Merge tag 'drivers-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 /*
36 * fill ring buffer with silence
37 * runtime->silence_start: starting pointer to silence area
38 * runtime->silence_filled: size filled with silence
39 * runtime->silence_threshold: threshold from application
40 * runtime->silence_size: maximal size from application
41 *
42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43 */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 struct snd_pcm_runtime *runtime = substream->runtime;
47 snd_pcm_uframes_t frames, ofs, transfer;
48
49 if (runtime->silence_size < runtime->boundary) {
50 snd_pcm_sframes_t noise_dist, n;
51 if (runtime->silence_start != runtime->control->appl_ptr) {
52 n = runtime->control->appl_ptr - runtime->silence_start;
53 if (n < 0)
54 n += runtime->boundary;
55 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 runtime->silence_filled -= n;
57 else
58 runtime->silence_filled = 0;
59 runtime->silence_start = runtime->control->appl_ptr;
60 }
61 if (runtime->silence_filled >= runtime->buffer_size)
62 return;
63 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 return;
66 frames = runtime->silence_threshold - noise_dist;
67 if (frames > runtime->silence_size)
68 frames = runtime->silence_size;
69 } else {
70 if (new_hw_ptr == ULONG_MAX) { /* initialization */
71 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 if (avail > runtime->buffer_size)
73 avail = runtime->buffer_size;
74 runtime->silence_filled = avail > 0 ? avail : 0;
75 runtime->silence_start = (runtime->status->hw_ptr +
76 runtime->silence_filled) %
77 runtime->boundary;
78 } else {
79 ofs = runtime->status->hw_ptr;
80 frames = new_hw_ptr - ofs;
81 if ((snd_pcm_sframes_t)frames < 0)
82 frames += runtime->boundary;
83 runtime->silence_filled -= frames;
84 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 runtime->silence_filled = 0;
86 runtime->silence_start = new_hw_ptr;
87 } else {
88 runtime->silence_start = ofs;
89 }
90 }
91 frames = runtime->buffer_size - runtime->silence_filled;
92 }
93 if (snd_BUG_ON(frames > runtime->buffer_size))
94 return;
95 if (frames == 0)
96 return;
97 ofs = runtime->silence_start % runtime->buffer_size;
98 while (frames > 0) {
99 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 if (substream->ops->silence) {
103 int err;
104 err = substream->ops->silence(substream, -1, ofs, transfer);
105 snd_BUG_ON(err < 0);
106 } else {
107 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 }
110 } else {
111 unsigned int c;
112 unsigned int channels = runtime->channels;
113 if (substream->ops->silence) {
114 for (c = 0; c < channels; ++c) {
115 int err;
116 err = substream->ops->silence(substream, c, ofs, transfer);
117 snd_BUG_ON(err < 0);
118 }
119 } else {
120 size_t dma_csize = runtime->dma_bytes / channels;
121 for (c = 0; c < channels; ++c) {
122 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 }
125 }
126 }
127 runtime->silence_filled += transfer;
128 frames -= transfer;
129 ofs = 0;
130 }
131 }
132
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 char *name, size_t len)
136 {
137 snprintf(name, len, "pcmC%dD%d%c:%d",
138 substream->pcm->card->number,
139 substream->pcm->device,
140 substream->stream ? 'c' : 'p',
141 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145
146 #define XRUN_DEBUG_BASIC (1<<0)
147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask) 0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
164 dump_stack(); \
165 } while (0)
166
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 struct snd_pcm_runtime *runtime = substream->runtime;
170
171 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 char name[16];
176 snd_pcm_debug_name(substream, name, sizeof(name));
177 pcm_warn(substream->pcm, "XRUN: %s\n", name);
178 dump_stack_on_xrun(substream);
179 }
180 }
181
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...) \
184 do { \
185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
186 xrun_log_show(substream); \
187 pr_err_ratelimited("ALSA: PCM: " fmt, ##args); \
188 dump_stack_on_xrun(substream); \
189 } \
190 } while (0)
191
192 #define XRUN_LOG_CNT 10
193
194 struct hwptr_log_entry {
195 unsigned int in_interrupt;
196 unsigned long jiffies;
197 snd_pcm_uframes_t pos;
198 snd_pcm_uframes_t period_size;
199 snd_pcm_uframes_t buffer_size;
200 snd_pcm_uframes_t old_hw_ptr;
201 snd_pcm_uframes_t hw_ptr_base;
202 };
203
204 struct snd_pcm_hwptr_log {
205 unsigned int idx;
206 unsigned int hit: 1;
207 struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209
210 static void xrun_log(struct snd_pcm_substream *substream,
211 snd_pcm_uframes_t pos, int in_interrupt)
212 {
213 struct snd_pcm_runtime *runtime = substream->runtime;
214 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 struct hwptr_log_entry *entry;
216
217 if (log == NULL) {
218 log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 if (log == NULL)
220 return;
221 runtime->hwptr_log = log;
222 } else {
223 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 return;
225 }
226 entry = &log->entries[log->idx];
227 entry->in_interrupt = in_interrupt;
228 entry->jiffies = jiffies;
229 entry->pos = pos;
230 entry->period_size = runtime->period_size;
231 entry->buffer_size = runtime->buffer_size;
232 entry->old_hw_ptr = runtime->status->hw_ptr;
233 entry->hw_ptr_base = runtime->hw_ptr_base;
234 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236
237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 struct hwptr_log_entry *entry;
241 char name[16];
242 unsigned int idx;
243 int cnt;
244
245 if (log == NULL)
246 return;
247 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 return;
249 snd_pcm_debug_name(substream, name, sizeof(name));
250 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 entry = &log->entries[idx];
252 if (entry->period_size == 0)
253 break;
254 pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 "hwptr=%ld/%ld\n",
256 name, entry->in_interrupt ? "[Q] " : "",
257 entry->jiffies,
258 (unsigned long)entry->pos,
259 (unsigned long)entry->period_size,
260 (unsigned long)entry->buffer_size,
261 (unsigned long)entry->old_hw_ptr,
262 (unsigned long)entry->hw_ptr_base);
263 idx++;
264 idx %= XRUN_LOG_CNT;
265 }
266 log->hit = 1;
267 }
268
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
273 #define xrun_log_show(substream) do { } while (0)
274
275 #endif
276
277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 struct snd_pcm_runtime *runtime)
279 {
280 snd_pcm_uframes_t avail;
281
282 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 avail = snd_pcm_playback_avail(runtime);
284 else
285 avail = snd_pcm_capture_avail(runtime);
286 if (avail > runtime->avail_max)
287 runtime->avail_max = avail;
288 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 if (avail >= runtime->buffer_size) {
290 snd_pcm_drain_done(substream);
291 return -EPIPE;
292 }
293 } else {
294 if (avail >= runtime->stop_threshold) {
295 xrun(substream);
296 return -EPIPE;
297 }
298 }
299 if (runtime->twake) {
300 if (avail >= runtime->twake)
301 wake_up(&runtime->tsleep);
302 } else if (avail >= runtime->control->avail_min)
303 wake_up(&runtime->sleep);
304 return 0;
305 }
306
307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 unsigned int in_interrupt)
309 {
310 struct snd_pcm_runtime *runtime = substream->runtime;
311 snd_pcm_uframes_t pos;
312 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 snd_pcm_sframes_t hdelta, delta;
314 unsigned long jdelta;
315 unsigned long curr_jiffies;
316 struct timespec curr_tstamp;
317 struct timespec audio_tstamp;
318 int crossed_boundary = 0;
319
320 old_hw_ptr = runtime->status->hw_ptr;
321
322 /*
323 * group pointer, time and jiffies reads to allow for more
324 * accurate correlations/corrections.
325 * The values are stored at the end of this routine after
326 * corrections for hw_ptr position
327 */
328 pos = substream->ops->pointer(substream);
329 curr_jiffies = jiffies;
330 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
331 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
332
333 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
334 (substream->ops->wall_clock))
335 substream->ops->wall_clock(substream, &audio_tstamp);
336 }
337
338 if (pos == SNDRV_PCM_POS_XRUN) {
339 xrun(substream);
340 return -EPIPE;
341 }
342 if (pos >= runtime->buffer_size) {
343 if (printk_ratelimit()) {
344 char name[16];
345 snd_pcm_debug_name(substream, name, sizeof(name));
346 xrun_log_show(substream);
347 pcm_err(substream->pcm,
348 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
349 name, pos, runtime->buffer_size,
350 runtime->period_size);
351 }
352 pos = 0;
353 }
354 pos -= pos % runtime->min_align;
355 if (xrun_debug(substream, XRUN_DEBUG_LOG))
356 xrun_log(substream, pos, in_interrupt);
357 hw_base = runtime->hw_ptr_base;
358 new_hw_ptr = hw_base + pos;
359 if (in_interrupt) {
360 /* we know that one period was processed */
361 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
362 delta = runtime->hw_ptr_interrupt + runtime->period_size;
363 if (delta > new_hw_ptr) {
364 /* check for double acknowledged interrupts */
365 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
367 hw_base += runtime->buffer_size;
368 if (hw_base >= runtime->boundary) {
369 hw_base = 0;
370 crossed_boundary++;
371 }
372 new_hw_ptr = hw_base + pos;
373 goto __delta;
374 }
375 }
376 }
377 /* new_hw_ptr might be lower than old_hw_ptr in case when */
378 /* pointer crosses the end of the ring buffer */
379 if (new_hw_ptr < old_hw_ptr) {
380 hw_base += runtime->buffer_size;
381 if (hw_base >= runtime->boundary) {
382 hw_base = 0;
383 crossed_boundary++;
384 }
385 new_hw_ptr = hw_base + pos;
386 }
387 __delta:
388 delta = new_hw_ptr - old_hw_ptr;
389 if (delta < 0)
390 delta += runtime->boundary;
391 if (xrun_debug(substream, in_interrupt ?
