ALSA: sis7019: Simplify dependencies
[deliverable/linux.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 /*
36 * fill ring buffer with silence
37 * runtime->silence_start: starting pointer to silence area
38 * runtime->silence_filled: size filled with silence
39 * runtime->silence_threshold: threshold from application
40 * runtime->silence_size: maximal size from application
41 *
42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43 */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 struct snd_pcm_runtime *runtime = substream->runtime;
47 snd_pcm_uframes_t frames, ofs, transfer;
48
49 if (runtime->silence_size < runtime->boundary) {
50 snd_pcm_sframes_t noise_dist, n;
51 if (runtime->silence_start != runtime->control->appl_ptr) {
52 n = runtime->control->appl_ptr - runtime->silence_start;
53 if (n < 0)
54 n += runtime->boundary;
55 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 runtime->silence_filled -= n;
57 else
58 runtime->silence_filled = 0;
59 runtime->silence_start = runtime->control->appl_ptr;
60 }
61 if (runtime->silence_filled >= runtime->buffer_size)
62 return;
63 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 return;
66 frames = runtime->silence_threshold - noise_dist;
67 if (frames > runtime->silence_size)
68 frames = runtime->silence_size;
69 } else {
70 if (new_hw_ptr == ULONG_MAX) { /* initialization */
71 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 if (avail > runtime->buffer_size)
73 avail = runtime->buffer_size;
74 runtime->silence_filled = avail > 0 ? avail : 0;
75 runtime->silence_start = (runtime->status->hw_ptr +
76 runtime->silence_filled) %
77 runtime->boundary;
78 } else {
79 ofs = runtime->status->hw_ptr;
80 frames = new_hw_ptr - ofs;
81 if ((snd_pcm_sframes_t)frames < 0)
82 frames += runtime->boundary;
83 runtime->silence_filled -= frames;
84 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 runtime->silence_filled = 0;
86 runtime->silence_start = new_hw_ptr;
87 } else {
88 runtime->silence_start = ofs;
89 }
90 }
91 frames = runtime->buffer_size - runtime->silence_filled;
92 }
93 if (snd_BUG_ON(frames > runtime->buffer_size))
94 return;
95 if (frames == 0)
96 return;
97 ofs = runtime->silence_start % runtime->buffer_size;
98 while (frames > 0) {
99 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 if (substream->ops->silence) {
103 int err;
104 err = substream->ops->silence(substream, -1, ofs, transfer);
105 snd_BUG_ON(err < 0);
106 } else {
107 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 }
110 } else {
111 unsigned int c;
112 unsigned int channels = runtime->channels;
113 if (substream->ops->silence) {
114 for (c = 0; c < channels; ++c) {
115 int err;
116 err = substream->ops->silence(substream, c, ofs, transfer);
117 snd_BUG_ON(err < 0);
118 }
119 } else {
120 size_t dma_csize = runtime->dma_bytes / channels;
121 for (c = 0; c < channels; ++c) {
122 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 }
125 }
126 }
127 runtime->silence_filled += transfer;
128 frames -= transfer;
129 ofs = 0;
130 }
131 }
132
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 char *name, size_t len)
136 {
137 snprintf(name, len, "pcmC%dD%d%c:%d",
138 substream->pcm->card->number,
139 substream->pcm->device,
140 substream->stream ? 'c' : 'p',
141 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145
146 #define XRUN_DEBUG_BASIC (1<<0)
147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask) 0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
164 dump_stack(); \
165 } while (0)
166
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 struct snd_pcm_runtime *runtime = substream->runtime;
170
171 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 char name[16];
176 snd_pcm_debug_name(substream, name, sizeof(name));
177 pcm_warn(substream->pcm, "XRUN: %s\n", name);
178 dump_stack_on_xrun(substream);
179 }
180 }
181
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...) \
184 do { \
185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
186 xrun_log_show(substream); \
187 pr_err_ratelimited("ALSA: PCM: " fmt, ##args); \
188 dump_stack_on_xrun(substream); \
189 } \
190 } while (0)
191
192 #define XRUN_LOG_CNT 10
193
194 struct hwptr_log_entry {
195 unsigned int in_interrupt;
196 unsigned long jiffies;
197 snd_pcm_uframes_t pos;
198 snd_pcm_uframes_t period_size;
199 snd_pcm_uframes_t buffer_size;
200 snd_pcm_uframes_t old_hw_ptr;
201 snd_pcm_uframes_t hw_ptr_base;
202 };
203
204 struct snd_pcm_hwptr_log {
205 unsigned int idx;
206 unsigned int hit: 1;
207 struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209
210 static void xrun_log(struct snd_pcm_substream *substream,
211 snd_pcm_uframes_t pos, int in_interrupt)
212 {
213 struct snd_pcm_runtime *runtime = substream->runtime;
214 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 struct hwptr_log_entry *entry;
216
217 if (log == NULL) {
218 log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 if (log == NULL)
220 return;
221 runtime->hwptr_log = log;
222 } else {
223 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 return;
225 }
226 entry = &log->entries[log->idx];
227 entry->in_interrupt = in_interrupt;
228 entry->jiffies = jiffies;
229 entry->pos = pos;
230 entry->period_size = runtime->period_size;
231 entry->buffer_size = runtime->buffer_size;
232 entry->old_hw_ptr = runtime->status->hw_ptr;
233 entry->hw_ptr_base = runtime->hw_ptr_base;
234 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236
237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 struct hwptr_log_entry *entry;
241 char name[16];
242 unsigned int idx;
243 int cnt;
244
245 if (log == NULL)
246 return;
247 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 return;
249 snd_pcm_debug_name(substream, name, sizeof(name));
250 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 entry = &log->entries[idx];
252 if (entry->period_size == 0)
253 break;
254 pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 "hwptr=%ld/%ld\n",
256 name, entry->in_interrupt ? "[Q] " : "",
257 entry->jiffies,
258 (unsigned long)entry->pos,
259 (unsigned long)entry->period_size,
260 (unsigned long)entry->buffer_size,
261 (unsigned long)entry->old_hw_ptr,
262 (unsigned long)entry->hw_ptr_base);
263 idx++;
264 idx %= XRUN_LOG_CNT;
265 }
266 log->hit = 1;
267 }
268
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
273 #define xrun_log_show(substream) do { } while (0)
274
275 #endif
276
277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 struct snd_pcm_runtime *runtime)
279 {
280 snd_pcm_uframes_t avail;
281
282 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 avail = snd_pcm_playback_avail(runtime);
284 else
285 avail = snd_pcm_capture_avail(runtime);
286 if (avail > runtime->avail_max)
287 runtime->avail_max = avail;
288 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 if (avail >= runtime->buffer_size) {
290 snd_pcm_drain_done(substream);
291 return -EPIPE;
292 }
293 } else {
294 if (avail >= runtime->stop_threshold) {
295 xrun(substream);
296 return -EPIPE;
297 }
298 }
299 if (runtime->twake) {
300 if (avail >= runtime->twake)
301 wake_up(&runtime->tsleep);
302 } else if (avail >= runtime->control->avail_min)
303 wake_up(&runtime->sleep);
304 return 0;
305 }
306
307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 unsigned int in_interrupt)
309 {
310 struct snd_pcm_runtime *runtime = substream->runtime;
311 snd_pcm_uframes_t pos;
312 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 snd_pcm_sframes_t hdelta, delta;
314 unsigned long jdelta;
315 unsigned long curr_jiffies;
316 struct timespec curr_tstamp;
317 struct timespec audio_tstamp;
318 int crossed_boundary = 0;
319
320 old_hw_ptr = runtime->status->hw_ptr;
321
322 /*
323 * group pointer, time and jiffies reads to allow for more
324 * accurate correlations/corrections.
325 * The values are stored at the end of this routine after
326 * corrections for hw_ptr position
327 */
328 pos = substream->ops->pointer(substream);
329 curr_jiffies = jiffies;
330 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
331 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
332
333 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
334 (substream->ops->wall_clock))
335 substream->ops->wall_clock(substream, &audio_tstamp);
336 }
337
338 if (pos == SNDRV_PCM_POS_XRUN) {
339 xrun(substream);
340 return -EPIPE;
341 }
342 if (pos >= runtime->buffer_size) {
343 if (printk_ratelimit()) {
344 char name[16];
345 snd_pcm_debug_name(substream, name, sizeof(name));
346 xrun_log_show(substream);
347 pcm_err(substream->pcm,
348 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
349 name, pos, runtime->buffer_size,
350 runtime->period_size);
351 }
352 pos = 0;
353 }
354 pos -= pos % runtime->min_align;
355 if (xrun_debug(substream, XRUN_DEBUG_LOG))
356 xrun_log(substream, pos, in_interrupt);
357 hw_base = runtime->hw_ptr_base;
358 new_hw_ptr = hw_base + pos;
359 if (in_interrupt) {
360 /* we know that one period was processed */
361 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
362 delta = runtime->hw_ptr_interrupt + runtime->period_size;
363 if (delta > new_hw_ptr) {
364 /* check for double acknowledged interrupts */
365 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
367 hw_base += runtime->buffer_size;
368 if (hw_base >= runtime->boundary) {
369 hw_base = 0;
370 crossed_boundary++;
371 }
372 new_hw_ptr = hw_base + pos;
373 goto __delta;
374 }
375 }
376 }
377 /* new_hw_ptr might be lower than old_hw_ptr in case when */
378 /* pointer crosses the end of the ring buffer */
379 if (new_hw_ptr < old_hw_ptr) {
380 hw_base += runtime->buffer_size;
381 if (hw_base >= runtime->boundary) {
382 hw_base = 0;
383 crossed_boundary++;
384 }
385 new_hw_ptr = hw_base + pos;
386 }
387 __delta:
388 delta = new_hw_ptr - old_hw_ptr;
389 if (delta < 0)
390 delta += runtime->boundary;
391 if (xrun_debug(substream, in_interrupt ?
