22aff180dd1f214a11b73264fe01c3957e582ac1
[deliverable/linux.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34 * fill ring buffer with silence
35 * runtime->silence_start: starting pointer to silence area
36 * runtime->silence_filled: size filled with silence
37 * runtime->silence_threshold: threshold from application
38 * runtime->silence_size: maximal size from application
39 *
40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41 */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44 struct snd_pcm_runtime *runtime = substream->runtime;
45 snd_pcm_uframes_t frames, ofs, transfer;
46
47 if (runtime->silence_size < runtime->boundary) {
48 snd_pcm_sframes_t noise_dist, n;
49 if (runtime->silence_start != runtime->control->appl_ptr) {
50 n = runtime->control->appl_ptr - runtime->silence_start;
51 if (n < 0)
52 n += runtime->boundary;
53 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 runtime->silence_filled -= n;
55 else
56 runtime->silence_filled = 0;
57 runtime->silence_start = runtime->control->appl_ptr;
58 }
59 if (runtime->silence_filled >= runtime->buffer_size)
60 return;
61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63 return;
64 frames = runtime->silence_threshold - noise_dist;
65 if (frames > runtime->silence_size)
66 frames = runtime->silence_size;
67 } else {
68 if (new_hw_ptr == ULONG_MAX) { /* initialization */
69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70 runtime->silence_filled = avail > 0 ? avail : 0;
71 runtime->silence_start = (runtime->status->hw_ptr +
72 runtime->silence_filled) %
73 runtime->boundary;
74 } else {
75 ofs = runtime->status->hw_ptr;
76 frames = new_hw_ptr - ofs;
77 if ((snd_pcm_sframes_t)frames < 0)
78 frames += runtime->boundary;
79 runtime->silence_filled -= frames;
80 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81 runtime->silence_filled = 0;
82 runtime->silence_start = new_hw_ptr;
83 } else {
84 runtime->silence_start = ofs;
85 }
86 }
87 frames = runtime->buffer_size - runtime->silence_filled;
88 }
89 if (snd_BUG_ON(frames > runtime->buffer_size))
90 return;
91 if (frames == 0)
92 return;
93 ofs = runtime->silence_start % runtime->buffer_size;
94 while (frames > 0) {
95 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
96 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
97 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
98 if (substream->ops->silence) {
99 int err;
100 err = substream->ops->silence(substream, -1, ofs, transfer);
101 snd_BUG_ON(err < 0);
102 } else {
103 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
104 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
105 }
106 } else {
107 unsigned int c;
108 unsigned int channels = runtime->channels;
109 if (substream->ops->silence) {
110 for (c = 0; c < channels; ++c) {
111 int err;
112 err = substream->ops->silence(substream, c, ofs, transfer);
113 snd_BUG_ON(err < 0);
114 }
115 } else {
116 size_t dma_csize = runtime->dma_bytes / channels;
117 for (c = 0; c < channels; ++c) {
118 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
119 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
120 }
121 }
122 }
123 runtime->silence_filled += transfer;
124 frames -= transfer;
125 ofs = 0;
126 }
127 }
128
129 static void pcm_debug_name(struct snd_pcm_substream *substream,
130 char *name, size_t len)
131 {
132 snprintf(name, len, "pcmC%dD%d%c:%d",
133 substream->pcm->card->number,
134 substream->pcm->device,
135 substream->stream ? 'c' : 'p',
136 substream->number);
137 }
138
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
142 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
143 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
144 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
145 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
146
147 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
148
149 #define xrun_debug(substream, mask) \
150 ((substream)->pstr->xrun_debug & (mask))
151 #else
152 #define xrun_debug(substream, mask) 0
153 #endif
154
155 #define dump_stack_on_xrun(substream) do { \
156 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
157 dump_stack(); \
158 } while (0)
159
160 static void xrun(struct snd_pcm_substream *substream)
161 {
162 struct snd_pcm_runtime *runtime = substream->runtime;
163
164 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
165 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
166 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
167 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
168 char name[16];
169 pcm_debug_name(substream, name, sizeof(name));
170 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
171 dump_stack_on_xrun(substream);
172 }
173 }
174
175 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
176 #define hw_ptr_error(substream, fmt, args...) \
177 do { \
178 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
179 xrun_log_show(substream); \
180 if (printk_ratelimit()) { \
181 snd_printd("PCM: " fmt, ##args); \
182 } \
183 dump_stack_on_xrun(substream); \
184 } \
185 } while (0)
186
187 #define XRUN_LOG_CNT 10
188
189 struct hwptr_log_entry {
190 unsigned long jiffies;
191 snd_pcm_uframes_t pos;
192 snd_pcm_uframes_t period_size;
193 snd_pcm_uframes_t buffer_size;
194 snd_pcm_uframes_t old_hw_ptr;
195 snd_pcm_uframes_t hw_ptr_base;
196 };
197
198 struct snd_pcm_hwptr_log {
199 unsigned int idx;
200 unsigned int hit: 1;
201 struct hwptr_log_entry entries[XRUN_LOG_CNT];
202 };
203
204 static void xrun_log(struct snd_pcm_substream *substream,
205 snd_pcm_uframes_t pos)
206 {
207 struct snd_pcm_runtime *runtime = substream->runtime;
208 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
209 struct hwptr_log_entry *entry;
210
211 if (log == NULL) {
212 log = kzalloc(sizeof(*log), GFP_ATOMIC);
213 if (log == NULL)
214 return;
215 runtime->hwptr_log = log;
216 } else {
217 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
218 return;
219 }
220 entry = &log->entries[log->idx];
221 entry->jiffies = jiffies;
222 entry->pos = pos;
223 entry->period_size = runtime->period_size;
224 entry->buffer_size = runtime->buffer_size;;
225 entry->old_hw_ptr = runtime->status->hw_ptr;
226 entry->hw_ptr_base = runtime->hw_ptr_base;
227 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
228 }
229
230 static void xrun_log_show(struct snd_pcm_substream *substream)
231 {
232 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
233 struct hwptr_log_entry *entry;
234 char name[16];
235 unsigned int idx;
236 int cnt;
237
238 if (log == NULL)
239 return;
240 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
241 return;
242 pcm_debug_name(substream, name, sizeof(name));
243 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
244 entry = &log->entries[idx];
245 if (entry->period_size == 0)
246 break;
247 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
248 "hwptr=%ld/%ld\n",
249 name, entry->jiffies, (unsigned long)entry->pos,
250 (unsigned long)entry->period_size,
251 (unsigned long)entry->buffer_size,
252 (unsigned long)entry->old_hw_ptr,
253 (unsigned long)entry->hw_ptr_base);
254 idx++;
255 idx %= XRUN_LOG_CNT;
256 }
257 log->hit = 1;
258 }
259
260 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
261
262 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
263 #define xrun_log(substream, pos) do { } while (0)
264 #define xrun_log_show(substream) do { } while (0)
265
266 #endif
267
268 int snd_pcm_update_state(struct snd_pcm_substream *substream,
269 struct snd_pcm_runtime *runtime)
270 {
271 snd_pcm_uframes_t avail;
272
273 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
274 avail = snd_pcm_playback_avail(runtime);
275 else
276 avail = snd_pcm_capture_avail(runtime);
277 if (avail > runtime->avail_max)
278 runtime->avail_max = avail;
279 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
280 if (avail >= runtime->buffer_size) {
281 snd_pcm_drain_done(substream);
282 return -EPIPE;
283 }
284 } else {
285 if (avail >= runtime->stop_threshold) {
286 xrun(substream);
287 return -EPIPE;
288 }
289 }
290 if (avail >= runtime->control->avail_min)
291 wake_up(runtime->twake ? &runtime->tsleep : &runtime->sleep);
292 return 0;
293 }
294
295 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
296 unsigned int in_interrupt)
297 {
298 struct snd_pcm_runtime *runtime = substream->runtime;
299 snd_pcm_uframes_t pos;
300 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
301 snd_pcm_sframes_t hdelta, delta;
302 unsigned long jdelta;
303
304 old_hw_ptr = runtime->status->hw_ptr;
305 pos = substream->ops->pointer(substream);
306 if (pos == SNDRV_PCM_POS_XRUN) {
307 xrun(substream);
308 return -EPIPE;
309 }
310 if (pos >= runtime->buffer_size) {
311 if (printk_ratelimit()) {
312 char name[16];
313 pcm_debug_name(substream, name, sizeof(name));
314 xrun_log_show(substream);
315 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
316 "buffer size = %ld, period size = %ld\n",
317 name, pos, runtime->buffer_size,
318 runtime->period_size);
319 }
320 pos = 0;
321 }
322 pos -= pos % runtime->min_align;
323 if (xrun_debug(substream, XRUN_DEBUG_LOG))
324 xrun_log(substream, pos);
325 hw_base = runtime->hw_ptr_base;
326 new_hw_ptr = hw_base + pos;
327 if (in_interrupt) {
328 /* we know that one period was processed */
329 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
330 delta = runtime->hw_ptr_interrupt + runtime->period_size;
331 if (delta > new_hw_ptr) {
332 hw_base += runtime->buffer_size;
333 if (hw_base >= runtime->boundary)
334 hw_base = 0;
335 new_hw_ptr = hw_base + pos;
336 goto __delta;
337 }
338 }
339 /* new_hw_ptr might be lower than old_hw_ptr in case when */
340 /* pointer crosses the end of the ring buffer */
341 if (new_hw_ptr < old_hw_ptr) {
342 hw_base += runtime->buffer_size;
343 if (hw_base >= runtime->boundary)
344 hw_base = 0;
345 new_hw_ptr = hw_base + pos;
346 }
347 __delta:
348 delta = (new_hw_ptr - old_hw_ptr) % runtime->boundary;
349 if (xrun_debug(substream, in_interrupt ?