392 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
393 char name[16];
394 snd_pcm_debug_name(substream, name, sizeof(name));
395 pcm_dbg(substream->pcm,
396 "%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
397 in_interrupt ? "period" : "hwptr",
398 name,
399 (unsigned int)pos,
400 (unsigned int)runtime->period_size,
401 (unsigned int)runtime->buffer_size,
402 (unsigned long)delta,
403 (unsigned long)old_hw_ptr,
404 (unsigned long)new_hw_ptr,
405 (unsigned long)runtime->hw_ptr_base);
406 }
407
408 if (runtime->no_period_wakeup) {
409 snd_pcm_sframes_t xrun_threshold;
410 /*
411 * Without regular period interrupts, we have to check
412 * the elapsed time to detect xruns.
413 */
414 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
415 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
416 goto no_delta_check;
417 hdelta = jdelta - delta * HZ / runtime->rate;
418 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
419 while (hdelta > xrun_threshold) {
420 delta += runtime->buffer_size;
421 hw_base += runtime->buffer_size;
422 if (hw_base >= runtime->boundary) {
423 hw_base = 0;
424 crossed_boundary++;
425 }
426 new_hw_ptr = hw_base + pos;
427 hdelta -= runtime->hw_ptr_buffer_jiffies;
428 }
429 goto no_delta_check;
430 }
431
432 /* something must be really wrong */
433 if (delta >= runtime->buffer_size + runtime->period_size) {
434 hw_ptr_error(substream,
435 "Unexpected hw_pointer value %s"
436 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
437 "old_hw_ptr=%ld)\n",
438 in_interrupt ? "[Q] " : "[P]",
439 substream->stream, (long)pos,
440 (long)new_hw_ptr, (long)old_hw_ptr);
441 return 0;
442 }
443
444 /* Do jiffies check only in xrun_debug mode */
445 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
446 goto no_jiffies_check;
447
448 /* Skip the jiffies check for hardwares with BATCH flag.
449 * Such hardware usually just increases the position at each IRQ,
450 * thus it can't give any strange position.
451 */
452 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
453 goto no_jiffies_check;
454 hdelta = delta;
455 if (hdelta < runtime->delay)
456 goto no_jiffies_check;
457 hdelta -= runtime->delay;
458 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
459 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
460 delta = jdelta /
461 (((runtime->period_size * HZ) / runtime->rate)
462 + HZ/100);
463 /* move new_hw_ptr according jiffies not pos variable */
464 new_hw_ptr = old_hw_ptr;
465 hw_base = delta;
466 /* use loop to avoid checks for delta overflows */
467 /* the delta value is small or zero in most cases */
468 while (delta > 0) {
469 new_hw_ptr += runtime->period_size;
470 if (new_hw_ptr >= runtime->boundary) {
471 new_hw_ptr -= runtime->boundary;
472 crossed_boundary--;
473 }
474 delta--;
475 }
476 /* align hw_base to buffer_size */
477 hw_ptr_error(substream,
478 "hw_ptr skipping! %s"
479 "(pos=%ld, delta=%ld, period=%ld, "
480 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
481 in_interrupt ? "[Q] " : "",
482 (long)pos, (long)hdelta,
483 (long)runtime->period_size, jdelta,
484 ((hdelta * HZ) / runtime->rate), hw_base,
485 (unsigned long)old_hw_ptr,
486 (unsigned long)new_hw_ptr);
487 /* reset values to proper state */
488 delta = 0;
489 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
490 }
491 no_jiffies_check:
492 if (delta > runtime->period_size + runtime->period_size / 2) {
493 hw_ptr_error(substream,
494 "Lost interrupts? %s"
495 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
496 "old_hw_ptr=%ld)\n",
497 in_interrupt ? "[Q] " : "",
498 substream->stream, (long)delta,
499 (long)new_hw_ptr,
500 (long)old_hw_ptr);
501 }
502
503 no_delta_check:
504 if (runtime->status->hw_ptr == new_hw_ptr)
505 return 0;
506
507 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
508 runtime->silence_size > 0)
509 snd_pcm_playback_silence(substream, new_hw_ptr);
510
511 if (in_interrupt) {
512 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
513 if (delta < 0)
514 delta += runtime->boundary;
515 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
516 runtime->hw_ptr_interrupt += delta;
517 if (runtime->hw_ptr_interrupt >= runtime->boundary)
518 runtime->hw_ptr_interrupt -= runtime->boundary;
519 }
520 runtime->hw_ptr_base = hw_base;
521 runtime->status->hw_ptr = new_hw_ptr;
522 runtime->hw_ptr_jiffies = curr_jiffies;
523 if (crossed_boundary) {
524 snd_BUG_ON(crossed_boundary != 1);
525 runtime->hw_ptr_wrap += runtime->boundary;
526 }
527 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
528 runtime->status->tstamp = curr_tstamp;
529
530 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
531 /*
532 * no wall clock available, provide audio timestamp
533 * derived from pointer position+delay
534 */
535 u64 audio_frames, audio_nsecs;
536
537 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
538 audio_frames = runtime->hw_ptr_wrap
539 + runtime->status->hw_ptr
540 - runtime->delay;
541 else
542 audio_frames = runtime->hw_ptr_wrap
543 + runtime->status->hw_ptr
544 + runtime->delay;
545 audio_nsecs = div_u64(audio_frames * 1000000000LL,
546 runtime->rate);
547 audio_tstamp = ns_to_timespec(audio_nsecs);
548 }
549 runtime->status->audio_tstamp = audio_tstamp;
550 }
551
552 return snd_pcm_update_state(substream, runtime);
553 }
554
555 /* CAUTION: call it with irq disabled */
556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
557 {
558 return snd_pcm_update_hw_ptr0(substream, 0);
559 }
560
561 /**
562 * snd_pcm_set_ops - set the PCM operators
563 * @pcm: the pcm instance
564 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
565 * @ops: the operator table
566 *
567 * Sets the given PCM operators to the pcm instance.
568 */
569 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
570 const struct snd_pcm_ops *ops)
571 {
572 struct snd_pcm_str *stream = &pcm->streams[direction];
573 struct snd_pcm_substream *substream;
574
575 for (substream = stream->substream; substream != NULL; substream = substream->next)
576 substream->ops = ops;
577 }
578
579 EXPORT_SYMBOL(snd_pcm_set_ops);
580
581 /**
582 * snd_pcm_sync - set the PCM sync id
583 * @substream: the pcm substream
584 *
585 * Sets the PCM sync identifier for the card.
586 */
587 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
588 {
589 struct snd_pcm_runtime *runtime = substream->runtime;
590
591 runtime->sync.id32[0] = substream->pcm->card->number;
592 runtime->sync.id32[1] = -1;
593 runtime->sync.id32[2] = -1;
594 runtime->sync.id32[3] = -1;
595 }
596
597 EXPORT_SYMBOL(snd_pcm_set_sync);
598
599 /*
600 * Standard ioctl routine
601 */
602
603 static inline unsigned int div32(unsigned int a, unsigned int b,
604 unsigned int *r)
605 {
606 if (b == 0) {
607 *r = 0;
608 return UINT_MAX;
609 }
610 *r = a % b;
611 return a / b;
612 }
613
614 static inline unsigned int div_down(unsigned int a, unsigned int b)
615 {
616 if (b == 0)
617 return UINT_MAX;
618 return a / b;
619 }
620
621 static inline unsigned int div_up(unsigned int a, unsigned int b)
622 {
623 unsigned int r;
624 unsigned int q;
625 if (b == 0)
626 return UINT_MAX;
627 q = div32(a, b, &r);
628 if (r)
629 ++q;
630 return q;
631 }
632
633 static inline unsigned int mul(unsigned int a, unsigned int b)
634 {
635 if (a == 0)
636 return 0;
637 if (div_down(UINT_MAX, a) < b)
638 return UINT_MAX;
639 return a * b;
640 }
641
642 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
643 unsigned int c, unsigned int *r)
644 {
645 u_int64_t n = (u_int64_t) a * b;
646 if (c == 0) {
647 snd_BUG_ON(!n);
648 *r = 0;
649 return UINT_MAX;
650 }
651 n = div_u64_rem(n, c, r);
652 if (n >= UINT_MAX) {
653 *r = 0;
654 return UINT_MAX;
655 }
656 return n;
657 }
658
659 /**
660 * snd_interval_refine - refine the interval value of configurator
661 * @i: the interval value to refine
662 * @v: the interval value to refer to
663 *
664 * Refines the interval value with the reference value.
665 * The interval is changed to the range satisfying both intervals.
666 * The interval status (min, max, integer, etc.) are evaluated.
667 *
668 * Return: Positive if the value is changed, zero if it's not changed, or a
669 * negative error code.