392 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
393 char name[16];
394 snd_pcm_debug_name(substream, name, sizeof(name));
395 pcm_dbg(substream->pcm,
396 "%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
397 in_interrupt ? "period" : "hwptr",
398 name,
399 (unsigned int)pos,
400 (unsigned int)runtime->period_size,
401 (unsigned int)runtime->buffer_size,
402 (unsigned long)delta,
403 (unsigned long)old_hw_ptr,
404 (unsigned long)new_hw_ptr,
405 (unsigned long)runtime->hw_ptr_base);
406 }
407
408 if (runtime->no_period_wakeup) {
409 snd_pcm_sframes_t xrun_threshold;
410 /*
411 * Without regular period interrupts, we have to check
412 * the elapsed time to detect xruns.
413 */
414 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
415 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
416 goto no_delta_check;
417 hdelta = jdelta - delta * HZ / runtime->rate;
418 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
419 while (hdelta > xrun_threshold) {
420 delta += runtime->buffer_size;
421 hw_base += runtime->buffer_size;
422 if (hw_base >= runtime->boundary) {
423 hw_base = 0;
424 crossed_boundary++;
425 }
426 new_hw_ptr = hw_base + pos;
427 hdelta -= runtime->hw_ptr_buffer_jiffies;
428 }
429 goto no_delta_check;
430 }
431
432 /* something must be really wrong */
433 if (delta >= runtime->buffer_size + runtime->period_size) {
434 hw_ptr_error(substream,
435 "Unexpected hw_pointer value %s"
436 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
437 "old_hw_ptr=%ld)\n",
438 in_interrupt ? "[Q] " : "[P]",
439 substream->stream, (long)pos,
440 (long)new_hw_ptr, (long)old_hw_ptr);
441 return 0;
442 }
443
444 /* Do jiffies check only in xrun_debug mode */
445 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
446 goto no_jiffies_check;
447
448 /* Skip the jiffies check for hardwares with BATCH flag.
449 * Such hardware usually just increases the position at each IRQ,
450 * thus it can't give any strange position.
451 */
452 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
453 goto no_jiffies_check;
454 hdelta = delta;
455 if (hdelta < runtime->delay)
456 goto no_jiffies_check;
457 hdelta -= runtime->delay;
458 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
459 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
460 delta = jdelta /
461 (((runtime->period_size * HZ) / runtime->rate)
462 + HZ/100);
463 /* move new_hw_ptr according jiffies not pos variable */
464 new_hw_ptr = old_hw_ptr;
465 hw_base = delta;
466 /* use loop to avoid checks for delta overflows */
467 /* the delta value is small or zero in most cases */
468 while (delta > 0) {
469 new_hw_ptr += runtime->period_size;
470 if (new_hw_ptr >= runtime->boundary) {
471 new_hw_ptr -= runtime->boundary;
472 crossed_boundary--;
473 }
474 delta--;
475 }
476 /* align hw_base to buffer_size */
477 hw_ptr_error(substream,
478 "hw_ptr skipping! %s"
479 "(pos=%ld, delta=%ld, period=%ld, "
480 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
481 in_interrupt ? "[Q] " : "",
482 (long)pos, (long)hdelta,
483 (long)runtime->period_size, jdelta,
484 ((hdelta * HZ) / runtime->rate), hw_base,
485 (unsigned long)old_hw_ptr,
486 (unsigned long)new_hw_ptr);
487 /* reset values to proper state */
488 delta = 0;
489 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
490 }
491 no_jiffies_check:
492 if (delta > runtime->period_size + runtime->period_size / 2) {
493 hw_ptr_error(substream,
494 "Lost interrupts? %s"
495 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
496 "old_hw_ptr=%ld)\n",
497 in_interrupt ? "[Q] " : "",
498 substream->stream, (long)delta,
499 (long)new_hw_ptr,
500 (long)old_hw_ptr);
501 }
502
503 no_delta_check:
504 if (runtime->status->hw_ptr == new_hw_ptr)
505 return 0;
506
507 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
508 runtime->silence_size > 0)
509 snd_pcm_playback_silence(substream, new_hw_ptr);
510
511 if (in_interrupt) {
512 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
513 if (delta < 0)
514 delta += runtime->boundary;
515 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
516 runtime->hw_ptr_interrupt += delta;
517 if (runtime->hw_ptr_interrupt >= runtime->boundary)
518 runtime->hw_ptr_interrupt -= runtime->boundary;
519 }
520 runtime->hw_ptr_base = hw_base;
521 runtime->status->hw_ptr = new_hw_ptr;
522 runtime->hw_ptr_jiffies = curr_jiffies;
523 if (crossed_boundary) {
524 snd_BUG_ON(crossed_boundary != 1);
525 runtime->hw_ptr_wrap += runtime->boundary;
526 }
527 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
528 runtime->status->tstamp = curr_tstamp;
529
530 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
531 /*
532 * no wall clock available, provide audio timestamp
533 * derived from pointer position+delay
534 */
535 u64 audio_frames, audio_nsecs;
536
537 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
538 audio_frames = runtime->hw_ptr_wrap
539 + runtime->status->hw_ptr
540 - runtime->delay;
541 else
542 audio_frames = runtime->hw_ptr_wrap
543 + runtime->status->hw_ptr
544 + runtime->delay;
545 audio_nsecs = div_u64(audio_frames * 1000000000LL,
546 runtime->rate);
547 audio_tstamp = ns_to_timespec(audio_nsecs);
548 }
549 runtime->status->audio_tstamp = audio_tstamp;
550 }
551
552 return snd_pcm_update_state(substream, runtime);
553 }
554
555 /* CAUTION: call it with irq disabled */
556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
557 {
558 return snd_pcm_update_hw_ptr0(substream, 0);
559 }
560
561 /**
562 * snd_pcm_set_ops - set the PCM operators
563 * @pcm: the pcm instance
564 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
565 * @ops: the operator table
566 *
567 * Sets the given PCM operators to the pcm instance.
568 */
569 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
570 const struct snd_pcm_ops *ops)
571 {
572 struct snd_pcm_str *stream = &pcm->streams[direction];
573 struct snd_pcm_substream *substream;
574
575 for (substream = stream->substream; substream != NULL; substream = substream->next)
576 substream->ops = ops;
577 }
578
579 EXPORT_SYMBOL(snd_pcm_set_ops);
580
581 /**
582 * snd_pcm_sync - set the PCM sync id
583 * @substream: the pcm substream
584 *
585 * Sets the PCM sync identifier for the card.
586 */
587 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
588 {
589 struct snd_pcm_runtime *runtime = substream->runtime;
590
591 runtime->sync.id32[0] = substream->pcm->card->number;
592 runtime->sync.id32[1] = -1;
593 runtime->sync.id32[2] = -1;
594 runtime->sync.id32[3] = -1;
595 }
596
597 EXPORT_SYMBOL(snd_pcm_set_sync);
598
599 /*
600 * Standard ioctl routine
601 */
602
603 static inline unsigned int div32(unsigned int a, unsigned int b,
604 unsigned int *r)
605 {
606 if (b == 0) {
607 *r = 0;
608 return UINT_MAX;
609 }
610 *r = a % b;
611 return a / b;
612 }
613
614 static inline unsigned int div_down(unsigned int a, unsigned int b)
615 {
616 if (b == 0)
617 return UINT_MAX;
618 return a / b;
619 }
620
621 static inline unsigned int div_up(unsigned int a, unsigned int b)
622 {
623 unsigned int r;
624 unsigned int q;
625 if (b == 0)
626 return UINT_MAX;
627 q = div32(a, b, &r);
628 if (r)
629 ++q;
630 return q;
631 }
632
633 static inline unsigned int mul(unsigned int a, unsigned int b)
634 {
635 if (a == 0)
636 return 0;
637 if (div_down(UINT_MAX, a) < b)
638 return UINT_MAX;
639 return a * b;
640 }
641
642 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
643 unsigned int c, unsigned int *r)
644 {
645 u_int64_t n = (u_int64_t) a * b;
646 if (c == 0) {
647 snd_BUG_ON(!n);
648 *r = 0;
649 return UINT_MAX;
650 }
651 n = div_u64_rem(n, c, r);
652 if (n >= UINT_MAX) {
653 *r = 0;
654 return UINT_MAX;
655 }
656 return n;
657 }
658
659 /**
660 * snd_interval_refine - refine the interval value of configurator
661 * @i: the interval value to refine
662 * @v: the interval value to refer to
663 *
664 * Refines the interval value with the reference value.
665 * The interval is changed to the range satisfying both intervals.
666 * The interval status (min, max, integer, etc.) are evaluated.
667 *
668 * Return: Positive if the value is changed, zero if it's not changed, or a
669 * negative error code.
