[ALSA] cmipci: add 96 kHz support
[deliverable/linux.git] / sound / pci / cmipci.c
1 /*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gameport.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mutex.h>
33 #include <sound/core.h>
34 #include <sound/info.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/rawmidi.h>
38 #include <sound/mpu401.h>
39 #include <sound/opl3.h>
40 #include <sound/sb.h>
41 #include <sound/asoundef.h>
42 #include <sound/initval.h>
43
44 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
45 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
48 "{C-Media,CMI8738B},"
49 "{C-Media,CMI8338A},"
50 "{C-Media,CMI8338B}}");
51
52 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
53 #define SUPPORT_JOYSTICK 1
54 #endif
55
56 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
57 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
58 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
59 static long mpu_port[SNDRV_CARDS];
60 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
62 #ifdef SUPPORT_JOYSTICK
63 static int joystick_port[SNDRV_CARDS];
64 #endif
65
66 module_param_array(index, int, NULL, 0444);
67 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
68 module_param_array(id, charp, NULL, 0444);
69 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
70 module_param_array(enable, bool, NULL, 0444);
71 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
72 module_param_array(mpu_port, long, NULL, 0444);
73 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
74 module_param_array(fm_port, long, NULL, 0444);
75 MODULE_PARM_DESC(fm_port, "FM port.");
76 module_param_array(soft_ac3, bool, NULL, 0444);
77 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
78 #ifdef SUPPORT_JOYSTICK
79 module_param_array(joystick_port, int, NULL, 0444);
80 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
81 #endif
82
83 /*
84 * CM8x38 registers definition
85 */
86
87 #define CM_REG_FUNCTRL0 0x00
88 #define CM_RST_CH1 0x00080000
89 #define CM_RST_CH0 0x00040000
90 #define CM_CHEN1 0x00020000 /* ch1: enable */
91 #define CM_CHEN0 0x00010000 /* ch0: enable */
92 #define CM_PAUSE1 0x00000008 /* ch1: pause */
93 #define CM_PAUSE0 0x00000004 /* ch0: pause */
94 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
95 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
96
97 #define CM_REG_FUNCTRL1 0x04
98 #define CM_ASFC_MASK 0x0000E000 /* ADC sampling frequency */
99 #define CM_ASFC_SHIFT 13
100 #define CM_DSFC_MASK 0x00001C00 /* DAC sampling frequency */
101 #define CM_DSFC_SHIFT 10
102 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
103 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
104 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/OUT -> IN loopback */
105 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
106 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
107 #define CM_BREQ 0x00000010 /* bus master enabled */
108 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
109 #define CM_UART_EN 0x00000004 /* UART */
110 #define CM_JYSTK_EN 0x00000002 /* joy stick */
111
112 #define CM_REG_CHFORMAT 0x08
113
114 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */
115 #define CM_CHB3D 0x20000000 /* 4 channels */
116
117 #define CM_CHIP_MASK1 0x1f000000
118 #define CM_CHIP_037 0x01000000
119
120 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
121 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
122 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
123 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
124
125 #define CM_ADCBITLEN_MASK 0x0000C000
126 #define CM_ADCBITLEN_16 0x00000000