350 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
351 char name[16];
352 pcm_debug_name(substream, name, sizeof(name));
353 snd_printd("%s_update: %s: pos=%u/%u/%u, "
354 "hwptr=%ld/%ld/%ld/%ld\n",
355 in_interrupt ? "period" : "hwptr",
356 name,
357 (unsigned int)pos,
358 (unsigned int)runtime->period_size,
359 (unsigned int)runtime->buffer_size,
360 (unsigned long)delta,
361 (unsigned long)old_hw_ptr,
362 (unsigned long)new_hw_ptr,
363 (unsigned long)runtime->hw_ptr_base);
364 }
365 /* something must be really wrong */
366 if (delta >= runtime->buffer_size + runtime->period_size) {
367 hw_ptr_error(substream,
368 "Unexpected hw_pointer value %s"
369 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
370 "old_hw_ptr=%ld)\n",
371 in_interrupt ? "[Q] " : "[P]",
372 substream->stream, (long)pos,
373 (long)new_hw_ptr, (long)old_hw_ptr);
374 return 0;
375 }
376
377 /* Do jiffies check only in xrun_debug mode */
378 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
379 goto no_jiffies_check;
380
381 /* Skip the jiffies check for hardwares with BATCH flag.
382 * Such hardware usually just increases the position at each IRQ,
383 * thus it can't give any strange position.
384 */
385 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
386 goto no_jiffies_check;
387 hdelta = delta;
388 if (hdelta < runtime->delay)
389 goto no_jiffies_check;
390 hdelta -= runtime->delay;
391 jdelta = jiffies - runtime->hw_ptr_jiffies;
392 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
393 delta = jdelta /
394 (((runtime->period_size * HZ) / runtime->rate)
395 + HZ/100);
396 /* move new_hw_ptr according jiffies not pos variable */
397 new_hw_ptr = old_hw_ptr;
398 hw_base = delta;
399 /* use loop to avoid checks for delta overflows */
400 /* the delta value is small or zero in most cases */
401 while (delta > 0) {
402 new_hw_ptr += runtime->period_size;
403 if (new_hw_ptr >= runtime->boundary)
404 new_hw_ptr -= runtime->boundary;
405 delta--;
406 }
407 /* align hw_base to buffer_size */
408 hw_ptr_error(substream,
409 "hw_ptr skipping! %s"
410 "(pos=%ld, delta=%ld, period=%ld, "
411 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
412 in_interrupt ? "[Q] " : "",
413 (long)pos, (long)hdelta,
414 (long)runtime->period_size, jdelta,
415 ((hdelta * HZ) / runtime->rate), hw_base,
416 (unsigned long)old_hw_ptr,
417 (unsigned long)new_hw_ptr);
418 /* reset values to proper state */
419 delta = 0;
420 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
421 }
422 no_jiffies_check:
423 if (delta > runtime->period_size + runtime->period_size / 2) {
424 hw_ptr_error(substream,
425 "Lost interrupts? %s"
426 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
427 "old_hw_ptr=%ld)\n",
428 in_interrupt ? "[Q] " : "",
429 substream->stream, (long)delta,
430 (long)new_hw_ptr,
431 (long)old_hw_ptr);
432 }
433
434 if (runtime->status->hw_ptr == new_hw_ptr)
435 return 0;
436
437 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
438 runtime->silence_size > 0)
439 snd_pcm_playback_silence(substream, new_hw_ptr);
440
441 if (in_interrupt) {
442 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
443 if (delta < 0)
444 delta += runtime->boundary;
445 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
446 runtime->hw_ptr_interrupt += delta;
447 if (runtime->hw_ptr_interrupt >= runtime->boundary)
448 runtime->hw_ptr_interrupt -= runtime->boundary;
449 }
450 runtime->hw_ptr_base = hw_base;
451 runtime->status->hw_ptr = new_hw_ptr;
452 runtime->hw_ptr_jiffies = jiffies;
453 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
454 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
455
456 return snd_pcm_update_state(substream, runtime);
457 }
458
459 /* CAUTION: call it with irq disabled */
460 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
461 {
462 return snd_pcm_update_hw_ptr0(substream, 0);
463 }
464
465 /**
466 * snd_pcm_set_ops - set the PCM operators
467 * @pcm: the pcm instance
468 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
469 * @ops: the operator table
470 *
471 * Sets the given PCM operators to the pcm instance.
472 */
473 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
474 {
475 struct snd_pcm_str *stream = &pcm->streams[direction];
476 struct snd_pcm_substream *substream;
477
478 for (substream = stream->substream; substream != NULL; substream = substream->next)
479 substream->ops = ops;
480 }
481
482 EXPORT_SYMBOL(snd_pcm_set_ops);
483
484 /**
485 * snd_pcm_sync - set the PCM sync id
486 * @substream: the pcm substream
487 *
488 * Sets the PCM sync identifier for the card.
489 */
490 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
491 {
492 struct snd_pcm_runtime *runtime = substream->runtime;
493
494 runtime->sync.id32[0] = substream->pcm->card->number;
495 runtime->sync.id32[1] = -1;
496 runtime->sync.id32[2] = -1;
497 runtime->sync.id32[3] = -1;
498 }
499
500 EXPORT_SYMBOL(snd_pcm_set_sync);
501
502 /*
503 * Standard ioctl routine
504 */
505
506 static inline unsigned int div32(unsigned int a, unsigned int b,
507 unsigned int *r)
508 {
509 if (b == 0) {
510 *r = 0;
511 return UINT_MAX;
512 }
513 *r = a % b;
514 return a / b;
515 }
516
517 static inline unsigned int div_down(unsigned int a, unsigned int b)
518 {
519 if (b == 0)
520 return UINT_MAX;
521 return a / b;
522 }
523
524 static inline unsigned int div_up(unsigned int a, unsigned int b)
525 {
526 unsigned int r;
527 unsigned int q;
528 if (b == 0)
529 return UINT_MAX;
530 q = div32(a, b, &r);
531 if (r)
532 ++q;
533 return q;
534 }
535
536 static inline unsigned int mul(unsigned int a, unsigned int b)
537 {
538 if (a == 0)
539 return 0;
540 if (div_down(UINT_MAX, a) < b)
541 return UINT_MAX;
542 return a * b;
543 }
544
545 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
546 unsigned int c, unsigned int *r)
547 {
548 u_int64_t n = (u_int64_t) a * b;
549 if (c == 0) {
550 snd_BUG_ON(!n);
551 *r = 0;
552 return UINT_MAX;
553 }
554 n = div_u64_rem(n, c, r);
555 if (n >= UINT_MAX) {
556 *r = 0;
557 return UINT_MAX;
558 }
559 return n;
560 }
561
562 /**
563 * snd_interval_refine - refine the interval value of configurator
564 * @i: the interval value to refine
565 * @v: the interval value to refer to
566 *
567 * Refines the interval value with the reference value.
