Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[deliverable/linux.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43
44 /*
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
50 *
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52 */
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55 struct snd_pcm_runtime *runtime = substream->runtime;
56 snd_pcm_uframes_t frames, ofs, transfer;
57
58 if (runtime->silence_size < runtime->boundary) {
59 snd_pcm_sframes_t noise_dist, n;
60 if (runtime->silence_start != runtime->control->appl_ptr) {
61 n = runtime->control->appl_ptr - runtime->silence_start;
62 if (n < 0)
63 n += runtime->boundary;
64 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 runtime->silence_filled -= n;
66 else
67 runtime->silence_filled = 0;
68 runtime->silence_start = runtime->control->appl_ptr;
69 }
70 if (runtime->silence_filled >= runtime->buffer_size)
71 return;
72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 return;
75 frames = runtime->silence_threshold - noise_dist;
76 if (frames > runtime->silence_size)
77 frames = runtime->silence_size;
78 } else {
79 if (new_hw_ptr == ULONG_MAX) { /* initialization */
80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 if (avail > runtime->buffer_size)
82 avail = runtime->buffer_size;
83 runtime->silence_filled = avail > 0 ? avail : 0;
84 runtime->silence_start = (runtime->status->hw_ptr +
85 runtime->silence_filled) %
86 runtime->boundary;
87 } else {
88 ofs = runtime->status->hw_ptr;
89 frames = new_hw_ptr - ofs;
90 if ((snd_pcm_sframes_t)frames < 0)
91 frames += runtime->boundary;
92 runtime->silence_filled -= frames;
93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 runtime->silence_filled = 0;
95 runtime->silence_start = new_hw_ptr;
96 } else {
97 runtime->silence_start = ofs;
98 }
99 }
100 frames = runtime->buffer_size - runtime->silence_filled;
101 }
102 if (snd_BUG_ON(frames > runtime->buffer_size))
103 return;
104 if (frames == 0)
105 return;
106 ofs = runtime->silence_start % runtime->buffer_size;
107 while (frames > 0) {
108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 if (substream->ops->silence) {
112 int err;
113 err = substream->ops->silence(substream, -1, ofs, transfer);
114 snd_BUG_ON(err < 0);
115 } else {
116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118 }
119 } else {
120 unsigned int c;
121 unsigned int channels = runtime->channels;
122 if (substream->ops->silence) {
123 for (c = 0; c < channels; ++c) {
124 int err;
125 err = substream->ops->silence(substream, c, ofs, transfer);
126 snd_BUG_ON(err < 0);
127 }
128 } else {
129 size_t dma_csize = runtime->dma_bytes / channels;
130 for (c = 0; c < channels; ++c) {
131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133 }
134 }
135 }
136 runtime->silence_filled += transfer;
137 frames -= transfer;
138 ofs = 0;
139 }
140 }
141
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 char *name, size_t len)
145 {
146 snprintf(name, len, "pcmC%dD%d%c:%d",
147 substream->pcm->card->number,
148 substream->pcm->device,
149 substream->stream ? 'c' : 'p',
150 substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154
155 #define XRUN_DEBUG_BASIC (1<<0)
156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
158
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161 #define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask) 0
165 #endif
166
167 #define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
169 dump_stack(); \
170 } while (0)
171
172 static void xrun(struct snd_pcm_substream *substream)
173 {
174 struct snd_pcm_runtime *runtime = substream->runtime;
175
176 trace_xrun(substream);
177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 char name[16];
182 snd_pcm_debug_name(substream, name, sizeof(name));
183 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 dump_stack_on_xrun(substream);
185 }
186 }
187
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
190 do { \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
196 } \
197 } while (0)
198
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203 #endif
204
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 struct snd_pcm_runtime *runtime)
207 {
208 snd_pcm_uframes_t avail;
209
210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 avail = snd_pcm_playback_avail(runtime);
212 else
213 avail = snd_pcm_capture_avail(runtime);
214 if (avail > runtime->avail_max)
215 runtime->avail_max = avail;
216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 if (avail >= runtime->buffer_size) {
218 snd_pcm_drain_done(substream);
219 return -EPIPE;
220 }
221 } else {
222 if (avail >= runtime->stop_threshold) {
223 xrun(substream);
224 return -EPIPE;
225 }
226 }
227 if (runtime->twake) {
228 if (avail >= runtime->twake)
229 wake_up(&runtime->tsleep);
230 } else if (avail >= runtime->control->avail_min)
231 wake_up(&runtime->sleep);
232 return 0;
233 }
234
235 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
236 unsigned int in_interrupt)
237 {
238 struct snd_pcm_runtime *runtime = substream->runtime;
239 snd_pcm_uframes_t pos;
240 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
241 snd_pcm_sframes_t hdelta, delta;
242 unsigned long jdelta;
243 unsigned long curr_jiffies;
244 struct timespec curr_tstamp;
245 struct timespec audio_tstamp;
246 int crossed_boundary = 0;
247
248 old_hw_ptr = runtime->status->hw_ptr;
249
250 /*
251 * group pointer, time and jiffies reads to allow for more
252 * accurate correlations/corrections.
253 * The values are stored at the end of this routine after
254 * corrections for hw_ptr position
255 */
256 pos = substream->ops->pointer(substream);
257 curr_jiffies = jiffies;
258 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
259 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
260
261 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
262 (substream->ops->wall_clock))
263 substream->ops->wall_clock(substream, &audio_tstamp);
264 }
265
266 if (pos == SNDRV_PCM_POS_XRUN) {
267 xrun(substream);
268 return -EPIPE;
269 }
270 if (pos >= runtime->buffer_size) {
271 if (printk_ratelimit()) {
272 char name[16];
273 snd_pcm_debug_name(substream, name, sizeof(name));
274 pcm_err(substream->pcm,
275 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
276 name, pos, runtime->buffer_size,
277 runtime->period_size);
278 }
279 pos = 0;
280 }
281 pos -= pos % runtime->min_align;
282 trace_hwptr(substream, pos, in_interrupt);
283 hw_base = runtime->hw_ptr_base;
284 new_hw_ptr = hw_base + pos;
285 if (in_interrupt) {
286 /* we know that one period was processed */
287 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
288 delta = runtime->hw_ptr_interrupt + runtime->period_size;
289 if (delta > new_hw_ptr) {
290 /* check for double acknowledged interrupts */
291 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
292 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
293 hw_base += runtime->buffer_size;
294 if (hw_base >= runtime->boundary) {
295 hw_base = 0;
296 crossed_boundary++;
297 }
298 new_hw_ptr = hw_base + pos;
299 goto __delta;
300 }
301 }
302 }
303 /* new_hw_ptr might be lower than old_hw_ptr in case when */
304 /* pointer crosses the end of the ring buffer */
305 if (new_hw_ptr < old_hw_ptr) {
306 hw_base += runtime->buffer_size;
307 if (hw_base >= runtime->boundary) {
308 hw_base = 0;
309 crossed_boundary++;
310 }
311 new_hw_ptr = hw_base + pos;
312 }
313 __delta:
314 delta = new_hw_ptr - old_hw_ptr;
315 if (delta < 0)
316 delta += runtime->boundary;
317
318 if (runtime->no_period_wakeup) {
319 snd_pcm_sframes_t xrun_threshold;
320 /*
321 * Without regular period interrupts, we have to check
322 * the elapsed time to detect xruns.
323 */
324 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
325 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
326 goto no_delta_check;
327 hdelta = jdelta - delta * HZ / runtime->rate;
328 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
329 while (hdelta > xrun_threshold) {
330 delta += runtime->buffer_size;
331 hw_base += runtime->buffer_size;
332 if (hw_base >= runtime->boundary) {
333 hw_base = 0;
334 crossed_boundary++;
335 }
336 new_hw_ptr = hw_base + pos;
337 hdelta -= runtime->hw_ptr_buffer_jiffies;
338 }
339 goto no_delta_check;
340 }
341
342 /* something must be really wrong */
343 if (delta >= runtime->buffer_size + runtime->period_size) {
344 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
345 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
346 substream->stream, (long)pos,
347 (long)new_hw_ptr, (long)old_hw_ptr);
348 return 0;
349 }
350
351 /* Do jiffies check only in xrun_debug mode */
352 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
353 goto no_jiffies_check;
354
355 /* Skip the jiffies check for hardwares with BATCH flag.
356 * Such hardware usually just increases the position at each IRQ,
357 * thus it can't give any strange position.
