ALSA: pcm - Use UNKNOWN chmap for mono streams
[deliverable/linux.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 /*
36 * fill ring buffer with silence
37 * runtime->silence_start: starting pointer to silence area
38 * runtime->silence_filled: size filled with silence
39 * runtime->silence_threshold: threshold from application
40 * runtime->silence_size: maximal size from application
41 *
42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43 */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 struct snd_pcm_runtime *runtime = substream->runtime;
47 snd_pcm_uframes_t frames, ofs, transfer;
48
49 if (runtime->silence_size < runtime->boundary) {
50 snd_pcm_sframes_t noise_dist, n;
51 if (runtime->silence_start != runtime->control->appl_ptr) {
52 n = runtime->control->appl_ptr - runtime->silence_start;
53 if (n < 0)
54 n += runtime->boundary;
55 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 runtime->silence_filled -= n;
57 else
58 runtime->silence_filled = 0;
59 runtime->silence_start = runtime->control->appl_ptr;
60 }
61 if (runtime->silence_filled >= runtime->buffer_size)
62 return;
63 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 return;
66 frames = runtime->silence_threshold - noise_dist;
67 if (frames > runtime->silence_size)
68 frames = runtime->silence_size;
69 } else {
70 if (new_hw_ptr == ULONG_MAX) { /* initialization */
71 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 if (avail > runtime->buffer_size)
73 avail = runtime->buffer_size;
74 runtime->silence_filled = avail > 0 ? avail : 0;
75 runtime->silence_start = (runtime->status->hw_ptr +
76 runtime->silence_filled) %
77 runtime->boundary;
78 } else {
79 ofs = runtime->status->hw_ptr;
80 frames = new_hw_ptr - ofs;
81 if ((snd_pcm_sframes_t)frames < 0)
82 frames += runtime->boundary;
83 runtime->silence_filled -= frames;
84 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 runtime->silence_filled = 0;
86 runtime->silence_start = new_hw_ptr;
87 } else {
88 runtime->silence_start = ofs;
89 }
90 }
91 frames = runtime->buffer_size - runtime->silence_filled;
92 }
93 if (snd_BUG_ON(frames > runtime->buffer_size))
94 return;
95 if (frames == 0)
96 return;
97 ofs = runtime->silence_start % runtime->buffer_size;
98 while (frames > 0) {
99 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 if (substream->ops->silence) {
103 int err;
104 err = substream->ops->silence(substream, -1, ofs, transfer);
105 snd_BUG_ON(err < 0);
106 } else {
107 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 }
110 } else {
111 unsigned int c;
112 unsigned int channels = runtime->channels;
113 if (substream->ops->silence) {
114 for (c = 0; c < channels; ++c) {
115 int err;
116 err = substream->ops->silence(substream, c, ofs, transfer);
117 snd_BUG_ON(err < 0);
118 }
119 } else {
120 size_t dma_csize = runtime->dma_bytes / channels;
121 for (c = 0; c < channels; ++c) {
122 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 }
125 }
126 }
127 runtime->silence_filled += transfer;
128 frames -= transfer;
129 ofs = 0;
130 }
131 }
132
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 char *name, size_t len)
136 {
137 snprintf(name, len, "pcmC%dD%d%c:%d",
138 substream->pcm->card->number,
139 substream->pcm->device,
140 substream->stream ? 'c' : 'p',
141 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145
146 #define XRUN_DEBUG_BASIC (1<<0)
147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask) 0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
164 dump_stack(); \
165 } while (0)
166
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 struct snd_pcm_runtime *runtime = substream->runtime;
170
171 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 char name[16];
176 snd_pcm_debug_name(substream, name, sizeof(name));
177 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
178 dump_stack_on_xrun(substream);
179 }
180 }
181
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...) \
184 do { \
185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
186 xrun_log_show(substream); \
187 if (printk_ratelimit()) { \
188 snd_printd("PCM: " fmt, ##args); \
189 } \
190 dump_stack_on_xrun(substream); \
191 } \
192 } while (0)
193
194 #define XRUN_LOG_CNT 10
195
196 struct hwptr_log_entry {
197 unsigned int in_interrupt;
198 unsigned long jiffies;
199 snd_pcm_uframes_t pos;
200 snd_pcm_uframes_t period_size;
201 snd_pcm_uframes_t buffer_size;
202 snd_pcm_uframes_t old_hw_ptr;
203 snd_pcm_uframes_t hw_ptr_base;
204 };
205
206 struct snd_pcm_hwptr_log {
207 unsigned int idx;
208 unsigned int hit: 1;
209 struct hwptr_log_entry entries[XRUN_LOG_CNT];
210 };
211
212 static void xrun_log(struct snd_pcm_substream *substream,
213 snd_pcm_uframes_t pos, int in_interrupt)
214 {
215 struct snd_pcm_runtime *runtime = substream->runtime;
216 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
217 struct hwptr_log_entry *entry;
218
219 if (log == NULL) {
220 log = kzalloc(sizeof(*log), GFP_ATOMIC);
221 if (log == NULL)
222 return;
223 runtime->hwptr_log = log;
224 } else {
225 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
226 return;
227 }
228 entry = &log->entries[log->idx];
229 entry->in_interrupt = in_interrupt;
230 entry->jiffies = jiffies;
231 entry->pos = pos;
232 entry->period_size = runtime->period_size;
233 entry->buffer_size = runtime->buffer_size;
234 entry->old_hw_ptr = runtime->status->hw_ptr;
235 entry->hw_ptr_base = runtime->hw_ptr_base;
236 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
237 }
238
239 static void xrun_log_show(struct snd_pcm_substream *substream)
240 {
241 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
242 struct hwptr_log_entry *entry;
243 char name[16];
244 unsigned int idx;
245 int cnt;
246
247 if (log == NULL)
248 return;
249 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
250 return;
251 snd_pcm_debug_name(substream, name, sizeof(name));
252 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
253 entry = &log->entries[idx];
254 if (entry->period_size == 0)
255 break;
256 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
257 "hwptr=%ld/%ld\n",
258 name, entry->in_interrupt ? "[Q] " : "",
259 entry->jiffies,
260 (unsigned long)entry->pos,
261 (unsigned long)entry->period_size,
262 (unsigned long)entry->buffer_size,
263 (unsigned long)entry->old_hw_ptr,
264 (unsigned long)entry->hw_ptr_base);
265 idx++;
266 idx %= XRUN_LOG_CNT;
267 }
268 log->hit = 1;
269 }
270
271 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
272
273 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
274 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
275 #define xrun_log_show(substream) do { } while (0)
276
277 #endif
278
279 int snd_pcm_update_state(struct snd_pcm_substream *substream,
280 struct snd_pcm_runtime *runtime)
281 {
282 snd_pcm_uframes_t avail;
283
284 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
285 avail = snd_pcm_playback_avail(runtime);
286 else
287 avail = snd_pcm_capture_avail(runtime);
288 if (avail > runtime->avail_max)
289 runtime->avail_max = avail;
290 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
291 if (avail >= runtime->buffer_size) {
292 snd_pcm_drain_done(substream);
293 return -EPIPE;
294 }
295 } else {
296 if (avail >= runtime->stop_threshold) {
297 xrun(substream);
298 return -EPIPE;
299 }
300 }
301 if (runtime->twake) {
302 if (avail >= runtime->twake)
303 wake_up(&runtime->tsleep);
304 } else if (avail >= runtime->control->avail_min)
305 wake_up(&runtime->sleep);
306 return 0;
307 }
308
309 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
310 unsigned int in_interrupt)
311 {
312 struct snd_pcm_runtime *runtime = substream->runtime;
313 snd_pcm_uframes_t pos;
314 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
315 snd_pcm_sframes_t hdelta, delta;
316 unsigned long jdelta;
317 unsigned long curr_jiffies;
318 struct timespec curr_tstamp;
319
320 old_hw_ptr = runtime->status->hw_ptr;
321
322 /*
323 * group pointer, time and jiffies reads to allow for more
324 * accurate correlations/corrections.
325 * The values are stored at the end of this routine after
326 * corrections for hw_ptr position
327 */
328 pos = substream->ops->pointer(substream);
329 curr_jiffies = jiffies;
330 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
331 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
332
333 if (pos == SNDRV_PCM_POS_XRUN) {
334 xrun(substream);
335 return -EPIPE;
336 }
337 if (pos >= runtime->buffer_size) {
338 if (printk_ratelimit()) {
339 char name[16];
340 snd_pcm_debug_name(substream, name, sizeof(name));
341 xrun_log_show(substream);
342 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
343 "buffer size = %ld, period size = %ld\n",
344 name, pos, runtime->buffer_size,
345 runtime->period_size);
346 }
347 pos = 0;
348 }
349 pos -= pos % runtime->min_align;
350 if (xrun_debug(substream, XRUN_DEBUG_LOG))
351 xrun_log(substream, pos, in_interrupt);
352 hw_base = runtime->hw_ptr_base;
353 new_hw_ptr = hw_base + pos;
354 if (in_interrupt) {
355 /* we know that one period was processed */
356 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
357 delta = runtime->hw_ptr_interrupt + runtime->period_size;
358 if (delta > new_hw_ptr) {
359 /* check for double acknowledged interrupts */
360 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
361 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
362 hw_base += runtime->buffer_size;
363 if (hw_base >= runtime->boundary)
364 hw_base = 0;
365 new_hw_ptr = hw_base + pos;
366 goto __delta;
367 }
368 }
369 }
370 /* new_hw_ptr might be lower than old_hw_ptr in case when */
371 /* pointer crosses the end of the ring buffer */
372 if (new_hw_ptr < old_hw_ptr) {
373 hw_base += runtime->buffer_size;
374 if (hw_base >= runtime->boundary)
375 hw_base = 0;
376 new_hw_ptr = hw_base + pos;
377 }
378 __delta:
379 delta = new_hw_ptr - old_hw_ptr;
380 if (delta < 0)
381 delta += runtime->boundary;
382 if (xrun_debug(substream, in_interrupt ?