568 * The interval is changed to the range satisfying both intervals.
569 * The interval status (min, max, integer, etc.) are evaluated.
570 *
571 * Returns non-zero if the value is changed, zero if not changed.
572 */
573 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
574 {
575 int changed = 0;
576 if (snd_BUG_ON(snd_interval_empty(i)))
577 return -EINVAL;
578 if (i->min < v->min) {
579 i->min = v->min;
580 i->openmin = v->openmin;
581 changed = 1;
582 } else if (i->min == v->min && !i->openmin && v->openmin) {
583 i->openmin = 1;
584 changed = 1;
585 }
586 if (i->max > v->max) {
587 i->max = v->max;
588 i->openmax = v->openmax;
589 changed = 1;
590 } else if (i->max == v->max && !i->openmax && v->openmax) {
591 i->openmax = 1;
592 changed = 1;
593 }
594 if (!i->integer && v->integer) {
595 i->integer = 1;
596 changed = 1;
597 }
598 if (i->integer) {
599 if (i->openmin) {
600 i->min++;
601 i->openmin = 0;
602 }
603 if (i->openmax) {
604 i->max--;
605 i->openmax = 0;
606 }
607 } else if (!i->openmin && !i->openmax && i->min == i->max)
608 i->integer = 1;
609 if (snd_interval_checkempty(i)) {
610 snd_interval_none(i);
611 return -EINVAL;
612 }
613 return changed;
614 }
615
616 EXPORT_SYMBOL(snd_interval_refine);
617
618 static int snd_interval_refine_first(struct snd_interval *i)
619 {
620 if (snd_BUG_ON(snd_interval_empty(i)))
621 return -EINVAL;
622 if (snd_interval_single(i))
623 return 0;
624 i->max = i->min;
625 i->openmax = i->openmin;
626 if (i->openmax)
627 i->max++;
628 return 1;
629 }
630
631 static int snd_interval_refine_last(struct snd_interval *i)
632 {
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (snd_interval_single(i))
636 return 0;
637 i->min = i->max;
638 i->openmin = i->openmax;
639 if (i->openmin)
640 i->min--;
641 return 1;
642 }
643
644 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
645 {
646 if (a->empty || b->empty) {
647 snd_interval_none(c);
648 return;
649 }
650 c->empty = 0;
651 c->min = mul(a->min, b->min);
652 c->openmin = (a->openmin || b->openmin);
653 c->max = mul(a->max, b->max);
654 c->openmax = (a->openmax || b->openmax);
655 c->integer = (a->integer && b->integer);
656 }
657
658 /**
659 * snd_interval_div - refine the interval value with division
660 * @a: dividend
661 * @b: divisor
662 * @c: quotient
663 *
664 * c = a / b
665 *
666 * Returns non-zero if the value is changed, zero if not changed.
667 */
668 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
669 {
670 unsigned int r;
671 if (a->empty || b->empty) {
672 snd_interval_none(c);
673 return;
674 }
675 c->empty = 0;
676 c->min = div32(a->min, b->max, &r);
677 c->openmin = (r || a->openmin || b->openmax);
678 if (b->min > 0) {
679 c->max = div32(a->max, b->min, &r);
680 if (r) {
681 c->max++;
682 c->openmax = 1;
683 } else
684 c->openmax = (a->openmax || b->openmin);
685 } else {
686 c->max = UINT_MAX;
687 c->openmax = 0;
688 }
689 c->integer = 0;
690 }
691
692 /**
693 * snd_interval_muldivk - refine the interval value
694 * @a: dividend 1
695 * @b: dividend 2
696 * @k: divisor (as integer)
697 * @c: result
698 *
699 * c = a * b / k
700 *
701 * Returns non-zero if the value is changed, zero if not changed.
702 */
703 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
704 unsigned int k, struct snd_interval *c)
705 {
706 unsigned int r;
707 if (a->empty || b->empty) {
708 snd_interval_none(c);
709 return;
710 }
711 c->empty = 0;
712 c->min = muldiv32(a->min, b->min, k, &r);
713 c->openmin = (r || a->openmin || b->openmin);
714 c->max = muldiv32(a->max, b->max, k, &r);
715 if (r) {
716 c->max++;
717 c->openmax = 1;
718 } else
719 c->openmax = (a->openmax || b->openmax);
720 c->integer = 0;
721 }
722
723 /**
724 * snd_interval_mulkdiv - refine the interval value
725 * @a: dividend 1
726 * @k: dividend 2 (as integer)
727 * @b: divisor
728 * @c: result
729 *
730 * c = a * k / b
731 *
732 * Returns non-zero if the value is changed, zero if not changed.
733 */
734 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
735 const struct snd_interval *b, struct snd_interval *c)
736 {
737 unsigned int r;
738 if (a->empty || b->empty) {
739 snd_interval_none(c);
740 return;
741 }
742 c->empty = 0;
743 c->min = muldiv32(a->min, k, b->max, &r);
744 c->openmin = (r || a->openmin || b->openmax);
745 if (b->min > 0) {
746 c->max = muldiv32(a->max, k, b->min, &r);
747 if (r) {
748 c->max++;
749 c->openmax = 1;
750 } else
751 c->openmax = (a->openmax || b->openmin);
752 } else {
753 c->max = UINT_MAX;
754 c->openmax = 0;
755 }
756 c->integer = 0;
757 }
758
759 /* ---- */
760
761
762 /**
763 * snd_interval_ratnum - refine the interval value
764 * @i: interval to refine
765 * @rats_count: number of ratnum_t
766 * @rats: ratnum_t array
767 * @nump: pointer to store the resultant numerator
768 * @denp: pointer to store the resultant denominator
769 *
770 * Returns non-zero if the value is changed, zero if not changed.
771 */
772 int snd_interval_ratnum(struct snd_interval *i,
773 unsigned int rats_count, struct snd_ratnum *rats,
774 unsigned int *nump, unsigned int *denp)
775 {
776 unsigned int best_num, best_den;
777 int best_diff;
778 unsigned int k;
779 struct snd_interval t;
780 int err;
781 unsigned int result_num, result_den;
782 int result_diff;
783
784 best_num = best_den = best_diff = 0;
785 for (k = 0; k < rats_count; ++k) {
786 unsigned int num = rats[k].num;
787 unsigned int den;
788 unsigned int q = i->min;
789 int diff;
790 if (q == 0)
791 q = 1;
792 den = div_up(num, q);
793 if (den < rats[k].den_min)
794 continue;
795 if (den > rats[k].den_max)
796 den = rats[k].den_max;
797 else {
798 unsigned int r;
799 r = (den - rats[k].den_min) % rats[k].den_step;
800 if (r != 0)
801 den -= r;
802 }
803 diff = num - q * den;
804 if (diff < 0)
805 diff = -diff;
806 if (best_num == 0 ||
807 diff * best_den < best_diff * den) {
808 best_diff = diff;
809 best_den = den;
810 best_num = num;
811 }
812 }
813 if (best_den == 0) {
814 i->empty = 1;
815 return -EINVAL;
816 }
817 t.min = div_down(best_num, best_den);
818 t.openmin = !!(best_num % best_den);
819
820 result_num = best_num;
821 result_diff = best_diff;
822 result_den = best_den;
823 best_num = best_den = best_diff = 0;
824 for (k = 0; k < rats_count; ++k) {
825 unsigned int num = rats[k].num;
826 unsigned int den;
827 unsigned int q = i->max;
828 int diff;
829 if (q == 0) {
830 i->empty = 1;
831 return -EINVAL;
832 }
833 den = div_down(num, q);
834 if (den > rats[k].den_max)
835 continue;
836 if (den < rats[k].den_min)
837 den = rats[k].den_min;
838 else {
839 unsigned int r;
840 r = (den - rats[k].den_min) % rats[k].den_step;
841 if (r != 0)
842 den += rats[k].den_step - r;
843 }
844 diff = q * den - num;
845 if (diff < 0)
846 diff = -diff;
847 if (best_num == 0 ||
848 diff * best_den < best_diff * den) {
849 best_diff = diff;
850 best_den = den;
851 best_num = num;
852 }
853 }
854 if (best_den == 0) {
855 i->empty = 1;
856 return -EINVAL;
857 }
858 t.max = div_up(best_num, best_den);
859 t.openmax = !!(best_num % best_den);
860 t.integer = 0;
861 err = snd_interval_refine(i, &t);
862 if (err < 0)
863 return err;
864
865 if (snd_interval_single(i)) {
866 if (best_diff * result_den < result_diff * best_den) {
867 result_num = best_num;
868 result_den = best_den;
869 }
870 if (nump)
871 *nump = result_num;
872 if (denp)
873 *denp = result_den;
874 }
875 return err;
876 }
877
878 EXPORT_SYMBOL(snd_interval_ratnum);
879
880 /**
881 * snd_interval_ratden - refine the interval value
882 * @i: interval to refine
883 * @rats_count: number of struct ratden
884 * @rats: struct ratden array
885 * @nump: pointer to store the resultant numerator
886 * @denp: pointer to store the resultant denominator
887 *
888 * Returns non-zero if the value is changed, zero if not changed.