670 */
671 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
672 {
673 int changed = 0;
674 if (snd_BUG_ON(snd_interval_empty(i)))
675 return -EINVAL;
676 if (i->min < v->min) {
677 i->min = v->min;
678 i->openmin = v->openmin;
679 changed = 1;
680 } else if (i->min == v->min && !i->openmin && v->openmin) {
681 i->openmin = 1;
682 changed = 1;
683 }
684 if (i->max > v->max) {
685 i->max = v->max;
686 i->openmax = v->openmax;
687 changed = 1;
688 } else if (i->max == v->max && !i->openmax && v->openmax) {
689 i->openmax = 1;
690 changed = 1;
691 }
692 if (!i->integer && v->integer) {
693 i->integer = 1;
694 changed = 1;
695 }
696 if (i->integer) {
697 if (i->openmin) {
698 i->min++;
699 i->openmin = 0;
700 }
701 if (i->openmax) {
702 i->max--;
703 i->openmax = 0;
704 }
705 } else if (!i->openmin && !i->openmax && i->min == i->max)
706 i->integer = 1;
707 if (snd_interval_checkempty(i)) {
708 snd_interval_none(i);
709 return -EINVAL;
710 }
711 return changed;
712 }
713
714 EXPORT_SYMBOL(snd_interval_refine);
715
716 static int snd_interval_refine_first(struct snd_interval *i)
717 {
718 if (snd_BUG_ON(snd_interval_empty(i)))
719 return -EINVAL;
720 if (snd_interval_single(i))
721 return 0;
722 i->max = i->min;
723 i->openmax = i->openmin;
724 if (i->openmax)
725 i->max++;
726 return 1;
727 }
728
729 static int snd_interval_refine_last(struct snd_interval *i)
730 {
731 if (snd_BUG_ON(snd_interval_empty(i)))
732 return -EINVAL;
733 if (snd_interval_single(i))
734 return 0;
735 i->min = i->max;
736 i->openmin = i->openmax;
737 if (i->openmin)
738 i->min--;
739 return 1;
740 }
741
742 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
743 {
744 if (a->empty || b->empty) {
745 snd_interval_none(c);
746 return;
747 }
748 c->empty = 0;
749 c->min = mul(a->min, b->min);
750 c->openmin = (a->openmin || b->openmin);
751 c->max = mul(a->max, b->max);
752 c->openmax = (a->openmax || b->openmax);
753 c->integer = (a->integer && b->integer);
754 }
755
756 /**
757 * snd_interval_div - refine the interval value with division
758 * @a: dividend
759 * @b: divisor
760 * @c: quotient
761 *
762 * c = a / b
763 *
764 * Returns non-zero if the value is changed, zero if not changed.
765 */
766 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
767 {
768 unsigned int r;
769 if (a->empty || b->empty) {
770 snd_interval_none(c);
771 return;
772 }
773 c->empty = 0;
774 c->min = div32(a->min, b->max, &r);
775 c->openmin = (r || a->openmin || b->openmax);
776 if (b->min > 0) {
777 c->max = div32(a->max, b->min, &r);
778 if (r) {
779 c->max++;
780 c->openmax = 1;
781 } else
782 c->openmax = (a->openmax || b->openmin);
783 } else {
784 c->max = UINT_MAX;
785 c->openmax = 0;
786 }
787 c->integer = 0;
788 }
789
790 /**
791 * snd_interval_muldivk - refine the interval value
792 * @a: dividend 1
793 * @b: dividend 2
794 * @k: divisor (as integer)
795 * @c: result
796 *
797 * c = a * b / k
798 *
799 * Returns non-zero if the value is changed, zero if not changed.
800 */
801 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
802 unsigned int k, struct snd_interval *c)
803 {
804 unsigned int r;
805 if (a->empty || b->empty) {
806 snd_interval_none(c);
807 return;
808 }
809 c->empty = 0;
810 c->min = muldiv32(a->min, b->min, k, &r);
811 c->openmin = (r || a->openmin || b->openmin);
812 c->max = muldiv32(a->max, b->max, k, &r);
813 if (r) {
814 c->max++;
815 c->openmax = 1;
816 } else
817 c->openmax = (a->openmax || b->openmax);
818 c->integer = 0;
819 }
820
821 /**
822 * snd_interval_mulkdiv - refine the interval value
823 * @a: dividend 1
824 * @k: dividend 2 (as integer)
825 * @b: divisor
826 * @c: result
827 *
828 * c = a * k / b
829 *
830 * Returns non-zero if the value is changed, zero if not changed.
831 */
832 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
833 const struct snd_interval *b, struct snd_interval *c)
834 {
835 unsigned int r;
836 if (a->empty || b->empty) {
837 snd_interval_none(c);
838 return;
839 }
840 c->empty = 0;
841 c->min = muldiv32(a->min, k, b->max, &r);
842 c->openmin = (r || a->openmin || b->openmax);
843 if (b->min > 0) {
844 c->max = muldiv32(a->max, k, b->min, &r);
845 if (r) {
846 c->max++;
847 c->openmax = 1;
848 } else
849 c->openmax = (a->openmax || b->openmin);
850 } else {
851 c->max = UINT_MAX;
852 c->openmax = 0;
853 }
854 c->integer = 0;
855 }
856
857 /* ---- */
858
859
860 /**
861 * snd_interval_ratnum - refine the interval value
862 * @i: interval to refine
863 * @rats_count: number of ratnum_t
864 * @rats: ratnum_t array
865 * @nump: pointer to store the resultant numerator
866 * @denp: pointer to store the resultant denominator
867 *
868 * Return: Positive if the value is changed, zero if it's not changed, or a
869 * negative error code.
870 */
871 int snd_interval_ratnum(struct snd_interval *i,
872 unsigned int rats_count, struct snd_ratnum *rats,
873 unsigned int *nump, unsigned int *denp)
874 {
875 unsigned int best_num, best_den;
876 int best_diff;
877 unsigned int k;
878 struct snd_interval t;
879 int err;
880 unsigned int result_num, result_den;
881 int result_diff;
882
883 best_num = best_den = best_diff = 0;
884 for (k = 0; k < rats_count; ++k) {
885 unsigned int num = rats[k].num;
886 unsigned int den;
887 unsigned int q = i->min;
888 int diff;
889 if (q == 0)
890 q = 1;
891 den = div_up(num, q);
892 if (den < rats[k].den_min)
893 continue;
894 if (den > rats[k].den_max)
895 den = rats[k].den_max;
896 else {
897 unsigned int r;
898 r = (den - rats[k].den_min) % rats[k].den_step;
899 if (r != 0)
900 den -= r;
901 }
902 diff = num - q * den;
903 if (diff < 0)
904 diff = -diff;
905 if (best_num == 0 ||
906 diff * best_den < best_diff * den) {
907 best_diff = diff;
908 best_den = den;
909 best_num = num;
910 }
911 }
912 if (best_den == 0) {
913 i->empty = 1;
914 return -EINVAL;
915 }
916 t.min = div_down(best_num, best_den);
917 t.openmin = !!(best_num % best_den);
918
919 result_num = best_num;
920 result_diff = best_diff;
921 result_den = best_den;
922 best_num = best_den = best_diff = 0;
923 for (k = 0; k < rats_count; ++k) {
924 unsigned int num = rats[k].num;
925 unsigned int den;
926 unsigned int q = i->max;
927 int diff;
928 if (q == 0) {
929 i->empty = 1;
930 return -EINVAL;
931 }
932 den = div_down(num, q);
933 if (den > rats[k].den_max)
934 continue;
935 if (den < rats[k].den_min)
936 den = rats[k].den_min;
937 else {
938 unsigned int r;
939 r = (den - rats[k].den_min) % rats[k].den_step;
940 if (r != 0)
941 den += rats[k].den_step - r;
942 }
943 diff = q * den - num;
944 if (diff < 0)
945 diff = -diff;
946 if (best_num == 0 ||
947 diff * best_den < best_diff * den) {
948 best_diff = diff;
949 best_den = den;
950 best_num = num;
951 }
952 }
953 if (best_den == 0) {
954 i->empty = 1;
955 return -EINVAL;
956 }
957 t.max = div_up(best_num, best_den);
958 t.openmax = !!(best_num % best_den);
959 t.integer = 0;
960 err = snd_interval_refine(i, &t);
961 if (err < 0)
962 return err;
963
964 if (snd_interval_single(i)) {
965 if (best_diff * result_den < result_diff * best_den) {
966 result_num = best_num;
967 result_den = best_den;
968 }
969 if (nump)
970 *nump = result_num;
971 if (denp)
972 *denp = result_den;
973 }
974 return err;
975 }
976
977 EXPORT_SYMBOL(snd_interval_ratnum);
978
979 /**
980 * snd_interval_ratden - refine the interval value
981 * @i: interval to refine
982 * @rats_count: number of struct ratden
983 * @rats: struct ratden array
984 * @nump: pointer to store the resultant numerator
985 * @denp: pointer to store the resultant denominator
986 *
987 * Return: Positive if the value is changed, zero if it's not changed, or a
988 * negative error code.