383 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
384 char name[16];
385 snd_pcm_debug_name(substream, name, sizeof(name));
386 snd_printd("%s_update: %s: pos=%u/%u/%u, "
387 "hwptr=%ld/%ld/%ld/%ld\n",
388 in_interrupt ? "period" : "hwptr",
389 name,
390 (unsigned int)pos,
391 (unsigned int)runtime->period_size,
392 (unsigned int)runtime->buffer_size,
393 (unsigned long)delta,
394 (unsigned long)old_hw_ptr,
395 (unsigned long)new_hw_ptr,
396 (unsigned long)runtime->hw_ptr_base);
397 }
398
399 if (runtime->no_period_wakeup) {
400 snd_pcm_sframes_t xrun_threshold;
401 /*
402 * Without regular period interrupts, we have to check
403 * the elapsed time to detect xruns.
404 */
405 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
406 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
407 goto no_delta_check;
408 hdelta = jdelta - delta * HZ / runtime->rate;
409 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
410 while (hdelta > xrun_threshold) {
411 delta += runtime->buffer_size;
412 hw_base += runtime->buffer_size;
413 if (hw_base >= runtime->boundary)
414 hw_base = 0;
415 new_hw_ptr = hw_base + pos;
416 hdelta -= runtime->hw_ptr_buffer_jiffies;
417 }
418 goto no_delta_check;
419 }
420
421 /* something must be really wrong */
422 if (delta >= runtime->buffer_size + runtime->period_size) {
423 hw_ptr_error(substream,
424 "Unexpected hw_pointer value %s"
425 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
426 "old_hw_ptr=%ld)\n",
427 in_interrupt ? "[Q] " : "[P]",
428 substream->stream, (long)pos,
429 (long)new_hw_ptr, (long)old_hw_ptr);
430 return 0;
431 }
432
433 /* Do jiffies check only in xrun_debug mode */
434 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
435 goto no_jiffies_check;
436
437 /* Skip the jiffies check for hardwares with BATCH flag.
438 * Such hardware usually just increases the position at each IRQ,
439 * thus it can't give any strange position.
440 */
441 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
442 goto no_jiffies_check;
443 hdelta = delta;
444 if (hdelta < runtime->delay)
445 goto no_jiffies_check;
446 hdelta -= runtime->delay;
447 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
448 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
449 delta = jdelta /
450 (((runtime->period_size * HZ) / runtime->rate)
451 + HZ/100);
452 /* move new_hw_ptr according jiffies not pos variable */
453 new_hw_ptr = old_hw_ptr;
454 hw_base = delta;
455 /* use loop to avoid checks for delta overflows */
456 /* the delta value is small or zero in most cases */
457 while (delta > 0) {
458 new_hw_ptr += runtime->period_size;
459 if (new_hw_ptr >= runtime->boundary)
460 new_hw_ptr -= runtime->boundary;
461 delta--;
462 }
463 /* align hw_base to buffer_size */
464 hw_ptr_error(substream,
465 "hw_ptr skipping! %s"
466 "(pos=%ld, delta=%ld, period=%ld, "
467 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
468 in_interrupt ? "[Q] " : "",
469 (long)pos, (long)hdelta,
470 (long)runtime->period_size, jdelta,
471 ((hdelta * HZ) / runtime->rate), hw_base,
472 (unsigned long)old_hw_ptr,
473 (unsigned long)new_hw_ptr);
474 /* reset values to proper state */
475 delta = 0;
476 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
477 }
478 no_jiffies_check:
479 if (delta > runtime->period_size + runtime->period_size / 2) {
480 hw_ptr_error(substream,
481 "Lost interrupts? %s"
482 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
483 "old_hw_ptr=%ld)\n",
484 in_interrupt ? "[Q] " : "",
485 substream->stream, (long)delta,
486 (long)new_hw_ptr,
487 (long)old_hw_ptr);
488 }
489
490 no_delta_check:
491 if (runtime->status->hw_ptr == new_hw_ptr)
492 return 0;
493
494 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
495 runtime->silence_size > 0)
496 snd_pcm_playback_silence(substream, new_hw_ptr);
497
498 if (in_interrupt) {
499 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
500 if (delta < 0)
501 delta += runtime->boundary;
502 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
503 runtime->hw_ptr_interrupt += delta;
504 if (runtime->hw_ptr_interrupt >= runtime->boundary)
505 runtime->hw_ptr_interrupt -= runtime->boundary;
506 }
507 runtime->hw_ptr_base = hw_base;
508 runtime->status->hw_ptr = new_hw_ptr;
509 runtime->hw_ptr_jiffies = curr_jiffies;
510 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
511 runtime->status->tstamp = curr_tstamp;
512
513 return snd_pcm_update_state(substream, runtime);
514 }
515
516 /* CAUTION: call it with irq disabled */
517 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
518 {
519 return snd_pcm_update_hw_ptr0(substream, 0);
520 }
521
522 /**
523 * snd_pcm_set_ops - set the PCM operators
524 * @pcm: the pcm instance
525 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
526 * @ops: the operator table
527 *
528 * Sets the given PCM operators to the pcm instance.
529 */
530 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
531 {
532 struct snd_pcm_str *stream = &pcm->streams[direction];
533 struct snd_pcm_substream *substream;
534
535 for (substream = stream->substream; substream != NULL; substream = substream->next)
536 substream->ops = ops;
537 }
538
539 EXPORT_SYMBOL(snd_pcm_set_ops);
540
541 /**
542 * snd_pcm_sync - set the PCM sync id
543 * @substream: the pcm substream
544 *
545 * Sets the PCM sync identifier for the card.
546 */
547 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
548 {
549 struct snd_pcm_runtime *runtime = substream->runtime;
550
551 runtime->sync.id32[0] = substream->pcm->card->number;
552 runtime->sync.id32[1] = -1;
553 runtime->sync.id32[2] = -1;
554 runtime->sync.id32[3] = -1;
555 }
556
557 EXPORT_SYMBOL(snd_pcm_set_sync);
558
559 /*
560 * Standard ioctl routine
561 */
562
563 static inline unsigned int div32(unsigned int a, unsigned int b,
564 unsigned int *r)
565 {
566 if (b == 0) {
567 *r = 0;
568 return UINT_MAX;
569 }
570 *r = a % b;
571 return a / b;
572 }
573
574 static inline unsigned int div_down(unsigned int a, unsigned int b)
575 {
576 if (b == 0)
577 return UINT_MAX;
578 return a / b;
579 }
580
581 static inline unsigned int div_up(unsigned int a, unsigned int b)
582 {
583 unsigned int r;
584 unsigned int q;
585 if (b == 0)
586 return UINT_MAX;
587 q = div32(a, b, &r);
588 if (r)
589 ++q;
590 return q;
591 }
592
593 static inline unsigned int mul(unsigned int a, unsigned int b)
594 {
595 if (a == 0)
596 return 0;
597 if (div_down(UINT_MAX, a) < b)
598 return UINT_MAX;
599 return a * b;
600 }
601
602 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
603 unsigned int c, unsigned int *r)
604 {
605 u_int64_t n = (u_int64_t) a * b;
606 if (c == 0) {
607 snd_BUG_ON(!n);
608 *r = 0;
609 return UINT_MAX;
610 }
611 n = div_u64_rem(n, c, r);
612 if (n >= UINT_MAX) {
613 *r = 0;
614 return UINT_MAX;
615 }
616 return n;
617 }
618
619 /**
620 * snd_interval_refine - refine the interval value of configurator
621 * @i: the interval value to refine
622 * @v: the interval value to refer to
623 *
624 * Refines the interval value with the reference value.
625 * The interval is changed to the range satisfying both intervals.
626 * The interval status (min, max, integer, etc.) are evaluated.
627 *
628 * Returns non-zero if the value is changed, zero if not changed.