358 */
359 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
360 goto no_jiffies_check;
361 hdelta = delta;
362 if (hdelta < runtime->delay)
363 goto no_jiffies_check;
364 hdelta -= runtime->delay;
365 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
367 delta = jdelta /
368 (((runtime->period_size * HZ) / runtime->rate)
369 + HZ/100);
370 /* move new_hw_ptr according jiffies not pos variable */
371 new_hw_ptr = old_hw_ptr;
372 hw_base = delta;
373 /* use loop to avoid checks for delta overflows */
374 /* the delta value is small or zero in most cases */
375 while (delta > 0) {
376 new_hw_ptr += runtime->period_size;
377 if (new_hw_ptr >= runtime->boundary) {
378 new_hw_ptr -= runtime->boundary;
379 crossed_boundary--;
380 }
381 delta--;
382 }
383 /* align hw_base to buffer_size */
384 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
385 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
386 (long)pos, (long)hdelta,
387 (long)runtime->period_size, jdelta,
388 ((hdelta * HZ) / runtime->rate), hw_base,
389 (unsigned long)old_hw_ptr,
390 (unsigned long)new_hw_ptr);
391 /* reset values to proper state */
392 delta = 0;
393 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
394 }
395 no_jiffies_check:
396 if (delta > runtime->period_size + runtime->period_size / 2) {
397 hw_ptr_error(substream, in_interrupt,
398 "Lost interrupts?",
399 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
400 substream->stream, (long)delta,
401 (long)new_hw_ptr,
402 (long)old_hw_ptr);
403 }
404
405 no_delta_check:
406 if (runtime->status->hw_ptr == new_hw_ptr)
407 return 0;
408
409 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
410 runtime->silence_size > 0)
411 snd_pcm_playback_silence(substream, new_hw_ptr);
412
413 if (in_interrupt) {
414 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
415 if (delta < 0)
416 delta += runtime->boundary;
417 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
418 runtime->hw_ptr_interrupt += delta;
419 if (runtime->hw_ptr_interrupt >= runtime->boundary)
420 runtime->hw_ptr_interrupt -= runtime->boundary;
421 }
422 runtime->hw_ptr_base = hw_base;
423 runtime->status->hw_ptr = new_hw_ptr;
424 runtime->hw_ptr_jiffies = curr_jiffies;
425 if (crossed_boundary) {
426 snd_BUG_ON(crossed_boundary != 1);
427 runtime->hw_ptr_wrap += runtime->boundary;
428 }
429 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
430 runtime->status->tstamp = curr_tstamp;
431
432 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
433 /*
434 * no wall clock available, provide audio timestamp
435 * derived from pointer position+delay
436 */
437 u64 audio_frames, audio_nsecs;
438
439 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 audio_frames = runtime->hw_ptr_wrap
441 + runtime->status->hw_ptr
442 - runtime->delay;
443 else
444 audio_frames = runtime->hw_ptr_wrap
445 + runtime->status->hw_ptr
446 + runtime->delay;
447 audio_nsecs = div_u64(audio_frames * 1000000000LL,
448 runtime->rate);
449 audio_tstamp = ns_to_timespec(audio_nsecs);
450 }
451 runtime->status->audio_tstamp = audio_tstamp;
452 }
453
454 return snd_pcm_update_state(substream, runtime);
455 }
456
457 /* CAUTION: call it with irq disabled */
458 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
459 {
460 return snd_pcm_update_hw_ptr0(substream, 0);
461 }
462
463 /**
464 * snd_pcm_set_ops - set the PCM operators
465 * @pcm: the pcm instance
466 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
467 * @ops: the operator table
468 *
469 * Sets the given PCM operators to the pcm instance.
470 */
471 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
472 const struct snd_pcm_ops *ops)
473 {
474 struct snd_pcm_str *stream = &pcm->streams[direction];
475 struct snd_pcm_substream *substream;
476
477 for (substream = stream->substream; substream != NULL; substream = substream->next)
478 substream->ops = ops;
479 }
480
481 EXPORT_SYMBOL(snd_pcm_set_ops);
482
483 /**
484 * snd_pcm_sync - set the PCM sync id
485 * @substream: the pcm substream
486 *
487 * Sets the PCM sync identifier for the card.
488 */
489 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
490 {
491 struct snd_pcm_runtime *runtime = substream->runtime;
492
493 runtime->sync.id32[0] = substream->pcm->card->number;
494 runtime->sync.id32[1] = -1;
495 runtime->sync.id32[2] = -1;
496 runtime->sync.id32[3] = -1;
497 }
498
499 EXPORT_SYMBOL(snd_pcm_set_sync);
500
501 /*
502 * Standard ioctl routine
503 */
504
505 static inline unsigned int div32(unsigned int a, unsigned int b,
506 unsigned int *r)
507 {
508 if (b == 0) {
509 *r = 0;
510 return UINT_MAX;
511 }
512 *r = a % b;
513 return a / b;
514 }
515
516 static inline unsigned int div_down(unsigned int a, unsigned int b)
517 {
518 if (b == 0)
519 return UINT_MAX;
520 return a / b;
521 }
522
523 static inline unsigned int div_up(unsigned int a, unsigned int b)
524 {
525 unsigned int r;
526 unsigned int q;
527 if (b == 0)
528 return UINT_MAX;
529 q = div32(a, b, &r);
530 if (r)
531 ++q;
532 return q;
533 }
534
535 static inline unsigned int mul(unsigned int a, unsigned int b)
536 {
537 if (a == 0)
538 return 0;
539 if (div_down(UINT_MAX, a) < b)
540 return UINT_MAX;
541 return a * b;
542 }
543
544 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
545 unsigned int c, unsigned int *r)
546 {
547 u_int64_t n = (u_int64_t) a * b;
548 if (c == 0) {
549 snd_BUG_ON(!n);
550 *r = 0;
551 return UINT_MAX;
552 }
553 n = div_u64_rem(n, c, r);
554 if (n >= UINT_MAX) {
555 *r = 0;
556 return UINT_MAX;
557 }
558 return n;
559 }
560
561 /**
562 * snd_interval_refine - refine the interval value of configurator
563 * @i: the interval value to refine
564 * @v: the interval value to refer to
565 *
566 * Refines the interval value with the reference value.
567 * The interval is changed to the range satisfying both intervals.
568 * The interval status (min, max, integer, etc.) are evaluated.
569 *
570 * Return: Positive if the value is changed, zero if it's not changed, or a
571 * negative error code.
572 */
573 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
574 {
575 int changed = 0;
576 if (snd_BUG_ON(snd_interval_empty(i)))
577 return -EINVAL;
578 if (i->min < v->min) {
579 i->min = v->min;
580 i->openmin = v->openmin;
581 changed = 1;
582 } else if (i->min == v->min && !i->openmin && v->openmin) {
583 i->openmin = 1;
584 changed = 1;
585 }
586 if (i->max > v->max) {
587 i->max = v->max;
588 i->openmax = v->openmax;
589 changed = 1;
590 } else if (i->max == v->max && !i->openmax && v->openmax) {
591 i->openmax = 1;
592 changed = 1;
593 }
594 if (!i->integer && v->integer) {
595 i->integer = 1;
596 changed = 1;
597 }
598 if (i->integer) {
599 if (i->openmin) {
600 i->min++;
601 i->openmin = 0;
602 }
603 if (i->openmax) {
604 i->max--;
605 i->openmax = 0;
606 }
607 } else if (!i->openmin && !i->openmax && i->min == i->max)
608 i->integer = 1;
609 if (snd_interval_checkempty(i)) {
610 snd_interval_none(i);
611 return -EINVAL;
612 }
613 return changed;
614 }
615
616 EXPORT_SYMBOL(snd_interval_refine);
617
618 static int snd_interval_refine_first(struct snd_interval *i)
619 {
620 if (snd_BUG_ON(snd_interval_empty(i)))
621 return -EINVAL;
622 if (snd_interval_single(i))
623 return 0;
624 i->max = i->min;
625 i->openmax = i->openmin;
626 if (i->openmax)
627 i->max++;
628 return 1;
629 }
630
631 static int snd_interval_refine_last(struct snd_interval *i)
632 {
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (snd_interval_single(i))
636 return 0;
637 i->min = i->max;
638 i->openmin = i->openmax;
639 if (i->openmin)
640 i->min--;
641 return 1;
642 }
643
644 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
645 {
646 if (a->empty || b->empty) {
647 snd_interval_none(c);
648 return;
649 }
650 c->empty = 0;
651 c->min = mul(a->min, b->min);
652 c->openmin = (a->openmin || b->openmin);
653 c->max = mul(a->max, b->max);
654 c->openmax = (a->openmax || b->openmax);
655 c->integer = (a->integer && b->integer);
656 }
657
658 /**
659 * snd_interval_div - refine the interval value with division
660 * @a: dividend
661 * @b: divisor
662 * @c: quotient
663 *
664 * c = a / b
665 *
666 * Returns non-zero if the value is changed, zero if not changed.
667 */
668 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
669 {
670 unsigned int r;
671 if (a->empty || b->empty) {
672 snd_interval_none(c);
673 return;
674 }
675 c->empty = 0;
676 c->min = div32(a->min, b->max, &r);
677 c->openmin = (r || a->openmin || b->openmax);
678 if (b->min > 0) {
679 c->max = div32(a->max, b->min, &r);
680 if (r) {
681 c->max++;
682 c->openmax = 1;
683 } else
684 c->openmax = (a->openmax || b->openmin);
685 } else {
686 c->max = UINT_MAX;
687 c->openmax = 0;
688 }
689 c->integer = 0;
690 }
691
692 /**
693 * snd_interval_muldivk - refine the interval value
694 * @a: dividend 1
695 * @b: dividend 2
696 * @k: divisor (as integer)
697 * @c: result
698 *
699 * c = a * b / k
700 *
701 * Returns non-zero if the value is changed, zero if not changed.