127 #define CM_ADCBITLEN_15 0x00004000
128 #define CM_ADCBITLEN_14 0x00008000
129 #define CM_ADCBITLEN_13 0x0000C000
130
131 #define CM_ADCDACLEN_MASK 0x00003000
132 #define CM_ADCDACLEN_060 0x00000000
133 #define CM_ADCDACLEN_066 0x00001000
134 #define CM_ADCDACLEN_130 0x00002000
135 #define CM_ADCDACLEN_280 0x00003000
136
137 #define CM_CH1_SRATE_176K 0x00000800
138 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
139 #define CM_CH1_SRATE_88K 0x00000400
140 #define CM_CH0_SRATE_176K 0x00000200
141 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
142 #define CM_CH0_SRATE_88K 0x00000100
143
144 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
145 #define CM_DBLSPDS 0x00000040
146
147 #define CM_CH1FMT_MASK 0x0000000C
148 #define CM_CH1FMT_SHIFT 2
149 #define CM_CH0FMT_MASK 0x00000003
150 #define CM_CH0FMT_SHIFT 0
151
152 #define CM_REG_INT_HLDCLR 0x0C
153 #define CM_CHIP_MASK2 0xff000000
154 #define CM_CHIP_039 0x04000000
155 #define CM_CHIP_039_6CH 0x01000000
156 #define CM_CHIP_055 0x08000000
157 #define CM_CHIP_8768 0x20000000
158 #define CM_TDMA_INT_EN 0x00040000
159 #define CM_CH1_INT_EN 0x00020000
160 #define CM_CH0_INT_EN 0x00010000
161 #define CM_INT_HOLD 0x00000002
162 #define CM_INT_CLEAR 0x00000001
163
164 #define CM_REG_INT_STATUS 0x10
165 #define CM_INTR 0x80000000
166 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
167 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
168 #define CM_UARTINT 0x00010000
169 #define CM_LTDMAINT 0x00008000
170 #define CM_HTDMAINT 0x00004000
171 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
172 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
173 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
174 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
175 #define CM_CH1BUSY 0x00000008
176 #define CM_CH0BUSY 0x00000004
177 #define CM_CHINT1 0x00000002
178 #define CM_CHINT0 0x00000001
179
180 #define CM_REG_LEGACY_CTRL 0x14
181 #define CM_NXCHG 0x80000000 /* h/w multi channels? */
182 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
183 #define CM_VMPU_330 0x00000000
184 #define CM_VMPU_320 0x20000000
185 #define CM_VMPU_310 0x40000000
186 #define CM_VMPU_300 0x60000000
187 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
188 #define CM_VSBSEL_220 0x00000000
189 #define CM_VSBSEL_240 0x04000000
190 #define CM_VSBSEL_260 0x08000000
191 #define CM_VSBSEL_280 0x0C000000
192 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
193 #define CM_FMSEL_388 0x00000000
194 #define CM_FMSEL_3C8 0x01000000
195 #define CM_FMSEL_3E0 0x02000000
196 #define CM_FMSEL_3E8 0x03000000
197 #define CM_ENSPDOUT 0x00800000 /* enable XPDIF/OUT to I/O interface */
198 #define CM_SPDCOPYRHT 0x00400000 /* set copyright spdif in/out */
199 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
200 #define CM_SETRETRY 0x00010000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
201 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
202 #define CM_LINE_AS_BASS 0x00006000 /* use line-in as bass */
203
204 #define CM_REG_MISC_CTRL 0x18
205 #define CM_PWD 0x80000000
206 #define CM_RESET 0x40000000
207 #define CM_SFIL_MASK 0x30000000
208 #define CM_TXVX 0x08000000
209 #define CM_N4SPK3D 0x04000000 /* 4ch output */
210 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
211 #define CM_SPDIF48K 0x01000000 /* write */
212 #define CM_SPATUS48K 0x01000000 /* read */
213 #define CM_ENDBDAC 0x00800000 /* enable dual dac */
214 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
215 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
216 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-IN -> int. OUT */
