sim: always enable modulo memory
[deliverable/binutils-gdb.git] / sim / v850 / sim-main.h
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3
4 /* General config options */
5
6 #define WITH_CORE
7 #define WITH_WATCHPOINTS 1
8
9
10 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
11
12 #define WITH_TARGET_WORD_MSB 31
13
14 #include "config.h"
15 #include "sim-basics.h"
16 #include "sim-signal.h"
17 #include "sim-fpu.h"
18 #include "sim-base.h"
19
20 #include "simops.h"
21 #include "bfd.h"
22
23
24 typedef signed8 int8;
25 typedef unsigned8 uint8;
26 typedef signed16 int16;
27 typedef unsigned16 uint16;
28 typedef signed32 int32;
29 typedef unsigned32 uint32;
30 typedef unsigned32 reg_t;
31 typedef unsigned64 reg64_t;
32
33
34 /* The current state of the processor; registers, memory, etc. */
35
36 typedef struct _v850_regs {
37 reg_t regs[32]; /* general-purpose registers */
38 reg_t sregs[32]; /* system registers, including psw */
39 reg_t pc;
40 int dummy_mem; /* where invalid accesses go */
41 reg_t mpu0_sregs[28]; /* mpu0 system registers */
42 reg_t mpu1_sregs[28]; /* mpu1 system registers */
43 reg_t fpu_sregs[28]; /* fpu system registers */
44 reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
45 reg64_t vregs[32]; /* vector registers. */
46 } v850_regs;
47
48 struct _sim_cpu
49 {
50 /* ... simulator specific members ... */
51 v850_regs reg;
52 reg_t psw_mask; /* only allow non-reserved bits to be set */
53 sim_event *pending_nmi;
54 /* ... base type ... */
55 sim_cpu_base base;
56 };
57
58 struct sim_state {
59 sim_cpu *cpu[MAX_NR_PROCESSORS];
60 #if 0
61 SIM_ADDR rom_size;
62 SIM_ADDR low_end;
63 SIM_ADDR high_start;
64 SIM_ADDR high_base;
65 void *mem;
66 #endif
67 sim_state_base base;
68 };
69
70 /* For compatibility, until all functions converted to passing
71 SIM_DESC as an argument */
72 extern SIM_DESC simulator;
73
74
75 #define V850_ROM_SIZE 0x8000
76 #define V850_LOW_END 0x200000
77 #define V850_HIGH_START 0xffe000
78
79
80 /* Because we are still using the old semantic table, provide compat
81 macro's that store the instruction where the old simops expects
82 it. */
83
84 extern uint32 OP[4];
85 #if 0
86 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
87 OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
88 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
89 OP[3] = inst;
90 #endif
91
92 #define SAVE_1 \
93 PC = cia; \
94 OP[0] = instruction_0 & 0x1f; \
95 OP[1] = (instruction_0 >> 11) & 0x1f; \
96 OP[2] = 0; \
97 OP[3] = instruction_0
98
99 #define COMPAT_1(CALL) \
100 SAVE_1; \
101 PC += (CALL); \
102 nia = PC
103
104 #define SAVE_2 \
105 PC = cia; \
106 OP[0] = instruction_0 & 0x1f; \
107 OP[1] = (instruction_0 >> 11) & 0x1f; \
108 OP[2] = instruction_1; \
109 OP[3] = (instruction_1 << 16) | instruction_0
110
111 #define COMPAT_2(CALL) \
112 SAVE_2; \
113 PC += (CALL); \
114 nia = PC
115
116
117 /* new */
118 #define GR ((CPU)->reg.regs)
119 #define SR ((CPU)->reg.sregs)
120 #define VR ((CPU)->reg.vregs)
121 #define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
122 #define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
123 #define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs)
124
125 /* old */