629 */
630 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
631 {
632 int changed = 0;
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (i->min < v->min) {
636 i->min = v->min;
637 i->openmin = v->openmin;
638 changed = 1;
639 } else if (i->min == v->min && !i->openmin && v->openmin) {
640 i->openmin = 1;
641 changed = 1;
642 }
643 if (i->max > v->max) {
644 i->max = v->max;
645 i->openmax = v->openmax;
646 changed = 1;
647 } else if (i->max == v->max && !i->openmax && v->openmax) {
648 i->openmax = 1;
649 changed = 1;
650 }
651 if (!i->integer && v->integer) {
652 i->integer = 1;
653 changed = 1;
654 }
655 if (i->integer) {
656 if (i->openmin) {
657 i->min++;
658 i->openmin = 0;
659 }
660 if (i->openmax) {
661 i->max--;
662 i->openmax = 0;
663 }
664 } else if (!i->openmin && !i->openmax && i->min == i->max)
665 i->integer = 1;
666 if (snd_interval_checkempty(i)) {
667 snd_interval_none(i);
668 return -EINVAL;
669 }
670 return changed;
671 }
672
673 EXPORT_SYMBOL(snd_interval_refine);
674
675 static int snd_interval_refine_first(struct snd_interval *i)
676 {
677 if (snd_BUG_ON(snd_interval_empty(i)))
678 return -EINVAL;
679 if (snd_interval_single(i))
680 return 0;
681 i->max = i->min;
682 i->openmax = i->openmin;
683 if (i->openmax)
684 i->max++;
685 return 1;
686 }
687
688 static int snd_interval_refine_last(struct snd_interval *i)
689 {
690 if (snd_BUG_ON(snd_interval_empty(i)))
691 return -EINVAL;
692 if (snd_interval_single(i))
693 return 0;
694 i->min = i->max;
695 i->openmin = i->openmax;
696 if (i->openmin)
697 i->min--;
698 return 1;
699 }
700
701 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
702 {
703 if (a->empty || b->empty) {
704 snd_interval_none(c);
705 return;
706 }
707 c->empty = 0;
708 c->min = mul(a->min, b->min);
709 c->openmin = (a->openmin || b->openmin);
710 c->max = mul(a->max, b->max);
711 c->openmax = (a->openmax || b->openmax);
712 c->integer = (a->integer && b->integer);
713 }
714
715 /**
716 * snd_interval_div - refine the interval value with division
717 * @a: dividend
718 * @b: divisor
719 * @c: quotient
720 *
721 * c = a / b
722 *
723 * Returns non-zero if the value is changed, zero if not changed.
724 */
725 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
726 {
727 unsigned int r;
728 if (a->empty || b->empty) {
729 snd_interval_none(c);
730 return;
731 }
732 c->empty = 0;
733 c->min = div32(a->min, b->max, &r);
734 c->openmin = (r || a->openmin || b->openmax);
735 if (b->min > 0) {
736 c->max = div32(a->max, b->min, &r);
737 if (r) {
738 c->max++;
739 c->openmax = 1;
740 } else
741 c->openmax = (a->openmax || b->openmin);
742 } else {
743 c->max = UINT_MAX;
744 c->openmax = 0;
745 }
746 c->integer = 0;
747 }
748
749 /**
750 * snd_interval_muldivk - refine the interval value
751 * @a: dividend 1
752 * @b: dividend 2
753 * @k: divisor (as integer)
754 * @c: result
755 *
756 * c = a * b / k
757 *
758 * Returns non-zero if the value is changed, zero if not changed.
759 */
760 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
761 unsigned int k, struct snd_interval *c)
762 {
763 unsigned int r;
764 if (a->empty || b->empty) {
765 snd_interval_none(c);
766 return;
767 }
768 c->empty = 0;
769 c->min = muldiv32(a->min, b->min, k, &r);
770 c->openmin = (r || a->openmin || b->openmin);
771 c->max = muldiv32(a->max, b->max, k, &r);
772 if (r) {
773 c->max++;
774 c->openmax = 1;
775 } else
776 c->openmax = (a->openmax || b->openmax);
777 c->integer = 0;
778 }
779
780 /**
781 * snd_interval_mulkdiv - refine the interval value
782 * @a: dividend 1
783 * @k: dividend 2 (as integer)
784 * @b: divisor
785 * @c: result
786 *
787 * c = a * k / b
788 *
789 * Returns non-zero if the value is changed, zero if not changed.
790 */
791 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
792 const struct snd_interval *b, struct snd_interval *c)
793 {
794 unsigned int r;
795 if (a->empty || b->empty) {
796 snd_interval_none(c);
797 return;
798 }
799 c->empty = 0;
800 c->min = muldiv32(a->min, k, b->max, &r);
801 c->openmin = (r || a->openmin || b->openmax);
802 if (b->min > 0) {
803 c->max = muldiv32(a->max, k, b->min, &r);
804 if (r) {
805 c->max++;
806 c->openmax = 1;
807 } else
808 c->openmax = (a->openmax || b->openmin);
809 } else {
810 c->max = UINT_MAX;
811 c->openmax = 0;
812 }
813 c->integer = 0;
814 }
815
816 /* ---- */
817
818
819 /**
820 * snd_interval_ratnum - refine the interval value
821 * @i: interval to refine
822 * @rats_count: number of ratnum_t
823 * @rats: ratnum_t array
824 * @nump: pointer to store the resultant numerator
825 * @denp: pointer to store the resultant denominator
826 *
827 * Returns non-zero if the value is changed, zero if not changed.
828 */
829 int snd_interval_ratnum(struct snd_interval *i,
830 unsigned int rats_count, struct snd_ratnum *rats,
831 unsigned int *nump, unsigned int *denp)
832 {
833 unsigned int best_num, best_den;
834 int best_diff;
835 unsigned int k;
836 struct snd_interval t;
837 int err;
838 unsigned int result_num, result_den;
839 int result_diff;
840
841 best_num = best_den = best_diff = 0;
842 for (k = 0; k < rats_count; ++k) {
843 unsigned int num = rats[k].num;
844 unsigned int den;
845 unsigned int q = i->min;
846 int diff;
847 if (q == 0)
848 q = 1;
849 den = div_up(num, q);
850 if (den < rats[k].den_min)
851 continue;
852 if (den > rats[k].den_max)
853 den = rats[k].den_max;
854 else {
855 unsigned int r;
856 r = (den - rats[k].den_min) % rats[k].den_step;
857 if (r != 0)
858 den -= r;
859 }
860 diff = num - q * den;
861 if (diff < 0)
862 diff = -diff;
863 if (best_num == 0 ||
864 diff * best_den < best_diff * den) {
865 best_diff = diff;
866 best_den = den;
867 best_num = num;
868 }
869 }
870 if (best_den == 0) {
871 i->empty = 1;
872 return -EINVAL;
873 }
874 t.min = div_down(best_num, best_den);
875 t.openmin = !!(best_num % best_den);
876
877 result_num = best_num;
878 result_diff = best_diff;
879 result_den = best_den;
880 best_num = best_den = best_diff = 0;
881 for (k = 0; k < rats_count; ++k) {
882 unsigned int num = rats[k].num;
883 unsigned int den;
884 unsigned int q = i->max;
885 int diff;
886 if (q == 0) {
887 i->empty = 1;
888 return -EINVAL;
889 }
890 den = div_down(num, q);
891 if (den > rats[k].den_max)
892 continue;
893 if (den < rats[k].den_min)
894 den = rats[k].den_min;
895 else {
896 unsigned int r;
897 r = (den - rats[k].den_min) % rats[k].den_step;
898 if (r != 0)
899 den += rats[k].den_step - r;
900 }
901 diff = q * den - num;
902 if (diff < 0)
903 diff = -diff;
904 if (best_num == 0 ||
905 diff * best_den < best_diff * den) {
906 best_diff = diff;
907 best_den = den;
908 best_num = num;
909 }
910 }
911 if (best_den == 0) {
912 i->empty = 1;
913 return -EINVAL;
914 }
915 t.max = div_up(best_num, best_den);
916 t.openmax = !!(best_num % best_den);
917 t.integer = 0;
918 err = snd_interval_refine(i, &t);
919 if (err < 0)
920 return err;
921
922 if (snd_interval_single(i)) {
923 if (best_diff * result_den < result_diff * best_den) {
924 result_num = best_num;
925 result_den = best_den;
926 }
927 if (nump)
928 *nump = result_num;
929 if (denp)
930 *denp = result_den;
931 }
932 return err;
933 }
934
935 EXPORT_SYMBOL(snd_interval_ratnum);
936
937 /**
938 * snd_interval_ratden - refine the interval value
939 * @i: interval to refine
940 * @rats_count: number of struct ratden
941 * @rats: struct ratden array
942 * @nump: pointer to store the resultant numerator
943 * @denp: pointer to store the resultant denominator
944 *
945 * Returns non-zero if the value is changed, zero if not changed.