989 */
990 static int snd_interval_ratden(struct snd_interval *i,
991 unsigned int rats_count, struct snd_ratden *rats,
992 unsigned int *nump, unsigned int *denp)
993 {
994 unsigned int best_num, best_diff, best_den;
995 unsigned int k;
996 struct snd_interval t;
997 int err;
998
999 best_num = best_den = best_diff = 0;
1000 for (k = 0; k < rats_count; ++k) {
1001 unsigned int num;
1002 unsigned int den = rats[k].den;
1003 unsigned int q = i->min;
1004 int diff;
1005 num = mul(q, den);
1006 if (num > rats[k].num_max)
1007 continue;
1008 if (num < rats[k].num_min)
1009 num = rats[k].num_max;
1010 else {
1011 unsigned int r;
1012 r = (num - rats[k].num_min) % rats[k].num_step;
1013 if (r != 0)
1014 num += rats[k].num_step - r;
1015 }
1016 diff = num - q * den;
1017 if (best_num == 0 ||
1018 diff * best_den < best_diff * den) {
1019 best_diff = diff;
1020 best_den = den;
1021 best_num = num;
1022 }
1023 }
1024 if (best_den == 0) {
1025 i->empty = 1;
1026 return -EINVAL;
1027 }
1028 t.min = div_down(best_num, best_den);
1029 t.openmin = !!(best_num % best_den);
1030
1031 best_num = best_den = best_diff = 0;
1032 for (k = 0; k < rats_count; ++k) {
1033 unsigned int num;
1034 unsigned int den = rats[k].den;
1035 unsigned int q = i->max;
1036 int diff;
1037 num = mul(q, den);
1038 if (num < rats[k].num_min)
1039 continue;
1040 if (num > rats[k].num_max)
1041 num = rats[k].num_max;
1042 else {
1043 unsigned int r;
1044 r = (num - rats[k].num_min) % rats[k].num_step;
1045 if (r != 0)
1046 num -= r;
1047 }
1048 diff = q * den - num;
1049 if (best_num == 0 ||
1050 diff * best_den < best_diff * den) {
1051 best_diff = diff;
1052 best_den = den;
1053 best_num = num;
1054 }
1055 }
1056 if (best_den == 0) {
1057 i->empty = 1;
1058 return -EINVAL;
1059 }
1060 t.max = div_up(best_num, best_den);
1061 t.openmax = !!(best_num % best_den);
1062 t.integer = 0;
1063 err = snd_interval_refine(i, &t);
1064 if (err < 0)
1065 return err;
1066
1067 if (snd_interval_single(i)) {
1068 if (nump)
1069 *nump = best_num;
1070 if (denp)
1071 *denp = best_den;
1072 }
1073 return err;
1074 }
1075
1076 /**
1077 * snd_interval_list - refine the interval value from the list
1078 * @i: the interval value to refine
1079 * @count: the number of elements in the list
1080 * @list: the value list
1081 * @mask: the bit-mask to evaluate
1082 *
1083 * Refines the interval value from the list.
1084 * When mask is non-zero, only the elements corresponding to bit 1 are
1085 * evaluated.
1086 *
1087 * Return: Positive if the value is changed, zero if it's not changed, or a
1088 * negative error code.
1089 */
1090 int snd_interval_list(struct snd_interval *i, unsigned int count,
1091 const unsigned int *list, unsigned int mask)
1092 {
1093 unsigned int k;
1094 struct snd_interval list_range;
1095
1096 if (!count) {
1097 i->empty = 1;
1098 return -EINVAL;
1099 }
1100 snd_interval_any(&list_range);
1101 list_range.min = UINT_MAX;
1102 list_range.max = 0;
1103 for (k = 0; k < count; k++) {
1104 if (mask && !(mask & (1 << k)))
1105 continue;
1106 if (!snd_interval_test(i, list[k]))
1107 continue;
1108 list_range.min = min(list_range.min, list[k]);
1109 list_range.max = max(list_range.max, list[k]);
1110 }
1111 return snd_interval_refine(i, &list_range);
1112 }
1113
1114 EXPORT_SYMBOL(snd_interval_list);
1115
1116 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1117 {
1118 unsigned int n;
1119 int changed = 0;
1120 n = (i->min - min) % step;
1121 if (n != 0 || i->openmin) {
1122 i->min += step - n;
1123 changed = 1;
1124 }
1125 n = (i->max - min) % step;
1126 if (n != 0 || i->openmax) {
1127 i->max -= n;
1128 changed = 1;
1129 }
1130 if (snd_interval_checkempty(i)) {
1131 i->empty = 1;
1132 return -EINVAL;
1133 }
1134 return changed;
1135 }
1136
1137 /* Info constraints helpers */
1138
1139 /**
1140 * snd_pcm_hw_rule_add - add the hw-constraint rule
1141 * @runtime: the pcm runtime instance
1142 * @cond: condition bits
1143 * @var: the variable to evaluate
1144 * @func: the evaluation function
1145 * @private: the private data pointer passed to function
1146 * @dep: the dependent variables
1147 *
1148 * Return: Zero if successful, or a negative error code on failure.
1149 */
1150 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1151 int var,
1152 snd_pcm_hw_rule_func_t func, void *private,
1153 int dep, ...)
1154 {
1155 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1156 struct snd_pcm_hw_rule *c;
1157 unsigned int k;
1158 va_list args;
1159 va_start(args, dep);
1160 if (constrs->rules_num >= constrs->rules_all) {
1161 struct snd_pcm_hw_rule *new;
1162 unsigned int new_rules = constrs->rules_all + 16;
1163 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1164 if (!new) {
1165 va_end(args);
1166 return -ENOMEM;
1167 }
1168 if (constrs->rules) {
1169 memcpy(new, constrs->rules,
1170 constrs->rules_num * sizeof(*c));
1171 kfree(constrs->rules);
1172 }
1173 constrs->rules = new;
1174 constrs->rules_all = new_rules;
1175 }
1176 c = &constrs->rules[constrs->rules_num];
1177 c->cond = cond;
1178 c->func = func;
1179 c->var = var;
1180 c->private = private;
1181 k = 0;
1182 while (1) {
1183 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1184 va_end(args);
1185 return -EINVAL;
1186 }
1187 c->deps[k++] = dep;
1188 if (dep < 0)
1189 break;
1190 dep = va_arg(args, int);
1191 }
1192 constrs->rules_num++;
1193 va_end(args);
1194 return 0;
1195 }
1196
1197 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1198
1199 /**
1200 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1201 * @runtime: PCM runtime instance
1202 * @var: hw_params variable to apply the mask
1203 * @mask: the bitmap mask
1204 *
1205 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1206 *
1207 * Return: Zero if successful, or a negative error code on failure.
1208 */
1209 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1210 u_int32_t mask)
1211 {
1212 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1213 struct snd_mask *maskp = constrs_mask(constrs, var);
1214 *maskp->bits &= mask;
1215 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1216 if (*maskp->bits == 0)
1217 return -EINVAL;
1218 return 0;
1219 }
1220
1221 /**
1222 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1223 * @runtime: PCM runtime instance
1224 * @var: hw_params variable to apply the mask
1225 * @mask: the 64bit bitmap mask
1226 *
1227 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1228 *
1229 * Return: Zero if successful, or a negative error code on failure.
1230 */
1231 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1232 u_int64_t mask)
1233 {
1234 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1235 struct snd_mask *maskp = constrs_mask(constrs, var);
1236 maskp->bits[0] &= (u_int32_t)mask;
1237 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1238 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1239 if (! maskp->bits[0] && ! maskp->bits[1])
1240 return -EINVAL;
1241 return 0;
1242 }
1243 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1244
1245 /**
1246 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1247 * @runtime: PCM runtime instance
1248 * @var: hw_params variable to apply the integer constraint
1249 *
1250 * Apply the constraint of integer to an interval parameter.
1251 *
1252 * Return: Positive if the value is changed, zero if it's not changed, or a
1253 * negative error code.
1254 */
1255 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1256 {
1257 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1258 return snd_interval_setinteger(constrs_interval(constrs, var));
1259 }
1260
1261 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1262
1263 /**
1264 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1265 * @runtime: PCM runtime instance
1266 * @var: hw_params variable to apply the range
1267 * @min: the minimal value
1268 * @max: the maximal value
1269 *
1270 * Apply the min/max range constraint to an interval parameter.
1271 *
1272 * Return: Positive if the value is changed, zero if it's not changed, or a
1273 * negative error code.
1274 */
1275 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1276 unsigned int min, unsigned int max)
1277 {
1278 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1279 struct snd_interval t;
1280 t.min = min;
1281 t.max = max;
1282 t.openmin = t.openmax = 0;
1283 t.integer = 0;
1284 return snd_interval_refine(constrs_interval(constrs, var), &t);
1285 }
1286
1287 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1288
1289 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1290 struct snd_pcm_hw_rule *rule)
1291 {
1292 struct snd_pcm_hw_constraint_list *list = rule->private;
1293 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1294 }
1295
1296
1297 /**
1298 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1299 * @runtime: PCM runtime instance
1300 * @cond: condition bits
1301 * @var: hw_params variable to apply the list constraint
1302 * @l: list
1303 *
1304 * Apply the list of constraints to an interval parameter.
1305 *
1306 * Return: Zero if successful, or a negative error code on failure.