889 */
890 static int snd_interval_ratden(struct snd_interval *i,
891 unsigned int rats_count, struct snd_ratden *rats,
892 unsigned int *nump, unsigned int *denp)
893 {
894 unsigned int best_num, best_diff, best_den;
895 unsigned int k;
896 struct snd_interval t;
897 int err;
898
899 best_num = best_den = best_diff = 0;
900 for (k = 0; k < rats_count; ++k) {
901 unsigned int num;
902 unsigned int den = rats[k].den;
903 unsigned int q = i->min;
904 int diff;
905 num = mul(q, den);
906 if (num > rats[k].num_max)
907 continue;
908 if (num < rats[k].num_min)
909 num = rats[k].num_max;
910 else {
911 unsigned int r;
912 r = (num - rats[k].num_min) % rats[k].num_step;
913 if (r != 0)
914 num += rats[k].num_step - r;
915 }
916 diff = num - q * den;
917 if (best_num == 0 ||
918 diff * best_den < best_diff * den) {
919 best_diff = diff;
920 best_den = den;
921 best_num = num;
922 }
923 }
924 if (best_den == 0) {
925 i->empty = 1;
926 return -EINVAL;
927 }
928 t.min = div_down(best_num, best_den);
929 t.openmin = !!(best_num % best_den);
930
931 best_num = best_den = best_diff = 0;
932 for (k = 0; k < rats_count; ++k) {
933 unsigned int num;
934 unsigned int den = rats[k].den;
935 unsigned int q = i->max;
936 int diff;
937 num = mul(q, den);
938 if (num < rats[k].num_min)
939 continue;
940 if (num > rats[k].num_max)
941 num = rats[k].num_max;
942 else {
943 unsigned int r;
944 r = (num - rats[k].num_min) % rats[k].num_step;
945 if (r != 0)
946 num -= r;
947 }
948 diff = q * den - num;
949 if (best_num == 0 ||
950 diff * best_den < best_diff * den) {
951 best_diff = diff;
952 best_den = den;
953 best_num = num;
954 }
955 }
956 if (best_den == 0) {
957 i->empty = 1;
958 return -EINVAL;
959 }
960 t.max = div_up(best_num, best_den);
961 t.openmax = !!(best_num % best_den);
962 t.integer = 0;
963 err = snd_interval_refine(i, &t);
964 if (err < 0)
965 return err;
966
967 if (snd_interval_single(i)) {
968 if (nump)
969 *nump = best_num;
970 if (denp)
971 *denp = best_den;
972 }
973 return err;
974 }
975
976 /**
977 * snd_interval_list - refine the interval value from the list
978 * @i: the interval value to refine
979 * @count: the number of elements in the list
980 * @list: the value list
981 * @mask: the bit-mask to evaluate
982 *
983 * Refines the interval value from the list.
984 * When mask is non-zero, only the elements corresponding to bit 1 are
985 * evaluated.
986 *
987 * Returns non-zero if the value is changed, zero if not changed.
988 */
989 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
990 {
991 unsigned int k;
992 struct snd_interval list_range;
993
994 if (!count) {
995 i->empty = 1;
996 return -EINVAL;
997 }
998 snd_interval_any(&list_range);
999 list_range.min = UINT_MAX;
1000 list_range.max = 0;
1001 for (k = 0; k < count; k++) {
1002 if (mask && !(mask & (1 << k)))
1003 continue;
1004 if (!snd_interval_test(i, list[k]))
1005 continue;
1006 list_range.min = min(list_range.min, list[k]);
1007 list_range.max = max(list_range.max, list[k]);
1008 }
1009 return snd_interval_refine(i, &list_range);
1010 }
1011
1012 EXPORT_SYMBOL(snd_interval_list);
1013
1014 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1015 {
1016 unsigned int n;
1017 int changed = 0;
1018 n = (i->min - min) % step;
1019 if (n != 0 || i->openmin) {
1020 i->min += step - n;
1021 changed = 1;
1022 }
1023 n = (i->max - min) % step;
1024 if (n != 0 || i->openmax) {
1025 i->max -= n;
1026 changed = 1;
1027 }
1028 if (snd_interval_checkempty(i)) {
1029 i->empty = 1;
1030 return -EINVAL;
1031 }
1032 return changed;
1033 }
1034
1035 /* Info constraints helpers */
1036
1037 /**
1038 * snd_pcm_hw_rule_add - add the hw-constraint rule
1039 * @runtime: the pcm runtime instance
1040 * @cond: condition bits
1041 * @var: the variable to evaluate
1042 * @func: the evaluation function
1043 * @private: the private data pointer passed to function
1044 * @dep: the dependent variables
1045 *
1046 * Returns zero if successful, or a negative error code on failure.
1047 */
1048 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1049 int var,
1050 snd_pcm_hw_rule_func_t func, void *private,
1051 int dep, ...)
1052 {
1053 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1054 struct snd_pcm_hw_rule *c;
1055 unsigned int k;
1056 va_list args;
1057 va_start(args, dep);
1058 if (constrs->rules_num >= constrs->rules_all) {
1059 struct snd_pcm_hw_rule *new;
1060 unsigned int new_rules = constrs->rules_all + 16;
1061 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1062 if (!new)
1063 return -ENOMEM;
1064 if (constrs->rules) {
1065 memcpy(new, constrs->rules,
1066 constrs->rules_num * sizeof(*c));
1067 kfree(constrs->rules);
1068 }
1069 constrs->rules = new;
1070 constrs->rules_all = new_rules;
1071 }
1072 c = &constrs->rules[constrs->rules_num];
1073 c->cond = cond;
1074 c->func = func;
1075 c->var = var;
1076 c->private = private;
1077 k = 0;
1078 while (1) {
1079 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1080 return -EINVAL;
1081 c->deps[k++] = dep;
1082 if (dep < 0)
1083 break;
1084 dep = va_arg(args, int);
1085 }
1086 constrs->rules_num++;
1087 va_end(args);
1088 return 0;
1089 }
1090
1091 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1092
1093 /**
1094 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1095 * @runtime: PCM runtime instance
1096 * @var: hw_params variable to apply the mask
1097 * @mask: the bitmap mask
1098 *
1099 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1100 */
1101 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1102 u_int32_t mask)
1103 {
1104 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1105 struct snd_mask *maskp = constrs_mask(constrs, var);
1106 *maskp->bits &= mask;
1107 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1108 if (*maskp->bits == 0)
1109 return -EINVAL;
1110 return 0;
1111 }
1112
1113 /**
1114 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1115 * @runtime: PCM runtime instance
1116 * @var: hw_params variable to apply the mask
1117 * @mask: the 64bit bitmap mask
1118 *
1119 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1120 */
1121 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1122 u_int64_t mask)
1123 {
1124 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1125 struct snd_mask *maskp = constrs_mask(constrs, var);
1126 maskp->bits[0] &= (u_int32_t)mask;
1127 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1128 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1129 if (! maskp->bits[0] && ! maskp->bits[1])
1130 return -EINVAL;
1131 return 0;
1132 }
1133
1134 /**
1135 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1136 * @runtime: PCM runtime instance
1137 * @var: hw_params variable to apply the integer constraint
1138 *
1139 * Apply the constraint of integer to an interval parameter.