946 */
947 static int snd_interval_ratden(struct snd_interval *i,
948 unsigned int rats_count, struct snd_ratden *rats,
949 unsigned int *nump, unsigned int *denp)
950 {
951 unsigned int best_num, best_diff, best_den;
952 unsigned int k;
953 struct snd_interval t;
954 int err;
955
956 best_num = best_den = best_diff = 0;
957 for (k = 0; k < rats_count; ++k) {
958 unsigned int num;
959 unsigned int den = rats[k].den;
960 unsigned int q = i->min;
961 int diff;
962 num = mul(q, den);
963 if (num > rats[k].num_max)
964 continue;
965 if (num < rats[k].num_min)
966 num = rats[k].num_max;
967 else {
968 unsigned int r;
969 r = (num - rats[k].num_min) % rats[k].num_step;
970 if (r != 0)
971 num += rats[k].num_step - r;
972 }
973 diff = num - q * den;
974 if (best_num == 0 ||
975 diff * best_den < best_diff * den) {
976 best_diff = diff;
977 best_den = den;
978 best_num = num;
979 }
980 }
981 if (best_den == 0) {
982 i->empty = 1;
983 return -EINVAL;
984 }
985 t.min = div_down(best_num, best_den);
986 t.openmin = !!(best_num % best_den);
987
988 best_num = best_den = best_diff = 0;
989 for (k = 0; k < rats_count; ++k) {
990 unsigned int num;
991 unsigned int den = rats[k].den;
992 unsigned int q = i->max;
993 int diff;
994 num = mul(q, den);
995 if (num < rats[k].num_min)
996 continue;
997 if (num > rats[k].num_max)
998 num = rats[k].num_max;
999 else {
1000 unsigned int r;
1001 r = (num - rats[k].num_min) % rats[k].num_step;
1002 if (r != 0)
1003 num -= r;
1004 }
1005 diff = q * den - num;
1006 if (best_num == 0 ||
1007 diff * best_den < best_diff * den) {
1008 best_diff = diff;
1009 best_den = den;
1010 best_num = num;
1011 }
1012 }
1013 if (best_den == 0) {
1014 i->empty = 1;
1015 return -EINVAL;
1016 }
1017 t.max = div_up(best_num, best_den);
1018 t.openmax = !!(best_num % best_den);
1019 t.integer = 0;
1020 err = snd_interval_refine(i, &t);
1021 if (err < 0)
1022 return err;
1023
1024 if (snd_interval_single(i)) {
1025 if (nump)
1026 *nump = best_num;
1027 if (denp)
1028 *denp = best_den;
1029 }
1030 return err;
1031 }
1032
1033 /**
1034 * snd_interval_list - refine the interval value from the list
1035 * @i: the interval value to refine
1036 * @count: the number of elements in the list
1037 * @list: the value list
1038 * @mask: the bit-mask to evaluate
1039 *
1040 * Refines the interval value from the list.
1041 * When mask is non-zero, only the elements corresponding to bit 1 are
1042 * evaluated.
1043 *
1044 * Returns non-zero if the value is changed, zero if not changed.
1045 */
1046 int snd_interval_list(struct snd_interval *i, unsigned int count,
1047 const unsigned int *list, unsigned int mask)
1048 {
1049 unsigned int k;
1050 struct snd_interval list_range;
1051
1052 if (!count) {
1053 i->empty = 1;
1054 return -EINVAL;
1055 }
1056 snd_interval_any(&list_range);
1057 list_range.min = UINT_MAX;
1058 list_range.max = 0;
1059 for (k = 0; k < count; k++) {
1060 if (mask && !(mask & (1 << k)))
1061 continue;
1062 if (!snd_interval_test(i, list[k]))
1063 continue;
1064 list_range.min = min(list_range.min, list[k]);
1065 list_range.max = max(list_range.max, list[k]);
1066 }
1067 return snd_interval_refine(i, &list_range);
1068 }
1069
1070 EXPORT_SYMBOL(snd_interval_list);
1071
1072 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1073 {
1074 unsigned int n;
1075 int changed = 0;
1076 n = (i->min - min) % step;
1077 if (n != 0 || i->openmin) {
1078 i->min += step - n;
1079 changed = 1;
1080 }
1081 n = (i->max - min) % step;
1082 if (n != 0 || i->openmax) {
1083 i->max -= n;
1084 changed = 1;
1085 }
1086 if (snd_interval_checkempty(i)) {
1087 i->empty = 1;
1088 return -EINVAL;
1089 }
1090 return changed;
1091 }
1092
1093 /* Info constraints helpers */
1094
1095 /**
1096 * snd_pcm_hw_rule_add - add the hw-constraint rule
1097 * @runtime: the pcm runtime instance
1098 * @cond: condition bits
1099 * @var: the variable to evaluate
1100 * @func: the evaluation function
1101 * @private: the private data pointer passed to function
1102 * @dep: the dependent variables
1103 *
1104 * Returns zero if successful, or a negative error code on failure.
1105 */
1106 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1107 int var,
1108 snd_pcm_hw_rule_func_t func, void *private,
1109 int dep, ...)
1110 {
1111 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1112 struct snd_pcm_hw_rule *c;
1113 unsigned int k;
1114 va_list args;
1115 va_start(args, dep);
1116 if (constrs->rules_num >= constrs->rules_all) {
1117 struct snd_pcm_hw_rule *new;
1118 unsigned int new_rules = constrs->rules_all + 16;
1119 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1120 if (!new) {
1121 va_end(args);
1122 return -ENOMEM;
1123 }
1124 if (constrs->rules) {
1125 memcpy(new, constrs->rules,
1126 constrs->rules_num * sizeof(*c));
1127 kfree(constrs->rules);
1128 }
1129 constrs->rules = new;
1130 constrs->rules_all = new_rules;
1131 }
1132 c = &constrs->rules[constrs->rules_num];
1133 c->cond = cond;
1134 c->func = func;
1135 c->var = var;
1136 c->private = private;
1137 k = 0;
1138 while (1) {
1139 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1140 va_end(args);
1141 return -EINVAL;
1142 }
1143 c->deps[k++] = dep;
1144 if (dep < 0)
1145 break;
1146 dep = va_arg(args, int);
1147 }
1148 constrs->rules_num++;
1149 va_end(args);
1150 return 0;
1151 }
1152
1153 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1154
1155 /**
1156 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1157 * @runtime: PCM runtime instance
1158 * @var: hw_params variable to apply the mask
1159 * @mask: the bitmap mask
1160 *
1161 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1162 */
1163 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1164 u_int32_t mask)
1165 {
1166 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1167 struct snd_mask *maskp = constrs_mask(constrs, var);
1168 *maskp->bits &= mask;
1169 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1170 if (*maskp->bits == 0)
1171 return -EINVAL;
1172 return 0;
1173 }
1174
1175 /**
1176 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1177 * @runtime: PCM runtime instance
1178 * @var: hw_params variable to apply the mask
1179 * @mask: the 64bit bitmap mask
1180 *
1181 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1182 */
1183 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1184 u_int64_t mask)
1185 {
1186 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1187 struct snd_mask *maskp = constrs_mask(constrs, var);
1188 maskp->bits[0] &= (u_int32_t)mask;
1189 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1190 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1191 if (! maskp->bits[0] && ! maskp->bits[1])
1192 return -EINVAL;
1193 return 0;
1194 }
1195
1196 /**
1197 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1198 * @runtime: PCM runtime instance
1199 * @var: hw_params variable to apply the integer constraint
1200 *
1201 * Apply the constraint of integer to an interval parameter.
1202 */
1203 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1204 {
1205 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1206 return snd_interval_setinteger(constrs_interval(constrs, var));
1207 }
1208
1209 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1210
1211 /**
1212 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the range
1215 * @min: the minimal value
1216 * @max: the maximal value
1217 *
1218 * Apply the min/max range constraint to an interval parameter.
1219 */
1220 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1221 unsigned int min, unsigned int max)
1222 {
1223 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1224 struct snd_interval t;
1225 t.min = min;
1226 t.max = max;
1227 t.openmin = t.openmax = 0;
1228 t.integer = 0;
1229 return snd_interval_refine(constrs_interval(constrs, var), &t);
1230 }
1231
1232 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1233
1234 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1235 struct snd_pcm_hw_rule *rule)
1236 {
1237 struct snd_pcm_hw_constraint_list *list = rule->private;
1238 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1239 }
1240
1241
1242 /**
1243 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1244 * @runtime: PCM runtime instance
1245 * @cond: condition bits
1246 * @var: hw_params variable to apply the list constraint
1247 * @l: list
1248 *
1249 * Apply the list of constraints to an interval parameter.