1307 */
1308 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1309 unsigned int cond,
1310 snd_pcm_hw_param_t var,
1311 const struct snd_pcm_hw_constraint_list *l)
1312 {
1313 return snd_pcm_hw_rule_add(runtime, cond, var,
1314 snd_pcm_hw_rule_list, (void *)l,
1315 var, -1);
1316 }
1317
1318 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1319
1320 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1321 struct snd_pcm_hw_rule *rule)
1322 {
1323 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1324 unsigned int num = 0, den = 0;
1325 int err;
1326 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1327 r->nrats, r->rats, &num, &den);
1328 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1329 params->rate_num = num;
1330 params->rate_den = den;
1331 }
1332 return err;
1333 }
1334
1335 /**
1336 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1337 * @runtime: PCM runtime instance
1338 * @cond: condition bits
1339 * @var: hw_params variable to apply the ratnums constraint
1340 * @r: struct snd_ratnums constriants
1341 *
1342 * Return: Zero if successful, or a negative error code on failure.
1343 */
1344 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1345 unsigned int cond,
1346 snd_pcm_hw_param_t var,
1347 struct snd_pcm_hw_constraint_ratnums *r)
1348 {
1349 return snd_pcm_hw_rule_add(runtime, cond, var,
1350 snd_pcm_hw_rule_ratnums, r,
1351 var, -1);
1352 }
1353
1354 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1355
1356 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1357 struct snd_pcm_hw_rule *rule)
1358 {
1359 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1360 unsigned int num = 0, den = 0;
1361 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1362 r->nrats, r->rats, &num, &den);
1363 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1364 params->rate_num = num;
1365 params->rate_den = den;
1366 }
1367 return err;
1368 }
1369
1370 /**
1371 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1372 * @runtime: PCM runtime instance
1373 * @cond: condition bits
1374 * @var: hw_params variable to apply the ratdens constraint
1375 * @r: struct snd_ratdens constriants
1376 *
1377 * Return: Zero if successful, or a negative error code on failure.
1378 */
1379 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1380 unsigned int cond,
1381 snd_pcm_hw_param_t var,
1382 struct snd_pcm_hw_constraint_ratdens *r)
1383 {
1384 return snd_pcm_hw_rule_add(runtime, cond, var,
1385 snd_pcm_hw_rule_ratdens, r,
1386 var, -1);
1387 }
1388
1389 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1390
1391 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1392 struct snd_pcm_hw_rule *rule)
1393 {
1394 unsigned int l = (unsigned long) rule->private;
1395 int width = l & 0xffff;
1396 unsigned int msbits = l >> 16;
1397 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1398 if (snd_interval_single(i) && snd_interval_value(i) == width)
1399 params->msbits = msbits;
1400 return 0;
1401 }
1402
1403 /**
1404 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405 * @runtime: PCM runtime instance
1406 * @cond: condition bits
1407 * @width: sample bits width
1408 * @msbits: msbits width
1409 *
1410 * Return: Zero if successful, or a negative error code on failure.
1411 */
1412 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1413 unsigned int cond,
1414 unsigned int width,
1415 unsigned int msbits)
1416 {
1417 unsigned long l = (msbits << 16) | width;
1418 return snd_pcm_hw_rule_add(runtime, cond, -1,
1419 snd_pcm_hw_rule_msbits,
1420 (void*) l,
1421 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422 }
1423
1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425
1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427 struct snd_pcm_hw_rule *rule)
1428 {
1429 unsigned long step = (unsigned long) rule->private;
1430 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1431 }
1432
1433 /**
1434 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435 * @runtime: PCM runtime instance
1436 * @cond: condition bits
1437 * @var: hw_params variable to apply the step constraint
1438 * @step: step size
1439 *
1440 * Return: Zero if successful, or a negative error code on failure.
1441 */
1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443 unsigned int cond,
1444 snd_pcm_hw_param_t var,
1445 unsigned long step)
1446 {
1447 return snd_pcm_hw_rule_add(runtime, cond, var,
1448 snd_pcm_hw_rule_step, (void *) step,
1449 var, -1);
1450 }
1451
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455 {
1456 static unsigned int pow2_sizes[] = {
1457 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461 };
1462 return snd_interval_list(hw_param_interval(params, rule->var),
1463 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 }
1465
1466 /**
1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468 * @runtime: PCM runtime instance
1469 * @cond: condition bits
1470 * @var: hw_params variable to apply the power-of-2 constraint
1471 *
1472 * Return: Zero if successful, or a negative error code on failure.
1473 */
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475 unsigned int cond,
1476 snd_pcm_hw_param_t var)
1477 {
1478 return snd_pcm_hw_rule_add(runtime, cond, var,
1479 snd_pcm_hw_rule_pow2, NULL,
1480 var, -1);
1481 }
1482
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486 struct snd_pcm_hw_rule *rule)
1487 {
1488 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489 struct snd_interval *rate;
1490
1491 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492 return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494
1495 /**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503 unsigned int base_rate)
1504 {
1505 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506 SNDRV_PCM_HW_PARAM_RATE,
1507 snd_pcm_hw_rule_noresample_func,
1508 (void *)(uintptr_t)base_rate,
1509 SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514 snd_pcm_hw_param_t var)
1515 {
1516 if (hw_is_mask(var)) {
1517 snd_mask_any(hw_param_mask(params, var));
1518 params->cmask |= 1 << var;
1519 params->rmask |= 1 << var;
1520 return;
1521 }
1522 if (hw_is_interval(var)) {
1523 snd_interval_any(hw_param_interval(params, var));
1524 params->cmask |= 1 << var;
1525 params->rmask |= 1 << var;
1526 return;
1527 }
1528 snd_BUG();
1529 }
1530
1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533 unsigned int k;
1534 memset(params, 0, sizeof(*params));
1535 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536 _snd_pcm_hw_param_any(params, k);
1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538 _snd_pcm_hw_param_any(params, k);
1539 params->info = ~0U;
1540 }
1541
1542 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543
1544 /**
1545 * snd_pcm_hw_param_value - return @params field @var value
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Return: The value for field @var if it's fixed in configuration space
1551 * defined by @params. -%EINVAL otherwise.
1552 */
1553 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554 snd_pcm_hw_param_t var, int *dir)
1555 {
1556 if (hw_is_mask(var)) {
1557 const struct snd_mask *mask = hw_param_mask_c(params, var);
1558 if (!snd_mask_single(mask))
1559 return -EINVAL;
1560 if (dir)
1561 *dir = 0;
1562 return snd_mask_value(mask);
1563 }
1564 if (hw_is_interval(var)) {
1565 const struct snd_interval *i = hw_param_interval_c(params, var);
1566 if (!snd_interval_single(i))
1567 return -EINVAL;
1568 if (dir)
1569 *dir = i->openmin;
1570 return snd_interval_value(i);
1571 }
1572 return -EINVAL;
1573 }
1574
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578 snd_pcm_hw_param_t var)
1579 {
1580 if (hw_is_mask(var)) {
1581 snd_mask_none(hw_param_mask(params, var));
1582 params->cmask |= 1 << var;
1583 params->rmask |= 1 << var;
1584 } else if (hw_is_interval(var)) {
1585 snd_interval_none(hw_param_interval(params, var));
1586 params->cmask |= 1 << var;
1587 params->rmask |= 1 << var;
1588 } else {
1589 snd_BUG();
1590 }
1591 }
1592
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596 snd_pcm_hw_param_t var)
1597 {
1598 int changed;
1599 if (hw_is_mask(var))
1600 changed = snd_mask_refine_first(hw_param_mask(params, var));
1601 else if (hw_is_interval(var))
1602 changed = snd_interval_refine_first(hw_param_interval(params, var));
1603 else
1604 return -EINVAL;
1605 if (changed) {
1606 params->cmask |= 1 << var;
1607 params->rmask |= 1 << var;
1608 }
1609 return changed;
1610 }
1611
1612
1613 /**
1614 * snd_pcm_hw_param_first - refine config space and return minimum value
1615 * @pcm: PCM instance
1616 * @params: the hw_params instance
1617 * @var: parameter to retrieve
1618 * @dir: pointer to the direction (-1,0,1) or %NULL
1619 *
1620 * Inside configuration space defined by @params remove from @var all
1621 * values > minimum. Reduce configuration space accordingly.
1622 *
1623 * Return: The minimum, or a negative error code on failure.
1624 */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1626 struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var, int *dir)
1628 {
1629 int changed = _snd_pcm_hw_param_first(params, var);
1630 if (changed < 0)
1631 return changed;
1632 if (params->rmask) {
1633 int err = snd_pcm_hw_refine(pcm, params);
1634 if (snd_BUG_ON(err < 0))
1635 return err;
1636 }
1637 return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643 snd_pcm_hw_param_t var)
1644 {
1645 int changed;
1646 if (hw_is_mask(var))
1647 changed = snd_mask_refine_last(hw_param_mask(params, var));
1648 else if (hw_is_interval(var))
1649 changed = snd_interval_refine_last(hw_param_interval(params, var));
1650 else
1651 return -EINVAL;
1652 if (changed) {
1653 params->cmask |= 1 << var;
1654 params->rmask |= 1 << var;
1655 }
1656 return changed;
1657 }
1658
1659
1660 /**
1661 * snd_pcm_hw_param_last - refine config space and return maximum value
1662 * @pcm: PCM instance
1663 * @params: the hw_params instance
1664 * @var: parameter to retrieve
1665 * @dir: pointer to the direction (-1,0,1) or %NULL
1666 *
1667 * Inside configuration space defined by @params remove from @var all
1668 * values < maximum. Reduce configuration space accordingly.
1669 *
1670 * Return: The maximum, or a negative error code on failure.