702 */
703 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
704 unsigned int k, struct snd_interval *c)
705 {
706 unsigned int r;
707 if (a->empty || b->empty) {
708 snd_interval_none(c);
709 return;
710 }
711 c->empty = 0;
712 c->min = muldiv32(a->min, b->min, k, &r);
713 c->openmin = (r || a->openmin || b->openmin);
714 c->max = muldiv32(a->max, b->max, k, &r);
715 if (r) {
716 c->max++;
717 c->openmax = 1;
718 } else
719 c->openmax = (a->openmax || b->openmax);
720 c->integer = 0;
721 }
722
723 /**
724 * snd_interval_mulkdiv - refine the interval value
725 * @a: dividend 1
726 * @k: dividend 2 (as integer)
727 * @b: divisor
728 * @c: result
729 *
730 * c = a * k / b
731 *
732 * Returns non-zero if the value is changed, zero if not changed.
733 */
734 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
735 const struct snd_interval *b, struct snd_interval *c)
736 {
737 unsigned int r;
738 if (a->empty || b->empty) {
739 snd_interval_none(c);
740 return;
741 }
742 c->empty = 0;
743 c->min = muldiv32(a->min, k, b->max, &r);
744 c->openmin = (r || a->openmin || b->openmax);
745 if (b->min > 0) {
746 c->max = muldiv32(a->max, k, b->min, &r);
747 if (r) {
748 c->max++;
749 c->openmax = 1;
750 } else
751 c->openmax = (a->openmax || b->openmin);
752 } else {
753 c->max = UINT_MAX;
754 c->openmax = 0;
755 }
756 c->integer = 0;
757 }
758
759 /* ---- */
760
761
762 /**
763 * snd_interval_ratnum - refine the interval value
764 * @i: interval to refine
765 * @rats_count: number of ratnum_t
766 * @rats: ratnum_t array
767 * @nump: pointer to store the resultant numerator
768 * @denp: pointer to store the resultant denominator
769 *
770 * Return: Positive if the value is changed, zero if it's not changed, or a
771 * negative error code.
772 */
773 int snd_interval_ratnum(struct snd_interval *i,
774 unsigned int rats_count, struct snd_ratnum *rats,
775 unsigned int *nump, unsigned int *denp)
776 {
777 unsigned int best_num, best_den;
778 int best_diff;
779 unsigned int k;
780 struct snd_interval t;
781 int err;
782 unsigned int result_num, result_den;
783 int result_diff;
784
785 best_num = best_den = best_diff = 0;
786 for (k = 0; k < rats_count; ++k) {
787 unsigned int num = rats[k].num;
788 unsigned int den;
789 unsigned int q = i->min;
790 int diff;
791 if (q == 0)
792 q = 1;
793 den = div_up(num, q);
794 if (den < rats[k].den_min)
795 continue;
796 if (den > rats[k].den_max)
797 den = rats[k].den_max;
798 else {
799 unsigned int r;
800 r = (den - rats[k].den_min) % rats[k].den_step;
801 if (r != 0)
802 den -= r;
803 }
804 diff = num - q * den;
805 if (diff < 0)
806 diff = -diff;
807 if (best_num == 0 ||
808 diff * best_den < best_diff * den) {
809 best_diff = diff;
810 best_den = den;
811 best_num = num;
812 }
813 }
814 if (best_den == 0) {
815 i->empty = 1;
816 return -EINVAL;
817 }
818 t.min = div_down(best_num, best_den);
819 t.openmin = !!(best_num % best_den);
820
821 result_num = best_num;
822 result_diff = best_diff;
823 result_den = best_den;
824 best_num = best_den = best_diff = 0;
825 for (k = 0; k < rats_count; ++k) {
826 unsigned int num = rats[k].num;
827 unsigned int den;
828 unsigned int q = i->max;
829 int diff;
830 if (q == 0) {
831 i->empty = 1;
832 return -EINVAL;
833 }
834 den = div_down(num, q);
835 if (den > rats[k].den_max)
836 continue;
837 if (den < rats[k].den_min)
838 den = rats[k].den_min;
839 else {
840 unsigned int r;
841 r = (den - rats[k].den_min) % rats[k].den_step;
842 if (r != 0)
843 den += rats[k].den_step - r;
844 }
845 diff = q * den - num;
846 if (diff < 0)
847 diff = -diff;
848 if (best_num == 0 ||
849 diff * best_den < best_diff * den) {
850 best_diff = diff;
851 best_den = den;
852 best_num = num;
853 }
854 }
855 if (best_den == 0) {
856 i->empty = 1;
857 return -EINVAL;
858 }
859 t.max = div_up(best_num, best_den);
860 t.openmax = !!(best_num % best_den);
861 t.integer = 0;
862 err = snd_interval_refine(i, &t);
863 if (err < 0)
864 return err;
865
866 if (snd_interval_single(i)) {
867 if (best_diff * result_den < result_diff * best_den) {
868 result_num = best_num;
869 result_den = best_den;
870 }
871 if (nump)
872 *nump = result_num;
873 if (denp)
874 *denp = result_den;
875 }
876 return err;
877 }
878
879 EXPORT_SYMBOL(snd_interval_ratnum);
880
881 /**
882 * snd_interval_ratden - refine the interval value
883 * @i: interval to refine
884 * @rats_count: number of struct ratden
885 * @rats: struct ratden array
886 * @nump: pointer to store the resultant numerator
887 * @denp: pointer to store the resultant denominator
888 *
889 * Return: Positive if the value is changed, zero if it's not changed, or a
890 * negative error code.
891 */
892 static int snd_interval_ratden(struct snd_interval *i,
893 unsigned int rats_count, struct snd_ratden *rats,
894 unsigned int *nump, unsigned int *denp)
895 {
896 unsigned int best_num, best_diff, best_den;
897 unsigned int k;
898 struct snd_interval t;
899 int err;
900
901 best_num = best_den = best_diff = 0;
902 for (k = 0; k < rats_count; ++k) {
903 unsigned int num;
904 unsigned int den = rats[k].den;
905 unsigned int q = i->min;
906 int diff;
907 num = mul(q, den);
908 if (num > rats[k].num_max)
909 continue;
910 if (num < rats[k].num_min)
911 num = rats[k].num_max;
912 else {
913 unsigned int r;
914 r = (num - rats[k].num_min) % rats[k].num_step;
915 if (r != 0)
916 num += rats[k].num_step - r;
917 }
918 diff = num - q * den;
919 if (best_num == 0 ||
920 diff * best_den < best_diff * den) {
921 best_diff = diff;
922 best_den = den;
923 best_num = num;
924 }
925 }
926 if (best_den == 0) {
927 i->empty = 1;
928 return -EINVAL;
929 }
930 t.min = div_down(best_num, best_den);
931 t.openmin = !!(best_num % best_den);
932
933 best_num = best_den = best_diff = 0;
934 for (k = 0; k < rats_count; ++k) {
935 unsigned int num;
936 unsigned int den = rats[k].den;
937 unsigned int q = i->max;
938 int diff;
939 num = mul(q, den);
940 if (num < rats[k].num_min)
941 continue;
942 if (num > rats[k].num_max)
943 num = rats[k].num_max;
944 else {
945 unsigned int r;
946 r = (num - rats[k].num_min) % rats[k].num_step;
947 if (r != 0)
948 num -= r;
949 }
950 diff = q * den - num;
951 if (best_num == 0 ||
952 diff * best_den < best_diff * den) {
953 best_diff = diff;
954 best_den = den;
955 best_num = num;
956 }
957 }
958 if (best_den == 0) {
959 i->empty = 1;
960 return -EINVAL;
961 }
962 t.max = div_up(best_num, best_den);
963 t.openmax = !!(best_num % best_den);
964 t.integer = 0;
965 err = snd_interval_refine(i, &t);
966 if (err < 0)
967 return err;
968
969 if (snd_interval_single(i)) {
970 if (nump)
971 *nump = best_num;
972 if (denp)
973 *denp = best_den;
974 }
975 return err;
976 }
977
978 /**
979 * snd_interval_list - refine the interval value from the list
980 * @i: the interval value to refine
981 * @count: the number of elements in the list
982 * @list: the value list
983 * @mask: the bit-mask to evaluate
984 *
985 * Refines the interval value from the list.
986 * When mask is non-zero, only the elements corresponding to bit 1 are
987 * evaluated.
988 *
989 * Return: Positive if the value is changed, zero if it's not changed, or a
990 * negative error code.
991 */
992 int snd_interval_list(struct snd_interval *i, unsigned int count,
993 const unsigned int *list, unsigned int mask)
994 {
995 unsigned int k;
996 struct snd_interval list_range;
997
998 if (!count) {
999 i->empty = 1;
1000 return -EINVAL;
1001 }
1002 snd_interval_any(&list_range);
1003 list_range.min = UINT_MAX;
1004 list_range.max = 0;
1005 for (k = 0; k < count; k++) {
1006 if (mask && !(mask & (1 << k)))
1007 continue;
1008 if (!snd_interval_test(i, list[k]))
1009 continue;
1010 list_range.min = min(list_range.min, list[k]);
1011 list_range.max = max(list_range.max, list[k]);
1012 }
1013 return snd_interval_refine(i, &list_range);
1014 }
1015
1016 EXPORT_SYMBOL(snd_interval_list);
1017
1018 /**
1019 * snd_interval_ranges - refine the interval value from the list of ranges
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list of ranges
1022 * @ranges: the ranges list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list of ranges.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Return: Positive if the value is changed, zero if it's not changed, or a
1030 * negative error code.