1250 */
1251 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1252 unsigned int cond,
1253 snd_pcm_hw_param_t var,
1254 const struct snd_pcm_hw_constraint_list *l)
1255 {
1256 return snd_pcm_hw_rule_add(runtime, cond, var,
1257 snd_pcm_hw_rule_list, (void *)l,
1258 var, -1);
1259 }
1260
1261 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1262
1263 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1264 struct snd_pcm_hw_rule *rule)
1265 {
1266 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1267 unsigned int num = 0, den = 0;
1268 int err;
1269 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1270 r->nrats, r->rats, &num, &den);
1271 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1272 params->rate_num = num;
1273 params->rate_den = den;
1274 }
1275 return err;
1276 }
1277
1278 /**
1279 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1280 * @runtime: PCM runtime instance
1281 * @cond: condition bits
1282 * @var: hw_params variable to apply the ratnums constraint
1283 * @r: struct snd_ratnums constriants
1284 */
1285 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1286 unsigned int cond,
1287 snd_pcm_hw_param_t var,
1288 struct snd_pcm_hw_constraint_ratnums *r)
1289 {
1290 return snd_pcm_hw_rule_add(runtime, cond, var,
1291 snd_pcm_hw_rule_ratnums, r,
1292 var, -1);
1293 }
1294
1295 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1296
1297 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1298 struct snd_pcm_hw_rule *rule)
1299 {
1300 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1301 unsigned int num = 0, den = 0;
1302 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1303 r->nrats, r->rats, &num, &den);
1304 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1305 params->rate_num = num;
1306 params->rate_den = den;
1307 }
1308 return err;
1309 }
1310
1311 /**
1312 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1313 * @runtime: PCM runtime instance
1314 * @cond: condition bits
1315 * @var: hw_params variable to apply the ratdens constraint
1316 * @r: struct snd_ratdens constriants
1317 */
1318 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1319 unsigned int cond,
1320 snd_pcm_hw_param_t var,
1321 struct snd_pcm_hw_constraint_ratdens *r)
1322 {
1323 return snd_pcm_hw_rule_add(runtime, cond, var,
1324 snd_pcm_hw_rule_ratdens, r,
1325 var, -1);
1326 }
1327
1328 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1329
1330 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1331 struct snd_pcm_hw_rule *rule)
1332 {
1333 unsigned int l = (unsigned long) rule->private;
1334 int width = l & 0xffff;
1335 unsigned int msbits = l >> 16;
1336 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1337 if (snd_interval_single(i) && snd_interval_value(i) == width)
1338 params->msbits = msbits;
1339 return 0;
1340 }
1341
1342 /**
1343 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1344 * @runtime: PCM runtime instance
1345 * @cond: condition bits
1346 * @width: sample bits width
1347 * @msbits: msbits width
1348 */
1349 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1350 unsigned int cond,
1351 unsigned int width,
1352 unsigned int msbits)
1353 {
1354 unsigned long l = (msbits << 16) | width;
1355 return snd_pcm_hw_rule_add(runtime, cond, -1,
1356 snd_pcm_hw_rule_msbits,
1357 (void*) l,
1358 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1359 }
1360
1361 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1362
1363 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1364 struct snd_pcm_hw_rule *rule)
1365 {
1366 unsigned long step = (unsigned long) rule->private;
1367 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1368 }
1369
1370 /**
1371 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1372 * @runtime: PCM runtime instance
1373 * @cond: condition bits
1374 * @var: hw_params variable to apply the step constraint
1375 * @step: step size
1376 */
1377 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1378 unsigned int cond,
1379 snd_pcm_hw_param_t var,
1380 unsigned long step)
1381 {
1382 return snd_pcm_hw_rule_add(runtime, cond, var,
1383 snd_pcm_hw_rule_step, (void *) step,
1384 var, -1);
1385 }
1386
1387 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1388
1389 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1390 {
1391 static unsigned int pow2_sizes[] = {
1392 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1393 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1394 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1395 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1396 };
1397 return snd_interval_list(hw_param_interval(params, rule->var),
1398 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1399 }
1400
1401 /**
1402 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1403 * @runtime: PCM runtime instance
1404 * @cond: condition bits
1405 * @var: hw_params variable to apply the power-of-2 constraint
1406 */
1407 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1408 unsigned int cond,
1409 snd_pcm_hw_param_t var)
1410 {
1411 return snd_pcm_hw_rule_add(runtime, cond, var,
1412 snd_pcm_hw_rule_pow2, NULL,
1413 var, -1);
1414 }
1415
1416 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1417
1418 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1419 struct snd_pcm_hw_rule *rule)
1420 {
1421 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1422 struct snd_interval *rate;
1423
1424 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1425 return snd_interval_list(rate, 1, &base_rate, 0);
1426 }
1427
1428 /**
1429 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1430 * @runtime: PCM runtime instance
1431 * @base_rate: the rate at which the hardware does not resample
1432 */
1433 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1434 unsigned int base_rate)
1435 {
1436 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1437 SNDRV_PCM_HW_PARAM_RATE,
1438 snd_pcm_hw_rule_noresample_func,
1439 (void *)(uintptr_t)base_rate,
1440 SNDRV_PCM_HW_PARAM_RATE, -1);
1441 }
1442 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1443
1444 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1445 snd_pcm_hw_param_t var)
1446 {
1447 if (hw_is_mask(var)) {
1448 snd_mask_any(hw_param_mask(params, var));
1449 params->cmask |= 1 << var;
1450 params->rmask |= 1 << var;
1451 return;
1452 }
1453 if (hw_is_interval(var)) {
1454 snd_interval_any(hw_param_interval(params, var));
1455 params->cmask |= 1 << var;
1456 params->rmask |= 1 << var;
1457 return;
1458 }
1459 snd_BUG();
1460 }
1461
1462 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1463 {
1464 unsigned int k;
1465 memset(params, 0, sizeof(*params));
1466 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1467 _snd_pcm_hw_param_any(params, k);
1468 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1469 _snd_pcm_hw_param_any(params, k);
1470 params->info = ~0U;
1471 }
1472
1473 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1474
1475 /**
1476 * snd_pcm_hw_param_value - return @params field @var value
1477 * @params: the hw_params instance
1478 * @var: parameter to retrieve
1479 * @dir: pointer to the direction (-1,0,1) or %NULL
1480 *
1481 * Return the value for field @var if it's fixed in configuration space
1482 * defined by @params. Return -%EINVAL otherwise.
1483 */
1484 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1485 snd_pcm_hw_param_t var, int *dir)
1486 {
1487 if (hw_is_mask(var)) {
1488 const struct snd_mask *mask = hw_param_mask_c(params, var);
1489 if (!snd_mask_single(mask))
1490 return -EINVAL;
1491 if (dir)
1492 *dir = 0;
1493 return snd_mask_value(mask);
1494 }
1495 if (hw_is_interval(var)) {
1496 const struct snd_interval *i = hw_param_interval_c(params, var);
1497 if (!snd_interval_single(i))
1498 return -EINVAL;
1499 if (dir)
1500 *dir = i->openmin;
1501 return snd_interval_value(i);
1502 }
1503 return -EINVAL;
1504 }
1505
1506 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1507
1508 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1509 snd_pcm_hw_param_t var)
1510 {
1511 if (hw_is_mask(var)) {
1512 snd_mask_none(hw_param_mask(params, var));
1513 params->cmask |= 1 << var;
1514 params->rmask |= 1 << var;
1515 } else if (hw_is_interval(var)) {
1516 snd_interval_none(hw_param_interval(params, var));
1517 params->cmask |= 1 << var;
1518 params->rmask |= 1 << var;
1519 } else {
1520 snd_BUG();
1521 }
1522 }
1523
1524 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1525
1526 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1527 snd_pcm_hw_param_t var)
1528 {
1529 int changed;
1530 if (hw_is_mask(var))
1531 changed = snd_mask_refine_first(hw_param_mask(params, var));
1532 else if (hw_is_interval(var))
1533 changed = snd_interval_refine_first(hw_param_interval(params, var));
1534 else
1535 return -EINVAL;
1536 if (changed) {
1537 params->cmask |= 1 << var;
1538 params->rmask |= 1 << var;
1539 }
1540 return changed;
1541 }
1542
1543
1544 /**
1545 * snd_pcm_hw_param_first - refine config space and return minimum value
1546 * @pcm: PCM instance
1547 * @params: the hw_params instance
1548 * @var: parameter to retrieve
1549 * @dir: pointer to the direction (-1,0,1) or %NULL
1550 *
1551 * Inside configuration space defined by @params remove from @var all
1552 * values > minimum. Reduce configuration space accordingly.
1553 * Return the minimum.
1554 */
1555 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1556 struct snd_pcm_hw_params *params,
1557 snd_pcm_hw_param_t var, int *dir)
1558 {
1559 int changed = _snd_pcm_hw_param_first(params, var);
1560 if (changed < 0)
1561 return changed;
1562 if (params->rmask) {
1563 int err = snd_pcm_hw_refine(pcm, params);
1564 if (snd_BUG_ON(err < 0))
1565 return err;
1566 }
1567 return snd_pcm_hw_param_value(params, var, dir);
1568 }
1569
1570 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1571
1572 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1573 snd_pcm_hw_param_t var)
1574 {
1575 int changed;
1576 if (hw_is_mask(var))
1577 changed = snd_mask_refine_last(hw_param_mask(params, var));
1578 else if (hw_is_interval(var))
1579 changed = snd_interval_refine_last(hw_param_interval(params, var));
1580 else
1581 return -EINVAL;
1582 if (changed) {
1583 params->cmask |= 1 << var;
1584 params->rmask |= 1 << var;
1585 }
1586 return changed;
1587 }
1588
1589
1590 /**
1591 * snd_pcm_hw_param_last - refine config space and return maximum value
1592 * @pcm: PCM instance
1593 * @params: the hw_params instance
1594 * @var: parameter to retrieve
1595 * @dir: pointer to the direction (-1,0,1) or %NULL
1596 *
1597 * Inside configuration space defined by @params remove from @var all
1598 * values < maximum. Reduce configuration space accordingly.
1599 * Return the maximum.
1600 */
1601 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1602 struct snd_pcm_hw_params *params,
1603 snd_pcm_hw_param_t var, int *dir)
1604 {
1605 int changed = _snd_pcm_hw_param_last(params, var);
1606 if (changed < 0)
1607 return changed;
1608 if (params->rmask) {
1609 int err = snd_pcm_hw_refine(pcm, params);
1610 if (snd_BUG_ON(err < 0))
1611 return err;
1612 }
1613 return snd_pcm_hw_param_value(params, var, dir);
1614 }
1615
1616 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1617
1618 /**
1619 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1620 * @pcm: PCM instance
1621 * @params: the hw_params instance
1622 *
1623 * Choose one configuration from configuration space defined by @params.