670 */
671 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
672 {
673 int changed = 0;
674 if (snd_BUG_ON(snd_interval_empty(i)))
675 return -EINVAL;
676 if (i->min < v->min) {
677 i->min = v->min;
678 i->openmin = v->openmin;
679 changed = 1;
680 } else if (i->min == v->min && !i->openmin && v->openmin) {
681 i->openmin = 1;
682 changed = 1;
683 }
684 if (i->max > v->max) {
685 i->max = v->max;
686 i->openmax = v->openmax;
687 changed = 1;
688 } else if (i->max == v->max && !i->openmax && v->openmax) {
689 i->openmax = 1;
690 changed = 1;
691 }
692 if (!i->integer && v->integer) {
693 i->integer = 1;
694 changed = 1;
695 }
696 if (i->integer) {
697 if (i->openmin) {
698 i->min++;
699 i->openmin = 0;
700 }
701 if (i->openmax) {
702 i->max--;
703 i->openmax = 0;
704 }
705 } else if (!i->openmin && !i->openmax && i->min == i->max)
706 i->integer = 1;
707 if (snd_interval_checkempty(i)) {
708 snd_interval_none(i);
709 return -EINVAL;
710 }
711 return changed;
712 }
713
714 EXPORT_SYMBOL(snd_interval_refine);
715
716 static int snd_interval_refine_first(struct snd_interval *i)
717 {
718 if (snd_BUG_ON(snd_interval_empty(i)))
719 return -EINVAL;
720 if (snd_interval_single(i))
721 return 0;
722 i->max = i->min;
723 i->openmax = i->openmin;
724 if (i->openmax)
725 i->max++;
726 return 1;
727 }
728
729 static int snd_interval_refine_last(struct snd_interval *i)
730 {
731 if (snd_BUG_ON(snd_interval_empty(i)))
732 return -EINVAL;
733 if (snd_interval_single(i))
734 return 0;
735 i->min = i->max;
736 i->openmin = i->openmax;
737 if (i->openmin)
738 i->min--;
739 return 1;
740 }
741
742 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
743 {
744 if (a->empty || b->empty) {
745 snd_interval_none(c);
746 return;
747 }
748 c->empty = 0;
749 c->min = mul(a->min, b->min);
750 c->openmin = (a->openmin || b->openmin);
751 c->max = mul(a->max, b->max);
752 c->openmax = (a->openmax || b->openmax);
753 c->integer = (a->integer && b->integer);
754 }
755
756 /**
757 * snd_interval_div - refine the interval value with division
758 * @a: dividend
759 * @b: divisor
760 * @c: quotient
761 *
762 * c = a / b
763 *
764 * Returns non-zero if the value is changed, zero if not changed.
765 */
766 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
767 {
768 unsigned int r;
769 if (a->empty || b->empty) {
770 snd_interval_none(c);
771 return;
772 }
773 c->empty = 0;
774 c->min = div32(a->min, b->max, &r);
775 c->openmin = (r || a->openmin || b->openmax);
776 if (b->min > 0) {
777 c->max = div32(a->max, b->min, &r);
778 if (r) {
779 c->max++;
780 c->openmax = 1;
781 } else
782 c->openmax = (a->openmax || b->openmin);
783 } else {
784 c->max = UINT_MAX;
785 c->openmax = 0;
786 }
787 c->integer = 0;
788 }
789
790 /**
791 * snd_interval_muldivk - refine the interval value
792 * @a: dividend 1
793 * @b: dividend 2
794 * @k: divisor (as integer)
795 * @c: result
796 *
797 * c = a * b / k
798 *
799 * Returns non-zero if the value is changed, zero if not changed.
800 */
801 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
802 unsigned int k, struct snd_interval *c)
803 {
804 unsigned int r;
805 if (a->empty || b->empty) {
806 snd_interval_none(c);
807 return;
808 }
809 c->empty = 0;
810 c->min = muldiv32(a->min, b->min, k, &r);
811 c->openmin = (r || a->openmin || b->openmin);
812 c->max = muldiv32(a->max, b->max, k, &r);
813 if (r) {
814 c->max++;
815 c->openmax = 1;
816 } else
817 c->openmax = (a->openmax || b->openmax);
818 c->integer = 0;
819 }
820
821 /**
822 * snd_interval_mulkdiv - refine the interval value
823 * @a: dividend 1
824 * @k: dividend 2 (as integer)
825 * @b: divisor
826 * @c: result
827 *
828 * c = a * k / b
829 *
830 * Returns non-zero if the value is changed, zero if not changed.
831 */
832 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
833 const struct snd_interval *b, struct snd_interval *c)
834 {
835 unsigned int r;
836 if (a->empty || b->empty) {
837 snd_interval_none(c);
838 return;
839 }
840 c->empty = 0;
841 c->min = muldiv32(a->min, k, b->max, &r);
842 c->openmin = (r || a->openmin || b->openmax);
843 if (b->min > 0) {
844 c->max = muldiv32(a->max, k, b->min, &r);
845 if (r) {
846 c->max++;
847 c->openmax = 1;
848 } else
849 c->openmax = (a->openmax || b->openmin);
850 } else {
851 c->max = UINT_MAX;
852 c->openmax = 0;
853 }
854 c->integer = 0;
855 }
856
857 /* ---- */
858
859
860 /**
861 * snd_interval_ratnum - refine the interval value
862 * @i: interval to refine
863 * @rats_count: number of ratnum_t
864 * @rats: ratnum_t array
865 * @nump: pointer to store the resultant numerator
866 * @denp: pointer to store the resultant denominator
867 *
868 * Return: Positive if the value is changed, zero if it's not changed, or a
869 * negative error code.
870 */
871 int snd_interval_ratnum(struct snd_interval *i,
872 unsigned int rats_count, struct snd_ratnum *rats,
873 unsigned int *nump, unsigned int *denp)
874 {
875 unsigned int best_num, best_den;
876 int best_diff;
877 unsigned int k;
878 struct snd_interval t;
879 int err;
880 unsigned int result_num, result_den;
881 int result_diff;
882
883 best_num = best_den = best_diff = 0;
884 for (k = 0; k < rats_count; ++k) {
885 unsigned int num = rats[k].num;
886 unsigned int den;
887 unsigned int q = i->min;
888 int diff;
889 if (q == 0)
890 q = 1;
891 den = div_up(num, q);
892 if (den < rats[k].den_min)
893 continue;
894 if (den > rats[k].den_max)
895 den = rats[k].den_max;
896 else {
897 unsigned int r;
898 r = (den - rats[k].den_min) % rats[k].den_step;
899 if (r != 0)
900 den -= r;
901 }
902 diff = num - q * den;
903 if (diff < 0)
904 diff = -diff;
905 if (best_num == 0 ||
906 diff * best_den < best_diff * den) {
907 best_diff = diff;
908 best_den = den;
909 best_num = num;
910 }
911 }
912 if (best_den == 0) {
913 i->empty = 1;
914 return -EINVAL;
915 }
916 t.min = div_down(best_num, best_den);
917 t.openmin = !!(best_num % best_den);
918
919 result_num = best_num;
920 result_diff = best_diff;
921 result_den = best_den;
922 best_num = best_den = best_diff = 0;
923 for (k = 0; k < rats_count; ++k) {
924 unsigned int num = rats[k].num;
925 unsigned int den;
926 unsigned int q = i->max;
927 int diff;
928 if (q == 0) {
929 i->empty = 1;
930 return -EINVAL;
931 }
932 den = div_down(num, q);
933 if (den > rats[k].den_max)
934 continue;
935 if (den < rats[k].den_min)
936 den = rats[k].den_min;
937 else {
938 unsigned int r;
939 r = (den - rats[k].den_min) % rats[k].den_step;
940 if (r != 0)
941 den += rats[k].den_step - r;
942 }
943 diff = q * den - num;
944 if (diff < 0)
945 diff = -diff;
946 if (best_num == 0 ||
947 diff * best_den < best_diff * den) {
948 best_diff = diff;
949 best_den = den;
950 best_num = num;
951 }
952 }
953 if (best_den == 0) {
954 i->empty = 1;
955 return -EINVAL;
956 }
957 t.max = div_up(best_num, best_den);
958 t.openmax = !!(best_num % best_den);
959 t.integer = 0;
960 err = snd_interval_refine(i, &t);
961 if (err < 0)
962 return err;
963
964 if (snd_interval_single(i)) {
965 if (best_diff * result_den < result_diff * best_den) {
966 result_num = best_num;
967 result_den = best_den;
968 }
969 if (nump)
970 *nump = result_num;
971 if (denp)
972 *denp = result_den;
973 }
974 return err;
975 }
976
977 EXPORT_SYMBOL(snd_interval_ratnum);
978
979 /**
980 * snd_interval_ratden - refine the interval value
981 * @i: interval to refine
982 * @rats_count: number of struct ratden
983 * @rats: struct ratden array
984 * @nump: pointer to store the resultant numerator
985 * @denp: pointer to store the resultant denominator
986 *
987 * Return: Positive if the value is changed, zero if it's not changed, or a
988 * negative error code.