1031 */
1032 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033 const struct snd_interval *ranges, unsigned int mask)
1034 {
1035 unsigned int k;
1036 struct snd_interval range_union;
1037 struct snd_interval range;
1038
1039 if (!count) {
1040 snd_interval_none(i);
1041 return -EINVAL;
1042 }
1043 snd_interval_any(&range_union);
1044 range_union.min = UINT_MAX;
1045 range_union.max = 0;
1046 for (k = 0; k < count; k++) {
1047 if (mask && !(mask & (1 << k)))
1048 continue;
1049 snd_interval_copy(&range, &ranges[k]);
1050 if (snd_interval_refine(&range, i) < 0)
1051 continue;
1052 if (snd_interval_empty(&range))
1053 continue;
1054
1055 if (range.min < range_union.min) {
1056 range_union.min = range.min;
1057 range_union.openmin = 1;
1058 }
1059 if (range.min == range_union.min && !range.openmin)
1060 range_union.openmin = 0;
1061 if (range.max > range_union.max) {
1062 range_union.max = range.max;
1063 range_union.openmax = 1;
1064 }
1065 if (range.max == range_union.max && !range.openmax)
1066 range_union.openmax = 0;
1067 }
1068 return snd_interval_refine(i, &range_union);
1069 }
1070 EXPORT_SYMBOL(snd_interval_ranges);
1071
1072 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073 {
1074 unsigned int n;
1075 int changed = 0;
1076 n = i->min % step;
1077 if (n != 0 || i->openmin) {
1078 i->min += step - n;
1079 i->openmin = 0;
1080 changed = 1;
1081 }
1082 n = i->max % step;
1083 if (n != 0 || i->openmax) {
1084 i->max -= n;
1085 i->openmax = 0;
1086 changed = 1;
1087 }
1088 if (snd_interval_checkempty(i)) {
1089 i->empty = 1;
1090 return -EINVAL;
1091 }
1092 return changed;
1093 }
1094
1095 /* Info constraints helpers */
1096
1097 /**
1098 * snd_pcm_hw_rule_add - add the hw-constraint rule
1099 * @runtime: the pcm runtime instance
1100 * @cond: condition bits
1101 * @var: the variable to evaluate
1102 * @func: the evaluation function
1103 * @private: the private data pointer passed to function
1104 * @dep: the dependent variables
1105 *
1106 * Return: Zero if successful, or a negative error code on failure.
1107 */
1108 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109 int var,
1110 snd_pcm_hw_rule_func_t func, void *private,
1111 int dep, ...)
1112 {
1113 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114 struct snd_pcm_hw_rule *c;
1115 unsigned int k;
1116 va_list args;
1117 va_start(args, dep);
1118 if (constrs->rules_num >= constrs->rules_all) {
1119 struct snd_pcm_hw_rule *new;
1120 unsigned int new_rules = constrs->rules_all + 16;
1121 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1122 if (!new) {
1123 va_end(args);
1124 return -ENOMEM;
1125 }
1126 if (constrs->rules) {
1127 memcpy(new, constrs->rules,
1128 constrs->rules_num * sizeof(*c));
1129 kfree(constrs->rules);
1130 }
1131 constrs->rules = new;
1132 constrs->rules_all = new_rules;
1133 }
1134 c = &constrs->rules[constrs->rules_num];
1135 c->cond = cond;
1136 c->func = func;
1137 c->var = var;
1138 c->private = private;
1139 k = 0;
1140 while (1) {
1141 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1142 va_end(args);
1143 return -EINVAL;
1144 }
1145 c->deps[k++] = dep;
1146 if (dep < 0)
1147 break;
1148 dep = va_arg(args, int);
1149 }
1150 constrs->rules_num++;
1151 va_end(args);
1152 return 0;
1153 }
1154
1155 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1156
1157 /**
1158 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1159 * @runtime: PCM runtime instance
1160 * @var: hw_params variable to apply the mask
1161 * @mask: the bitmap mask
1162 *
1163 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1164 *
1165 * Return: Zero if successful, or a negative error code on failure.
1166 */
1167 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168 u_int32_t mask)
1169 {
1170 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171 struct snd_mask *maskp = constrs_mask(constrs, var);
1172 *maskp->bits &= mask;
1173 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1174 if (*maskp->bits == 0)
1175 return -EINVAL;
1176 return 0;
1177 }
1178
1179 /**
1180 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1181 * @runtime: PCM runtime instance
1182 * @var: hw_params variable to apply the mask
1183 * @mask: the 64bit bitmap mask
1184 *
1185 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1186 *
1187 * Return: Zero if successful, or a negative error code on failure.
1188 */
1189 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1190 u_int64_t mask)
1191 {
1192 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1193 struct snd_mask *maskp = constrs_mask(constrs, var);
1194 maskp->bits[0] &= (u_int32_t)mask;
1195 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1196 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1197 if (! maskp->bits[0] && ! maskp->bits[1])
1198 return -EINVAL;
1199 return 0;
1200 }
1201 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1202
1203 /**
1204 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1205 * @runtime: PCM runtime instance
1206 * @var: hw_params variable to apply the integer constraint
1207 *
1208 * Apply the constraint of integer to an interval parameter.
1209 *
1210 * Return: Positive if the value is changed, zero if it's not changed, or a
1211 * negative error code.
1212 */
1213 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1214 {
1215 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1216 return snd_interval_setinteger(constrs_interval(constrs, var));
1217 }
1218
1219 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1220
1221 /**
1222 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1223 * @runtime: PCM runtime instance
1224 * @var: hw_params variable to apply the range
1225 * @min: the minimal value
1226 * @max: the maximal value
1227 *
1228 * Apply the min/max range constraint to an interval parameter.
1229 *
1230 * Return: Positive if the value is changed, zero if it's not changed, or a
1231 * negative error code.
1232 */
1233 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1234 unsigned int min, unsigned int max)
1235 {
1236 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1237 struct snd_interval t;
1238 t.min = min;
1239 t.max = max;
1240 t.openmin = t.openmax = 0;
1241 t.integer = 0;
1242 return snd_interval_refine(constrs_interval(constrs, var), &t);
1243 }
1244
1245 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1246
1247 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1248 struct snd_pcm_hw_rule *rule)
1249 {
1250 struct snd_pcm_hw_constraint_list *list = rule->private;
1251 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1252 }
1253
1254
1255 /**
1256 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1257 * @runtime: PCM runtime instance
1258 * @cond: condition bits
1259 * @var: hw_params variable to apply the list constraint
1260 * @l: list
1261 *
1262 * Apply the list of constraints to an interval parameter.
1263 *
1264 * Return: Zero if successful, or a negative error code on failure.
1265 */
1266 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1267 unsigned int cond,
1268 snd_pcm_hw_param_t var,
1269 const struct snd_pcm_hw_constraint_list *l)
1270 {
1271 return snd_pcm_hw_rule_add(runtime, cond, var,
1272 snd_pcm_hw_rule_list, (void *)l,
1273 var, -1);
1274 }
1275
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1277
1278 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1279 struct snd_pcm_hw_rule *rule)
1280 {
1281 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1282 return snd_interval_ranges(hw_param_interval(params, rule->var),
1283 r->count, r->ranges, r->mask);
1284 }
1285
1286
1287 /**
1288 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1289 * @runtime: PCM runtime instance
1290 * @cond: condition bits
1291 * @var: hw_params variable to apply the list of range constraints
1292 * @r: ranges
1293 *
1294 * Apply the list of range constraints to an interval parameter.
1295 *
1296 * Return: Zero if successful, or a negative error code on failure.
1297 */
1298 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1299 unsigned int cond,
1300 snd_pcm_hw_param_t var,
1301 const struct snd_pcm_hw_constraint_ranges *r)
1302 {
1303 return snd_pcm_hw_rule_add(runtime, cond, var,
1304 snd_pcm_hw_rule_ranges, (void *)r,
1305 var, -1);
1306 }
1307 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1308
1309 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1310 struct snd_pcm_hw_rule *rule)
1311 {
1312 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1313 unsigned int num = 0, den = 0;
1314 int err;
1315 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1316 r->nrats, r->rats, &num, &den);
1317 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1318 params->rate_num = num;
1319 params->rate_den = den;
1320 }
1321 return err;
1322 }
1323
1324 /**
1325 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1326 * @runtime: PCM runtime instance
1327 * @cond: condition bits
1328 * @var: hw_params variable to apply the ratnums constraint
1329 * @r: struct snd_ratnums constriants
1330 *
1331 * Return: Zero if successful, or a negative error code on failure.
1332 */
1333 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1334 unsigned int cond,
1335 snd_pcm_hw_param_t var,
1336 struct snd_pcm_hw_constraint_ratnums *r)
1337 {
1338 return snd_pcm_hw_rule_add(runtime, cond, var,
1339 snd_pcm_hw_rule_ratnums, r,
1340 var, -1);
1341 }
1342
1343 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1344
1345 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1346 struct snd_pcm_hw_rule *rule)
1347 {
1348 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1349 unsigned int num = 0, den = 0;
1350 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1351 r->nrats, r->rats, &num, &den);
1352 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1353 params->rate_num = num;
1354 params->rate_den = den;
1355 }
1356 return err;
1357 }
1358
1359 /**
1360 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1361 * @runtime: PCM runtime instance
1362 * @cond: condition bits
1363 * @var: hw_params variable to apply the ratdens constraint
1364 * @r: struct snd_ratdens constriants
1365 *
1366 * Return: Zero if successful, or a negative error code on failure.