1140 */
1141 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1142 {
1143 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1144 return snd_interval_setinteger(constrs_interval(constrs, var));
1145 }
1146
1147 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1148
1149 /**
1150 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1151 * @runtime: PCM runtime instance
1152 * @var: hw_params variable to apply the range
1153 * @min: the minimal value
1154 * @max: the maximal value
1155 *
1156 * Apply the min/max range constraint to an interval parameter.
1157 */
1158 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1159 unsigned int min, unsigned int max)
1160 {
1161 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1162 struct snd_interval t;
1163 t.min = min;
1164 t.max = max;
1165 t.openmin = t.openmax = 0;
1166 t.integer = 0;
1167 return snd_interval_refine(constrs_interval(constrs, var), &t);
1168 }
1169
1170 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1171
1172 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1173 struct snd_pcm_hw_rule *rule)
1174 {
1175 struct snd_pcm_hw_constraint_list *list = rule->private;
1176 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1177 }
1178
1179
1180 /**
1181 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1182 * @runtime: PCM runtime instance
1183 * @cond: condition bits
1184 * @var: hw_params variable to apply the list constraint
1185 * @l: list
1186 *
1187 * Apply the list of constraints to an interval parameter.
1188 */
1189 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1190 unsigned int cond,
1191 snd_pcm_hw_param_t var,
1192 struct snd_pcm_hw_constraint_list *l)
1193 {
1194 return snd_pcm_hw_rule_add(runtime, cond, var,
1195 snd_pcm_hw_rule_list, l,
1196 var, -1);
1197 }
1198
1199 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1200
1201 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1202 struct snd_pcm_hw_rule *rule)
1203 {
1204 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1205 unsigned int num = 0, den = 0;
1206 int err;
1207 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1208 r->nrats, r->rats, &num, &den);
1209 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1210 params->rate_num = num;
1211 params->rate_den = den;
1212 }
1213 return err;
1214 }
1215
1216 /**
1217 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1218 * @runtime: PCM runtime instance
1219 * @cond: condition bits
1220 * @var: hw_params variable to apply the ratnums constraint
1221 * @r: struct snd_ratnums constriants
1222 */
1223 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1224 unsigned int cond,
1225 snd_pcm_hw_param_t var,
1226 struct snd_pcm_hw_constraint_ratnums *r)
1227 {
1228 return snd_pcm_hw_rule_add(runtime, cond, var,
1229 snd_pcm_hw_rule_ratnums, r,
1230 var, -1);
1231 }
1232
1233 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1234
1235 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1236 struct snd_pcm_hw_rule *rule)
1237 {
1238 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1239 unsigned int num = 0, den = 0;
1240 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1241 r->nrats, r->rats, &num, &den);
1242 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1243 params->rate_num = num;
1244 params->rate_den = den;
1245 }
1246 return err;
1247 }
1248
1249 /**
1250 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1251 * @runtime: PCM runtime instance
1252 * @cond: condition bits
1253 * @var: hw_params variable to apply the ratdens constraint
1254 * @r: struct snd_ratdens constriants
1255 */
1256 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1257 unsigned int cond,
1258 snd_pcm_hw_param_t var,
1259 struct snd_pcm_hw_constraint_ratdens *r)
1260 {
1261 return snd_pcm_hw_rule_add(runtime, cond, var,
1262 snd_pcm_hw_rule_ratdens, r,
1263 var, -1);
1264 }
1265
1266 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1267
1268 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1269 struct snd_pcm_hw_rule *rule)
1270 {
1271 unsigned int l = (unsigned long) rule->private;
1272 int width = l & 0xffff;
1273 unsigned int msbits = l >> 16;
1274 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1275 if (snd_interval_single(i) && snd_interval_value(i) == width)
1276 params->msbits = msbits;
1277 return 0;
1278 }
1279
1280 /**
1281 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1282 * @runtime: PCM runtime instance
1283 * @cond: condition bits
1284 * @width: sample bits width
1285 * @msbits: msbits width
1286 */
1287 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1288 unsigned int cond,
1289 unsigned int width,
1290 unsigned int msbits)
1291 {
1292 unsigned long l = (msbits << 16) | width;
1293 return snd_pcm_hw_rule_add(runtime, cond, -1,
1294 snd_pcm_hw_rule_msbits,
1295 (void*) l,
1296 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1297 }
1298
1299 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1300
1301 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1302 struct snd_pcm_hw_rule *rule)
1303 {
1304 unsigned long step = (unsigned long) rule->private;
1305 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1306 }
1307
1308 /**
1309 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1310 * @runtime: PCM runtime instance
1311 * @cond: condition bits
1312 * @var: hw_params variable to apply the step constraint
1313 * @step: step size
1314 */
1315 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1316 unsigned int cond,
1317 snd_pcm_hw_param_t var,
1318 unsigned long step)
1319 {
1320 return snd_pcm_hw_rule_add(runtime, cond, var,
1321 snd_pcm_hw_rule_step, (void *) step,
1322 var, -1);
1323 }
1324
1325 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1326
1327 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1328 {
1329 static unsigned int pow2_sizes[] = {
1330 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1331 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1332 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1333 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1334 };
1335 return snd_interval_list(hw_param_interval(params, rule->var),
1336 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1337 }
1338
1339 /**
1340 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1341 * @runtime: PCM runtime instance
1342 * @cond: condition bits
1343 * @var: hw_params variable to apply the power-of-2 constraint
1344 */
1345 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1346 unsigned int cond,
1347 snd_pcm_hw_param_t var)
1348 {
1349 return snd_pcm_hw_rule_add(runtime, cond, var,
1350 snd_pcm_hw_rule_pow2, NULL,
1351 var, -1);
1352 }
1353
1354 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1355
1356 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1357 snd_pcm_hw_param_t var)
1358 {
1359 if (hw_is_mask(var)) {
1360 snd_mask_any(hw_param_mask(params, var));
1361 params->cmask |= 1 << var;
1362 params->rmask |= 1 << var;
1363 return;
1364 }
1365 if (hw_is_interval(var)) {
1366 snd_interval_any(hw_param_interval(params, var));
1367 params->cmask |= 1 << var;
1368 params->rmask |= 1 << var;
1369 return;
1370 }
1371 snd_BUG();
1372 }
1373
1374 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1375 {
1376 unsigned int k;
1377 memset(params, 0, sizeof(*params));
1378 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1379 _snd_pcm_hw_param_any(params, k);
1380 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1381 _snd_pcm_hw_param_any(params, k);
1382 params->info = ~0U;
1383 }
1384
1385 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1386
1387 /**
1388 * snd_pcm_hw_param_value - return @params field @var value
1389 * @params: the hw_params instance
1390 * @var: parameter to retrieve
1391 * @dir: pointer to the direction (-1,0,1) or %NULL
1392 *
1393 * Return the value for field @var if it's fixed in configuration space
1394 * defined by @params. Return -%EINVAL otherwise.