989 */
990 static int snd_interval_ratden(struct snd_interval *i,
991 unsigned int rats_count, struct snd_ratden *rats,
992 unsigned int *nump, unsigned int *denp)
993 {
994 unsigned int best_num, best_diff, best_den;
995 unsigned int k;
996 struct snd_interval t;
997 int err;
998
999 best_num = best_den = best_diff = 0;
1000 for (k = 0; k < rats_count; ++k) {
1001 unsigned int num;
1002 unsigned int den = rats[k].den;
1003 unsigned int q = i->min;
1004 int diff;
1005 num = mul(q, den);
1006 if (num > rats[k].num_max)
1007 continue;
1008 if (num < rats[k].num_min)
1009 num = rats[k].num_max;
1010 else {
1011 unsigned int r;
1012 r = (num - rats[k].num_min) % rats[k].num_step;
1013 if (r != 0)
1014 num += rats[k].num_step - r;
1015 }
1016 diff = num - q * den;
1017 if (best_num == 0 ||
1018 diff * best_den < best_diff * den) {
1019 best_diff = diff;
1020 best_den = den;
1021 best_num = num;
1022 }
1023 }
1024 if (best_den == 0) {
1025 i->empty = 1;
1026 return -EINVAL;
1027 }
1028 t.min = div_down(best_num, best_den);
1029 t.openmin = !!(best_num % best_den);
1030
1031 best_num = best_den = best_diff = 0;
1032 for (k = 0; k < rats_count; ++k) {
1033 unsigned int num;
1034 unsigned int den = rats[k].den;
1035 unsigned int q = i->max;
1036 int diff;
1037 num = mul(q, den);
1038 if (num < rats[k].num_min)
1039 continue;
1040 if (num > rats[k].num_max)
1041 num = rats[k].num_max;
1042 else {
1043 unsigned int r;
1044 r = (num - rats[k].num_min) % rats[k].num_step;
1045 if (r != 0)
1046 num -= r;
1047 }
1048 diff = q * den - num;
1049 if (best_num == 0 ||
1050 diff * best_den < best_diff * den) {
1051 best_diff = diff;
1052 best_den = den;
1053 best_num = num;
1054 }
1055 }
1056 if (best_den == 0) {
1057 i->empty = 1;
1058 return -EINVAL;
1059 }
1060 t.max = div_up(best_num, best_den);
1061 t.openmax = !!(best_num % best_den);
1062 t.integer = 0;
1063 err = snd_interval_refine(i, &t);
1064 if (err < 0)
1065 return err;
1066
1067 if (snd_interval_single(i)) {
1068 if (nump)
1069 *nump = best_num;
1070 if (denp)
1071 *denp = best_den;
1072 }
1073 return err;
1074 }
1075
1076 /**
1077 * snd_interval_list - refine the interval value from the list
1078 * @i: the interval value to refine
1079 * @count: the number of elements in the list
1080 * @list: the value list
1081 * @mask: the bit-mask to evaluate
1082 *
1083 * Refines the interval value from the list.
1084 * When mask is non-zero, only the elements corresponding to bit 1 are
1085 * evaluated.
1086 *
1087 * Return: Positive if the value is changed, zero if it's not changed, or a
1088 * negative error code.
1089 */
1090 int snd_interval_list(struct snd_interval *i, unsigned int count,
1091 const unsigned int *list, unsigned int mask)
1092 {
1093 unsigned int k;
1094 struct snd_interval list_range;
1095
1096 if (!count) {
1097 i->empty = 1;
1098 return -EINVAL;
1099 }
1100 snd_interval_any(&list_range);
1101 list_range.min = UINT_MAX;
1102 list_range.max = 0;
1103 for (k = 0; k < count; k++) {
1104 if (mask && !(mask & (1 << k)))
1105 continue;
1106 if (!snd_interval_test(i, list[k]))
1107 continue;
1108 list_range.min = min(list_range.min, list[k]);
1109 list_range.max = max(list_range.max, list[k]);
1110 }
1111 return snd_interval_refine(i, &list_range);
1112 }
1113
1114 EXPORT_SYMBOL(snd_interval_list);
1115
1116 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1117 {
1118 unsigned int n;
1119 int changed = 0;
1120 n = (i->min - min) % step;
1121 if (n != 0 || i->openmin) {
1122 i->min += step - n;
1123 changed = 1;
1124 }
1125 n = (i->max - min) % step;
1126 if (n != 0 || i->openmax) {
1127 i->max -= n;
1128 changed = 1;
1129 }
1130 if (snd_interval_checkempty(i)) {
1131 i->empty = 1;
1132 return -EINVAL;
1133 }
1134 return changed;
1135 }
1136
1137 /* Info constraints helpers */
1138
1139 /**
1140 * snd_pcm_hw_rule_add - add the hw-constraint rule
1141 * @runtime: the pcm runtime instance
1142 * @cond: condition bits
1143 * @var: the variable to evaluate
1144 * @func: the evaluation function
1145 * @private: the private data pointer passed to function
1146 * @dep: the dependent variables
1147 *
1148 * Return: Zero if successful, or a negative error code on failure.
1149 */
1150 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1151 int var,
1152 snd_pcm_hw_rule_func_t func, void *private,
1153 int dep, ...)
1154 {
1155 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1156 struct snd_pcm_hw_rule *c;
1157 unsigned int k;
1158 va_list args;
1159 va_start(args, dep);
1160 if (constrs->rules_num >= constrs->rules_all) {
1161 struct snd_pcm_hw_rule *new;
1162 unsigned int new_rules = constrs->rules_all + 16;
1163 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1164 if (!new) {
1165 va_end(args);
1166 return -ENOMEM;
1167 }
1168 if (constrs->rules) {
1169 memcpy(new, constrs->rules,
1170 constrs->rules_num * sizeof(*c));
1171 kfree(constrs->rules);
1172 }
1173 constrs->rules = new;
1174 constrs->rules_all = new_rules;
1175 }
1176 c = &constrs->rules[constrs->rules_num];
1177 c->cond = cond;
1178 c->func = func;
1179 c->var = var;
1180 c->private = private;
1181 k = 0;
1182 while (1) {
1183 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1184 va_end(args);
1185 return -EINVAL;
1186 }
1187 c->deps[k++] = dep;
1188 if (dep < 0)
1189 break;
1190 dep = va_arg(args, int);
1191 }
1192 constrs->rules_num++;
1193 va_end(args);
1194 return 0;
1195 }
1196
1197 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1198
1199 /**
1200 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1201 * @runtime: PCM runtime instance
1202 * @var: hw_params variable to apply the mask
1203 * @mask: the bitmap mask
1204 *
1205 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1206 *
1207 * Return: Zero if successful, or a negative error code on failure.
1208 */
1209 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1210 u_int32_t mask)
1211 {
1212 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1213 struct snd_mask *maskp = constrs_mask(constrs, var);
1214 *maskp->bits &= mask;
1215 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1216 if (*maskp->bits == 0)
1217 return -EINVAL;
1218 return 0;
1219 }
1220
1221 /**
1222 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1223 * @runtime: PCM runtime instance
1224 * @var: hw_params variable to apply the mask
1225 * @mask: the 64bit bitmap mask
1226 *
1227 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1228 *
1229 * Return: Zero if successful, or a negative error code on failure.
1230 */
1231 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1232 u_int64_t mask)
1233 {
1234 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1235 struct snd_mask *maskp = constrs_mask(constrs, var);
1236 maskp->bits[0] &= (u_int32_t)mask;
1237 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1238 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1239 if (! maskp->bits[0] && ! maskp->bits[1])
1240 return -EINVAL;
1241 return 0;
1242 }
1243
1244 /**
1245 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1246 * @runtime: PCM runtime instance
1247 * @var: hw_params variable to apply the integer constraint
1248 *
1249 * Apply the constraint of integer to an interval parameter.
1250 *
1251 * Return: Positive if the value is changed, zero if it's not changed, or a
1252 * negative error code.
1253 */
1254 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1255 {
1256 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1257 return snd_interval_setinteger(constrs_interval(constrs, var));
1258 }
1259
1260 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1261
1262 /**
1263 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1264 * @runtime: PCM runtime instance
1265 * @var: hw_params variable to apply the range
1266 * @min: the minimal value
1267 * @max: the maximal value
1268 *
1269 * Apply the min/max range constraint to an interval parameter.
1270 *
1271 * Return: Positive if the value is changed, zero if it's not changed, or a
1272 * negative error code.
1273 */
1274 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1275 unsigned int min, unsigned int max)
1276 {
1277 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1278 struct snd_interval t;
1279 t.min = min;
1280 t.max = max;
1281 t.openmin = t.openmax = 0;
1282 t.integer = 0;
1283 return snd_interval_refine(constrs_interval(constrs, var), &t);
1284 }
1285
1286 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1287
1288 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1289 struct snd_pcm_hw_rule *rule)
1290 {
1291 struct snd_pcm_hw_constraint_list *list = rule->private;
1292 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1293 }
1294
1295
1296 /**
1297 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1298 * @runtime: PCM runtime instance
1299 * @cond: condition bits
1300 * @var: hw_params variable to apply the list constraint
1301 * @l: list
1302 *
1303 * Apply the list of constraints to an interval parameter.
1304 *
1305 * Return: Zero if successful, or a negative error code on failure.
1306 */
1307 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1308 unsigned int cond,
1309 snd_pcm_hw_param_t var,
1310 const struct snd_pcm_hw_constraint_list *l)
1311 {
1312 return snd_pcm_hw_rule_add(runtime, cond, var,
1313 snd_pcm_hw_rule_list, (void *)l,
1314 var, -1);
1315 }
1316
1317 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1318
1319 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1320 struct snd_pcm_hw_rule *rule)
1321 {
1322 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1323 unsigned int num = 0, den = 0;
1324 int err;
1325 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1326 r->nrats, r->rats, &num, &den);
1327 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1328 params->rate_num = num;
1329 params->rate_den = den;
1330 }
1331 return err;
1332 }
1333
1334 /**
1335 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1336 * @runtime: PCM runtime instance
1337 * @cond: condition bits
1338 * @var: hw_params variable to apply the ratnums constraint
1339 * @r: struct snd_ratnums constriants
1340 *
1341 * Return: Zero if successful, or a negative error code on failure.