1367 */
1368 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1369 unsigned int cond,
1370 snd_pcm_hw_param_t var,
1371 struct snd_pcm_hw_constraint_ratdens *r)
1372 {
1373 return snd_pcm_hw_rule_add(runtime, cond, var,
1374 snd_pcm_hw_rule_ratdens, r,
1375 var, -1);
1376 }
1377
1378 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1379
1380 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1381 struct snd_pcm_hw_rule *rule)
1382 {
1383 unsigned int l = (unsigned long) rule->private;
1384 int width = l & 0xffff;
1385 unsigned int msbits = l >> 16;
1386 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1387
1388 if (!snd_interval_single(i))
1389 return 0;
1390
1391 if ((snd_interval_value(i) == width) ||
1392 (width == 0 && snd_interval_value(i) > msbits))
1393 params->msbits = min_not_zero(params->msbits, msbits);
1394
1395 return 0;
1396 }
1397
1398 /**
1399 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1400 * @runtime: PCM runtime instance
1401 * @cond: condition bits
1402 * @width: sample bits width
1403 * @msbits: msbits width
1404 *
1405 * This constraint will set the number of most significant bits (msbits) if a
1406 * sample format with the specified width has been select. If width is set to 0
1407 * the msbits will be set for any sample format with a width larger than the
1408 * specified msbits.
1409 *
1410 * Return: Zero if successful, or a negative error code on failure.
1411 */
1412 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1413 unsigned int cond,
1414 unsigned int width,
1415 unsigned int msbits)
1416 {
1417 unsigned long l = (msbits << 16) | width;
1418 return snd_pcm_hw_rule_add(runtime, cond, -1,
1419 snd_pcm_hw_rule_msbits,
1420 (void*) l,
1421 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422 }
1423
1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425
1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427 struct snd_pcm_hw_rule *rule)
1428 {
1429 unsigned long step = (unsigned long) rule->private;
1430 return snd_interval_step(hw_param_interval(params, rule->var), step);
1431 }
1432
1433 /**
1434 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435 * @runtime: PCM runtime instance
1436 * @cond: condition bits
1437 * @var: hw_params variable to apply the step constraint
1438 * @step: step size
1439 *
1440 * Return: Zero if successful, or a negative error code on failure.
1441 */
1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443 unsigned int cond,
1444 snd_pcm_hw_param_t var,
1445 unsigned long step)
1446 {
1447 return snd_pcm_hw_rule_add(runtime, cond, var,
1448 snd_pcm_hw_rule_step, (void *) step,
1449 var, -1);
1450 }
1451
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455 {
1456 static unsigned int pow2_sizes[] = {
1457 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461 };
1462 return snd_interval_list(hw_param_interval(params, rule->var),
1463 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 }
1465
1466 /**
1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468 * @runtime: PCM runtime instance
1469 * @cond: condition bits
1470 * @var: hw_params variable to apply the power-of-2 constraint
1471 *
1472 * Return: Zero if successful, or a negative error code on failure.
1473 */
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475 unsigned int cond,
1476 snd_pcm_hw_param_t var)
1477 {
1478 return snd_pcm_hw_rule_add(runtime, cond, var,
1479 snd_pcm_hw_rule_pow2, NULL,
1480 var, -1);
1481 }
1482
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486 struct snd_pcm_hw_rule *rule)
1487 {
1488 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489 struct snd_interval *rate;
1490
1491 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492 return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494
1495 /**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503 unsigned int base_rate)
1504 {
1505 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506 SNDRV_PCM_HW_PARAM_RATE,
1507 snd_pcm_hw_rule_noresample_func,
1508 (void *)(uintptr_t)base_rate,
1509 SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514 snd_pcm_hw_param_t var)
1515 {
1516 if (hw_is_mask(var)) {
1517 snd_mask_any(hw_param_mask(params, var));
1518 params->cmask |= 1 << var;
1519 params->rmask |= 1 << var;
1520 return;
1521 }
1522 if (hw_is_interval(var)) {
1523 snd_interval_any(hw_param_interval(params, var));
1524 params->cmask |= 1 << var;
1525 params->rmask |= 1 << var;
1526 return;
1527 }
1528 snd_BUG();
1529 }
1530
1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533 unsigned int k;
1534 memset(params, 0, sizeof(*params));
1535 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536 _snd_pcm_hw_param_any(params, k);
1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538 _snd_pcm_hw_param_any(params, k);
1539 params->info = ~0U;
1540 }
1541
1542 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543
1544 /**
1545 * snd_pcm_hw_param_value - return @params field @var value
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Return: The value for field @var if it's fixed in configuration space
1551 * defined by @params. -%EINVAL otherwise.
1552 */
1553 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554 snd_pcm_hw_param_t var, int *dir)
1555 {
1556 if (hw_is_mask(var)) {
1557 const struct snd_mask *mask = hw_param_mask_c(params, var);
1558 if (!snd_mask_single(mask))
1559 return -EINVAL;
1560 if (dir)
1561 *dir = 0;
1562 return snd_mask_value(mask);
1563 }
1564 if (hw_is_interval(var)) {
1565 const struct snd_interval *i = hw_param_interval_c(params, var);
1566 if (!snd_interval_single(i))
1567 return -EINVAL;
1568 if (dir)
1569 *dir = i->openmin;
1570 return snd_interval_value(i);
1571 }
1572 return -EINVAL;
1573 }
1574
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578 snd_pcm_hw_param_t var)
1579 {
1580 if (hw_is_mask(var)) {
1581 snd_mask_none(hw_param_mask(params, var));
1582 params->cmask |= 1 << var;
1583 params->rmask |= 1 << var;
1584 } else if (hw_is_interval(var)) {
1585 snd_interval_none(hw_param_interval(params, var));
1586 params->cmask |= 1 << var;
1587 params->rmask |= 1 << var;
1588 } else {
1589 snd_BUG();
1590 }
1591 }
1592
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596 snd_pcm_hw_param_t var)
1597 {
1598 int changed;
1599 if (hw_is_mask(var))
1600 changed = snd_mask_refine_first(hw_param_mask(params, var));
1601 else if (hw_is_interval(var))
1602 changed = snd_interval_refine_first(hw_param_interval(params, var));
1603 else
1604 return -EINVAL;
1605 if (changed) {
1606 params->cmask |= 1 << var;
1607 params->rmask |= 1 << var;
1608 }
1609 return changed;
1610 }
1611
1612
1613 /**
1614 * snd_pcm_hw_param_first - refine config space and return minimum value
1615 * @pcm: PCM instance
1616 * @params: the hw_params instance
1617 * @var: parameter to retrieve
1618 * @dir: pointer to the direction (-1,0,1) or %NULL
1619 *
1620 * Inside configuration space defined by @params remove from @var all
1621 * values > minimum. Reduce configuration space accordingly.
1622 *
1623 * Return: The minimum, or a negative error code on failure.
1624 */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1626 struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var, int *dir)
1628 {
1629 int changed = _snd_pcm_hw_param_first(params, var);
1630 if (changed < 0)
1631 return changed;
1632 if (params->rmask) {
1633 int err = snd_pcm_hw_refine(pcm, params);
1634 if (snd_BUG_ON(err < 0))
1635 return err;
1636 }
1637 return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643 snd_pcm_hw_param_t var)
1644 {
1645 int changed;
1646 if (hw_is_mask(var))
1647 changed = snd_mask_refine_last(hw_param_mask(params, var));
1648 else if (hw_is_interval(var))
1649 changed = snd_interval_refine_last(hw_param_interval(params, var));
1650 else
1651 return -EINVAL;
1652 if (changed) {
1653 params->cmask |= 1 << var;
1654 params->rmask |= 1 << var;
1655 }
1656 return changed;
1657 }
1658
1659
1660 /**
1661 * snd_pcm_hw_param_last - refine config space and return maximum value
1662 * @pcm: PCM instance
1663 * @params: the hw_params instance
1664 * @var: parameter to retrieve
1665 * @dir: pointer to the direction (-1,0,1) or %NULL
1666 *
1667 * Inside configuration space defined by @params remove from @var all
1668 * values < maximum. Reduce configuration space accordingly.
1669 *
1670 * Return: The maximum, or a negative error code on failure.
1671 */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1673 struct snd_pcm_hw_params *params,
1674 snd_pcm_hw_param_t var, int *dir)
1675 {
1676 int changed = _snd_pcm_hw_param_last(params, var);
1677 if (changed < 0)
1678 return changed;
1679 if (params->rmask) {
1680 int err = snd_pcm_hw_refine(pcm, params);
1681 if (snd_BUG_ON(err < 0))
1682 return err;
1683 }
1684 return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686
1687 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688
1689 /**
1690 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691 * @pcm: PCM instance
1692 * @params: the hw_params instance
1693 *
1694 * Choose one configuration from configuration space defined by @params.