217 #define CM_FM_EN 0x00080000 /* enalbe FM */
218 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
219 #define CM_VIDWPDSB 0x00010000
220 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
221 #define CM_MASK_EN 0x00004000
222 #define CM_VIDWPPRT 0x00002000
223 #define CM_SFILENB 0x00001000
224 #define CM_MMODE_MASK 0x00000E00
225 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
226 #define CM_ENCENTER 0x00000080
227 #define CM_FLINKON 0x00000040
228 #define CM_FLINKOFF 0x00000020
229 #define CM_MIDSMP 0x00000010
230 #define CM_UPDDMA_MASK 0x0000000C
231 #define CM_TWAIT_MASK 0x00000003
232
233 /* byte */
234 #define CM_REG_MIXER0 0x20
235
236 #define CM_REG_SB16_DATA 0x22
237 #define CM_REG_SB16_ADDR 0x23
238
239 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
240 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
241 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
242 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
243
244 #define CM_REG_MIXER1 0x24
245 #define CM_FMMUTE 0x80 /* mute FM */
246 #define CM_FMMUTE_SHIFT 7
247 #define CM_WSMUTE 0x40 /* mute PCM */
248 #define CM_WSMUTE_SHIFT 6
249 #define CM_SPK4 0x20 /* lin-in -> rear line out */
250 #define CM_SPK4_SHIFT 5
251 #define CM_REAR2FRONT 0x10 /* exchange rear/front */
252 #define CM_REAR2FRONT_SHIFT 4
253 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */
254 #define CM_WAVEINL_SHIFT 3
255 #define CM_WAVEINR 0x04 /* digical wave rec. right */
256 #define CM_WAVEINR_SHIFT 2
257 #define CM_X3DEN 0x02 /* 3D surround enable */
258 #define CM_X3DEN_SHIFT 1
259 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
260 #define CM_CDPLAY_SHIFT 0
261
262 #define CM_REG_MIXER2 0x25
263 #define CM_RAUXREN 0x80 /* AUX right capture */
264 #define CM_RAUXREN_SHIFT 7
265 #define CM_RAUXLEN 0x40 /* AUX left capture */
266 #define CM_RAUXLEN_SHIFT 6
267 #define CM_VAUXRM 0x20 /* AUX right mute */
268 #define CM_VAUXRM_SHIFT 5
269 #define CM_VAUXLM 0x10 /* AUX left mute */
270 #define CM_VAUXLM_SHIFT 4
271 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
272 #define CM_VADMIC_SHIFT 1
273 #define CM_MICGAINZ 0x01 /* mic boost */
274 #define CM_MICGAINZ_SHIFT 0
275
276 #define CM_REG_MIXER3 0x24
277 #define CM_REG_AUX_VOL 0x26
278 #define CM_VAUXL_MASK 0xf0
279 #define CM_VAUXR_MASK 0x0f
280
281 #define CM_REG_MISC 0x27
282 #define CM_XGPO1 0x20
283 // #define CM_XGPBIO 0x04
284 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
285 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
286 #define CM_SPDVALID 0x02 /* spdif input valid check */
287 #define CM_DMAUTO 0x01
288
289 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
290 /*
291 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
292 * or identical with AC97 codec?
293 */
294 #define CM_REG_EXTERN_CODEC CM_REG_AC97
295
296 /*
297 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
298 */
299 #define CM_REG_MPU_PCI 0x40
300
301 /*
302 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
303 */
304 #define CM_REG_FM_PCI 0x50
305
306 /*
307 * access from SB-mixer port
308 */
309 #define CM_REG_EXTENT_IND 0xf0
310 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
311 #define CM_VPHONE_SHIFT 5
312 #define CM_VPHOM 0x10 /* Phone mute control */
313 #define CM_VSPKM 0x08 /* Speaker mute control, default high */
314 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
315 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
316 #define CM_VADMIC3 0x01 /* Mic record boost */
317
318 /*
319 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
320 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
321 * unit (readonly?).