1624 * The configuration chosen is that obtained fixing in this order:
1625 * first access, first format, first subformat, min channels,
1626 * min rate, min period time, max buffer size, min tick time
1627 */
1628 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1629 struct snd_pcm_hw_params *params)
1630 {
1631 static int vars[] = {
1632 SNDRV_PCM_HW_PARAM_ACCESS,
1633 SNDRV_PCM_HW_PARAM_FORMAT,
1634 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1635 SNDRV_PCM_HW_PARAM_CHANNELS,
1636 SNDRV_PCM_HW_PARAM_RATE,
1637 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1638 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1639 SNDRV_PCM_HW_PARAM_TICK_TIME,
1640 -1
1641 };
1642 int err, *v;
1643
1644 for (v = vars; *v != -1; v++) {
1645 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1646 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1647 else
1648 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1649 if (snd_BUG_ON(err < 0))
1650 return err;
1651 }
1652 return 0;
1653 }
1654
1655 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1656 void *arg)
1657 {
1658 struct snd_pcm_runtime *runtime = substream->runtime;
1659 unsigned long flags;
1660 snd_pcm_stream_lock_irqsave(substream, flags);
1661 if (snd_pcm_running(substream) &&
1662 snd_pcm_update_hw_ptr(substream) >= 0)
1663 runtime->status->hw_ptr %= runtime->buffer_size;
1664 else
1665 runtime->status->hw_ptr = 0;
1666 snd_pcm_stream_unlock_irqrestore(substream, flags);
1667 return 0;
1668 }
1669
1670 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1671 void *arg)
1672 {
1673 struct snd_pcm_channel_info *info = arg;
1674 struct snd_pcm_runtime *runtime = substream->runtime;
1675 int width;
1676 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1677 info->offset = -1;
1678 return 0;
1679 }
1680 width = snd_pcm_format_physical_width(runtime->format);
1681 if (width < 0)
1682 return width;
1683 info->offset = 0;
1684 switch (runtime->access) {
1685 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1686 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1687 info->first = info->channel * width;
1688 info->step = runtime->channels * width;
1689 break;
1690 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1691 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1692 {
1693 size_t size = runtime->dma_bytes / runtime->channels;
1694 info->first = info->channel * size * 8;
1695 info->step = width;
1696 break;
1697 }
1698 default:
1699 snd_BUG();
1700 break;
1701 }
1702 return 0;
1703 }
1704
1705 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1706 void *arg)
1707 {
1708 struct snd_pcm_hw_params *params = arg;
1709 snd_pcm_format_t format;
1710 int channels, width;
1711
1712 params->fifo_size = substream->runtime->hw.fifo_size;
1713 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1714 format = params_format(params);
1715 channels = params_channels(params);
1716 width = snd_pcm_format_physical_width(format);
1717 params->fifo_size /= width * channels;
1718 }
1719 return 0;
1720 }
1721
1722 /**
1723 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1724 * @substream: the pcm substream instance
1725 * @cmd: ioctl command
1726 * @arg: ioctl argument
1727 *
1728 * Processes the generic ioctl commands for PCM.
1729 * Can be passed as the ioctl callback for PCM ops.
1730 *
1731 * Returns zero if successful, or a negative error code on failure.
1732 */
1733 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1734 unsigned int cmd, void *arg)
1735 {
1736 switch (cmd) {
1737 case SNDRV_PCM_IOCTL1_INFO:
1738 return 0;
1739 case SNDRV_PCM_IOCTL1_RESET:
1740 return snd_pcm_lib_ioctl_reset(substream, arg);
1741 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1742 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1743 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1744 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1745 }
1746 return -ENXIO;
1747 }
1748
1749 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1750
1751 /**
1752 * snd_pcm_period_elapsed - update the pcm status for the next period
1753 * @substream: the pcm substream instance
1754 *
1755 * This function is called from the interrupt handler when the
1756 * PCM has processed the period size. It will update the current
1757 * pointer, wake up sleepers, etc.
1758 *
1759 * Even if more than one periods have elapsed since the last call, you
1760 * have to call this only once.
1761 */
1762 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1763 {
1764 struct snd_pcm_runtime *runtime;
1765 unsigned long flags;
1766
1767 if (PCM_RUNTIME_CHECK(substream))
1768 return;
1769 runtime = substream->runtime;
1770
1771 if (runtime->transfer_ack_begin)
1772 runtime->transfer_ack_begin(substream);
1773
1774 snd_pcm_stream_lock_irqsave(substream, flags);
1775 if (!snd_pcm_running(substream) ||
1776 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1777 goto _end;
1778
1779 if (substream->timer_running)
1780 snd_timer_interrupt(substream->timer, 1);
1781 _end:
1782 snd_pcm_stream_unlock_irqrestore(substream, flags);
1783 if (runtime->transfer_ack_end)
1784 runtime->transfer_ack_end(substream);
1785 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1786 }
1787
1788 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1789
1790 /*
1791 * Wait until avail_min data becomes available
1792 * Returns a negative error code if any error occurs during operation.
1793 * The available space is stored on availp. When err = 0 and avail = 0
1794 * on the capture stream, it indicates the stream is in DRAINING state.
1795 */
1796 static int wait_for_avail(struct snd_pcm_substream *substream,
1797 snd_pcm_uframes_t *availp)
1798 {
1799 struct snd_pcm_runtime *runtime = substream->runtime;
1800 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1801 wait_queue_t wait;
1802 int err = 0;
1803 snd_pcm_uframes_t avail = 0;
1804 long wait_time, tout;
1805
1806 init_waitqueue_entry(&wait, current);
1807 set_current_state(TASK_INTERRUPTIBLE);
1808 add_wait_queue(&runtime->tsleep, &wait);
1809
1810 if (runtime->no_period_wakeup)
1811 wait_time = MAX_SCHEDULE_TIMEOUT;
1812 else {
1813 wait_time = 10;
1814 if (runtime->rate) {
1815 long t = runtime->period_size * 2 / runtime->rate;
1816 wait_time = max(t, wait_time);
1817 }
1818 wait_time = msecs_to_jiffies(wait_time * 1000);
1819 }
1820
1821 for (;;) {
1822 if (signal_pending(current)) {
1823 err = -ERESTARTSYS;
1824 break;
1825 }
1826
1827 /*
1828 * We need to check if space became available already
1829 * (and thus the wakeup happened already) first to close
1830 * the race of space already having become available.
1831 * This check must happen after been added to the waitqueue
1832 * and having current state be INTERRUPTIBLE.