1695 * The configuration chosen is that obtained fixing in this order:
1696 * first access, first format, first subformat, min channels,
1697 * min rate, min period time, max buffer size, min tick time
1698 *
1699 * Return: Zero if successful, or a negative error code on failure.
1700 */
1701 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702 struct snd_pcm_hw_params *params)
1703 {
1704 static int vars[] = {
1705 SNDRV_PCM_HW_PARAM_ACCESS,
1706 SNDRV_PCM_HW_PARAM_FORMAT,
1707 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708 SNDRV_PCM_HW_PARAM_CHANNELS,
1709 SNDRV_PCM_HW_PARAM_RATE,
1710 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712 SNDRV_PCM_HW_PARAM_TICK_TIME,
1713 -1
1714 };
1715 int err, *v;
1716
1717 for (v = vars; *v != -1; v++) {
1718 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720 else
1721 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722 if (snd_BUG_ON(err < 0))
1723 return err;
1724 }
1725 return 0;
1726 }
1727
1728 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729 void *arg)
1730 {
1731 struct snd_pcm_runtime *runtime = substream->runtime;
1732 unsigned long flags;
1733 snd_pcm_stream_lock_irqsave(substream, flags);
1734 if (snd_pcm_running(substream) &&
1735 snd_pcm_update_hw_ptr(substream) >= 0)
1736 runtime->status->hw_ptr %= runtime->buffer_size;
1737 else {
1738 runtime->status->hw_ptr = 0;
1739 runtime->hw_ptr_wrap = 0;
1740 }
1741 snd_pcm_stream_unlock_irqrestore(substream, flags);
1742 return 0;
1743 }
1744
1745 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746 void *arg)
1747 {
1748 struct snd_pcm_channel_info *info = arg;
1749 struct snd_pcm_runtime *runtime = substream->runtime;
1750 int width;
1751 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752 info->offset = -1;
1753 return 0;
1754 }
1755 width = snd_pcm_format_physical_width(runtime->format);
1756 if (width < 0)
1757 return width;
1758 info->offset = 0;
1759 switch (runtime->access) {
1760 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762 info->first = info->channel * width;
1763 info->step = runtime->channels * width;
1764 break;
1765 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767 {
1768 size_t size = runtime->dma_bytes / runtime->channels;
1769 info->first = info->channel * size * 8;
1770 info->step = width;
1771 break;
1772 }
1773 default:
1774 snd_BUG();
1775 break;
1776 }
1777 return 0;
1778 }
1779
1780 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781 void *arg)
1782 {
1783 struct snd_pcm_hw_params *params = arg;
1784 snd_pcm_format_t format;
1785 int channels;
1786 ssize_t frame_size;
1787
1788 params->fifo_size = substream->runtime->hw.fifo_size;
1789 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1790 format = params_format(params);
1791 channels = params_channels(params);
1792 frame_size = snd_pcm_format_size(format, channels);
1793 if (frame_size > 0)
1794 params->fifo_size /= (unsigned)frame_size;
1795 }
1796 return 0;
1797 }
1798
1799 /**
1800 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1801 * @substream: the pcm substream instance
1802 * @cmd: ioctl command
1803 * @arg: ioctl argument
1804 *
1805 * Processes the generic ioctl commands for PCM.
1806 * Can be passed as the ioctl callback for PCM ops.
1807 *
1808 * Return: Zero if successful, or a negative error code on failure.
1809 */
1810 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1811 unsigned int cmd, void *arg)
1812 {
1813 switch (cmd) {
1814 case SNDRV_PCM_IOCTL1_INFO:
1815 return 0;
1816 case SNDRV_PCM_IOCTL1_RESET:
1817 return snd_pcm_lib_ioctl_reset(substream, arg);
1818 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1819 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1820 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1821 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1822 }
1823 return -ENXIO;
1824 }
1825
1826 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1827
1828 /**
1829 * snd_pcm_period_elapsed - update the pcm status for the next period
1830 * @substream: the pcm substream instance
1831 *
1832 * This function is called from the interrupt handler when the
1833 * PCM has processed the period size. It will update the current
1834 * pointer, wake up sleepers, etc.
1835 *
1836 * Even if more than one periods have elapsed since the last call, you
1837 * have to call this only once.
1838 */
1839 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1840 {
1841 struct snd_pcm_runtime *runtime;
1842 unsigned long flags;
1843
1844 if (PCM_RUNTIME_CHECK(substream))
1845 return;
1846 runtime = substream->runtime;
1847
1848 if (runtime->transfer_ack_begin)
1849 runtime->transfer_ack_begin(substream);
1850
1851 snd_pcm_stream_lock_irqsave(substream, flags);
1852 if (!snd_pcm_running(substream) ||
1853 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1854 goto _end;
1855
1856 if (substream->timer_running)
1857 snd_timer_interrupt(substream->timer, 1);
1858 _end:
1859 snd_pcm_stream_unlock_irqrestore(substream, flags);
1860 if (runtime->transfer_ack_end)
1861 runtime->transfer_ack_end(substream);
1862 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1863 }
1864
1865 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1866
1867 /*
1868 * Wait until avail_min data becomes available
1869 * Returns a negative error code if any error occurs during operation.
1870 * The available space is stored on availp. When err = 0 and avail = 0
1871 * on the capture stream, it indicates the stream is in DRAINING state.
1872 */
1873 static int wait_for_avail(struct snd_pcm_substream *substream,
1874 snd_pcm_uframes_t *availp)
1875 {
1876 struct snd_pcm_runtime *runtime = substream->runtime;
1877 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1878 wait_queue_t wait;
1879 int err = 0;
1880 snd_pcm_uframes_t avail = 0;
1881 long wait_time, tout;
1882
1883 init_waitqueue_entry(&wait, current);
1884 set_current_state(TASK_INTERRUPTIBLE);
1885 add_wait_queue(&runtime->tsleep, &wait);
1886
1887 if (runtime->no_period_wakeup)
1888 wait_time = MAX_SCHEDULE_TIMEOUT;
1889 else {
1890 wait_time = 10;
1891 if (runtime->rate) {
1892 long t = runtime->period_size * 2 / runtime->rate;
1893 wait_time = max(t, wait_time);
1894 }
1895 wait_time = msecs_to_jiffies(wait_time * 1000);
1896 }
1897
1898 for (;;) {
1899 if (signal_pending(current)) {
1900 err = -ERESTARTSYS;
1901 break;
1902 }
1903
1904 /*
1905 * We need to check if space became available already
1906 * (and thus the wakeup happened already) first to close
1907 * the race of space already having become available.
1908 * This check must happen after been added to the waitqueue
1909 * and having current state be INTERRUPTIBLE.