1671 */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1673 struct snd_pcm_hw_params *params,
1674 snd_pcm_hw_param_t var, int *dir)
1675 {
1676 int changed = _snd_pcm_hw_param_last(params, var);
1677 if (changed < 0)
1678 return changed;
1679 if (params->rmask) {
1680 int err = snd_pcm_hw_refine(pcm, params);
1681 if (snd_BUG_ON(err < 0))
1682 return err;
1683 }
1684 return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686
1687 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688
1689 /**
1690 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691 * @pcm: PCM instance
1692 * @params: the hw_params instance
1693 *
1694 * Choose one configuration from configuration space defined by @params.
1695 * The configuration chosen is that obtained fixing in this order:
1696 * first access, first format, first subformat, min channels,
1697 * min rate, min period time, max buffer size, min tick time
1698 *
1699 * Return: Zero if successful, or a negative error code on failure.
1700 */
1701 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702 struct snd_pcm_hw_params *params)
1703 {
1704 static int vars[] = {
1705 SNDRV_PCM_HW_PARAM_ACCESS,
1706 SNDRV_PCM_HW_PARAM_FORMAT,
1707 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708 SNDRV_PCM_HW_PARAM_CHANNELS,
1709 SNDRV_PCM_HW_PARAM_RATE,
1710 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712 SNDRV_PCM_HW_PARAM_TICK_TIME,
1713 -1
1714 };
1715 int err, *v;
1716
1717 for (v = vars; *v != -1; v++) {
1718 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720 else
1721 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722 if (snd_BUG_ON(err < 0))
1723 return err;
1724 }
1725 return 0;
1726 }
1727
1728 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729 void *arg)
1730 {
1731 struct snd_pcm_runtime *runtime = substream->runtime;
1732 unsigned long flags;
1733 snd_pcm_stream_lock_irqsave(substream, flags);
1734 if (snd_pcm_running(substream) &&
1735 snd_pcm_update_hw_ptr(substream) >= 0)
1736 runtime->status->hw_ptr %= runtime->buffer_size;
1737 else {
1738 runtime->status->hw_ptr = 0;
1739 runtime->hw_ptr_wrap = 0;
1740 }
1741 snd_pcm_stream_unlock_irqrestore(substream, flags);
1742 return 0;
1743 }
1744
1745 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746 void *arg)
1747 {
1748 struct snd_pcm_channel_info *info = arg;
1749 struct snd_pcm_runtime *runtime = substream->runtime;
1750 int width;
1751 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752 info->offset = -1;
1753 return 0;
1754 }
1755 width = snd_pcm_format_physical_width(runtime->format);
1756 if (width < 0)
1757 return width;
1758 info->offset = 0;
1759 switch (runtime->access) {
1760 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762 info->first = info->channel * width;
1763 info->step = runtime->channels * width;
1764 break;
1765 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767 {
1768 size_t size = runtime->dma_bytes / runtime->channels;
1769 info->first = info->channel * size * 8;
1770 info->step = width;
1771 break;
1772 }
1773 default:
1774 snd_BUG();
1775 break;
1776 }
1777 return 0;
1778 }
1779
1780 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781 void *arg)
1782 {
1783 struct snd_pcm_hw_params *params = arg;
1784 snd_pcm_format_t format;
1785 int channels, width;
1786
1787 params->fifo_size = substream->runtime->hw.fifo_size;
1788 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1789 format = params_format(params);
1790 channels = params_channels(params);
1791 width = snd_pcm_format_physical_width(format);
1792 params->fifo_size /= width * channels;
1793 }
1794 return 0;
1795 }
1796
1797 /**
1798 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1799 * @substream: the pcm substream instance
1800 * @cmd: ioctl command
1801 * @arg: ioctl argument
1802 *
1803 * Processes the generic ioctl commands for PCM.
1804 * Can be passed as the ioctl callback for PCM ops.
1805 *
1806 * Return: Zero if successful, or a negative error code on failure.
1807 */
1808 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1809 unsigned int cmd, void *arg)
1810 {
1811 switch (cmd) {
1812 case SNDRV_PCM_IOCTL1_INFO:
1813 return 0;
1814 case SNDRV_PCM_IOCTL1_RESET:
1815 return snd_pcm_lib_ioctl_reset(substream, arg);
1816 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1817 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1818 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1819 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1820 }
1821 return -ENXIO;
1822 }
1823
1824 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1825
1826 /**
1827 * snd_pcm_period_elapsed - update the pcm status for the next period
1828 * @substream: the pcm substream instance
1829 *
1830 * This function is called from the interrupt handler when the
1831 * PCM has processed the period size. It will update the current
1832 * pointer, wake up sleepers, etc.
1833 *
1834 * Even if more than one periods have elapsed since the last call, you
1835 * have to call this only once.
1836 */
1837 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1838 {
1839 struct snd_pcm_runtime *runtime;
1840 unsigned long flags;
1841
1842 if (PCM_RUNTIME_CHECK(substream))
1843 return;
1844 runtime = substream->runtime;
1845
1846 if (runtime->transfer_ack_begin)
1847 runtime->transfer_ack_begin(substream);
1848
1849 snd_pcm_stream_lock_irqsave(substream, flags);
1850 if (!snd_pcm_running(substream) ||
1851 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1852 goto _end;
1853
1854 if (substream->timer_running)
1855 snd_timer_interrupt(substream->timer, 1);
1856 _end:
1857 snd_pcm_stream_unlock_irqrestore(substream, flags);
1858 if (runtime->transfer_ack_end)
1859 runtime->transfer_ack_end(substream);
1860 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1861 }
1862
1863 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1864
1865 /*
1866 * Wait until avail_min data becomes available
1867 * Returns a negative error code if any error occurs during operation.
1868 * The available space is stored on availp. When err = 0 and avail = 0
1869 * on the capture stream, it indicates the stream is in DRAINING state.
1870 */
1871 static int wait_for_avail(struct snd_pcm_substream *substream,
1872 snd_pcm_uframes_t *availp)
1873 {
1874 struct snd_pcm_runtime *runtime = substream->runtime;
1875 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1876 wait_queue_t wait;
1877 int err = 0;
1878 snd_pcm_uframes_t avail = 0;
1879 long wait_time, tout;
1880
1881 init_waitqueue_entry(&wait, current);
1882 set_current_state(TASK_INTERRUPTIBLE);
1883 add_wait_queue(&runtime->tsleep, &wait);
1884
1885 if (runtime->no_period_wakeup)
1886 wait_time = MAX_SCHEDULE_TIMEOUT;
1887 else {
1888 wait_time = 10;
1889 if (runtime->rate) {
1890 long t = runtime->period_size * 2 / runtime->rate;
1891 wait_time = max(t, wait_time);
1892 }
1893 wait_time = msecs_to_jiffies(wait_time * 1000);
1894 }
1895
1896 for (;;) {
1897 if (signal_pending(current)) {
1898 err = -ERESTARTSYS;
1899 break;
1900 }
1901
1902 /*
1903 * We need to check if space became available already
1904 * (and thus the wakeup happened already) first to close
1905 * the race of space already having become available.
1906 * This check must happen after been added to the waitqueue
1907 * and having current state be INTERRUPTIBLE.