1342 */
1343 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1344 unsigned int cond,
1345 snd_pcm_hw_param_t var,
1346 struct snd_pcm_hw_constraint_ratnums *r)
1347 {
1348 return snd_pcm_hw_rule_add(runtime, cond, var,
1349 snd_pcm_hw_rule_ratnums, r,
1350 var, -1);
1351 }
1352
1353 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1354
1355 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1356 struct snd_pcm_hw_rule *rule)
1357 {
1358 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1359 unsigned int num = 0, den = 0;
1360 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1361 r->nrats, r->rats, &num, &den);
1362 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1363 params->rate_num = num;
1364 params->rate_den = den;
1365 }
1366 return err;
1367 }
1368
1369 /**
1370 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1371 * @runtime: PCM runtime instance
1372 * @cond: condition bits
1373 * @var: hw_params variable to apply the ratdens constraint
1374 * @r: struct snd_ratdens constriants
1375 *
1376 * Return: Zero if successful, or a negative error code on failure.
1377 */
1378 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1379 unsigned int cond,
1380 snd_pcm_hw_param_t var,
1381 struct snd_pcm_hw_constraint_ratdens *r)
1382 {
1383 return snd_pcm_hw_rule_add(runtime, cond, var,
1384 snd_pcm_hw_rule_ratdens, r,
1385 var, -1);
1386 }
1387
1388 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1389
1390 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1391 struct snd_pcm_hw_rule *rule)
1392 {
1393 unsigned int l = (unsigned long) rule->private;
1394 int width = l & 0xffff;
1395 unsigned int msbits = l >> 16;
1396 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1397 if (snd_interval_single(i) && snd_interval_value(i) == width)
1398 params->msbits = msbits;
1399 return 0;
1400 }
1401
1402 /**
1403 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1404 * @runtime: PCM runtime instance
1405 * @cond: condition bits
1406 * @width: sample bits width
1407 * @msbits: msbits width
1408 *
1409 * Return: Zero if successful, or a negative error code on failure.
1410 */
1411 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1412 unsigned int cond,
1413 unsigned int width,
1414 unsigned int msbits)
1415 {
1416 unsigned long l = (msbits << 16) | width;
1417 return snd_pcm_hw_rule_add(runtime, cond, -1,
1418 snd_pcm_hw_rule_msbits,
1419 (void*) l,
1420 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1421 }
1422
1423 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1424
1425 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1426 struct snd_pcm_hw_rule *rule)
1427 {
1428 unsigned long step = (unsigned long) rule->private;
1429 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1430 }
1431
1432 /**
1433 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1434 * @runtime: PCM runtime instance
1435 * @cond: condition bits
1436 * @var: hw_params variable to apply the step constraint
1437 * @step: step size
1438 *
1439 * Return: Zero if successful, or a negative error code on failure.
1440 */
1441 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1442 unsigned int cond,
1443 snd_pcm_hw_param_t var,
1444 unsigned long step)
1445 {
1446 return snd_pcm_hw_rule_add(runtime, cond, var,
1447 snd_pcm_hw_rule_step, (void *) step,
1448 var, -1);
1449 }
1450
1451 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1452
1453 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1454 {
1455 static unsigned int pow2_sizes[] = {
1456 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1457 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1458 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1459 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1460 };
1461 return snd_interval_list(hw_param_interval(params, rule->var),
1462 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1463 }
1464
1465 /**
1466 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1467 * @runtime: PCM runtime instance
1468 * @cond: condition bits
1469 * @var: hw_params variable to apply the power-of-2 constraint
1470 *
1471 * Return: Zero if successful, or a negative error code on failure.
1472 */
1473 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1474 unsigned int cond,
1475 snd_pcm_hw_param_t var)
1476 {
1477 return snd_pcm_hw_rule_add(runtime, cond, var,
1478 snd_pcm_hw_rule_pow2, NULL,
1479 var, -1);
1480 }
1481
1482 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1483
1484 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1485 struct snd_pcm_hw_rule *rule)
1486 {
1487 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1488 struct snd_interval *rate;
1489
1490 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1491 return snd_interval_list(rate, 1, &base_rate, 0);
1492 }
1493
1494 /**
1495 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1496 * @runtime: PCM runtime instance
1497 * @base_rate: the rate at which the hardware does not resample
1498 *
1499 * Return: Zero if successful, or a negative error code on failure.
1500 */
1501 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1502 unsigned int base_rate)
1503 {
1504 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1505 SNDRV_PCM_HW_PARAM_RATE,
1506 snd_pcm_hw_rule_noresample_func,
1507 (void *)(uintptr_t)base_rate,
1508 SNDRV_PCM_HW_PARAM_RATE, -1);
1509 }
1510 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1511
1512 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1513 snd_pcm_hw_param_t var)
1514 {
1515 if (hw_is_mask(var)) {
1516 snd_mask_any(hw_param_mask(params, var));
1517 params->cmask |= 1 << var;
1518 params->rmask |= 1 << var;
1519 return;
1520 }
1521 if (hw_is_interval(var)) {
1522 snd_interval_any(hw_param_interval(params, var));
1523 params->cmask |= 1 << var;
1524 params->rmask |= 1 << var;
1525 return;
1526 }
1527 snd_BUG();
1528 }
1529
1530 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1531 {
1532 unsigned int k;
1533 memset(params, 0, sizeof(*params));
1534 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1535 _snd_pcm_hw_param_any(params, k);
1536 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1537 _snd_pcm_hw_param_any(params, k);
1538 params->info = ~0U;
1539 }
1540
1541 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1542
1543 /**
1544 * snd_pcm_hw_param_value - return @params field @var value
1545 * @params: the hw_params instance
1546 * @var: parameter to retrieve
1547 * @dir: pointer to the direction (-1,0,1) or %NULL
1548 *
1549 * Return: The value for field @var if it's fixed in configuration space
1550 * defined by @params. -%EINVAL otherwise.
1551 */
1552 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1553 snd_pcm_hw_param_t var, int *dir)
1554 {
1555 if (hw_is_mask(var)) {
1556 const struct snd_mask *mask = hw_param_mask_c(params, var);
1557 if (!snd_mask_single(mask))
1558 return -EINVAL;
1559 if (dir)
1560 *dir = 0;
1561 return snd_mask_value(mask);
1562 }
1563 if (hw_is_interval(var)) {
1564 const struct snd_interval *i = hw_param_interval_c(params, var);
1565 if (!snd_interval_single(i))
1566 return -EINVAL;
1567 if (dir)
1568 *dir = i->openmin;
1569 return snd_interval_value(i);
1570 }
1571 return -EINVAL;
1572 }
1573
1574 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1575
1576 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1577 snd_pcm_hw_param_t var)
1578 {
1579 if (hw_is_mask(var)) {
1580 snd_mask_none(hw_param_mask(params, var));
1581 params->cmask |= 1 << var;
1582 params->rmask |= 1 << var;
1583 } else if (hw_is_interval(var)) {
1584 snd_interval_none(hw_param_interval(params, var));
1585 params->cmask |= 1 << var;
1586 params->rmask |= 1 << var;
1587 } else {
1588 snd_BUG();
1589 }
1590 }
1591
1592 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1593
1594 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1595 snd_pcm_hw_param_t var)
1596 {
1597 int changed;
1598 if (hw_is_mask(var))
1599 changed = snd_mask_refine_first(hw_param_mask(params, var));
1600 else if (hw_is_interval(var))
1601 changed = snd_interval_refine_first(hw_param_interval(params, var));
1602 else
1603 return -EINVAL;
1604 if (changed) {
1605 params->cmask |= 1 << var;
1606 params->rmask |= 1 << var;
1607 }
1608 return changed;
1609 }
1610
1611
1612 /**
1613 * snd_pcm_hw_param_first - refine config space and return minimum value
1614 * @pcm: PCM instance
1615 * @params: the hw_params instance
1616 * @var: parameter to retrieve
1617 * @dir: pointer to the direction (-1,0,1) or %NULL
1618 *
1619 * Inside configuration space defined by @params remove from @var all
1620 * values > minimum. Reduce configuration space accordingly.
1621 *
1622 * Return: The minimum, or a negative error code on failure.
1623 */
1624 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1625 struct snd_pcm_hw_params *params,
1626 snd_pcm_hw_param_t var, int *dir)
1627 {
1628 int changed = _snd_pcm_hw_param_first(params, var);
1629 if (changed < 0)
1630 return changed;
1631 if (params->rmask) {
1632 int err = snd_pcm_hw_refine(pcm, params);
1633 if (snd_BUG_ON(err < 0))
1634 return err;
1635 }
1636 return snd_pcm_hw_param_value(params, var, dir);
1637 }
1638
1639 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1640
1641 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1642 snd_pcm_hw_param_t var)
1643 {
1644 int changed;
1645 if (hw_is_mask(var))
1646 changed = snd_mask_refine_last(hw_param_mask(params, var));
1647 else if (hw_is_interval(var))
1648 changed = snd_interval_refine_last(hw_param_interval(params, var));
1649 else
1650 return -EINVAL;
1651 if (changed) {
1652 params->cmask |= 1 << var;
1653 params->rmask |= 1 << var;
1654 }
1655 return changed;
1656 }
1657
1658
1659 /**
1660 * snd_pcm_hw_param_last - refine config space and return maximum value
1661 * @pcm: PCM instance
1662 * @params: the hw_params instance
1663 * @var: parameter to retrieve
1664 * @dir: pointer to the direction (-1,0,1) or %NULL
1665 *
1666 * Inside configuration space defined by @params remove from @var all
1667 * values < maximum. Reduce configuration space accordingly.