1910 */
1911 if (is_playback)
1912 avail = snd_pcm_playback_avail(runtime);
1913 else
1914 avail = snd_pcm_capture_avail(runtime);
1915 if (avail >= runtime->twake)
1916 break;
1917 snd_pcm_stream_unlock_irq(substream);
1918
1919 tout = schedule_timeout(wait_time);
1920
1921 snd_pcm_stream_lock_irq(substream);
1922 set_current_state(TASK_INTERRUPTIBLE);
1923 switch (runtime->status->state) {
1924 case SNDRV_PCM_STATE_SUSPENDED:
1925 err = -ESTRPIPE;
1926 goto _endloop;
1927 case SNDRV_PCM_STATE_XRUN:
1928 err = -EPIPE;
1929 goto _endloop;
1930 case SNDRV_PCM_STATE_DRAINING:
1931 if (is_playback)
1932 err = -EPIPE;
1933 else
1934 avail = 0; /* indicate draining */
1935 goto _endloop;
1936 case SNDRV_PCM_STATE_OPEN:
1937 case SNDRV_PCM_STATE_SETUP:
1938 case SNDRV_PCM_STATE_DISCONNECTED:
1939 err = -EBADFD;
1940 goto _endloop;
1941 case SNDRV_PCM_STATE_PAUSED:
1942 continue;
1943 }
1944 if (!tout) {
1945 pcm_dbg(substream->pcm,
1946 "%s write error (DMA or IRQ trouble?)\n",
1947 is_playback ? "playback" : "capture");
1948 err = -EIO;
1949 break;
1950 }
1951 }
1952 _endloop:
1953 set_current_state(TASK_RUNNING);
1954 remove_wait_queue(&runtime->tsleep, &wait);
1955 *availp = avail;
1956 return err;
1957 }
1958
1959 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1960 unsigned int hwoff,
1961 unsigned long data, unsigned int off,
1962 snd_pcm_uframes_t frames)
1963 {
1964 struct snd_pcm_runtime *runtime = substream->runtime;
1965 int err;
1966 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1967 if (substream->ops->copy) {
1968 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1969 return err;
1970 } else {
1971 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1972 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1973 return -EFAULT;
1974 }
1975 return 0;
1976 }
1977
1978 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1979 unsigned long data, unsigned int off,
1980 snd_pcm_uframes_t size);
1981
1982 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1983 unsigned long data,
1984 snd_pcm_uframes_t size,
1985 int nonblock,
1986 transfer_f transfer)
1987 {
1988 struct snd_pcm_runtime *runtime = substream->runtime;
1989 snd_pcm_uframes_t xfer = 0;
1990 snd_pcm_uframes_t offset = 0;
1991 snd_pcm_uframes_t avail;
1992 int err = 0;
1993
1994 if (size == 0)
1995 return 0;
1996
1997 snd_pcm_stream_lock_irq(substream);
1998 switch (runtime->status->state) {
1999 case SNDRV_PCM_STATE_PREPARED:
2000 case SNDRV_PCM_STATE_RUNNING:
2001 case SNDRV_PCM_STATE_PAUSED:
2002 break;
2003 case SNDRV_PCM_STATE_XRUN:
2004 err = -EPIPE;
2005 goto _end_unlock;
2006 case SNDRV_PCM_STATE_SUSPENDED:
2007 err = -ESTRPIPE;
2008 goto _end_unlock;
2009 default:
2010 err = -EBADFD;
2011 goto _end_unlock;
2012 }
2013
2014 runtime->twake = runtime->control->avail_min ? : 1;
2015 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2016 snd_pcm_update_hw_ptr(substream);
2017 avail = snd_pcm_playback_avail(runtime);
2018 while (size > 0) {
2019 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2020 snd_pcm_uframes_t cont;
2021 if (!avail) {
2022 if (nonblock) {
2023 err = -EAGAIN;
2024 goto _end_unlock;
2025 }
2026 runtime->twake = min_t(snd_pcm_uframes_t, size,
2027 runtime->control->avail_min ? : 1);
2028 err = wait_for_avail(substream, &avail);
2029 if (err < 0)
2030 goto _end_unlock;
2031 }
2032 frames = size > avail ? avail : size;
2033 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2034 if (frames > cont)
2035 frames = cont;
2036 if (snd_BUG_ON(!frames)) {
2037 runtime->twake = 0;
2038 snd_pcm_stream_unlock_irq(substream);
2039 return -EINVAL;
2040 }
2041 appl_ptr = runtime->control->appl_ptr;
2042 appl_ofs = appl_ptr % runtime->buffer_size;
2043 snd_pcm_stream_unlock_irq(substream);
2044 err = transfer(substream, appl_ofs, data, offset, frames);
2045 snd_pcm_stream_lock_irq(substream);
2046 if (err < 0)
2047 goto _end_unlock;
2048 switch (runtime->status->state) {
2049 case SNDRV_PCM_STATE_XRUN:
2050 err = -EPIPE;
2051 goto _end_unlock;
2052 case SNDRV_PCM_STATE_SUSPENDED:
2053 err = -ESTRPIPE;
2054 goto _end_unlock;
2055 default:
2056 break;
2057 }
2058 appl_ptr += frames;
2059 if (appl_ptr >= runtime->boundary)
2060 appl_ptr -= runtime->boundary;
2061 runtime->control->appl_ptr = appl_ptr;
2062 if (substream->ops->ack)
2063 substream->ops->ack(substream);
2064
2065 offset += frames;
2066 size -= frames;
2067 xfer += frames;
2068 avail -= frames;
2069 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2070 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2071 err = snd_pcm_start(substream);
2072 if (err < 0)
2073 goto _end_unlock;
2074 }
2075 }
2076 _end_unlock:
2077 runtime->twake = 0;
2078 if (xfer > 0 && err >= 0)
2079 snd_pcm_update_state(substream, runtime);
2080 snd_pcm_stream_unlock_irq(substream);
2081 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2082 }
2083
2084 /* sanity-check for read/write methods */
2085 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2086 {
2087 struct snd_pcm_runtime *runtime;
2088 if (PCM_RUNTIME_CHECK(substream))
2089 return -ENXIO;
2090 runtime = substream->runtime;
2091 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2092 return -EINVAL;
2093 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2094 return -EBADFD;
2095 return 0;
2096 }
2097
2098 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2099 {
2100 struct snd_pcm_runtime *runtime;
2101 int nonblock;
2102 int err;
2103
2104 err = pcm_sanity_check(substream);
2105 if (err < 0)
2106 return err;
2107 runtime = substream->runtime;
2108 nonblock = !!(substream->f_flags & O_NONBLOCK);
2109
2110 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2111 runtime->channels > 1)
2112 return -EINVAL;
2113 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2114 snd_pcm_lib_write_transfer);
2115 }
2116
2117 EXPORT_SYMBOL(snd_pcm_lib_write);
2118
2119 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2120 unsigned int hwoff,
2121 unsigned long data, unsigned int off,
2122 snd_pcm_uframes_t frames)
2123 {
2124 struct snd_pcm_runtime *runtime = substream->runtime;
2125 int err;
2126 void __user **bufs = (void __user **)data;
2127 int channels = runtime->channels;
2128 int c;
2129 if (substream->ops->copy) {
2130 if (snd_BUG_ON(!substream->ops->silence))
2131 return -EINVAL;
2132 for (c = 0; c < channels; ++c, ++bufs) {
2133 if (*bufs == NULL) {
2134 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2135 return err;
2136 } else {
2137 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2138 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2139 return err;
2140 }
2141 }
2142 } else {
2143 /* default transfer behaviour */
2144 size_t dma_csize = runtime->dma_bytes / channels;
2145 for (c = 0; c < channels; ++c, ++bufs) {
2146 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2147 if (*bufs == NULL) {
2148 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2149 } else {
2150 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2151 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2152 return -EFAULT;
2153 }
2154 }
2155 }
2156 return 0;
2157 }
2158
2159 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2160 void __user **bufs,
2161 snd_pcm_uframes_t frames)
2162 {
2163 struct snd_pcm_runtime *runtime;
2164 int nonblock;
2165 int err;
2166
2167 err = pcm_sanity_check(substream);
2168 if (err < 0)
2169 return err;
2170 runtime = substream->runtime;
2171 nonblock = !!(substream->f_flags & O_NONBLOCK);
2172
2173 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2174 return -EINVAL;
2175 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2176 nonblock, snd_pcm_lib_writev_transfer);
2177 }
2178
2179 EXPORT_SYMBOL(snd_pcm_lib_writev);
2180
2181 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2182 unsigned int hwoff,
2183 unsigned long data, unsigned int off,
2184 snd_pcm_uframes_t frames)
2185 {
2186 struct snd_pcm_runtime *runtime = substream->runtime;
2187 int err;
2188 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2189 if (substream->ops->copy) {
2190 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2191 return err;
2192 } else {
2193 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2194 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2195 return -EFAULT;
2196 }
2197 return 0;
2198 }
2199
2200 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2201 unsigned long data,
2202 snd_pcm_uframes_t size,
2203 int nonblock,
2204 transfer_f transfer)
2205 {
2206 struct snd_pcm_runtime *runtime = substream->runtime;
2207 snd_pcm_uframes_t xfer = 0;
2208 snd_pcm_uframes_t offset = 0;
2209 snd_pcm_uframes_t avail;
2210 int err = 0;
2211
2212 if (size == 0)
2213 return 0;
2214
2215 snd_pcm_stream_lock_irq(substream);
2216 switch (runtime->status->state) {
2217 case SNDRV_PCM_STATE_PREPARED:
2218 if (size >= runtime->start_threshold) {
2219 err = snd_pcm_start(substream);
2220 if (err < 0)
2221 goto _end_unlock;
2222 }
2223 break;
2224 case SNDRV_PCM_STATE_DRAINING:
2225 case SNDRV_PCM_STATE_RUNNING:
2226 case SNDRV_PCM_STATE_PAUSED:
2227 break;
2228 case SNDRV_PCM_STATE_XRUN:
2229 err = -EPIPE;
2230 goto _end_unlock;
2231 case SNDRV_PCM_STATE_SUSPENDED:
2232 err = -ESTRPIPE;
2233 goto _end_unlock;
2234 default:
2235 err = -EBADFD;
2236 goto _end_unlock;
2237 }
2238
2239 runtime->twake = runtime->control->avail_min ? : 1;
2240 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2241 snd_pcm_update_hw_ptr(substream);
2242 avail = snd_pcm_capture_avail(runtime);
2243 while (size > 0) {
2244 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2245 snd_pcm_uframes_t cont;
2246 if (!avail) {
2247 if (runtime->status->state ==
2248 SNDRV_PCM_STATE_DRAINING) {
2249 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2250 goto _end_unlock;
2251 }
2252 if (nonblock) {
2253 err = -EAGAIN;
2254 goto _end_unlock;
2255 }
2256 runtime->twake = min_t(snd_pcm_uframes_t, size,
2257 runtime->control->avail_min ? : 1);
2258 err = wait_for_avail(substream, &avail);
2259 if (err < 0)
2260 goto _end_unlock;
2261 if (!avail)
2262 continue; /* draining */
2263 }
2264 frames = size > avail ? avail : size;
2265 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2266 if (frames > cont)
2267 frames = cont;
2268 if (snd_BUG_ON(!frames)) {
2269 runtime->twake = 0;
2270 snd_pcm_stream_unlock_irq(substream);
2271 return -EINVAL;
2272 }
2273 appl_ptr = runtime->control->appl_ptr;
2274 appl_ofs = appl_ptr % runtime->buffer_size;