1395 */
1396 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1397 snd_pcm_hw_param_t var, int *dir)
1398 {
1399 if (hw_is_mask(var)) {
1400 const struct snd_mask *mask = hw_param_mask_c(params, var);
1401 if (!snd_mask_single(mask))
1402 return -EINVAL;
1403 if (dir)
1404 *dir = 0;
1405 return snd_mask_value(mask);
1406 }
1407 if (hw_is_interval(var)) {
1408 const struct snd_interval *i = hw_param_interval_c(params, var);
1409 if (!snd_interval_single(i))
1410 return -EINVAL;
1411 if (dir)
1412 *dir = i->openmin;
1413 return snd_interval_value(i);
1414 }
1415 return -EINVAL;
1416 }
1417
1418 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1419
1420 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1421 snd_pcm_hw_param_t var)
1422 {
1423 if (hw_is_mask(var)) {
1424 snd_mask_none(hw_param_mask(params, var));
1425 params->cmask |= 1 << var;
1426 params->rmask |= 1 << var;
1427 } else if (hw_is_interval(var)) {
1428 snd_interval_none(hw_param_interval(params, var));
1429 params->cmask |= 1 << var;
1430 params->rmask |= 1 << var;
1431 } else {
1432 snd_BUG();
1433 }
1434 }
1435
1436 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1437
1438 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1439 snd_pcm_hw_param_t var)
1440 {
1441 int changed;
1442 if (hw_is_mask(var))
1443 changed = snd_mask_refine_first(hw_param_mask(params, var));
1444 else if (hw_is_interval(var))
1445 changed = snd_interval_refine_first(hw_param_interval(params, var));
1446 else
1447 return -EINVAL;
1448 if (changed) {
1449 params->cmask |= 1 << var;
1450 params->rmask |= 1 << var;
1451 }
1452 return changed;
1453 }
1454
1455
1456 /**
1457 * snd_pcm_hw_param_first - refine config space and return minimum value
1458 * @pcm: PCM instance
1459 * @params: the hw_params instance
1460 * @var: parameter to retrieve
1461 * @dir: pointer to the direction (-1,0,1) or %NULL
1462 *
1463 * Inside configuration space defined by @params remove from @var all
1464 * values > minimum. Reduce configuration space accordingly.
1465 * Return the minimum.
1466 */
1467 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1468 struct snd_pcm_hw_params *params,
1469 snd_pcm_hw_param_t var, int *dir)
1470 {
1471 int changed = _snd_pcm_hw_param_first(params, var);
1472 if (changed < 0)
1473 return changed;
1474 if (params->rmask) {
1475 int err = snd_pcm_hw_refine(pcm, params);
1476 if (snd_BUG_ON(err < 0))
1477 return err;
1478 }
1479 return snd_pcm_hw_param_value(params, var, dir);
1480 }
1481
1482 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1483
1484 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1485 snd_pcm_hw_param_t var)
1486 {
1487 int changed;
1488 if (hw_is_mask(var))
1489 changed = snd_mask_refine_last(hw_param_mask(params, var));
1490 else if (hw_is_interval(var))
1491 changed = snd_interval_refine_last(hw_param_interval(params, var));
1492 else
1493 return -EINVAL;
1494 if (changed) {
1495 params->cmask |= 1 << var;
1496 params->rmask |= 1 << var;
1497 }
1498 return changed;
1499 }
1500
1501
1502 /**
1503 * snd_pcm_hw_param_last - refine config space and return maximum value
1504 * @pcm: PCM instance
1505 * @params: the hw_params instance
1506 * @var: parameter to retrieve
1507 * @dir: pointer to the direction (-1,0,1) or %NULL
1508 *
1509 * Inside configuration space defined by @params remove from @var all
1510 * values < maximum. Reduce configuration space accordingly.
1511 * Return the maximum.
1512 */
1513 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1514 struct snd_pcm_hw_params *params,
1515 snd_pcm_hw_param_t var, int *dir)
1516 {
1517 int changed = _snd_pcm_hw_param_last(params, var);
1518 if (changed < 0)
1519 return changed;
1520 if (params->rmask) {
1521 int err = snd_pcm_hw_refine(pcm, params);
1522 if (snd_BUG_ON(err < 0))
1523 return err;
1524 }
1525 return snd_pcm_hw_param_value(params, var, dir);
1526 }
1527
1528 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1529
1530 /**
1531 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1532 * @pcm: PCM instance
1533 * @params: the hw_params instance
1534 *
1535 * Choose one configuration from configuration space defined by @params.
1536 * The configuration chosen is that obtained fixing in this order:
1537 * first access, first format, first subformat, min channels,
1538 * min rate, min period time, max buffer size, min tick time
1539 */
1540 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1541 struct snd_pcm_hw_params *params)
1542 {
1543 static int vars[] = {
1544 SNDRV_PCM_HW_PARAM_ACCESS,
1545 SNDRV_PCM_HW_PARAM_FORMAT,
1546 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1547 SNDRV_PCM_HW_PARAM_CHANNELS,
1548 SNDRV_PCM_HW_PARAM_RATE,
1549 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1550 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1551 SNDRV_PCM_HW_PARAM_TICK_TIME,
1552 -1
1553 };
1554 int err, *v;
1555
1556 for (v = vars; *v != -1; v++) {
1557 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1558 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1559 else
1560 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1561 if (snd_BUG_ON(err < 0))
1562 return err;
1563 }
1564 return 0;
1565 }
1566
1567 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1568 void *arg)
1569 {
1570 struct snd_pcm_runtime *runtime = substream->runtime;
1571 unsigned long flags;
1572 snd_pcm_stream_lock_irqsave(substream, flags);
1573 if (snd_pcm_running(substream) &&
1574 snd_pcm_update_hw_ptr(substream) >= 0)
1575 runtime->status->hw_ptr %= runtime->buffer_size;
1576 else
1577 runtime->status->hw_ptr = 0;
1578 snd_pcm_stream_unlock_irqrestore(substream, flags);
1579 return 0;
1580 }
1581
1582 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1583 void *arg)
1584 {
1585 struct snd_pcm_channel_info *info = arg;
1586 struct snd_pcm_runtime *runtime = substream->runtime;
1587 int width;
1588 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1589 info->offset = -1;
1590 return 0;
1591 }
1592 width = snd_pcm_format_physical_width(runtime->format);
1593 if (width < 0)
1594 return width;
1595 info->offset = 0;
1596 switch (runtime->access) {
1597 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1598 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1599 info->first = info->channel * width;
1600 info->step = runtime->channels * width;
1601 break;
1602 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1603 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1604 {
1605 size_t size = runtime->dma_bytes / runtime->channels;
1606 info->first = info->channel * size * 8;
1607 info->step = width;
1608 break;
1609 }
1610 default:
1611 snd_BUG();
1612 break;
1613 }
1614 return 0;
1615 }
1616
1617 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1618 void *arg)
1619 {
1620 struct snd_pcm_hw_params *params = arg;
1621 snd_pcm_format_t format;
1622 int channels, width;
1623
1624 params->fifo_size = substream->runtime->hw.fifo_size;
1625 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1626 format = params_format(params);
1627 channels = params_channels(params);
1628 width = snd_pcm_format_physical_width(format);
1629 params->fifo_size /= width * channels;
1630 }
1631 return 0;
1632 }
1633
1634 /**
1635 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1636 * @substream: the pcm substream instance
1637 * @cmd: ioctl command
1638 * @arg: ioctl argument
1639 *
1640 * Processes the generic ioctl commands for PCM.
1641 * Can be passed as the ioctl callback for PCM ops.
1642 *
1643 * Returns zero if successful, or a negative error code on failure.
1644 */
1645 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1646 unsigned int cmd, void *arg)
1647 {
1648 switch (cmd) {
1649 case SNDRV_PCM_IOCTL1_INFO:
1650 return 0;
1651 case SNDRV_PCM_IOCTL1_RESET:
1652 return snd_pcm_lib_ioctl_reset(substream, arg);
1653 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1654 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1655 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1656 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1657 }
1658 return -ENXIO;
1659 }
1660
1661 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1662
1663 /**
1664 * snd_pcm_period_elapsed - update the pcm status for the next period
1665 * @substream: the pcm substream instance
1666 *
1667 * This function is called from the interrupt handler when the
1668 * PCM has processed the period size. It will update the current
1669 * pointer, wake up sleepers, etc.
1670 *
1671 * Even if more than one periods have elapsed since the last call, you
1672 * have to call this only once.