126 #define State (STATE_CPU (simulator, 0)->reg)
127 #define PC (State.pc)
128 #define SP_REGNO 3
129 #define SP (State.regs[SP_REGNO])
130 #define EP (State.regs[30])
131
132 #define EIPC (State.sregs[0])
133 #define EIPSW (State.sregs[1])
134 #define FEPC (State.sregs[2])
135 #define FEPSW (State.sregs[3])
136 #define ECR (State.sregs[4])
137 #define PSW (State.sregs[5])
138 #define PSW_REGNO 5
139 #define EIIC (State.sregs[13])
140 #define FEIC (State.sregs[14])
141 #define DBIC (SR[15])
142 #define CTPC (SR[16])
143 #define CTPSW (SR[17])
144 #define DBPC (State.sregs[18])
145 #define DBPSW (State.sregs[19])
146 #define CTBP (State.sregs[20])
147 #define DIR (SR[21])
148 #define EIWR (SR[28])
149 #define FEWR (SR[29])
150 #define DBWR (SR[30])
151 #define BSEL (SR[31])
152
153 #define PSW_US BIT32 (8)
154 #define PSW_NP 0x80
155 #define PSW_EP 0x40
156 #define PSW_ID 0x20
157 #define PSW_SAT 0x10
158 #define PSW_CY 0x8
159 #define PSW_OV 0x4
160 #define PSW_S 0x2
161 #define PSW_Z 0x1
162
163 #define PSW_NPV (1<<18)
164 #define PSW_DMP (1<<17)
165 #define PSW_IMP (1<<16)
166
167 #define ECR_EICC 0x0000ffff
168 #define ECR_FECC 0xffff0000
169
170 /* FPU */
171
172 #define FPSR (FPU_SR[6])
173 #define FPSR_REGNO 6
174 #define FPEPC (FPU_SR[7])
175 #define FPST (FPU_SR[8])
176 #define FPST_REGNO 8
177 #define FPCC (FPU_SR[9])
178 #define FPCFG (FPU_SR[10])
179 #define FPCFG_REGNO 10
180
181 #define FPSR_DEM 0x00200000
182 #define FPSR_SEM 0x00100000
183 #define FPSR_RM 0x000c0000
184 #define FPSR_RN 0x00000000
185 #define FPSR_FS 0x00020000
186 #define FPSR_PR 0x00010000
187
188 #define FPSR_XC 0x0000fc00
189 #define FPSR_XCE 0x00008000
190 #define FPSR_XCV 0x00004000
191 #define FPSR_XCZ 0x00002000
192 #define FPSR_XCO 0x00001000
193 #define FPSR_XCU 0x00000800
194 #define FPSR_XCI 0x00000400
195
196 #define FPSR_XE 0x000003e0
197 #define FPSR_XEV 0x00000200
198 #define FPSR_XEZ 0x00000100
199 #define FPSR_XEO 0x00000080
200 #define FPSR_XEU 0x00000040
201 #define FPSR_XEI 0x00000020
202
203 #define FPSR_XP 0x0000001f
204 #define FPSR_XPV 0x00000010
205 #define FPSR_XPZ 0x00000008
206 #define FPSR_XPO 0x00000004
207 #define FPSR_XPU 0x00000002
208 #define FPSR_XPI 0x00000001
209
210 #define FPST_PR 0x00008000
211 #define FPST_XCE 0x00002000
212 #define FPST_XCV 0x00001000
213 #define FPST_XCZ 0x00000800
214 #define FPST_XCO 0x00000400
215 #define FPST_XCU 0x00000200
216 #define FPST_XCI 0x00000100
217
218 #define FPST_XPV 0x00000010
219 #define FPST_XPZ 0x00000008
220 #define FPST_XPO 0x00000004
221 #define FPST_XPU 0x00000002
222 #define FPST_XPI 0x00000001
223
224 #define FPCFG_RM 0x00000180
225 #define FPCFG_XEV 0x00000010
226 #define FPCFG_XEZ 0x00000008
227 #define FPCFG_XEO 0x00000004
228 #define FPCFG_XEU 0x00000002
229 #define FPCFG_XEI 0x00000001
230
231 #define GET_FPCC()\
232 ((FPSR >> 24) &0xf)
233
234 #define CLEAR_FPCC(bbb)\
235 (FPSR &= ~(1 << (bbb+24)))
236
237 #define SET_FPCC(bbb)\
238 (FPSR |= 1 << (bbb+24))
239
240 #define TEST_FPCC(bbb)\
241 ((FPSR & (1 << (bbb+24))) != 0)
242
243 #define FPSR_GET_ROUND() \
244 (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
245 : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
