registers are simple integers */
821 switch (description.size) {
822 case 1:
823 *(unsigned_1*)buf = H2T_1(*(unsigned_1*)cooked_buf);
824 break;
825 case 2:
826 *(unsigned_2*)buf = H2T_2(*(unsigned_2*)cooked_buf);
827 break;
828 case 4:
829 *(unsigned_4*)buf = H2T_4(*(unsigned_4*)cooked_buf);
830 break;
831 case 8:
832 *(unsigned_8*)buf = H2T_8(*(unsigned_8*)cooked_buf);
833 break;
834 }
835 }
836 else {
837 memcpy(buf/*dest*/, cooked_buf/*src*/, description.size);
838 }
839
840 }
841
842
843
844 INLINE_PSIM\
845 (void)
846 psim_write_register(psim *system,
847 int which_cpu,
848 const void *buf,
849 const char reg[],
850 transfer_mode mode)
851 {
852 cpu *processor;
853 register_descriptions description;
854 char cooked_buf[sizeof(unsigned_8)];
855
856 /* find our processor */
857 if (which_cpu == MAX_NR_PROCESSORS)
858 which_cpu = system->last_cpu;
859 if (which_cpu == -1) {
860 int i;
861 for (i = 0; i < system->nr_cpus; i++)
862 psim_write_register(system, i, buf, reg, mode);
863 return;
864 }
865 else if (which_cpu < 0 || which_cpu >= system->nr_cpus) {
866 error("psim_read_register() - invalid processor %d\n", which_cpu);
867 }
868
869 processor = system->processors[which_cpu];
870
871 /* find the description of the register */
872 description = register_description(reg);
873 if (description.type == reg_invalid)
874 error("psim_write_register() invalid register name %s\n", reg);
875
876 /* If the data is comming in raw (target order), need to cook it
877 into host order before putting it into PSIM's internal structures */
878 if (mode == raw_transfer) {
879 switch (description.size) {
880 case 1:
881 *(unsigned_1*)cooked_buf = T2H_1(*(unsigned_1*)buf);
882 break;
883 case 2:
884 *(unsigned_2*)cooked_buf = T2H_2(*(unsigned_2*)buf);
885 break;
886 case 4:
887 *(unsigned_4*)cooked_buf = T2H_4(*(unsigned_4*)buf);
888 break;
889 case 8:
890 *(unsigned_8*)cooked_buf = T2H_8(*(unsigned_8*)buf);
891 break;
892 }
893 }
894 else {
895 memcpy(cooked_buf/*dest*/, buf/*src*/, description.size);
896 }
897
898 /* put the cooked value into the register */
899 switch (description.type) {
900
901 case reg_gpr:
902 cpu_registers(processor)->gpr[description.index] = *(gpreg*)cooked_buf;
903 break;
904
905 case reg_fpr:
906 cpu_registers(processor)->fpr[description.index] = *(fpreg*)cooked_buf;
907 break;
908
909 case reg_pc:
910 cpu_set_program_counter(processor, *(unsigned_word*)cooked_buf);
911 break;
912
913 case reg_spr:
914 cpu_registers(processor)->spr[description.index] = *(spreg*)cooked_buf;
915 break;
916
917 case reg_sr:
918 cpu_registers(processor)->sr[description.index] = *(sreg*)cooked_buf;
919 break;
920
921 case reg_cr:
922 cpu_registers(processor)->cr = *(creg*)cooked_buf;
923 break;
924
925 case reg_msr:
926 cpu_registers(processor)->msr = *(msreg*)cooked_buf;
927 break;
928
929 default:
930 printf_filtered("psim_write_register(processor=0x%lx,cooked_buf=0x%lx,reg=%s) %s\n",
931 (unsigned long)processor, (unsigned long)cooked_buf, reg,
932 "read of this register unimplemented");
933 break;
934
935 }
936
937 }
938
939
940
941 INLINE_PSIM\
942 (unsigned)
943 psim_read_memory(psim *system,
944 int which_cpu,
945 void *buffer,
946 unsigned_word vaddr,
947 unsigned nr_bytes)
948 {
949 cpu *processor;
950 if (which_cpu == MAX_NR_PROCESSORS)
951 which_cpu = system->last_cpu;
952 if (which_cpu < 0 || which_cpu >= system->nr_cpus)
953 error("psim_read_memory() invalid cpu\n");
954 processor = system->processors[which_cpu];
955 return vm_data_map_read_buffer(cpu_data_map(processor),
956 buffer, vaddr, nr_bytes);
957 }
958
959
960 INLINE_PSIM\
961 (unsigned)
962 psim_write_memory(psim *system,
963 int which_cpu,
964 const void *buffer,
965 unsigned_word vaddr,
966 unsigned nr_bytes,
967 int violate_read_only_section)
968 {
969 cpu *processor;
970 if (which_cpu == MAX_NR_PROCESSORS)
971 which_cpu = system->last_cpu;
972 if (which_cpu < 0 || which_cpu >= system->nr_cpus)
973 error("psim_read_memory() invalid cpu\n");
974 processor = system->processors[which_cpu];
975 return vm_data_map_write_buffer(cpu_data_map(processor),
976 buffer, vaddr, nr_bytes, 1);
977 }
978
979
980 INLINE_PSIM\
981 (void)
982 psim_print_info(psim *system,
983 int verbose)
984 {
985 mon_print_info(system, system->monitor, verbose);
986 }
987
988
989 /* Merge a device tree and a device file. */
990
991 INLINE_PSIM\
992 (void)
993 psim_merge_device_file(device *root,
994 const char *file_name)
995 {
996 FILE *description = fopen(file_name, "r");
997 int line_nr = 0;
998 char device_path[1000];
999 device *current = root;
1000 while (fgets(device_path, sizeof(device_path), description)) {
1001 /* check all of line was read */
1002 if (strchr(device_path, '\n') == NULL) {
1003 fclose(description);
1004 error("create_filed_device_tree() line %d to long: %s\n",
1005 line_nr, device_path);
1006 }
1007 line_nr++;
1008 /* parse this line */
1009 current = device_tree_add_parsed(current, "%s", device_path);
1010 }
1011 fclose(description);
1012 }
1013
1014
1015 #endif /* _PSIM_C_ */
This page took 0.070497 seconds and 5 git commands to generate.