1668 *
1669 * Return: The maximum, or a negative error code on failure.
1670 */
1671 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1672 struct snd_pcm_hw_params *params,
1673 snd_pcm_hw_param_t var, int *dir)
1674 {
1675 int changed = _snd_pcm_hw_param_last(params, var);
1676 if (changed < 0)
1677 return changed;
1678 if (params->rmask) {
1679 int err = snd_pcm_hw_refine(pcm, params);
1680 if (snd_BUG_ON(err < 0))
1681 return err;
1682 }
1683 return snd_pcm_hw_param_value(params, var, dir);
1684 }
1685
1686 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1687
1688 /**
1689 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1690 * @pcm: PCM instance
1691 * @params: the hw_params instance
1692 *
1693 * Choose one configuration from configuration space defined by @params.
1694 * The configuration chosen is that obtained fixing in this order:
1695 * first access, first format, first subformat, min channels,
1696 * min rate, min period time, max buffer size, min tick time
1697 *
1698 * Return: Zero if successful, or a negative error code on failure.
1699 */
1700 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1701 struct snd_pcm_hw_params *params)
1702 {
1703 static int vars[] = {
1704 SNDRV_PCM_HW_PARAM_ACCESS,
1705 SNDRV_PCM_HW_PARAM_FORMAT,
1706 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1707 SNDRV_PCM_HW_PARAM_CHANNELS,
1708 SNDRV_PCM_HW_PARAM_RATE,
1709 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1710 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1711 SNDRV_PCM_HW_PARAM_TICK_TIME,
1712 -1
1713 };
1714 int err, *v;
1715
1716 for (v = vars; *v != -1; v++) {
1717 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1718 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1719 else
1720 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1721 if (snd_BUG_ON(err < 0))
1722 return err;
1723 }
1724 return 0;
1725 }
1726
1727 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1728 void *arg)
1729 {
1730 struct snd_pcm_runtime *runtime = substream->runtime;
1731 unsigned long flags;
1732 snd_pcm_stream_lock_irqsave(substream, flags);
1733 if (snd_pcm_running(substream) &&
1734 snd_pcm_update_hw_ptr(substream) >= 0)
1735 runtime->status->hw_ptr %= runtime->buffer_size;
1736 else {
1737 runtime->status->hw_ptr = 0;
1738 runtime->hw_ptr_wrap = 0;
1739 }
1740 snd_pcm_stream_unlock_irqrestore(substream, flags);
1741 return 0;
1742 }
1743
1744 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1745 void *arg)
1746 {
1747 struct snd_pcm_channel_info *info = arg;
1748 struct snd_pcm_runtime *runtime = substream->runtime;
1749 int width;
1750 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1751 info->offset = -1;
1752 return 0;
1753 }
1754 width = snd_pcm_format_physical_width(runtime->format);
1755 if (width < 0)
1756 return width;
1757 info->offset = 0;
1758 switch (runtime->access) {
1759 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1760 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1761 info->first = info->channel * width;
1762 info->step = runtime->channels * width;
1763 break;
1764 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1765 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1766 {
1767 size_t size = runtime->dma_bytes / runtime->channels;
1768 info->first = info->channel * size * 8;
1769 info->step = width;
1770 break;
1771 }
1772 default:
1773 snd_BUG();
1774 break;
1775 }
1776 return 0;
1777 }
1778
1779 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1780 void *arg)
1781 {
1782 struct snd_pcm_hw_params *params = arg;
1783 snd_pcm_format_t format;
1784 int channels, width;
1785
1786 params->fifo_size = substream->runtime->hw.fifo_size;
1787 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1788 format = params_format(params);
1789 channels = params_channels(params);
1790 width = snd_pcm_format_physical_width(format);
1791 params->fifo_size /= width * channels;
1792 }
1793 return 0;
1794 }
1795
1796 /**
1797 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1798 * @substream: the pcm substream instance
1799 * @cmd: ioctl command
1800 * @arg: ioctl argument
1801 *
1802 * Processes the generic ioctl commands for PCM.
1803 * Can be passed as the ioctl callback for PCM ops.
1804 *
1805 * Return: Zero if successful, or a negative error code on failure.
1806 */
1807 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1808 unsigned int cmd, void *arg)
1809 {
1810 switch (cmd) {
1811 case SNDRV_PCM_IOCTL1_INFO:
1812 return 0;
1813 case SNDRV_PCM_IOCTL1_RESET:
1814 return snd_pcm_lib_ioctl_reset(substream, arg);
1815 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1816 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1817 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1818 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1819 }
1820 return -ENXIO;
1821 }
1822
1823 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1824
1825 /**
1826 * snd_pcm_period_elapsed - update the pcm status for the next period
1827 * @substream: the pcm substream instance
1828 *
1829 * This function is called from the interrupt handler when the
1830 * PCM has processed the period size. It will update the current
1831 * pointer, wake up sleepers, etc.
1832 *
1833 * Even if more than one periods have elapsed since the last call, you
1834 * have to call this only once.
1835 */
1836 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1837 {
1838 struct snd_pcm_runtime *runtime;
1839 unsigned long flags;
1840
1841 if (PCM_RUNTIME_CHECK(substream))
1842 return;
1843 runtime = substream->runtime;
1844
1845 if (runtime->transfer_ack_begin)
1846 runtime->transfer_ack_begin(substream);
1847
1848 snd_pcm_stream_lock_irqsave(substream, flags);
1849 if (!snd_pcm_running(substream) ||
1850 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1851 goto _end;
1852
1853 if (substream->timer_running)
1854 snd_timer_interrupt(substream->timer, 1);
1855 _end:
1856 snd_pcm_stream_unlock_irqrestore(substream, flags);
1857 if (runtime->transfer_ack_end)
1858 runtime->transfer_ack_end(substream);
1859 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1860 }
1861
1862 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1863
1864 /*
1865 * Wait until avail_min data becomes available
1866 * Returns a negative error code if any error occurs during operation.
1867 * The available space is stored on availp. When err = 0 and avail = 0
1868 * on the capture stream, it indicates the stream is in DRAINING state.
1869 */
1870 static int wait_for_avail(struct snd_pcm_substream *substream,
1871 snd_pcm_uframes_t *availp)
1872 {
1873 struct snd_pcm_runtime *runtime = substream->runtime;
1874 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1875 wait_queue_t wait;
1876 int err = 0;
1877 snd_pcm_uframes_t avail = 0;
1878 long wait_time, tout;
1879
1880 init_waitqueue_entry(&wait, current);
1881 set_current_state(TASK_INTERRUPTIBLE);
1882 add_wait_queue(&runtime->tsleep, &wait);
1883
1884 if (runtime->no_period_wakeup)
1885 wait_time = MAX_SCHEDULE_TIMEOUT;
1886 else {
1887 wait_time = 10;
1888 if (runtime->rate) {
1889 long t = runtime->period_size * 2 / runtime->rate;
1890 wait_time = max(t, wait_time);
1891 }
1892 wait_time = msecs_to_jiffies(wait_time * 1000);
1893 }
1894
1895 for (;;) {
1896 if (signal_pending(current)) {
1897 err = -ERESTARTSYS;
1898 break;
1899 }
1900
1901 /*
1902 * We need to check if space became available already
1903 * (and thus the wakeup happened already) first to close
1904 * the race of space already having become available.
1905 * This check must happen after been added to the waitqueue
1906 * and having current state be INTERRUPTIBLE.