1833 */
1834 if (is_playback)
1835 avail = snd_pcm_playback_avail(runtime);
1836 else
1837 avail = snd_pcm_capture_avail(runtime);
1838 if (avail >= runtime->twake)
1839 break;
1840 snd_pcm_stream_unlock_irq(substream);
1841
1842 tout = schedule_timeout(wait_time);
1843
1844 snd_pcm_stream_lock_irq(substream);
1845 set_current_state(TASK_INTERRUPTIBLE);
1846 switch (runtime->status->state) {
1847 case SNDRV_PCM_STATE_SUSPENDED:
1848 err = -ESTRPIPE;
1849 goto _endloop;
1850 case SNDRV_PCM_STATE_XRUN:
1851 err = -EPIPE;
1852 goto _endloop;
1853 case SNDRV_PCM_STATE_DRAINING:
1854 if (is_playback)
1855 err = -EPIPE;
1856 else
1857 avail = 0; /* indicate draining */
1858 goto _endloop;
1859 case SNDRV_PCM_STATE_OPEN:
1860 case SNDRV_PCM_STATE_SETUP:
1861 case SNDRV_PCM_STATE_DISCONNECTED:
1862 err = -EBADFD;
1863 goto _endloop;
1864 }
1865 if (!tout) {
1866 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1867 is_playback ? "playback" : "capture");
1868 err = -EIO;
1869 break;
1870 }
1871 }
1872 _endloop:
1873 set_current_state(TASK_RUNNING);
1874 remove_wait_queue(&runtime->tsleep, &wait);
1875 *availp = avail;
1876 return err;
1877 }
1878
1879 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1880 unsigned int hwoff,
1881 unsigned long data, unsigned int off,
1882 snd_pcm_uframes_t frames)
1883 {
1884 struct snd_pcm_runtime *runtime = substream->runtime;
1885 int err;
1886 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1887 if (substream->ops->copy) {
1888 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1889 return err;
1890 } else {
1891 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1892 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1893 return -EFAULT;
1894 }
1895 return 0;
1896 }
1897
1898 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1899 unsigned long data, unsigned int off,
1900 snd_pcm_uframes_t size);
1901
1902 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1903 unsigned long data,
1904 snd_pcm_uframes_t size,
1905 int nonblock,
1906 transfer_f transfer)
1907 {
1908 struct snd_pcm_runtime *runtime = substream->runtime;
1909 snd_pcm_uframes_t xfer = 0;
1910 snd_pcm_uframes_t offset = 0;
1911 snd_pcm_uframes_t avail;
1912 int err = 0;
1913
1914 if (size == 0)
1915 return 0;
1916
1917 snd_pcm_stream_lock_irq(substream);
1918 switch (runtime->status->state) {
1919 case SNDRV_PCM_STATE_PREPARED:
1920 case SNDRV_PCM_STATE_RUNNING:
1921 case SNDRV_PCM_STATE_PAUSED:
1922 break;
1923 case SNDRV_PCM_STATE_XRUN:
1924 err = -EPIPE;
1925 goto _end_unlock;
1926 case SNDRV_PCM_STATE_SUSPENDED:
1927 err = -ESTRPIPE;
1928 goto _end_unlock;
1929 default:
1930 err = -EBADFD;
1931 goto _end_unlock;
1932 }
1933
1934 runtime->twake = runtime->control->avail_min ? : 1;
1935 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1936 snd_pcm_update_hw_ptr(substream);
1937 avail = snd_pcm_playback_avail(runtime);
1938 while (size > 0) {
1939 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1940 snd_pcm_uframes_t cont;
1941 if (!avail) {
1942 if (nonblock) {
1943 err = -EAGAIN;
1944 goto _end_unlock;
1945 }
1946 runtime->twake = min_t(snd_pcm_uframes_t, size,
1947 runtime->control->avail_min ? : 1);
1948 err = wait_for_avail(substream, &avail);
1949 if (err < 0)
1950 goto _end_unlock;
1951 }
1952 frames = size > avail ? avail : size;
1953 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1954 if (frames > cont)
1955 frames = cont;
1956 if (snd_BUG_ON(!frames)) {
1957 runtime->twake = 0;
1958 snd_pcm_stream_unlock_irq(substream);
1959 return -EINVAL;
1960 }
1961 appl_ptr = runtime->control->appl_ptr;
1962 appl_ofs = appl_ptr % runtime->buffer_size;
1963 snd_pcm_stream_unlock_irq(substream);
1964 err = transfer(substream, appl_ofs, data, offset, frames);
1965 snd_pcm_stream_lock_irq(substream);
1966 if (err < 0)
1967 goto _end_unlock;
1968 switch (runtime->status->state) {
1969 case SNDRV_PCM_STATE_XRUN:
1970 err = -EPIPE;
1971 goto _end_unlock;
1972 case SNDRV_PCM_STATE_SUSPENDED:
1973 err = -ESTRPIPE;
1974 goto _end_unlock;
1975 default:
1976 break;
1977 }
1978 appl_ptr += frames;
1979 if (appl_ptr >= runtime->boundary)
1980 appl_ptr -= runtime->boundary;
1981 runtime->control->appl_ptr = appl_ptr;
1982 if (substream->ops->ack)
1983 substream->ops->ack(substream);
1984
1985 offset += frames;
1986 size -= frames;
1987 xfer += frames;
1988 avail -= frames;
1989 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1990 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1991 err = snd_pcm_start(substream);
1992 if (err < 0)
1993 goto _end_unlock;
1994 }
1995 }
1996 _end_unlock:
1997 runtime->twake = 0;
1998 if (xfer > 0 && err >= 0)
1999 snd_pcm_update_state(substream, runtime);
2000 snd_pcm_stream_unlock_irq(substream);
2001 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2002 }
2003
2004 /* sanity-check for read/write methods */
2005 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2006 {
2007 struct snd_pcm_runtime *runtime;
2008 if (PCM_RUNTIME_CHECK(substream))
2009 return -ENXIO;
2010 runtime = substream->runtime;
2011 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2012 return -EINVAL;
2013 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2014 return -EBADFD;
2015 return 0;
2016 }
2017
2018 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2019 {
2020 struct snd_pcm_runtime *runtime;
2021 int nonblock;
2022 int err;
2023
2024 err = pcm_sanity_check(substream);
2025 if (err < 0)
2026 return err;
2027 runtime = substream->runtime;
2028 nonblock = !!(substream->f_flags & O_NONBLOCK);
2029
2030 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2031 runtime->channels > 1)
2032 return -EINVAL;
2033 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2034 snd_pcm_lib_write_transfer);
2035 }
2036
2037 EXPORT_SYMBOL(snd_pcm_lib_write);
2038
2039 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2040 unsigned int hwoff,
2041 unsigned long data, unsigned int off,
2042 snd_pcm_uframes_t frames)
2043 {
2044 struct snd_pcm_runtime *runtime = substream->runtime;
2045 int err;
2046 void __user **bufs = (void __user **)data;
2047 int channels = runtime->channels;
2048 int c;
2049 if (substream->ops->copy) {
2050 if (snd_BUG_ON(!substream->ops->silence))
2051 return -EINVAL;
2052 for (c = 0; c < channels; ++c, ++bufs) {
2053 if (*bufs == NULL) {
2054 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2055 return err;
2056 } else {
2057 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2058 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2059 return err;
2060 }
2061 }
2062 } else {
2063 /* default transfer behaviour */
2064 size_t dma_csize = runtime->dma_bytes / channels;
2065 for (c = 0; c < channels; ++c, ++bufs) {
2066 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2067 if (*bufs == NULL) {
2068 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2069 } else {
2070 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2071 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2072 return -EFAULT;
2073 }
2074 }
2075 }
2076 return 0;
2077 }
2078
2079 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2080 void __user **bufs,
2081 snd_pcm_uframes_t frames)
2082 {
2083 struct snd_pcm_runtime *runtime;
2084 int nonblock;
2085 int err;
2086
2087 err = pcm_sanity_check(substream);
2088 if (err < 0)
2089 return err;
2090 runtime = substream->runtime;
2091 nonblock = !!(substream->f_flags & O_NONBLOCK);
2092
2093 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2094 return -EINVAL;
2095 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2096 nonblock, snd_pcm_lib_writev_transfer);
2097 }
2098
2099 EXPORT_SYMBOL(snd_pcm_lib_writev);
2100
2101 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2102 unsigned int hwoff,
2103 unsigned long data, unsigned int off,
2104 snd_pcm_uframes_t frames)
2105 {
2106 struct snd_pcm_runtime *runtime = substream->runtime;
2107 int err;
2108 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2109 if (substream->ops->copy) {
2110 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2111 return err;
2112 } else {
2113 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2114 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2115 return -EFAULT;
2116 }
2117 return 0;
2118 }
2119
2120 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2121 unsigned long data,
2122 snd_pcm_uframes_t size,
2123 int nonblock,
2124 transfer_f transfer)
2125 {
2126 struct snd_pcm_runtime *runtime = substream->runtime;
2127 snd_pcm_uframes_t xfer = 0;
2128 snd_pcm_uframes_t offset = 0;
2129 snd_pcm_uframes_t avail;
2130 int err = 0;
2131
2132 if (size == 0)
2133 return 0;
2134
2135 snd_pcm_stream_lock_irq(substream);
2136 switch (runtime->status->state) {
2137 case SNDRV_PCM_STATE_PREPARED:
2138 if (size >= runtime->start_threshold) {
2139 err = snd_pcm_start(substream);
2140 if (err < 0)
2141 goto _end_unlock;
2142 }
2143 break;
2144 case SNDRV_PCM_STATE_DRAINING:
2145 case SNDRV_PCM_STATE_RUNNING:
2146 case SNDRV_PCM_STATE_PAUSED:
2147 break;
2148 case SNDRV_PCM_STATE_XRUN:
2149 err = -EPIPE;
2150 goto _end_unlock;
2151 case SNDRV_PCM_STATE_SUSPENDED:
2152 err = -ESTRPIPE;
2153 goto _end_unlock;
2154 default:
2155 err = -EBADFD;
2156 goto _end_unlock;
2157 }
2158
2159 runtime->twake = runtime->control->avail_min ? : 1;
2160 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2161 snd_pcm_update_hw_ptr(substream);
2162 avail = snd_pcm_capture_avail(runtime);
2163 while (size > 0) {
2164 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2165 snd_pcm_uframes_t cont;
2166 if (!avail) {
2167 if (runtime->status->state ==
2168 SNDRV_PCM_STATE_DRAINING) {
2169 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2170 goto _end_unlock;
2171 }
2172 if (nonblock) {
2173 err = -EAGAIN;
2174 goto _end_unlock;
2175 }
2176 runtime->twake = min_t(snd_pcm_uframes_t, size,
2177 runtime->control->avail_min ? : 1);
2178 err = wait_for_avail(substream, &avail);
2179 if (err < 0)
2180 goto _end_unlock;
2181 if (!avail)
2182 continue; /* draining */
2183 }
2184 frames = size > avail ? avail : size;
2185 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2186 if (frames > cont)
2187 frames = cont;
2188 if (snd_BUG_ON(!frames)) {
2189 runtime->twake = 0;
2190 snd_pcm_stream_unlock_irq(substream);
2191 return -EINVAL;
2192 }
2193 appl_ptr = runtime->control->appl_ptr;
2194 appl_ofs = appl_ptr % runtime->buffer_size;