322 */
323 #define CM_REG_PLL 0xf8
324
325 /*
326 * extended registers
327 */
328 #define CM_REG_CH0_FRAME1 0x80 /* base address */
329 #define CM_REG_CH0_FRAME2 0x84
330 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
331 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
332 #define CM_REG_EXT_MISC 0x90
333 #define CM_REG_MISC_CTRL_8768 0x92 /* reg. name the same as 0x18 */
334 #define CM_CHB3D8C 0x20 /* 7.1 channels support */
335 #define CM_SPD32FMT 0x10 /* SPDIF/IN 32k */
336 #define CM_ADC2SPDIF 0x08 /* ADC output to SPDIF/OUT */
337 #define CM_SHAREADC 0x04 /* DAC in ADC as Center/LFE */
338 #define CM_REALTCMP 0x02 /* monitor the CMPL/CMPR of ADC */
339 #define CM_INVLRCK 0x01 /* invert ZVPORT's LRCK */
340
341 /*
342 * size of i/o region
343 */
344 #define CM_EXTENT_CODEC 0x100
345 #define CM_EXTENT_MIDI 0x2
346 #define CM_EXTENT_SYNTH 0x4
347
348
349 /*
350 * channels for playback / capture
351 */
352 #define CM_CH_PLAY 0
353 #define CM_CH_CAPT 1
354
355 /*
356 * flags to check device open/close
357 */
358 #define CM_OPEN_NONE 0
359 #define CM_OPEN_CH_MASK 0x01
360 #define CM_OPEN_DAC 0x10
361 #define CM_OPEN_ADC 0x20
362 #define CM_OPEN_SPDIF 0x40
363 #define CM_OPEN_MCHAN 0x80
364 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
365 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
366 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
367 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
368 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
369 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
370
371
372 #if CM_CH_PLAY == 1
373 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
374 #define CM_PLAYBACK_SPDF CM_SPDF_1
375 #define CM_CAPTURE_SPDF CM_SPDF_0
376 #else
377 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
378 #define CM_PLAYBACK_SPDF CM_SPDF_0
379 #define CM_CAPTURE_SPDF CM_SPDF_1
380 #endif
381
382
383 /*
384 * driver data
385 */
386
387 struct cmipci_pcm {
388 struct snd_pcm_substream *substream;
389 int running; /* dac/adc running? */
390 unsigned int dma_size; /* in frames */
391 unsigned int period_size; /* in frames */
392 unsigned int offset; /* physical address of the buffer */
393 unsigned int fmt; /* format bits */
394 int ch; /* channel (0/1) */
395 unsigned int is_dac; /* is dac? */
396 int bytes_per_frame;
397 int shift;
398 };
399
400 /* mixer elements toggled/resumed during ac3 playback */
401 struct cmipci_mixer_auto_switches {
402 const char *name; /* switch to toggle */
403 int toggle_on; /* value to change when ac3 mode */
404 };
405 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
406 {"PCM Playback Switch", 0},
407 {"IEC958 Output Switch", 1},
408 {"IEC958 Mix Analog", 0},
409 // {"IEC958 Out To DAC", 1}, // no longer used
410 {"IEC958 Loop", 0},
411 };
412 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
413
414 struct cmipci {
415 struct snd_card *card;
416
417 struct pci_dev *pci;
418 unsigned int device; /* device ID */
419 int irq;
420
421 unsigned long iobase;
422 unsigned int ctrl; /* FUNCTRL0 current value */
423
424 struct snd_pcm *pcm; /* DAC/ADC PCM */
425 struct snd_pcm *pcm2; /* 2nd DAC */
426 struct snd_pcm *pcm_spdif; /* SPDIF */
427
428 int chip_version;
429 int max_channels;
430 unsigned int can_ac3_sw: 1;
431 unsigned int can_ac3_hw: 1;
432 unsigned int can_multi_ch: 1;
433 unsigned int do_soft_ac3: 1;
434
435 unsigned int spdif_playback_avail: 1; /* spdif ready? */
436 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
437 int spdif_counter; /* for software AC3 */
438
439 unsigned int dig_status;
440 unsigned int dig_pcm_status;
441
442 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
443
444 int opened[2]; /* open mode */
445 struct mutex open_mutex;
446
447 unsigned int mixer_insensitive: 1;
448 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
449 int mixer_res_status[CM_SAVED_MIXERS];
450
451 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
452
453 /* external MIDI */
454 struct snd_rawmidi *rmidi;
455
456 #ifdef SUPPORT_JOYSTICK
457 struct gameport *gameport;
458 #endif
459
460 spinlock_t reg_lock;
461
462 #ifdef CONFIG_PM
463 unsigned int saved_regs[0x20];
464 unsigned char saved_mixers[0x20];
465 #endif
466 };
467
468
469 /* read/write operations for dword register */
470 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
471 {
472 outl(data, cm->iobase + cmd);
473 }
474
475 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
476 {
477 return inl(cm->iobase + cmd);
478 }
479
480 /* read/write operations for word register */
481 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
482 {
483 outw(data, cm->iobase + cmd);
484 }
485
486 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
487 {
488 return inw(cm->iobase + cmd);
489 }
490