1907 */
1908 if (is_playback)
1909 avail = snd_pcm_playback_avail(runtime);
1910 else
1911 avail = snd_pcm_capture_avail(runtime);
1912 if (avail >= runtime->twake)
1913 break;
1914 snd_pcm_stream_unlock_irq(substream);
1915
1916 tout = schedule_timeout(wait_time);
1917
1918 snd_pcm_stream_lock_irq(substream);
1919 set_current_state(TASK_INTERRUPTIBLE);
1920 switch (runtime->status->state) {
1921 case SNDRV_PCM_STATE_SUSPENDED:
1922 err = -ESTRPIPE;
1923 goto _endloop;
1924 case SNDRV_PCM_STATE_XRUN:
1925 err = -EPIPE;
1926 goto _endloop;
1927 case SNDRV_PCM_STATE_DRAINING:
1928 if (is_playback)
1929 err = -EPIPE;
1930 else
1931 avail = 0; /* indicate draining */
1932 goto _endloop;
1933 case SNDRV_PCM_STATE_OPEN:
1934 case SNDRV_PCM_STATE_SETUP:
1935 case SNDRV_PCM_STATE_DISCONNECTED:
1936 err = -EBADFD;
1937 goto _endloop;
1938 case SNDRV_PCM_STATE_PAUSED:
1939 continue;
1940 }
1941 if (!tout) {
1942 pcm_dbg(substream->pcm,
1943 "%s write error (DMA or IRQ trouble?)\n",
1944 is_playback ? "playback" : "capture");
1945 err = -EIO;
1946 break;
1947 }
1948 }
1949 _endloop:
1950 set_current_state(TASK_RUNNING);
1951 remove_wait_queue(&runtime->tsleep, &wait);
1952 *availp = avail;
1953 return err;
1954 }
1955
1956 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1957 unsigned int hwoff,
1958 unsigned long data, unsigned int off,
1959 snd_pcm_uframes_t frames)
1960 {
1961 struct snd_pcm_runtime *runtime = substream->runtime;
1962 int err;
1963 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1964 if (substream->ops->copy) {
1965 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1966 return err;
1967 } else {
1968 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1969 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1970 return -EFAULT;
1971 }
1972 return 0;
1973 }
1974
1975 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1976 unsigned long data, unsigned int off,
1977 snd_pcm_uframes_t size);
1978
1979 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1980 unsigned long data,
1981 snd_pcm_uframes_t size,
1982 int nonblock,
1983 transfer_f transfer)
1984 {
1985 struct snd_pcm_runtime *runtime = substream->runtime;
1986 snd_pcm_uframes_t xfer = 0;
1987 snd_pcm_uframes_t offset = 0;
1988 snd_pcm_uframes_t avail;
1989 int err = 0;
1990
1991 if (size == 0)
1992 return 0;
1993
1994 snd_pcm_stream_lock_irq(substream);
1995 switch (runtime->status->state) {
1996 case SNDRV_PCM_STATE_PREPARED:
1997 case SNDRV_PCM_STATE_RUNNING:
1998 case SNDRV_PCM_STATE_PAUSED:
1999 break;
2000 case SNDRV_PCM_STATE_XRUN:
2001 err = -EPIPE;
2002 goto _end_unlock;
2003 case SNDRV_PCM_STATE_SUSPENDED:
2004 err = -ESTRPIPE;
2005 goto _end_unlock;
2006 default:
2007 err = -EBADFD;
2008 goto _end_unlock;
2009 }
2010
2011 runtime->twake = runtime->control->avail_min ? : 1;
2012 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2013 snd_pcm_update_hw_ptr(substream);
2014 avail = snd_pcm_playback_avail(runtime);
2015 while (size > 0) {
2016 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2017 snd_pcm_uframes_t cont;
2018 if (!avail) {
2019 if (nonblock) {
2020 err = -EAGAIN;
2021 goto _end_unlock;
2022 }
2023 runtime->twake = min_t(snd_pcm_uframes_t, size,
2024 runtime->control->avail_min ? : 1);
2025 err = wait_for_avail(substream, &avail);
2026 if (err < 0)
2027 goto _end_unlock;
2028 }
2029 frames = size > avail ? avail : size;
2030 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2031 if (frames > cont)
2032 frames = cont;
2033 if (snd_BUG_ON(!frames)) {
2034 runtime->twake = 0;
2035 snd_pcm_stream_unlock_irq(substream);
2036 return -EINVAL;
2037 }
2038 appl_ptr = runtime->control->appl_ptr;
2039 appl_ofs = appl_ptr % runtime->buffer_size;
2040 snd_pcm_stream_unlock_irq(substream);
2041 err = transfer(substream, appl_ofs, data, offset, frames);
2042 snd_pcm_stream_lock_irq(substream);
2043 if (err < 0)
2044 goto _end_unlock;
2045 switch (runtime->status->state) {
2046 case SNDRV_PCM_STATE_XRUN:
2047 err = -EPIPE;
2048 goto _end_unlock;
2049 case SNDRV_PCM_STATE_SUSPENDED:
2050 err = -ESTRPIPE;
2051 goto _end_unlock;
2052 default:
2053 break;
2054 }
2055 appl_ptr += frames;
2056 if (appl_ptr >= runtime->boundary)
2057 appl_ptr -= runtime->boundary;
2058 runtime->control->appl_ptr = appl_ptr;
2059 if (substream->ops->ack)
2060 substream->ops->ack(substream);
2061
2062 offset += frames;
2063 size -= frames;
2064 xfer += frames;
2065 avail -= frames;
2066 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2067 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2068 err = snd_pcm_start(substream);
2069 if (err < 0)
2070 goto _end_unlock;
2071 }
2072 }
2073 _end_unlock:
2074 runtime->twake = 0;
2075 if (xfer > 0 && err >= 0)
2076 snd_pcm_update_state(substream, runtime);
2077 snd_pcm_stream_unlock_irq(substream);
2078 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2079 }
2080
2081 /* sanity-check for read/write methods */
2082 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2083 {
2084 struct snd_pcm_runtime *runtime;
2085 if (PCM_RUNTIME_CHECK(substream))
2086 return -ENXIO;
2087 runtime = substream->runtime;
2088 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2089 return -EINVAL;
2090 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2091 return -EBADFD;
2092 return 0;
2093 }
2094
2095 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2096 {
2097 struct snd_pcm_runtime *runtime;
2098 int nonblock;
2099 int err;
2100
2101 err = pcm_sanity_check(substream);
2102 if (err < 0)
2103 return err;
2104 runtime = substream->runtime;
2105 nonblock = !!(substream->f_flags & O_NONBLOCK);
2106
2107 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2108 runtime->channels > 1)
2109 return -EINVAL;
2110 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2111 snd_pcm_lib_write_transfer);
2112 }
2113
2114 EXPORT_SYMBOL(snd_pcm_lib_write);
2115
2116 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2117 unsigned int hwoff,
2118 unsigned long data, unsigned int off,
2119 snd_pcm_uframes_t frames)
2120 {
2121 struct snd_pcm_runtime *runtime = substream->runtime;
2122 int err;
2123 void __user **bufs = (void __user **)data;
2124 int channels = runtime->channels;
2125 int c;
2126 if (substream->ops->copy) {
2127 if (snd_BUG_ON(!substream->ops->silence))
2128 return -EINVAL;
2129 for (c = 0; c < channels; ++c, ++bufs) {
2130 if (*bufs == NULL) {
2131 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2132 return err;
2133 } else {
2134 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2135 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2136 return err;
2137 }
2138 }
2139 } else {
2140 /* default transfer behaviour */
2141 size_t dma_csize = runtime->dma_bytes / channels;
2142 for (c = 0; c < channels; ++c, ++bufs) {
2143 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2144 if (*bufs == NULL) {
2145 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2146 } else {
2147 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2148 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2149 return -EFAULT;
2150 }
2151 }
2152 }
2153 return 0;
2154 }
2155
2156 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2157 void __user **bufs,
2158 snd_pcm_uframes_t frames)
2159 {
2160 struct snd_pcm_runtime *runtime;
2161 int nonblock;
2162 int err;
2163
2164 err = pcm_sanity_check(substream);
2165 if (err < 0)
2166 return err;
2167 runtime = substream->runtime;
2168 nonblock = !!(substream->f_flags & O_NONBLOCK);
2169
2170 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2171 return -EINVAL;
2172 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2173 nonblock, snd_pcm_lib_writev_transfer);
2174 }
2175
2176 EXPORT_SYMBOL(snd_pcm_lib_writev);
2177
2178 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2179 unsigned int hwoff,
2180 unsigned long data, unsigned int off,
2181 snd_pcm_uframes_t frames)
2182 {
2183 struct snd_pcm_runtime *runtime = substream->runtime;
2184 int err;
2185 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2186 if (substream->ops->copy) {
2187 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2188 return err;
2189 } else {
2190 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2191 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2192 return -EFAULT;
2193 }
2194 return 0;
2195 }
2196
2197 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2198 unsigned long data,
2199 snd_pcm_uframes_t size,
2200 int nonblock,
2201 transfer_f transfer)
2202 {
2203 struct snd_pcm_runtime *runtime = substream->runtime;
2204 snd_pcm_uframes_t xfer = 0;
2205 snd_pcm_uframes_t offset = 0;
2206 snd_pcm_uframes_t avail;
2207 int err = 0;
2208
2209 if (size == 0)
2210 return 0;
2211
2212 snd_pcm_stream_lock_irq(substream);
2213 switch (runtime->status->state) {
2214 case SNDRV_PCM_STATE_PREPARED:
2215 if (size >= runtime->start_threshold) {
2216 err = snd_pcm_start(substream);
2217 if (err < 0)
2218 goto _end_unlock;
2219 }
2220 break;
2221 case SNDRV_PCM_STATE_DRAINING:
2222 case SNDRV_PCM_STATE_RUNNING:
2223 case SNDRV_PCM_STATE_PAUSED:
2224 break;
2225 case SNDRV_PCM_STATE_XRUN:
2226 err = -EPIPE;
2227 goto _end_unlock;
2228 case SNDRV_PCM_STATE_SUSPENDED:
2229 err = -ESTRPIPE;
2230 goto _end_unlock;
2231 default:
2232 err = -EBADFD;
2233 goto _end_unlock;
2234 }
2235
2236 runtime->twake = runtime->control->avail_min ? : 1;
2237 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2238 snd_pcm_update_hw_ptr(substream);
2239 avail = snd_pcm_capture_avail(runtime);
2240 while (size > 0) {
2241 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2242 snd_pcm_uframes_t cont;
2243 if (!avail) {
2244 if (runtime->status->state ==
2245 SNDRV_PCM_STATE_DRAINING) {
2246 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2247 goto _end_unlock;
2248 }
2249 if (nonblock) {
2250 err = -EAGAIN;
2251 goto _end_unlock;
2252 }
2253 runtime->twake = min_t(snd_pcm_uframes_t, size,
2254 runtime->control->avail_min ? : 1);
2255 err = wait_for_avail(substream, &avail);
2256 if (err < 0)
2257 goto _end_unlock;
2258 if (!avail)
2259 continue; /* draining */
2260 }
2261 frames = size > avail ? avail : size;
2262 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2263 if (frames > cont)
2264 frames = cont;
2265 if (snd_BUG_ON(!frames)) {
2266 runtime->twake = 0;
2267 snd_pcm_stream_unlock_irq(substream);
2268 return -EINVAL;
2269 }
2270 appl_ptr = runtime->control->appl_ptr;
2271 appl_ofs = appl_ptr % runtime->buffer_size;