246 : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
247 : sim_fpu_round_zero)
248
249
250 enum FPU_COMPARE {
251 FPU_CMP_F = 0,
252 FPU_CMP_UN,
253 FPU_CMP_EQ,
254 FPU_CMP_UEQ,
255 FPU_CMP_OLT,
256 FPU_CMP_ULT,
257 FPU_CMP_OLE,
258 FPU_CMP_ULE,
259 FPU_CMP_SF,
260 FPU_CMP_NGLE,
261 FPU_CMP_SEQ,
262 FPU_CMP_NGL,
263 FPU_CMP_LT,
264 FPU_CMP_NGE,
265 FPU_CMP_LE,
266 FPU_CMP_NGT
267 };
268
269
270 /* MPU */
271 #define MPM (MPU1_SR[0])
272 #define MPC (MPU1_SR[1])
273 #define MPC_REGNO 1
274 #define TID (MPU1_SR[2])
275 #define PPA (MPU1_SR[3])
276 #define PPM (MPU1_SR[4])
277 #define PPC (MPU1_SR[5])
278 #define DCC (MPU1_SR[6])
279 #define DCV0 (MPU1_SR[7])
280 #define DCV1 (MPU1_SR[8])
281 #define SPAL (MPU1_SR[10])
282 #define SPAU (MPU1_SR[11])
283 #define IPA0L (MPU1_SR[12])
284 #define IPA0U (MPU1_SR[13])
285 #define IPA1L (MPU1_SR[14])
286 #define IPA1U (MPU1_SR[15])
287 #define IPA2L (MPU1_SR[16])
288 #define IPA2U (MPU1_SR[17])
289 #define IPA3L (MPU1_SR[18])
290 #define IPA3U (MPU1_SR[19])
291 #define DPA0L (MPU1_SR[20])
292 #define DPA0U (MPU1_SR[21])
293 #define DPA1L (MPU1_SR[22])
294 #define DPA1U (MPU1_SR[23])
295 #define DPA2L (MPU1_SR[24])
296 #define DPA2U (MPU1_SR[25])
297 #define DPA3L (MPU1_SR[26])
298 #define DPA3U (MPU1_SR[27])
299
300 #define PPC_PPE 0x1
301 #define SPAL_SPE 0x1
302 #define SPAL_SPS 0x10
303
304 #define VIP (MPU0_SR[0])
305 #define VMECR (MPU0_SR[4])
306 #define VMTID (MPU0_SR[5])
307 #define VMADR (MPU0_SR[6])
308 #define VPECR (MPU0_SR[8])
309 #define VPTID (MPU0_SR[9])
310 #define VPADR (MPU0_SR[10])
311 #define VDECR (MPU0_SR[12])
312 #define VDTID (MPU0_SR[13])
313
314 #define MPM_AUE 0x2
315 #define MPM_MPE 0x1
316
317 #define VMECR_VMX 0x2
318 #define VMECR_VMR 0x4
319 #define VMECR_VMW 0x8
320 #define VMECR_VMS 0x10
321 #define VMECR_VMRMW 0x20
322 #define VMECR_VMMS 0x40
323
324 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
325 #define IPA_IPE 0x1
326 #define IPA_IPX 0x2
327 #define IPA_IPR 0x4
328 #define IPE0 (IPA0L & IPA_IPE)
329 #define IPE1 (IPA1L & IPA_IPE)
330 #define IPE2 (IPA2L & IPA_IPE)
331 #define IPE3 (IPA3L & IPA_IPE)
332 #define IPX0 (IPA0L & IPA_IPX)
333 #define IPX1 (IPA1L & IPA_IPX)
334 #define IPX2 (IPA2L & IPA_IPX)
335 #define IPX3 (IPA3L & IPA_IPX)
336 #define IPR0 (IPA0L & IPA_IPR)
337 #define IPR1 (IPA1L & IPA_IPR)
338 #define IPR2 (IPA2L & IPA_IPR)
339 #define IPR3 (IPA3L & IPA_IPR)
340
341 #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
342 #define DPA_DPE 0x1
343 #define DPA_DPR 0x4
344 #define DPA_DPW 0x8
345 #define DPE0 (DPA0L & DPA_DPE)
346 #define DPE1 (DPA1L & DPA_DPE)
347 #define DPE2 (DPA2L & DPA_DPE)
348 #define DPE3 (DPA3L & DPA_DPE)
349 #define DPR0 (DPA0L & DPA_DPR)
350 #define DPR1 (DPA1L & DPA_DPR)
351 #define DPR2 (DPA2L & DPA_DPR)
352 #define DPR3 (DPA3L & DPA_DPR)
353 #define DPW0 (DPA0L & DPA_DPW)
354 #define DPW1 (DPA1L & DPA_DPW)
355 #define DPW2 (DPA2L & DPA_DPW)
356 #define DPW3 (DPA3L & DPA_DPW)
357
358 #define DCC_DCE0 0x1
359 #define DCC_DCE1 0x10000
360
361 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
362 #define PPC_PPC 0xfffffffe
363 #define PPC_PPE 0x1
364 #define PPC_PPM 0x0000fff8
365
366
367 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