491 /* read/write operations for byte register */
492 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
493 {
494 outb(data, cm->iobase + cmd);
495 }
496
497 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
498 {
499 return inb(cm->iobase + cmd);
500 }
501
502 /* bit operations for dword register */
503 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
504 {
505 unsigned int val, oval;
506 val = oval = inl(cm->iobase + cmd);
507 val |= flag;
508 if (val == oval)
509 return 0;
510 outl(val, cm->iobase + cmd);
511 return 1;
512 }
513
514 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
515 {
516 unsigned int val, oval;
517 val = oval = inl(cm->iobase + cmd);
518 val &= ~flag;
519 if (val == oval)
520 return 0;
521 outl(val, cm->iobase + cmd);
522 return 1;
523 }
524
525 /* bit operations for byte register */
526 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
527 {
528 unsigned char val, oval;
529 val = oval = inb(cm->iobase + cmd);
530 val |= flag;
531 if (val == oval)
532 return 0;
533 outb(val, cm->iobase + cmd);
534 return 1;
535 }
536
537 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
538 {
539 unsigned char val, oval;
540 val = oval = inb(cm->iobase + cmd);
541 val &= ~flag;
542 if (val == oval)
543 return 0;
544 outb(val, cm->iobase + cmd);
545 return 1;
546 }
547
548
549 /*
550 * PCM interface
551 */
552
553 /*
554 * calculate frequency
555 */
556
557 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
558
559 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
560 {
561 unsigned int i;
562 for (i = 0; i < ARRAY_SIZE(rates); i++) {
563 if (rates[i] == rate)
564 return i;
565 }
566 snd_BUG();
567 return 0;
568 }
569
570 #ifdef USE_VAR48KRATE
571 /*
572 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
573 * does it this way .. maybe not. Never get any information from C-Media about
574 * that <werner@suse.de>.
575 */
576 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
577 {
578 unsigned int delta, tolerance;
579 int xm, xn, xr;
580
581 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
582 rate <<= 1;
583 *n = -1;
584 if (*r > 0xff)
585 goto out;
586 tolerance = rate*CM_TOLERANCE_RATE;
587
588 for (xn = (1+2); xn < (0x1f+2); xn++) {
589 for (xm = (1+2); xm < (0xff+2); xm++) {
590 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
591
592 if (xr < rate)
593 delta = rate - xr;
594 else
595 delta = xr - rate;
596
597 /*
598 * If we found one, remember this,
599 * and try to find a closer one
600 */
601 if (delta < tolerance) {
602 tolerance = delta;
603 *m = xm - 2;
604 *n = xn - 2;
605 }
606 }
607 }
608 out:
609 return (*n > -1);
610 }
611
612 /*
613 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
614 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
615 * at the register CM_REG_FUNCTRL1 (0x04).
616 * Problem: other ways are also possible (any information about that?)
617 */
618 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
619 {
620 unsigned int reg = CM_REG_PLL + slot;
621 /*
622 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
623 * for DSFC/ASFC (000 upto 111).
624 */
625
626 /* FIXME: Init (Do we've to set an other register first before programming?) */
627
628 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
629 snd_cmipci_write_b(cm, reg, rate>>8);
630 snd_cmipci_write_b(cm, reg, rate&0xff);
631
632 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
633 }
634 #endif /* USE_VAR48KRATE */
635
636 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
637 struct snd_pcm_hw_params *hw_params)
638 {
639 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
640 }
641
642 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
643 struct snd_pcm_hw_params *hw_params)
644 {
645 struct cmipci *cm = snd_pcm_substream_chip(substream);
646 if (params_channels(hw_params) > 2) {
647 mutex_lock(&cm->open_mutex);
648 if (cm->opened[CM_CH_PLAY]) {
649 mutex_unlock(&cm->open_mutex);
650 return -EBUSY;
651 }
652 /* reserve the channel A */
653 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
654 mutex_unlock(&cm->open_mutex);
655 }
656 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
657 }
658
659 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
660 {
661 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
662 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
663 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
664 udelay(10);
665 }
666
667 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
668 {
669 return snd_pcm_lib_free_pages(substream);
670 }
671
672
673 /*
674 */
675
676 static unsigned int hw_channels[] = {1, 2, 4, 5, 6, 8};
677 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
678 .count = 3,
679 .list = hw_channels,
680 .mask = 0,
681 };