2275 snd_pcm_stream_unlock_irq(substream);
2276 err = transfer(substream, appl_ofs, data, offset, frames);
2277 snd_pcm_stream_lock_irq(substream);
2278 if (err < 0)
2279 goto _end_unlock;
2280 switch (runtime->status->state) {
2281 case SNDRV_PCM_STATE_XRUN:
2282 err = -EPIPE;
2283 goto _end_unlock;
2284 case SNDRV_PCM_STATE_SUSPENDED:
2285 err = -ESTRPIPE;
2286 goto _end_unlock;
2287 default:
2288 break;
2289 }
2290 appl_ptr += frames;
2291 if (appl_ptr >= runtime->boundary)
2292 appl_ptr -= runtime->boundary;
2293 runtime->control->appl_ptr = appl_ptr;
2294 if (substream->ops->ack)
2295 substream->ops->ack(substream);
2296
2297 offset += frames;
2298 size -= frames;
2299 xfer += frames;
2300 avail -= frames;
2301 }
2302 _end_unlock:
2303 runtime->twake = 0;
2304 if (xfer > 0 && err >= 0)
2305 snd_pcm_update_state(substream, runtime);
2306 snd_pcm_stream_unlock_irq(substream);
2307 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2308 }
2309
2310 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2311 {
2312 struct snd_pcm_runtime *runtime;
2313 int nonblock;
2314 int err;
2315
2316 err = pcm_sanity_check(substream);
2317 if (err < 0)
2318 return err;
2319 runtime = substream->runtime;
2320 nonblock = !!(substream->f_flags & O_NONBLOCK);
2321 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2322 return -EINVAL;
2323 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2324 }
2325
2326 EXPORT_SYMBOL(snd_pcm_lib_read);
2327
2328 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2329 unsigned int hwoff,
2330 unsigned long data, unsigned int off,
2331 snd_pcm_uframes_t frames)
2332 {
2333 struct snd_pcm_runtime *runtime = substream->runtime;
2334 int err;
2335 void __user **bufs = (void __user **)data;
2336 int channels = runtime->channels;
2337 int c;
2338 if (substream->ops->copy) {
2339 for (c = 0; c < channels; ++c, ++bufs) {
2340 char __user *buf;
2341 if (*bufs == NULL)
2342 continue;
2343 buf = *bufs + samples_to_bytes(runtime, off);
2344 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2345 return err;
2346 }
2347 } else {
2348 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2349 for (c = 0; c < channels; ++c, ++bufs) {
2350 char *hwbuf;
2351 char __user *buf;
2352 if (*bufs == NULL)
2353 continue;
2354
2355 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2356 buf = *bufs + samples_to_bytes(runtime, off);
2357 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2358 return -EFAULT;
2359 }
2360 }
2361 return 0;
2362 }
2363
2364 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2365 void __user **bufs,
2366 snd_pcm_uframes_t frames)
2367 {
2368 struct snd_pcm_runtime *runtime;
2369 int nonblock;
2370 int err;
2371
2372 err = pcm_sanity_check(substream);
2373 if (err < 0)
2374 return err;
2375 runtime = substream->runtime;
2376 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2377 return -EBADFD;
2378
2379 nonblock = !!(substream->f_flags & O_NONBLOCK);
2380 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2381 return -EINVAL;
2382 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2383 }
2384
2385 EXPORT_SYMBOL(snd_pcm_lib_readv);
2386
2387 /*
2388 * standard channel mapping helpers
2389 */
2390
2391 /* default channel maps for multi-channel playbacks, up to 8 channels */
2392 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2393 { .channels = 1,
2394 .map = { SNDRV_CHMAP_MONO } },
2395 { .channels = 2,
2396 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2397 { .channels = 4,
2398 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2399 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2400 { .channels = 6,
2401 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2402 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2403 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2404 { .channels = 8,
2405 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2406 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2407 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2408 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2409 { }
2410 };
2411 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2412
2413 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2414 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2415 { .channels = 1,
2416 .map = { SNDRV_CHMAP_MONO } },
2417 { .channels = 2,
2418 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2419 { .channels = 4,
2420 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2421 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2422 { .channels = 6,
2423 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2424 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2425 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2426 { .channels = 8,
2427 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2428 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2429 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2430 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2431 { }
2432 };
2433 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2434
2435 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2436 {
2437 if (ch > info->max_channels)
2438 return false;
2439 return !info->channel_mask || (info->channel_mask & (1U << ch));
2440 }
2441
2442 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2443 struct snd_ctl_elem_info *uinfo)
2444 {
2445 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2446
2447 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2448 uinfo->count = 0;
2449 uinfo->count = info->max_channels;
2450 uinfo->value.integer.min = 0;
2451 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2452 return 0;
2453 }
2454
2455 /* get callback for channel map ctl element
2456 * stores the channel position firstly matching with the current channels
2457 */
2458 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2459 struct snd_ctl_elem_value *ucontrol)
2460 {
2461 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2462 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2463 struct snd_pcm_substream *substream;
2464 const struct snd_pcm_chmap_elem *map;
2465
2466 if (snd_BUG_ON(!info->chmap))
2467 return -EINVAL;
2468 substream = snd_pcm_chmap_substream(info, idx);
2469 if (!substream)
2470 return -ENODEV;
2471 memset(ucontrol->value.integer.value, 0,
2472 sizeof(ucontrol->value.integer.value));
2473 if (!substream->runtime)
2474 return 0; /* no channels set */
2475 for (map = info->chmap; map->channels; map++) {
2476 int i;
2477 if (map->channels == substream->runtime->channels &&
2478 valid_chmap_channels(info, map->channels)) {
2479 for (i = 0; i < map->channels; i++)
2480 ucontrol->value.integer.value[i] = map->map[i];
2481 return 0;
2482 }
2483 }
2484 return -EINVAL;
2485 }
2486
2487 /* tlv callback for channel map ctl element
2488 * expands the pre-defined channel maps in a form of TLV
2489 */
2490 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2491 unsigned int size, unsigned int __user *tlv)
2492 {
2493 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2494 const struct snd_pcm_chmap_elem *map;
2495 unsigned int __user *dst;
2496 int c, count = 0;
2497
2498 if (snd_BUG_ON(!info->chmap))
2499 return -EINVAL;
2500 if (size < 8)
2501 return -ENOMEM;
2502 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2503 return -EFAULT;
2504 size -= 8;
2505 dst = tlv + 2;
2506 for (map = info->chmap; map->channels; map++) {
2507 int chs_bytes = map->channels * 4;
2508 if (!valid_chmap_channels(info, map->channels))
2509 continue;
2510 if (size < 8)
2511 return -ENOMEM;
2512 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2513 put_user(chs_bytes, dst + 1))
2514 return -EFAULT;
2515 dst += 2;
2516 size -= 8;
2517 count += 8;
2518 if (size < chs_bytes)
2519 return -ENOMEM;
2520 size -= chs_bytes;
2521 count += chs_bytes;
2522 for (c = 0; c < map->channels; c++) {
2523 if (put_user(map->map[c], dst))
2524 return -EFAULT;
2525 dst++;
2526 }
2527 }
2528 if (put_user(count, tlv + 1))
2529 return -EFAULT;
2530 return 0;
2531 }
2532
2533 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2534 {
2535 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2536 info->pcm->streams[info->stream].chmap_kctl = NULL;
2537 kfree(info);
2538 }
2539
2540 /**
2541 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2542 * @pcm: the assigned PCM instance
2543 * @stream: stream direction
2544 * @chmap: channel map elements (for query)
2545 * @max_channels: the max number of channels for the stream
2546 * @private_value: the value passed to each kcontrol's private_value field
2547 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2548 *
2549 * Create channel-mapping control elements assigned to the given PCM stream(s).
2550 * Return: Zero if successful, or a negative error value.
2551 */
2552 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2553 const struct snd_pcm_chmap_elem *chmap,
2554 int max_channels,
2555 unsigned long private_value,
2556 struct snd_pcm_chmap **info_ret)
2557 {
2558 struct snd_pcm_chmap *info;
2559 struct snd_kcontrol_new knew = {
2560 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2561 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2562 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2563 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2564 .info = pcm_chmap_ctl_info,
2565 .get = pcm_chmap_ctl_get,
2566 .tlv.c = pcm_chmap_ctl_tlv,
2567 };
2568 int err;
2569
2570 info = kzalloc(sizeof(*info), GFP_KERNEL);
2571 if (!info)
2572 return -ENOMEM;
2573 info->pcm = pcm;
2574 info->stream = stream;
2575 info->chmap = chmap;
2576 info->max_channels = max_channels;
2577 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2578 knew.name = "Playback Channel Map";
2579 else
2580 knew.name = "Capture Channel Map";
2581 knew.device = pcm->device;
2582 knew.count = pcm->streams[stream].substream_count;
2583 knew.private_value = private_value;
2584 info->kctl = snd_ctl_new1(&knew, info);
2585 if (!info->kctl) {
2586 kfree(info);
2587 return -ENOMEM;
2588 }
2589 info->kctl->private_free = pcm_chmap_ctl_private_free;
2590 err = snd_ctl_add(pcm->card, info->kctl);
2591 if (err < 0)
2592 return err;
2593 pcm->streams[stream].chmap_kctl = info->kctl;
2594 if (info_ret)
2595 *info_ret = info;
2596 return 0;
2597 }
2598 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
This page took 0.084588 seconds and 5 git commands to generate.