1673 */
1674 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1675 {
1676 struct snd_pcm_runtime *runtime;
1677 unsigned long flags;
1678
1679 if (PCM_RUNTIME_CHECK(substream))
1680 return;
1681 runtime = substream->runtime;
1682
1683 if (runtime->transfer_ack_begin)
1684 runtime->transfer_ack_begin(substream);
1685
1686 snd_pcm_stream_lock_irqsave(substream, flags);
1687 if (!snd_pcm_running(substream) ||
1688 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1689 goto _end;
1690
1691 if (substream->timer_running)
1692 snd_timer_interrupt(substream->timer, 1);
1693 _end:
1694 snd_pcm_stream_unlock_irqrestore(substream, flags);
1695 if (runtime->transfer_ack_end)
1696 runtime->transfer_ack_end(substream);
1697 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1698 }
1699
1700 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1701
1702 /*
1703 * Wait until avail_min data becomes available
1704 * Returns a negative error code if any error occurs during operation.
1705 * The available space is stored on availp. When err = 0 and avail = 0
1706 * on the capture stream, it indicates the stream is in DRAINING state.
1707 */
1708 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1709 snd_pcm_uframes_t *availp)
1710 {
1711 struct snd_pcm_runtime *runtime = substream->runtime;
1712 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1713 wait_queue_t wait;
1714 int err = 0;
1715 snd_pcm_uframes_t avail = 0;
1716 long tout;
1717
1718 init_waitqueue_entry(&wait, current);
1719 add_wait_queue(&runtime->tsleep, &wait);
1720 for (;;) {
1721 if (signal_pending(current)) {
1722 err = -ERESTARTSYS;
1723 break;
1724 }
1725 set_current_state(TASK_INTERRUPTIBLE);
1726 snd_pcm_stream_unlock_irq(substream);
1727 tout = schedule_timeout(msecs_to_jiffies(10000));
1728 snd_pcm_stream_lock_irq(substream);
1729 switch (runtime->status->state) {
1730 case SNDRV_PCM_STATE_SUSPENDED:
1731 err = -ESTRPIPE;
1732 goto _endloop;
1733 case SNDRV_PCM_STATE_XRUN:
1734 err = -EPIPE;
1735 goto _endloop;
1736 case SNDRV_PCM_STATE_DRAINING:
1737 if (is_playback)
1738 err = -EPIPE;
1739 else
1740 avail = 0; /* indicate draining */
1741 goto _endloop;
1742 case SNDRV_PCM_STATE_OPEN:
1743 case SNDRV_PCM_STATE_SETUP:
1744 case SNDRV_PCM_STATE_DISCONNECTED:
1745 err = -EBADFD;
1746 goto _endloop;
1747 }
1748 if (!tout) {
1749 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1750 is_playback ? "playback" : "capture");
1751 err = -EIO;
1752 break;
1753 }
1754 if (is_playback)
1755 avail = snd_pcm_playback_avail(runtime);
1756 else
1757 avail = snd_pcm_capture_avail(runtime);
1758 if (avail >= runtime->control->avail_min)
1759 break;
1760 }
1761 _endloop:
1762 remove_wait_queue(&runtime->tsleep, &wait);
1763 *availp = avail;
1764 return err;
1765 }
1766
1767 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1768 unsigned int hwoff,
1769 unsigned long data, unsigned int off,
1770 snd_pcm_uframes_t frames)
1771 {
1772 struct snd_pcm_runtime *runtime = substream->runtime;
1773 int err;
1774 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1775 if (substream->ops->copy) {
1776 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1777 return err;
1778 } else {
1779 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1780 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1781 return -EFAULT;
1782 }
1783 return 0;
1784 }
1785
1786 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1787 unsigned long data, unsigned int off,
1788 snd_pcm_uframes_t size);
1789
1790 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1791 unsigned long data,
1792 snd_pcm_uframes_t size,
1793 int nonblock,
1794 transfer_f transfer)
1795 {
1796 struct snd_pcm_runtime *runtime = substream->runtime;
1797 snd_pcm_uframes_t xfer = 0;
1798 snd_pcm_uframes_t offset = 0;
1799 int err = 0;
1800
1801 if (size == 0)
1802 return 0;
1803
1804 snd_pcm_stream_lock_irq(substream);
1805 switch (runtime->status->state) {
1806 case SNDRV_PCM_STATE_PREPARED:
1807 case SNDRV_PCM_STATE_RUNNING:
1808 case SNDRV_PCM_STATE_PAUSED:
1809 break;
1810 case SNDRV_PCM_STATE_XRUN:
1811 err = -EPIPE;
1812 goto _end_unlock;
1813 case SNDRV_PCM_STATE_SUSPENDED:
1814 err = -ESTRPIPE;
1815 goto _end_unlock;
1816 default:
1817 err = -EBADFD;
1818 goto _end_unlock;
1819 }
1820
1821 runtime->twake = 1;
1822 while (size > 0) {
1823 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1824 snd_pcm_uframes_t avail;
1825 snd_pcm_uframes_t cont;
1826 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1827 snd_pcm_update_hw_ptr(substream);
1828 avail = snd_pcm_playback_avail(runtime);
1829 if (!avail) {
1830 if (nonblock) {
1831 err = -EAGAIN;
1832 goto _end_unlock;
1833 }
1834 err = wait_for_avail_min(substream, &avail);
1835 if (err < 0)
1836 goto _end_unlock;
1837 }
1838 frames = size > avail ? avail : size;
1839 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1840 if (frames > cont)
1841 frames = cont;
1842 if (snd_BUG_ON(!frames)) {
1843 runtime->twake = 0;
1844 snd_pcm_stream_unlock_irq(substream);
1845 return -EINVAL;
1846 }
1847 appl_ptr = runtime->control->appl_ptr;
1848 appl_ofs = appl_ptr % runtime->buffer_size;
1849 snd_pcm_stream_unlock_irq(substream);
1850 err = transfer(substream, appl_ofs, data, offset, frames);
1851 snd_pcm_stream_lock_irq(substream);
1852 if (err < 0)
1853 goto _end_unlock;
1854 switch (runtime->status->state) {
1855 case SNDRV_PCM_STATE_XRUN:
1856 err = -EPIPE;
1857 goto _end_unlock;
1858 case SNDRV_PCM_STATE_SUSPENDED:
1859 err = -ESTRPIPE;
1860 goto _end_unlock;
1861 default:
1862 break;
1863 }
1864 appl_ptr += frames;
1865 if (appl_ptr >= runtime->boundary)
1866 appl_ptr -= runtime->boundary;
1867 runtime->control->appl_ptr = appl_ptr;
1868 if (substream->ops->ack)
1869 substream->ops->ack(substream);
1870
1871 offset += frames;
1872 size -= frames;
1873 xfer += frames;
1874 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1875 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1876 err = snd_pcm_start(substream);
1877 if (err < 0)
1878 goto _end_unlock;
1879 }
1880 }
1881 _end_unlock:
1882 runtime->twake = 0;
1883 if (xfer > 0 && err >= 0)
1884 snd_pcm_update_state(substream, runtime);
1885 snd_pcm_stream_unlock_irq(substream);
1886 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1887 }
1888
1889 /* sanity-check for read/write methods */
1890 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1891 {
1892 struct snd_pcm_runtime *runtime;
1893 if (PCM_RUNTIME_CHECK(substream))
1894 return -ENXIO;
1895 runtime = substream->runtime;
1896 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1897 return -EINVAL;
1898 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1899 return -EBADFD;
1900 return 0;
1901 }
1902
1903 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1904 {
1905 struct snd_pcm_runtime *runtime;
1906 int nonblock;
1907 int err;
1908
1909 err = pcm_sanity_check(substream);
1910 if (err < 0)
1911 return err;
1912 runtime = substream->runtime;
1913 nonblock = !!(substream->f_flags & O_NONBLOCK);
1914
1915 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1916 runtime->channels > 1)
1917 return -EINVAL;
1918 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1919 snd_pcm_lib_write_transfer);
1920 }
1921
1922 EXPORT_SYMBOL(snd_pcm_lib_write);
1923
1924 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1925 unsigned int hwoff,
1926 unsigned long data, unsigned int off,
1927 snd_pcm_uframes_t frames)
1928 {