2195 snd_pcm_stream_unlock_irq(substream);
2196 err = transfer(substream, appl_ofs, data, offset, frames);
2197 snd_pcm_stream_lock_irq(substream);
2198 if (err < 0)
2199 goto _end_unlock;
2200 switch (runtime->status->state) {
2201 case SNDRV_PCM_STATE_XRUN:
2202 err = -EPIPE;
2203 goto _end_unlock;
2204 case SNDRV_PCM_STATE_SUSPENDED:
2205 err = -ESTRPIPE;
2206 goto _end_unlock;
2207 default:
2208 break;
2209 }
2210 appl_ptr += frames;
2211 if (appl_ptr >= runtime->boundary)
2212 appl_ptr -= runtime->boundary;
2213 runtime->control->appl_ptr = appl_ptr;
2214 if (substream->ops->ack)
2215 substream->ops->ack(substream);
2216
2217 offset += frames;
2218 size -= frames;
2219 xfer += frames;
2220 avail -= frames;
2221 }
2222 _end_unlock:
2223 runtime->twake = 0;
2224 if (xfer > 0 && err >= 0)
2225 snd_pcm_update_state(substream, runtime);
2226 snd_pcm_stream_unlock_irq(substream);
2227 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2228 }
2229
2230 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2231 {
2232 struct snd_pcm_runtime *runtime;
2233 int nonblock;
2234 int err;
2235
2236 err = pcm_sanity_check(substream);
2237 if (err < 0)
2238 return err;
2239 runtime = substream->runtime;
2240 nonblock = !!(substream->f_flags & O_NONBLOCK);
2241 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2242 return -EINVAL;
2243 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2244 }
2245
2246 EXPORT_SYMBOL(snd_pcm_lib_read);
2247
2248 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2249 unsigned int hwoff,
2250 unsigned long data, unsigned int off,
2251 snd_pcm_uframes_t frames)
2252 {
2253 struct snd_pcm_runtime *runtime = substream->runtime;
2254 int err;
2255 void __user **bufs = (void __user **)data;
2256 int channels = runtime->channels;
2257 int c;
2258 if (substream->ops->copy) {
2259 for (c = 0; c < channels; ++c, ++bufs) {
2260 char __user *buf;
2261 if (*bufs == NULL)
2262 continue;
2263 buf = *bufs + samples_to_bytes(runtime, off);
2264 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2265 return err;
2266 }
2267 } else {
2268 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2269 for (c = 0; c < channels; ++c, ++bufs) {
2270 char *hwbuf;
2271 char __user *buf;
2272 if (*bufs == NULL)
2273 continue;
2274
2275 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2276 buf = *bufs + samples_to_bytes(runtime, off);
2277 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2278 return -EFAULT;
2279 }
2280 }
2281 return 0;
2282 }
2283
2284 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2285 void __user **bufs,
2286 snd_pcm_uframes_t frames)
2287 {
2288 struct snd_pcm_runtime *runtime;
2289 int nonblock;
2290 int err;
2291
2292 err = pcm_sanity_check(substream);
2293 if (err < 0)
2294 return err;
2295 runtime = substream->runtime;
2296 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2297 return -EBADFD;
2298
2299 nonblock = !!(substream->f_flags & O_NONBLOCK);
2300 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2301 return -EINVAL;
2302 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2303 }
2304
2305 EXPORT_SYMBOL(snd_pcm_lib_readv);
2306
2307 /*
2308 * standard channel mapping helpers
2309 */
2310
2311 /* default channel maps for multi-channel playbacks, up to 8 channels */
2312 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2313 { .channels = 1,
2314 .map = { SNDRV_CHMAP_UNKNOWN } },
2315 { .channels = 2,
2316 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2317 { .channels = 4,
2318 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2319 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2320 { .channels = 6,
2321 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2322 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2323 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2324 { .channels = 8,
2325 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2326 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2327 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2328 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2329 { }
2330 };
2331 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2332
2333 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2334 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2335 { .channels = 1,
2336 .map = { SNDRV_CHMAP_UNKNOWN } },
2337 { .channels = 2,
2338 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2339 { .channels = 4,
2340 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2341 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2342 { .channels = 6,
2343 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2344 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2345 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2346 { .channels = 8,
2347 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2348 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2349 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2350 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2351 { }
2352 };
2353 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2354
2355 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2356 {
2357 if (ch > info->max_channels)
2358 return false;
2359 return !info->channel_mask || (info->channel_mask & (1U << ch));
2360 }
2361
2362 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2363 struct snd_ctl_elem_info *uinfo)
2364 {
2365 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2366
2367 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2368 uinfo->count = 0;
2369 uinfo->count = info->max_channels;
2370 uinfo->value.integer.min = 0;
2371 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2372 return 0;
2373 }
2374
2375 /* get callback for channel map ctl element
2376 * stores the channel position firstly matching with the current channels
2377 */
2378 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2379 struct snd_ctl_elem_value *ucontrol)
2380 {
2381 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2382 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2383 struct snd_pcm_substream *substream;
2384 const struct snd_pcm_chmap_elem *map;
2385
2386 if (snd_BUG_ON(!info->chmap))
2387 return -EINVAL;
2388 substream = snd_pcm_chmap_substream(info, idx);
2389 if (!substream)
2390 return -ENODEV;
2391 memset(ucontrol->value.integer.value, 0,
2392 sizeof(ucontrol->value.integer.value));
2393 if (!substream->runtime)
2394 return 0; /* no channels set */
2395 for (map = info->chmap; map->channels; map++) {
2396 int i;
2397 if (map->channels == substream->runtime->channels &&
2398 valid_chmap_channels(info, map->channels)) {
2399 for (i = 0; i < map->channels; i++)
2400 ucontrol->value.integer.value[i] = map->map[i];
2401 return 0;
2402 }
2403 }
2404 return -EINVAL;
2405 }
2406
2407 /* tlv callback for channel map ctl element
2408 * expands the pre-defined channel maps in a form of TLV
2409 */
2410 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2411 unsigned int size, unsigned int __user *tlv)
2412 {
2413 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2414 const struct snd_pcm_chmap_elem *map;
2415 unsigned int __user *dst;
2416 int c, count = 0;
2417
2418 if (snd_BUG_ON(!info->chmap))
2419 return -EINVAL;
2420 if (size < 8)
2421 return -ENOMEM;
2422 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2423 return -EFAULT;
2424 size -= 8;
2425 dst = tlv + 2;
2426 for (map = info->chmap; map->channels; map++) {
2427 int chs_bytes = map->channels * 4;
2428 if (!valid_chmap_channels(info, map->channels))
2429 continue;
2430 if (size < 8)
2431 return -ENOMEM;
2432 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2433 put_user(chs_bytes, dst + 1))
2434 return -EFAULT;
2435 dst += 2;
2436 size -= 8;
2437 count += 8;
2438 if (size < chs_bytes)
2439 return -ENOMEM;
2440 size -= chs_bytes;
2441 count += chs_bytes;
2442 for (c = 0; c < map->channels; c++) {
2443 if (put_user(map->map[c], dst))
2444 return -EFAULT;
2445 dst++;
2446 }
2447 }
2448 if (put_user(count, tlv + 1))
2449 return -EFAULT;
2450 return 0;
2451 }
2452
2453 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2454 {
2455 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2456 info->pcm->streams[info->stream].chmap_kctl = NULL;
2457 kfree(info);
2458 }
2459
2460 /**
2461 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2462 * @pcm: the assigned PCM instance
2463 * @stream: stream direction
2464 * @chmap: channel map elements (for query)
2465 * @max_channels: the max number of channels for the stream
2466 * @private_value: the value passed to each kcontrol's private_value field
2467 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2468 *
2469 * Create channel-mapping control elements assigned to the given PCM stream(s).
2470 * Returns zero if succeed, or a negative error value.
2471 */
2472 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2473 const struct snd_pcm_chmap_elem *chmap,
2474 int max_channels,
2475 unsigned long private_value,
2476 struct snd_pcm_chmap **info_ret)
2477 {
2478 struct snd_pcm_chmap *info;
2479 struct snd_kcontrol_new knew = {
2480 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2481 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2482 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2483 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2484 .info = pcm_chmap_ctl_info,
2485 .get = pcm_chmap_ctl_get,
2486 .tlv.c = pcm_chmap_ctl_tlv,
2487 };
2488 int err;
2489
2490 info = kzalloc(sizeof(*info), GFP_KERNEL);
2491 if (!info)
2492 return -ENOMEM;
2493 info->pcm = pcm;
2494 info->stream = stream;
2495 info->chmap = chmap;
2496 info->max_channels = max_channels;
2497 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2498 knew.name = "Playback Channel Map";
2499 else
2500 knew.name = "Capture Channel Map";
2501 knew.device = pcm->device;
2502 knew.count = pcm->streams[stream].substream_count;
2503 knew.private_value = private_value;
2504 info->kctl = snd_ctl_new1(&knew, info);
2505 if (!info->kctl) {
2506 kfree(info);
2507 return -ENOMEM;
2508 }
2509 info->kctl->private_free = pcm_chmap_ctl_private_free;
2510 err = snd_ctl_add(pcm->card, info->kctl);
2511 if (err < 0)
2512 return err;
2513 pcm->streams[stream].chmap_kctl = info->kctl;
2514 if (info_ret)
2515 *info_ret = info;
2516 return 0;
2517 }
2518 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
This page took 0.102072 seconds and 6 git commands to generate.