1908 */
1909 if (is_playback)
1910 avail = snd_pcm_playback_avail(runtime);
1911 else
1912 avail = snd_pcm_capture_avail(runtime);
1913 if (avail >= runtime->twake)
1914 break;
1915 snd_pcm_stream_unlock_irq(substream);
1916
1917 tout = schedule_timeout(wait_time);
1918
1919 snd_pcm_stream_lock_irq(substream);
1920 set_current_state(TASK_INTERRUPTIBLE);
1921 switch (runtime->status->state) {
1922 case SNDRV_PCM_STATE_SUSPENDED:
1923 err = -ESTRPIPE;
1924 goto _endloop;
1925 case SNDRV_PCM_STATE_XRUN:
1926 err = -EPIPE;
1927 goto _endloop;
1928 case SNDRV_PCM_STATE_DRAINING:
1929 if (is_playback)
1930 err = -EPIPE;
1931 else
1932 avail = 0; /* indicate draining */
1933 goto _endloop;
1934 case SNDRV_PCM_STATE_OPEN:
1935 case SNDRV_PCM_STATE_SETUP:
1936 case SNDRV_PCM_STATE_DISCONNECTED:
1937 err = -EBADFD;
1938 goto _endloop;
1939 case SNDRV_PCM_STATE_PAUSED:
1940 continue;
1941 }
1942 if (!tout) {
1943 pcm_dbg(substream->pcm,
1944 "%s write error (DMA or IRQ trouble?)\n",
1945 is_playback ? "playback" : "capture");
1946 err = -EIO;
1947 break;
1948 }
1949 }
1950 _endloop:
1951 set_current_state(TASK_RUNNING);
1952 remove_wait_queue(&runtime->tsleep, &wait);
1953 *availp = avail;
1954 return err;
1955 }
1956
1957 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1958 unsigned int hwoff,
1959 unsigned long data, unsigned int off,
1960 snd_pcm_uframes_t frames)
1961 {
1962 struct snd_pcm_runtime *runtime = substream->runtime;
1963 int err;
1964 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1965 if (substream->ops->copy) {
1966 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1967 return err;
1968 } else {
1969 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1970 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1971 return -EFAULT;
1972 }
1973 return 0;
1974 }
1975
1976 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1977 unsigned long data, unsigned int off,
1978 snd_pcm_uframes_t size);
1979
1980 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1981 unsigned long data,
1982 snd_pcm_uframes_t size,
1983 int nonblock,
1984 transfer_f transfer)
1985 {
1986 struct snd_pcm_runtime *runtime = substream->runtime;
1987 snd_pcm_uframes_t xfer = 0;
1988 snd_pcm_uframes_t offset = 0;
1989 snd_pcm_uframes_t avail;
1990 int err = 0;
1991
1992 if (size == 0)
1993 return 0;
1994
1995 snd_pcm_stream_lock_irq(substream);
1996 switch (runtime->status->state) {
1997 case SNDRV_PCM_STATE_PREPARED:
1998 case SNDRV_PCM_STATE_RUNNING:
1999 case SNDRV_PCM_STATE_PAUSED:
2000 break;
2001 case SNDRV_PCM_STATE_XRUN:
2002 err = -EPIPE;
2003 goto _end_unlock;
2004 case SNDRV_PCM_STATE_SUSPENDED:
2005 err = -ESTRPIPE;
2006 goto _end_unlock;
2007 default:
2008 err = -EBADFD;
2009 goto _end_unlock;
2010 }
2011
2012 runtime->twake = runtime->control->avail_min ? : 1;
2013 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2014 snd_pcm_update_hw_ptr(substream);
2015 avail = snd_pcm_playback_avail(runtime);
2016 while (size > 0) {
2017 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2018 snd_pcm_uframes_t cont;
2019 if (!avail) {
2020 if (nonblock) {
2021 err = -EAGAIN;
2022 goto _end_unlock;
2023 }
2024 runtime->twake = min_t(snd_pcm_uframes_t, size,
2025 runtime->control->avail_min ? : 1);
2026 err = wait_for_avail(substream, &avail);
2027 if (err < 0)
2028 goto _end_unlock;
2029 }
2030 frames = size > avail ? avail : size;
2031 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2032 if (frames > cont)
2033 frames = cont;
2034 if (snd_BUG_ON(!frames)) {
2035 runtime->twake = 0;
2036 snd_pcm_stream_unlock_irq(substream);
2037 return -EINVAL;
2038 }
2039 appl_ptr = runtime->control->appl_ptr;
2040 appl_ofs = appl_ptr % runtime->buffer_size;
2041 snd_pcm_stream_unlock_irq(substream);
2042 err = transfer(substream, appl_ofs, data, offset, frames);
2043 snd_pcm_stream_lock_irq(substream);
2044 if (err < 0)
2045 goto _end_unlock;
2046 switch (runtime->status->state) {
2047 case SNDRV_PCM_STATE_XRUN:
2048 err = -EPIPE;
2049 goto _end_unlock;
2050 case SNDRV_PCM_STATE_SUSPENDED:
2051 err = -ESTRPIPE;
2052 goto _end_unlock;
2053 default:
2054 break;
2055 }
2056 appl_ptr += frames;
2057 if (appl_ptr >= runtime->boundary)
2058 appl_ptr -= runtime->boundary;
2059 runtime->control->appl_ptr = appl_ptr;
2060 if (substream->ops->ack)
2061 substream->ops->ack(substream);
2062
2063 offset += frames;
2064 size -= frames;
2065 xfer += frames;
2066 avail -= frames;
2067 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2068 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2069 err = snd_pcm_start(substream);
2070 if (err < 0)
2071 goto _end_unlock;
2072 }
2073 }
2074 _end_unlock:
2075 runtime->twake = 0;
2076 if (xfer > 0 && err >= 0)
2077 snd_pcm_update_state(substream, runtime);
2078 snd_pcm_stream_unlock_irq(substream);
2079 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2080 }
2081
2082 /* sanity-check for read/write methods */
2083 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2084 {
2085 struct snd_pcm_runtime *runtime;
2086 if (PCM_RUNTIME_CHECK(substream))
2087 return -ENXIO;
2088 runtime = substream->runtime;
2089 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2090 return -EINVAL;
2091 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2092 return -EBADFD;
2093 return 0;
2094 }
2095
2096 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2097 {
2098 struct snd_pcm_runtime *runtime;
2099 int nonblock;
2100 int err;
2101
2102 err = pcm_sanity_check(substream);
2103 if (err < 0)
2104 return err;
2105 runtime = substream->runtime;
2106 nonblock = !!(substream->f_flags & O_NONBLOCK);
2107
2108 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2109 runtime->channels > 1)
2110 return -EINVAL;
2111 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2112 snd_pcm_lib_write_transfer);
2113 }
2114
2115 EXPORT_SYMBOL(snd_pcm_lib_write);
2116
2117 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2118 unsigned int hwoff,
2119 unsigned long data, unsigned int off,
2120 snd_pcm_uframes_t frames)
2121 {
2122 struct snd_pcm_runtime *runtime = substream->runtime;
2123 int err;
2124 void __user **bufs = (void __user **)data;
2125 int channels = runtime->channels;
2126 int c;
2127 if (substream->ops->copy) {
2128 if (snd_BUG_ON(!substream->ops->silence))
2129 return -EINVAL;
2130 for (c = 0; c < channels; ++c, ++bufs) {
2131 if (*bufs == NULL) {
2132 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2133 return err;
2134 } else {
2135 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2136 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2137 return err;
2138 }
2139 }
2140 } else {
2141 /* default transfer behaviour */
2142 size_t dma_csize = runtime->dma_bytes / channels;
2143 for (c = 0; c < channels; ++c, ++bufs) {
2144 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2145 if (*bufs == NULL) {
2146 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2147 } else {
2148 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2149 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2150 return -EFAULT;
2151 }
2152 }
2153 }
2154 return 0;
2155 }
2156
2157 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2158 void __user **bufs,
2159 snd_pcm_uframes_t frames)
2160 {
2161 struct snd_pcm_runtime *runtime;
2162 int nonblock;
2163 int err;
2164
2165 err = pcm_sanity_check(substream);
2166 if (err < 0)
2167 return err;
2168 runtime = substream->runtime;
2169 nonblock = !!(substream->f_flags & O_NONBLOCK);
2170
2171 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2172 return -EINVAL;
2173 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2174 nonblock, snd_pcm_lib_writev_transfer);
2175 }
2176
2177 EXPORT_SYMBOL(snd_pcm_lib_writev);
2178
2179 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2180 unsigned int hwoff,
2181 unsigned long data, unsigned int off,
2182 snd_pcm_uframes_t frames)
2183 {
2184 struct snd_pcm_runtime *runtime = substream->runtime;
2185 int err;
2186 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2187 if (substream->ops->copy) {
2188 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2189 return err;
2190 } else {
2191 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2192 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2193 return -EFAULT;
2194 }
2195 return 0;
2196 }
2197
2198 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2199 unsigned long data,
2200 snd_pcm_uframes_t size,
2201 int nonblock,
2202 transfer_f transfer)
2203 {
2204 struct snd_pcm_runtime *runtime = substream->runtime;
2205 snd_pcm_uframes_t xfer = 0;
2206 snd_pcm_uframes_t offset = 0;
2207 snd_pcm_uframes_t avail;
2208 int err = 0;
2209
2210 if (size == 0)
2211 return 0;
2212
2213 snd_pcm_stream_lock_irq(substream);
2214 switch (runtime->status->state) {
2215 case SNDRV_PCM_STATE_PREPARED:
2216 if (size >= runtime->start_threshold) {
2217 err = snd_pcm_start(substream);
2218 if (err < 0)
2219 goto _end_unlock;
2220 }
2221 break;
2222 case SNDRV_PCM_STATE_DRAINING:
2223 case SNDRV_PCM_STATE_RUNNING:
2224 case SNDRV_PCM_STATE_PAUSED:
2225 break;
2226 case SNDRV_PCM_STATE_XRUN:
2227 err = -EPIPE;
2228 goto _end_unlock;
2229 case SNDRV_PCM_STATE_SUSPENDED:
2230 err = -ESTRPIPE;
2231 goto _end_unlock;
2232 default:
2233 err = -EBADFD;
2234 goto _end_unlock;
2235 }
2236
2237 runtime->twake = runtime->control->avail_min ? : 1;
2238 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2239 snd_pcm_update_hw_ptr(substream);
2240 avail = snd_pcm_capture_avail(runtime);
2241 while (size > 0) {
2242 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2243 snd_pcm_uframes_t cont;
2244 if (!avail) {
2245 if (runtime->status->state ==
2246 SNDRV_PCM_STATE_DRAINING) {
2247 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2248 goto _end_unlock;
2249 }
2250 if (nonblock) {
2251 err = -EAGAIN;
2252 goto _end_unlock;
2253 }
2254 runtime->twake = min_t(snd_pcm_uframes_t, size,
2255 runtime->control->avail_min ? : 1);