2272 snd_pcm_stream_unlock_irq(substream);
2273 err = transfer(substream, appl_ofs, data, offset, frames);
2274 snd_pcm_stream_lock_irq(substream);
2275 if (err < 0)
2276 goto _end_unlock;
2277 switch (runtime->status->state) {
2278 case SNDRV_PCM_STATE_XRUN:
2279 err = -EPIPE;
2280 goto _end_unlock;
2281 case SNDRV_PCM_STATE_SUSPENDED:
2282 err = -ESTRPIPE;
2283 goto _end_unlock;
2284 default:
2285 break;
2286 }
2287 appl_ptr += frames;
2288 if (appl_ptr >= runtime->boundary)
2289 appl_ptr -= runtime->boundary;
2290 runtime->control->appl_ptr = appl_ptr;
2291 if (substream->ops->ack)
2292 substream->ops->ack(substream);
2293
2294 offset += frames;
2295 size -= frames;
2296 xfer += frames;
2297 avail -= frames;
2298 }
2299 _end_unlock:
2300 runtime->twake = 0;
2301 if (xfer > 0 && err >= 0)
2302 snd_pcm_update_state(substream, runtime);
2303 snd_pcm_stream_unlock_irq(substream);
2304 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2305 }
2306
2307 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2308 {
2309 struct snd_pcm_runtime *runtime;
2310 int nonblock;
2311 int err;
2312
2313 err = pcm_sanity_check(substream);
2314 if (err < 0)
2315 return err;
2316 runtime = substream->runtime;
2317 nonblock = !!(substream->f_flags & O_NONBLOCK);
2318 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2319 return -EINVAL;
2320 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2321 }
2322
2323 EXPORT_SYMBOL(snd_pcm_lib_read);
2324
2325 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2326 unsigned int hwoff,
2327 unsigned long data, unsigned int off,
2328 snd_pcm_uframes_t frames)
2329 {
2330 struct snd_pcm_runtime *runtime = substream->runtime;
2331 int err;
2332 void __user **bufs = (void __user **)data;
2333 int channels = runtime->channels;
2334 int c;
2335 if (substream->ops->copy) {
2336 for (c = 0; c < channels; ++c, ++bufs) {
2337 char __user *buf;
2338 if (*bufs == NULL)
2339 continue;
2340 buf = *bufs + samples_to_bytes(runtime, off);
2341 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2342 return err;
2343 }
2344 } else {
2345 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2346 for (c = 0; c < channels; ++c, ++bufs) {
2347 char *hwbuf;
2348 char __user *buf;
2349 if (*bufs == NULL)
2350 continue;
2351
2352 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2353 buf = *bufs + samples_to_bytes(runtime, off);
2354 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2355 return -EFAULT;
2356 }
2357 }
2358 return 0;
2359 }
2360
2361 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2362 void __user **bufs,
2363 snd_pcm_uframes_t frames)
2364 {
2365 struct snd_pcm_runtime *runtime;
2366 int nonblock;
2367 int err;
2368
2369 err = pcm_sanity_check(substream);
2370 if (err < 0)
2371 return err;
2372 runtime = substream->runtime;
2373 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2374 return -EBADFD;
2375
2376 nonblock = !!(substream->f_flags & O_NONBLOCK);
2377 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2378 return -EINVAL;
2379 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2380 }
2381
2382 EXPORT_SYMBOL(snd_pcm_lib_readv);
2383
2384 /*
2385 * standard channel mapping helpers
2386 */
2387
2388 /* default channel maps for multi-channel playbacks, up to 8 channels */
2389 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2390 { .channels = 1,
2391 .map = { SNDRV_CHMAP_MONO } },
2392 { .channels = 2,
2393 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2394 { .channels = 4,
2395 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2396 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2397 { .channels = 6,
2398 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2399 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2400 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2401 { .channels = 8,
2402 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2403 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2404 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2405 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2406 { }
2407 };
2408 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2409
2410 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2411 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2412 { .channels = 1,
2413 .map = { SNDRV_CHMAP_MONO } },
2414 { .channels = 2,
2415 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2416 { .channels = 4,
2417 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2418 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2419 { .channels = 6,
2420 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2421 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2422 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2423 { .channels = 8,
2424 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2425 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2426 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2427 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2428 { }
2429 };
2430 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2431
2432 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2433 {
2434 if (ch > info->max_channels)
2435 return false;
2436 return !info->channel_mask || (info->channel_mask & (1U << ch));
2437 }
2438
2439 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2440 struct snd_ctl_elem_info *uinfo)
2441 {
2442 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2443
2444 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2445 uinfo->count = 0;
2446 uinfo->count = info->max_channels;
2447 uinfo->value.integer.min = 0;
2448 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2449 return 0;
2450 }
2451
2452 /* get callback for channel map ctl element
2453 * stores the channel position firstly matching with the current channels
2454 */
2455 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2456 struct snd_ctl_elem_value *ucontrol)
2457 {
2458 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2459 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2460 struct snd_pcm_substream *substream;
2461 const struct snd_pcm_chmap_elem *map;
2462
2463 if (snd_BUG_ON(!info->chmap))
2464 return -EINVAL;
2465 substream = snd_pcm_chmap_substream(info, idx);
2466 if (!substream)
2467 return -ENODEV;
2468 memset(ucontrol->value.integer.value, 0,
2469 sizeof(ucontrol->value.integer.value));
2470 if (!substream->runtime)
2471 return 0; /* no channels set */
2472 for (map = info->chmap; map->channels; map++) {
2473 int i;
2474 if (map->channels == substream->runtime->channels &&
2475 valid_chmap_channels(info, map->channels)) {
2476 for (i = 0; i < map->channels; i++)
2477 ucontrol->value.integer.value[i] = map->map[i];
2478 return 0;
2479 }
2480 }
2481 return -EINVAL;
2482 }
2483
2484 /* tlv callback for channel map ctl element
2485 * expands the pre-defined channel maps in a form of TLV
2486 */
2487 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2488 unsigned int size, unsigned int __user *tlv)
2489 {
2490 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491 const struct snd_pcm_chmap_elem *map;
2492 unsigned int __user *dst;
2493 int c, count = 0;
2494
2495 if (snd_BUG_ON(!info->chmap))
2496 return -EINVAL;
2497 if (size < 8)
2498 return -ENOMEM;
2499 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2500 return -EFAULT;
2501 size -= 8;
2502 dst = tlv + 2;
2503 for (map = info->chmap; map->channels; map++) {
2504 int chs_bytes = map->channels * 4;
2505 if (!valid_chmap_channels(info, map->channels))
2506 continue;
2507 if (size < 8)
2508 return -ENOMEM;
2509 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2510 put_user(chs_bytes, dst + 1))
2511 return -EFAULT;
2512 dst += 2;
2513 size -= 8;
2514 count += 8;
2515 if (size < chs_bytes)
2516 return -ENOMEM;
2517 size -= chs_bytes;
2518 count += chs_bytes;
2519 for (c = 0; c < map->channels; c++) {
2520 if (put_user(map->map[c], dst))
2521 return -EFAULT;
2522 dst++;
2523 }
2524 }
2525 if (put_user(count, tlv + 1))
2526 return -EFAULT;
2527 return 0;
2528 }
2529
2530 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2531 {
2532 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2533 info->pcm->streams[info->stream].chmap_kctl = NULL;
2534 kfree(info);
2535 }
2536
2537 /**
2538 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2539 * @pcm: the assigned PCM instance
2540 * @stream: stream direction
2541 * @chmap: channel map elements (for query)
2542 * @max_channels: the max number of channels for the stream
2543 * @private_value: the value passed to each kcontrol's private_value field
2544 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2545 *
2546 * Create channel-mapping control elements assigned to the given PCM stream(s).
2547 * Return: Zero if successful, or a negative error value.
2548 */
2549 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2550 const struct snd_pcm_chmap_elem *chmap,
2551 int max_channels,
2552 unsigned long private_value,
2553 struct snd_pcm_chmap **info_ret)
2554 {
2555 struct snd_pcm_chmap *info;
2556 struct snd_kcontrol_new knew = {
2557 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2558 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2559 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2560 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2561 .info = pcm_chmap_ctl_info,
2562 .get = pcm_chmap_ctl_get,
2563 .tlv.c = pcm_chmap_ctl_tlv,
2564 };
2565 int err;
2566
2567 info = kzalloc(sizeof(*info), GFP_KERNEL);
2568 if (!info)
2569 return -ENOMEM;
2570 info->pcm = pcm;
2571 info->stream = stream;
2572 info->chmap = chmap;
2573 info->max_channels = max_channels;
2574 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2575 knew.name = "Playback Channel Map";
2576 else
2577 knew.name = "Capture Channel Map";
2578 knew.device = pcm->device;
2579 knew.count = pcm->streams[stream].substream_count;
2580 knew.private_value = private_value;
2581 info->kctl = snd_ctl_new1(&knew, info);
2582 if (!info->kctl) {
2583 kfree(info);
2584 return -ENOMEM;
2585 }
2586 info->kctl->private_free = pcm_chmap_ctl_private_free;
2587 err = snd_ctl_add(pcm->card, info->kctl);
2588 if (err < 0)
2589 return err;
2590 pcm->streams[stream].chmap_kctl = info->kctl;
2591 if (info_ret)
2592 *info_ret = info;
2593 return 0;
2594 }
2595 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
This page took 0.309505 seconds and 5 git commands to generate.