368
369 /* sign-extend a 4-bit number */
370 #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
371
372 /* sign-extend a 5-bit number */
373 #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
374
375 /* sign-extend a 9-bit number */
376 #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
377
378 /* sign-extend a 22-bit number */
379 #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
380
381 /* sign extend a 40 bit number */
382 #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
383 ^ (~UNSIGNED64 (0x7fffffffff))) \
384 + UNSIGNED64 (0x8000000000))
385
386 /* sign extend a 44 bit number */
387 #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
388 ^ (~ UNSIGNED64 (0x7ffffffffff))) \
389 + UNSIGNED64 (0x80000000000))
390
391 /* sign extend a 60 bit number */
392 #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
393 ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
394 + UNSIGNED64 (0x800000000000000))
395
396 /* No sign extension */
397 #define NOP(x) (x)
398
399 #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
400
401 #define RLW(x) load_mem (x, 4)
402
403 /* Function declarations. */
404
405 #define IMEM16(EA) \
406 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
407
408 #define IMEM16_IMMED(EA,N) \
409 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
410 PC, exec_map, (EA) + (N) * 2)
411
412 #define load_mem(ADDR,LEN) \
413 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
414 PC, read_map, (ADDR))
415
416 #define store_mem(ADDR,LEN,DATA) \
417 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
418 PC, write_map, (ADDR), (DATA))
419
420
421 /* compare cccc field against PSW */
422 int condition_met (unsigned code);
423
424
425 /* Debug/tracing calls */
426
427 enum op_types
428 {
429 OP_UNKNOWN,
430 OP_NONE,
431 OP_TRAP,
432 OP_REG,
433 OP_REG_REG,
434 OP_REG_REG_CMP,
435 OP_REG_REG_MOVE,
436 OP_IMM_REG,
437 OP_IMM_REG_CMP,
438 OP_IMM_REG_MOVE,
439 OP_COND_BR,
440 OP_LOAD16,
441 OP_STORE16,
442 OP_LOAD32,
443 OP_STORE32,
444 OP_JUMP,
445 OP_IMM_REG_REG,
446 OP_UIMM_REG_REG,
447 OP_IMM16_REG_REG,
448 OP_UIMM16_REG_REG,
449 OP_BIT,
450 OP_EX1,
451 OP_EX2,
452 OP_LDSR,
453 OP_STSR,
454 OP_BIT_CHANGE,
455 OP_REG_REG_REG,
456 OP_REG_REG3,
457 OP_IMM_REG_REG_REG,
458 OP_PUSHPOP1,
459 OP_PUSHPOP2,
460 OP_PUSHPOP3,
461 };
462
463 #ifdef DEBUG
464 void trace_input (char *name, enum op_types type, int size);
465 void trace_output (enum op_types result);
466 void trace_result (int has_result, unsigned32 result);
467
468 extern int trace_num_values;
469 extern unsigned32 trace_values[];
470 extern unsigned32 trace_pc;
471 extern const char *trace_name;
472 extern int trace_module;
473
474 #define TRACE_BRANCH0() \
475 do { \
476 if (TRACE_BRANCH_P (CPU)) { \
477 trace_module = TRACE_BRANCH_IDX; \
478 trace_pc = cia; \
479 trace_name = itable[MY_INDEX].name; \
480 trace_num_values = 0; \
481 trace_result (1, (nia)); \
482 } \
483 } while (0)
484
485 #define TRACE_BRANCH1(IN1) \
486 do { \
487 if (TRACE_BRANCH_P (CPU)) { \
488 trace_module = TRACE_BRANCH_IDX; \
489 trace_pc = cia; \
490 trace_name = itable[MY_INDEX].name; \
491 trace_values[0] = (IN1); \
492 trace_num_values = 1; \
493 trace_result (1, (nia)); \