2256 err = wait_for_avail(substream, &avail);
2257 if (err < 0)
2258 goto _end_unlock;
2259 if (!avail)
2260 continue; /* draining */
2261 }
2262 frames = size > avail ? avail : size;
2263 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2264 if (frames > cont)
2265 frames = cont;
2266 if (snd_BUG_ON(!frames)) {
2267 runtime->twake = 0;
2268 snd_pcm_stream_unlock_irq(substream);
2269 return -EINVAL;
2270 }
2271 appl_ptr = runtime->control->appl_ptr;
2272 appl_ofs = appl_ptr % runtime->buffer_size;
2273 snd_pcm_stream_unlock_irq(substream);
2274 err = transfer(substream, appl_ofs, data, offset, frames);
2275 snd_pcm_stream_lock_irq(substream);
2276 if (err < 0)
2277 goto _end_unlock;
2278 switch (runtime->status->state) {
2279 case SNDRV_PCM_STATE_XRUN:
2280 err = -EPIPE;
2281 goto _end_unlock;
2282 case SNDRV_PCM_STATE_SUSPENDED:
2283 err = -ESTRPIPE;
2284 goto _end_unlock;
2285 default:
2286 break;
2287 }
2288 appl_ptr += frames;
2289 if (appl_ptr >= runtime->boundary)
2290 appl_ptr -= runtime->boundary;
2291 runtime->control->appl_ptr = appl_ptr;
2292 if (substream->ops->ack)
2293 substream->ops->ack(substream);
2294
2295 offset += frames;
2296 size -= frames;
2297 xfer += frames;
2298 avail -= frames;
2299 }
2300 _end_unlock:
2301 runtime->twake = 0;
2302 if (xfer > 0 && err >= 0)
2303 snd_pcm_update_state(substream, runtime);
2304 snd_pcm_stream_unlock_irq(substream);
2305 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2306 }
2307
2308 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2309 {
2310 struct snd_pcm_runtime *runtime;
2311 int nonblock;
2312 int err;
2313
2314 err = pcm_sanity_check(substream);
2315 if (err < 0)
2316 return err;
2317 runtime = substream->runtime;
2318 nonblock = !!(substream->f_flags & O_NONBLOCK);
2319 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2320 return -EINVAL;
2321 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2322 }
2323
2324 EXPORT_SYMBOL(snd_pcm_lib_read);
2325
2326 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2327 unsigned int hwoff,
2328 unsigned long data, unsigned int off,
2329 snd_pcm_uframes_t frames)
2330 {
2331 struct snd_pcm_runtime *runtime = substream->runtime;
2332 int err;
2333 void __user **bufs = (void __user **)data;
2334 int channels = runtime->channels;
2335 int c;
2336 if (substream->ops->copy) {
2337 for (c = 0; c < channels; ++c, ++bufs) {
2338 char __user *buf;
2339 if (*bufs == NULL)
2340 continue;
2341 buf = *bufs + samples_to_bytes(runtime, off);
2342 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2343 return err;
2344 }
2345 } else {
2346 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2347 for (c = 0; c < channels; ++c, ++bufs) {
2348 char *hwbuf;
2349 char __user *buf;
2350 if (*bufs == NULL)
2351 continue;
2352
2353 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2354 buf = *bufs + samples_to_bytes(runtime, off);
2355 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2356 return -EFAULT;
2357 }
2358 }
2359 return 0;
2360 }
2361
2362 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2363 void __user **bufs,
2364 snd_pcm_uframes_t frames)
2365 {
2366 struct snd_pcm_runtime *runtime;
2367 int nonblock;
2368 int err;
2369
2370 err = pcm_sanity_check(substream);
2371 if (err < 0)
2372 return err;
2373 runtime = substream->runtime;
2374 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2375 return -EBADFD;
2376
2377 nonblock = !!(substream->f_flags & O_NONBLOCK);
2378 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2379 return -EINVAL;
2380 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2381 }
2382
2383 EXPORT_SYMBOL(snd_pcm_lib_readv);
2384
2385 /*
2386 * standard channel mapping helpers
2387 */
2388
2389 /* default channel maps for multi-channel playbacks, up to 8 channels */
2390 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391 { .channels = 1,
2392 .map = { SNDRV_CHMAP_MONO } },
2393 { .channels = 2,
2394 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395 { .channels = 4,
2396 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398 { .channels = 6,
2399 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402 { .channels = 8,
2403 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407 { }
2408 };
2409 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413 { .channels = 1,
2414 .map = { SNDRV_CHMAP_MONO } },
2415 { .channels = 2,
2416 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417 { .channels = 4,
2418 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420 { .channels = 6,
2421 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424 { .channels = 8,
2425 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429 { }
2430 };
2431 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434 {
2435 if (ch > info->max_channels)
2436 return false;
2437 return !info->channel_mask || (info->channel_mask & (1U << ch));
2438 }
2439
2440 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441 struct snd_ctl_elem_info *uinfo)
2442 {
2443 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446 uinfo->count = 0;
2447 uinfo->count = info->max_channels;
2448 uinfo->value.integer.min = 0;
2449 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2450 return 0;
2451 }
2452
2453 /* get callback for channel map ctl element
2454 * stores the channel position firstly matching with the current channels
2455 */
2456 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2457 struct snd_ctl_elem_value *ucontrol)
2458 {
2459 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2460 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2461 struct snd_pcm_substream *substream;
2462 const struct snd_pcm_chmap_elem *map;
2463
2464 if (snd_BUG_ON(!info->chmap))
2465 return -EINVAL;
2466 substream = snd_pcm_chmap_substream(info, idx);
2467 if (!substream)
2468 return -ENODEV;
2469 memset(ucontrol->value.integer.value, 0,
2470 sizeof(ucontrol->value.integer.value));
2471 if (!substream->runtime)
2472 return 0; /* no channels set */
2473 for (map = info->chmap; map->channels; map++) {
2474 int i;
2475 if (map->channels == substream->runtime->channels &&
2476 valid_chmap_channels(info, map->channels)) {
2477 for (i = 0; i < map->channels; i++)
2478 ucontrol->value.integer.value[i] = map->map[i];
2479 return 0;
2480 }
2481 }
2482 return -EINVAL;
2483 }
2484
2485 /* tlv callback for channel map ctl element
2486 * expands the pre-defined channel maps in a form of TLV
2487 */
2488 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2489 unsigned int size, unsigned int __user *tlv)
2490 {
2491 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2492 const struct snd_pcm_chmap_elem *map;
2493 unsigned int __user *dst;
2494 int c, count = 0;
2495
2496 if (snd_BUG_ON(!info->chmap))
2497 return -EINVAL;
2498 if (size < 8)
2499 return -ENOMEM;
2500 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2501 return -EFAULT;
2502 size -= 8;
2503 dst = tlv + 2;
2504 for (map = info->chmap; map->channels; map++) {
2505 int chs_bytes = map->channels * 4;
2506 if (!valid_chmap_channels(info, map->channels))
2507 continue;
2508 if (size < 8)
2509 return -ENOMEM;
2510 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2511 put_user(chs_bytes, dst + 1))
2512 return -EFAULT;
2513 dst += 2;
2514 size -= 8;
2515 count += 8;
2516 if (size < chs_bytes)
2517 return -ENOMEM;
2518 size -= chs_bytes;
2519 count += chs_bytes;
2520 for (c = 0; c < map->channels; c++) {
2521 if (put_user(map->map[c], dst))
2522 return -EFAULT;
2523 dst++;
2524 }
2525 }
2526 if (put_user(count, tlv + 1))
2527 return -EFAULT;
2528 return 0;
2529 }
2530
2531 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2532 {
2533 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2534 info->pcm->streams[info->stream].chmap_kctl = NULL;
2535 kfree(info);
2536 }
2537
2538 /**
2539 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2540 * @pcm: the assigned PCM instance
2541 * @stream: stream direction
2542 * @chmap: channel map elements (for query)
2543 * @max_channels: the max number of channels for the stream
2544 * @private_value: the value passed to each kcontrol's private_value field
2545 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2546 *
2547 * Create channel-mapping control elements assigned to the given PCM stream(s).
2548 * Return: Zero if successful, or a negative error value.
2549 */
2550 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2551 const struct snd_pcm_chmap_elem *chmap,
2552 int max_channels,
2553 unsigned long private_value,
2554 struct snd_pcm_chmap **info_ret)
2555 {
2556 struct snd_pcm_chmap *info;
2557 struct snd_kcontrol_new knew = {
2558 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2559 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2560 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2561 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2562 .info = pcm_chmap_ctl_info,
2563 .get = pcm_chmap_ctl_get,
2564 .tlv.c = pcm_chmap_ctl_tlv,
2565 };
2566 int err;
2567
2568 info = kzalloc(sizeof(*info), GFP_KERNEL);
2569 if (!info)
2570 return -ENOMEM;
2571 info->pcm = pcm;
2572 info->stream = stream;
2573 info->chmap = chmap;
2574 info->max_channels = max_channels;
2575 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2576 knew.name = "Playback Channel Map";
2577 else
2578 knew.name = "Capture Channel Map";
2579 knew.device = pcm->device;
2580 knew.count = pcm->streams[stream].substream_count;
2581 knew.private_value = private_value;
2582 info->kctl = snd_ctl_new1(&knew, info);
2583 if (!info->kctl) {
2584 kfree(info);
2585 return -ENOMEM;
2586 }
2587 info->kctl->private_free = pcm_chmap_ctl_private_free;
2588 err = snd_ctl_add(pcm->card, info->kctl);
2589 if (err < 0)
2590 return err;
2591 pcm->streams[stream].chmap_kctl = info->kctl;
2592 if (info_ret)
2593 *info_ret = info;
2594 return 0;
2595 }
2596 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
This page took 0.085963 seconds and 5 git commands to generate.