1929 struct snd_pcm_runtime *runtime = substream->runtime;
1930 int err;
1931 void __user **bufs = (void __user **)data;
1932 int channels = runtime->channels;
1933 int c;
1934 if (substream->ops->copy) {
1935 if (snd_BUG_ON(!substream->ops->silence))
1936 return -EINVAL;
1937 for (c = 0; c < channels; ++c, ++bufs) {
1938 if (*bufs == NULL) {
1939 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1940 return err;
1941 } else {
1942 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1943 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1944 return err;
1945 }
1946 }
1947 } else {
1948 /* default transfer behaviour */
1949 size_t dma_csize = runtime->dma_bytes / channels;
1950 for (c = 0; c < channels; ++c, ++bufs) {
1951 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1952 if (*bufs == NULL) {
1953 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1954 } else {
1955 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1956 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1957 return -EFAULT;
1958 }
1959 }
1960 }
1961 return 0;
1962 }
1963
1964 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1965 void __user **bufs,
1966 snd_pcm_uframes_t frames)
1967 {
1968 struct snd_pcm_runtime *runtime;
1969 int nonblock;
1970 int err;
1971
1972 err = pcm_sanity_check(substream);
1973 if (err < 0)
1974 return err;
1975 runtime = substream->runtime;
1976 nonblock = !!(substream->f_flags & O_NONBLOCK);
1977
1978 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1979 return -EINVAL;
1980 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1981 nonblock, snd_pcm_lib_writev_transfer);
1982 }
1983
1984 EXPORT_SYMBOL(snd_pcm_lib_writev);
1985
1986 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
1987 unsigned int hwoff,
1988 unsigned long data, unsigned int off,
1989 snd_pcm_uframes_t frames)
1990 {
1991 struct snd_pcm_runtime *runtime = substream->runtime;
1992 int err;
1993 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1994 if (substream->ops->copy) {
1995 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1996 return err;
1997 } else {
1998 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1999 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2000 return -EFAULT;
2001 }
2002 return 0;
2003 }
2004
2005 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2006 unsigned long data,
2007 snd_pcm_uframes_t size,
2008 int nonblock,
2009 transfer_f transfer)
2010 {
2011 struct snd_pcm_runtime *runtime = substream->runtime;
2012 snd_pcm_uframes_t xfer = 0;
2013 snd_pcm_uframes_t offset = 0;
2014 int err = 0;
2015
2016 if (size == 0)
2017 return 0;
2018
2019 snd_pcm_stream_lock_irq(substream);
2020 switch (runtime->status->state) {
2021 case SNDRV_PCM_STATE_PREPARED:
2022 if (size >= runtime->start_threshold) {
2023 err = snd_pcm_start(substream);
2024 if (err < 0)
2025 goto _end_unlock;
2026 }
2027 break;
2028 case SNDRV_PCM_STATE_DRAINING:
2029 case SNDRV_PCM_STATE_RUNNING:
2030 case SNDRV_PCM_STATE_PAUSED:
2031 break;
2032 case SNDRV_PCM_STATE_XRUN:
2033 err = -EPIPE;
2034 goto _end_unlock;
2035 case SNDRV_PCM_STATE_SUSPENDED:
2036 err = -ESTRPIPE;
2037 goto _end_unlock;
2038 default:
2039 err = -EBADFD;
2040 goto _end_unlock;
2041 }
2042
2043 runtime->twake = 1;
2044 while (size > 0) {
2045 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2046 snd_pcm_uframes_t avail;
2047 snd_pcm_uframes_t cont;
2048 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2049 snd_pcm_update_hw_ptr(substream);
2050 avail = snd_pcm_capture_avail(runtime);
2051 if (!avail) {
2052 if (runtime->status->state ==
2053 SNDRV_PCM_STATE_DRAINING) {
2054 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2055 goto _end_unlock;
2056 }
2057 if (nonblock) {
2058 err = -EAGAIN;
2059 goto _end_unlock;
2060 }
2061 err = wait_for_avail_min(substream, &avail);
2062 if (err < 0)
2063 goto _end_unlock;
2064 if (!avail)
2065 continue; /* draining */
2066 }
2067 frames = size > avail ? avail : size;
2068 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2069 if (frames > cont)
2070 frames = cont;
2071 if (snd_BUG_ON(!frames)) {
2072 runtime->twake = 0;
2073 snd_pcm_stream_unlock_irq(substream);
2074 return -EINVAL;
2075 }
2076 appl_ptr = runtime->control->appl_ptr;
2077 appl_ofs = appl_ptr % runtime->buffer_size;
2078 snd_pcm_stream_unlock_irq(substream);
2079 err = transfer(substream, appl_ofs, data, offset, frames);
2080 snd_pcm_stream_lock_irq(substream);
2081 if (err < 0)
2082 goto _end_unlock;
2083 switch (runtime->status->state) {
2084 case SNDRV_PCM_STATE_XRUN:
2085 err = -EPIPE;
2086 goto _end_unlock;
2087 case SNDRV_PCM_STATE_SUSPENDED:
2088 err = -ESTRPIPE;
2089 goto _end_unlock;
2090 default:
2091 break;
2092 }
2093 appl_ptr += frames;
2094 if (appl_ptr >= runtime->boundary)
2095 appl_ptr -= runtime->boundary;
2096 runtime->control->appl_ptr = appl_ptr;
2097 if (substream->ops->ack)
2098 substream->ops->ack(substream);
2099
2100 offset += frames;
2101 size -= frames;
2102 xfer += frames;
2103 }
2104 _end_unlock:
2105 runtime->twake = 0;
2106 if (xfer > 0 && err >= 0)
2107 snd_pcm_update_state(substream, runtime);
2108 snd_pcm_stream_unlock_irq(substream);
2109 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2110 }
2111
2112 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2113 {
2114 struct snd_pcm_runtime *runtime;
2115 int nonblock;
2116 int err;
2117
2118 err = pcm_sanity_check(substream);
2119 if (err < 0)
2120 return err;
2121 runtime = substream->runtime;
2122 nonblock = !!(substream->f_flags & O_NONBLOCK);
2123 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2124 return -EINVAL;
2125 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2126 }
2127
2128 EXPORT_SYMBOL(snd_pcm_lib_read);
2129
2130 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2131 unsigned int hwoff,
2132 unsigned long data, unsigned int off,
2133 snd_pcm_uframes_t frames)
2134 {
2135 struct snd_pcm_runtime *runtime = substream->runtime;
2136 int err;
2137 void __user **bufs = (void __user **)data;
2138 int channels = runtime->channels;
2139 int c;
2140 if (substream->ops->copy) {
2141 for (c = 0; c < channels; ++c, ++bufs) {
2142 char __user *buf;
2143 if (*bufs == NULL)
2144 continue;
2145 buf = *bufs + samples_to_bytes(runtime, off);
2146 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2147 return err;
2148 }
2149 } else {
2150 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2151 for (c = 0; c < channels; ++c, ++bufs) {
2152 char *hwbuf;
2153 char __user *buf;
2154 if (*bufs == NULL)
2155 continue;
2156
2157 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2158 buf = *bufs + samples_to_bytes(runtime, off);
2159 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2160 return -EFAULT;
2161 }
2162 }
2163 return 0;
2164 }
2165
2166 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2167 void __user **bufs,
2168 snd_pcm_uframes_t frames)
2169 {
2170 struct snd_pcm_runtime *runtime;
2171 int nonblock;
2172 int err;
2173
2174 err = pcm_sanity_check(substream);
2175 if (err < 0)
2176 return err;
2177 runtime = substream->runtime;
2178 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2179 return -EBADFD;
2180
2181 nonblock = !!(substream->f_flags & O_NONBLOCK);
2182 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2183 return -EINVAL;
2184 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2185 }
2186
2187 EXPORT_SYMBOL(snd_pcm_lib_readv);
This page took 0.074588 seconds and 4 git commands to generate.