494 } \
495 } while (0)
496
497 #define TRACE_BRANCH2(IN1, IN2) \
498 do { \
499 if (TRACE_BRANCH_P (CPU)) { \
500 trace_module = TRACE_BRANCH_IDX; \
501 trace_pc = cia; \
502 trace_name = itable[MY_INDEX].name; \
503 trace_values[0] = (IN1); \
504 trace_values[1] = (IN2); \
505 trace_num_values = 2; \
506 trace_result (1, (nia)); \
507 } \
508 } while (0)
509
510 #define TRACE_BRANCH3(IN1, IN2, IN3) \
511 do { \
512 if (TRACE_BRANCH_P (CPU)) { \
513 trace_module = TRACE_BRANCH_IDX; \
514 trace_pc = cia; \
515 trace_name = itable[MY_INDEX].name; \
516 trace_values[0] = (IN1); \
517 trace_values[1] = (IN2); \
518 trace_values[2] = (IN3); \
519 trace_num_values = 3; \
520 trace_result (1, (nia)); \
521 } \
522 } while (0)
523
524 #define TRACE_LD(ADDR,RESULT) \
525 do { \
526 if (TRACE_MEMORY_P (CPU)) { \
527 trace_module = TRACE_MEMORY_IDX; \
528 trace_pc = cia; \
529 trace_name = itable[MY_INDEX].name; \
530 trace_values[0] = (ADDR); \
531 trace_num_values = 1; \
532 trace_result (1, (RESULT)); \
533 } \
534 } while (0)
535
536 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
537 do { \
538 if (TRACE_MEMORY_P (CPU)) { \
539 trace_module = TRACE_MEMORY_IDX; \
540 trace_pc = cia; \
541 trace_name = (NAME); \
542 trace_values[0] = (ADDR); \
543 trace_num_values = 1; \
544 trace_result (1, (RESULT)); \
545 } \
546 } while (0)
547
548 #define TRACE_ST(ADDR,RESULT) \
549 do { \
550 if (TRACE_MEMORY_P (CPU)) { \
551 trace_module = TRACE_MEMORY_IDX; \
552 trace_pc = cia; \
553 trace_name = itable[MY_INDEX].name; \
554 trace_values[0] = (ADDR); \
555 trace_num_values = 1; \
556 trace_result (1, (RESULT)); \
557 } \
558 } while (0)
559
560 #define TRACE_FP_INPUT_FPU1(V0) \
561 do { \
562 if (TRACE_FPU_P (CPU)) \
563 { \
564 unsigned64 f0; \
565 sim_fpu_to64 (&f0, (V0)); \
566 trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
567 } \
568 } while (0)
569
570 #define TRACE_FP_INPUT_FPU2(V0, V1) \
571 do { \
572 if (TRACE_FPU_P (CPU)) \
573 { \
574 unsigned64 f0, f1; \
575 sim_fpu_to64 (&f0, (V0)); \
576 sim_fpu_to64 (&f1, (V1)); \
577 trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
578 } \
579 } while (0)
580
581 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
582 do { \
583 if (TRACE_FPU_P (CPU)) \
584 { \
585 unsigned64 f0, f1, f2; \
586 sim_fpu_to64 (&f0, (V0)); \
587 sim_fpu_to64 (&f1, (V1)); \
588 sim_fpu_to64 (&f2, (V2)); \
589 trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
590 } \
591 } while (0)
592
593 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
594 do { \
595 if (TRACE_FPU_P (CPU)) \
596 { \
597 int d0 = (V0); \
598 unsigned64 f1, f2; \
599 TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
600 TRACE_IDX (data) = TRACE_FPU_IDX; \
601 sim_fpu_to64 (&f1, (V1)); \
602 sim_fpu_to64 (&f2, (V2)); \
603 save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
604 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
605 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
606 } \
607 } while (0)
608
609 #define TRACE_FP_INPUT_WORD2(V0, V1) \
610 do { \
611 if (TRACE_FPU_P (CPU)) \
612 trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
613 } while (0)
614
615 #define TRACE_FP_RESULT_FPU1(R0) \
616 do { \
617 if (TRACE_FPU_P (CPU)) \