682 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
683 .count = 5,
684 .list = hw_channels,
685 .mask = 0,
686 };
687 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
688 .count = 6,
689 .list = hw_channels,
690 .mask = 0,
691 };
692
693 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
694 {
695 if (channels > 2) {
696 if (! cm->can_multi_ch)
697 return -EINVAL;
698 if (rec->fmt != 0x03) /* stereo 16bit only */
699 return -EINVAL;
700
701 spin_lock_irq(&cm->reg_lock);
702 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
703 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
704 if (channels > 4) {
705 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
706 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
707 } else {
708 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
709 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
710 }
711 if (channels >= 6) {
712 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
713 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
714 } else {
715 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
716 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
717 }
718 if (cm->chip_version == 68) {
719 if (channels == 8) {
720 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
721 } else {
722 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
723 }
724 }
725 spin_unlock_irq(&cm->reg_lock);
726
727 } else {
728 if (cm->can_multi_ch) {
729 spin_lock_irq(&cm->reg_lock);
730 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
731 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
732 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
733 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
734 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
735 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
736 spin_unlock_irq(&cm->reg_lock);
737 }
738 }
739 return 0;
740 }
741
742
743 /*
744 * prepare playback/capture channel
745 * channel to be used must have been set in rec->ch.
746 */
747 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
748 struct snd_pcm_substream *substream)
749 {
750 unsigned int reg, freq, val;
751 struct snd_pcm_runtime *runtime = substream->runtime;
752
753 rec->fmt = 0;
754 rec->shift = 0;
755 if (snd_pcm_format_width(runtime->format) >= 16) {
756 rec->fmt |= 0x02;
757 if (snd_pcm_format_width(runtime->format) > 16)
758 rec->shift++; /* 24/32bit */
759 }
760 if (runtime->channels > 1)
761 rec->fmt |= 0x01;
762 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
763 snd_printd("cannot set dac channels\n");
764 return -EINVAL;
765 }
766
767 rec->offset = runtime->dma_addr;
768 /* buffer and period sizes in frame */
769 rec->dma_size = runtime->buffer_size << rec->shift;
770 rec->period_size = runtime->period_size << rec->shift;
771 if (runtime->channels > 2) {
772 /* multi-channels */
773 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
774 rec->period_size = (rec->period_size * runtime->channels) / 2;
775 }
776
777 spin_lock_irq(&cm->reg_lock);
778
779 /* set buffer address */
780 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
781 snd_cmipci_write(cm, reg, rec->offset);
782 /* program sample counts */
783 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
784 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
785 snd_cmipci_write_w(cm, reg + 2, rec->period_size - 1);
786
787 /* set adc/dac flag */
788 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
789 if (rec->is_dac)
790 cm->ctrl &= ~val;
791 else
792 cm->ctrl |= val;
793 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
794 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
795
796 /* set sample rate */
797 freq = snd_cmipci_rate_freq(runtime->rate);
798 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
799 if (rec->ch) {
800 val &= ~CM_ASFC_MASK;
801 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
802 } else {
803 val &= ~CM_DSFC_MASK;
804 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
805 }
806 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
807 //snd_printd("cmipci: functrl1 = %08x\n", val);
808
809 /* set format */
810 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
811 if (rec->ch) {
812 val &= ~CM_CH1FMT_MASK;
813 val |= rec->fmt << CM_CH1FMT_SHIFT;
814 } else {
815 val &= ~CM_CH0FMT_MASK;
816 val |= rec->fmt << CM_CH0FMT_SHIFT;
817 }
818 if (cm->chip_version == 68) {
819 if (runtime->rate == 88200)
820 val |= CM_CH0_SRATE_88K << (rec->ch * 2);
821 else
822 val &= ~(CM_CH0_SRATE_88K << (rec->ch * 2));
823 if (runtime->rate == 96000)
824 val |= CM_CH0_SRATE_96K << (rec->ch * 2);
825 else
826 val &= ~(CM_CH0_SRATE_96K << (rec->ch * 2));
827 }
828 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
829 //snd_printd("cmipci: chformat = %08x\n", val);
830
831 rec->running = 0;