618 { \
619 unsigned64 f0; \
620 sim_fpu_to64 (&f0, (R0)); \
621 trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
622 } \
623 } while (0)
624
625 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
626
627 #define TRACE_FP_RESULT_WORD2(R0, R1) \
628 do { \
629 if (TRACE_FPU_P (CPU)) \
630 trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
631 } while (0)
632
633 #else
634 #define trace_input(NAME, IN1, IN2)
635 #define trace_output(RESULT)
636 #define trace_result(HAS_RESULT, RESULT)
637
638 #define TRACE_ALU_INPUT0()
639 #define TRACE_ALU_INPUT1(IN0)
640 #define TRACE_ALU_INPUT2(IN0, IN1)
641 #define TRACE_ALU_INPUT2(IN0, IN1)
642 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
643 #define TRACE_ALU_RESULT(RESULT)
644
645 #define TRACE_BRANCH0()
646 #define TRACE_BRANCH1(IN1)
647 #define TRACE_BRANCH2(IN1, IN2)
648 #define TRACE_BRANCH2(IN1, IN2, IN3)
649
650 #define TRACE_LD(ADDR,RESULT)
651 #define TRACE_ST(ADDR,RESULT)
652
653 #endif
654
655 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
656 #define GPR_CLEAR(N) (State.regs[(N)] = 0)
657
658 extern void divun ( unsigned int N,
659 unsigned long int als,
660 unsigned long int sfi,
661 unsigned32 /*unsigned long int*/ * quotient_ptr,
662 unsigned32 /*unsigned long int*/ * remainder_ptr,
663 int *overflow_ptr
664 );
665 extern void divn ( unsigned int N,
666 unsigned long int als,
667 unsigned long int sfi,
668 signed32 /*signed long int*/ * quotient_ptr,
669 signed32 /*signed long int*/ * remainder_ptr,
670 int *overflow_ptr
671 );
672 extern int type1_regs[];
673 extern int type2_regs[];
674 extern int type3_regs[];
675
676 #define SESR_OV (1 << 0)
677 #define SESR_SOV (1 << 1)
678
679 #define SESR (State.sregs[12])
680
681 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
682 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
683 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
684 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
685
686 #define SAT16(X) \
687 do \
688 { \
689 signed64 z = (X); \
690 if (z > 0x7fff) \
691 { \
692 SESR |= SESR_OV | SESR_SOV; \
693 z = 0x7fff; \
694 } \
695 else if (z < -0x8000) \
696 { \
697 SESR |= SESR_OV | SESR_SOV; \
698 z = - 0x8000; \
699 } \
700 (X) = z; \
701 } \
702 while (0)
703
704 #define SAT32(X) \
705 do \
706 { \
707 signed64 z = (X); \
708 if (z > 0x7fffffff) \
709 { \
710 SESR |= SESR_OV | SESR_SOV; \
711 z = 0x7fffffff; \
712 } \
713 else if (z < -0x80000000) \
714 { \
715 SESR |= SESR_OV | SESR_SOV; \
716 z = - 0x80000000; \
717 } \
718 (X) = z; \
719 } \
720 while (0)
721
722 #define ABS16(X) \
723 do \
724 { \
725 signed64 z = (X) & 0xffff; \
726 if (z == 0x8000) \
727 { \
728 SESR |= SESR_OV | SESR_SOV; \
729 z = 0x7fff; \
730 } \
731 else if (z & 0x8000) \
732 { \
733 z = (- z) & 0xffff; \
734 } \
735 (X) = z; \
736 } \
737 while (0)
738
739 #define ABS32(X) \
740 do \
741 { \
742 signed64 z = (X) & 0xffffffff; \
743 if (z == 0x80000000) \
744 { \
745 SESR |= SESR_OV | SESR_SOV; \
746 z = 0x7fffffff; \
747 } \
748 else if (z & 0x80000000) \
749 { \
750 z = (- z) & 0xffffffff; \
751 } \
752 (X) = z; \
753 } \
754 while (0)
755
756 #endif
This page took 0.043525 seconds and 4 git commands to generate.