832 spin_unlock_irq(&cm->reg_lock);
833
834 return 0;
835 }
836
837 /*
838 * PCM trigger/stop
839 */
840 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
841 struct snd_pcm_substream *substream, int cmd)
842 {
843 unsigned int inthld, chen, reset, pause;
844 int result = 0;
845
846 inthld = CM_CH0_INT_EN << rec->ch;
847 chen = CM_CHEN0 << rec->ch;
848 reset = CM_RST_CH0 << rec->ch;
849 pause = CM_PAUSE0 << rec->ch;
850
851 spin_lock(&cm->reg_lock);
852 switch (cmd) {
853 case SNDRV_PCM_TRIGGER_START:
854 rec->running = 1;
855 /* set interrupt */
856 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
857 cm->ctrl |= chen;
858 /* enable channel */
859 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
860 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
861 break;
862 case SNDRV_PCM_TRIGGER_STOP:
863 rec->running = 0;
864 /* disable interrupt */
865 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
866 /* reset */
867 cm->ctrl &= ~chen;
868 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
869 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
870 break;
871 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
872 case SNDRV_PCM_TRIGGER_SUSPEND:
873 cm->ctrl |= pause;
874 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
875 break;
876 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
877 case SNDRV_PCM_TRIGGER_RESUME:
878 cm->ctrl &= ~pause;
879 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
880 break;
881 default:
882 result = -EINVAL;
883 break;
884 }
885 spin_unlock(&cm->reg_lock);
886 return result;
887 }
888
889 /*
890 * return the current pointer
891 */
892 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
893 struct snd_pcm_substream *substream)
894 {
895 size_t ptr;
896 unsigned int reg;
897 if (!rec->running)
898 return 0;
899 #if 1 // this seems better..
900 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
901 ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
902 ptr >>= rec->shift;
903 #else
904 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
905 ptr = snd_cmipci_read(cm, reg) - rec->offset;
906 ptr = bytes_to_frames(substream->runtime, ptr);
907 #endif
908 if (substream->runtime->channels > 2)
909 ptr = (ptr * 2) / substream->runtime->channels;
910 return ptr;
911 }
912
913 /*
914 * playback
915 */
916
917 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
918 int cmd)
919 {
920 struct cmipci *cm = snd_pcm_substream_chip(substream);
921 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], substream, cmd);
922 }
923
924 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
925 {
926 struct cmipci *cm = snd_pcm_substream_chip(substream);
927 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
928 }
929
930
931
932 /*
933 * capture
934 */
935
936 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
937 int cmd)
938 {
939 struct cmipci *cm = snd_pcm_substream_chip(substream);
940 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], substream, cmd);
941 }
942
943 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
944 {
945 struct cmipci *cm = snd_pcm_substream_chip(substream);
946 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
947 }
948
949
950 /*
951 * hw preparation for spdif
952 */
953
954 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
955 struct snd_ctl_elem_info *uinfo)
956 {
957 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
958 uinfo->count = 1;
959 return 0;
960 }
961
962 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
963 struct snd_ctl_elem_value *ucontrol)
964 {
965 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
966 int i;
967
968 spin_lock_irq(&chip->reg_lock);
969 for (i = 0; i < 4; i++)
970 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
971 spin_unlock_irq(&chip->reg_lock);
972 return 0;
973 }
974
975 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
976 struct snd_ctl_elem_value *ucontrol)
977 {
978 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
979 int i, change;
980 unsigned int val;
981
982 val = 0;
983 spin_lock_irq(&chip->reg_lock);
984 for (i = 0; i < 4; i++)
985 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
986 change = val != chip->dig_status;
987 chip->dig_status = val;
988 spin_unlock_irq(&chip->reg_lock);
989 return change;
990 }
991
992 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
993 {
994 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
995 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
996 .info = snd_cmipci_spdif_default_info,
997 .get = snd_cmipci_spdif_default_get,
998 .put = snd_cmipci_spdif_default_put
999 };
1000
1001 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1002 struct snd_ctl_elem_info *uinfo)
1003 {
1004 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1005 uinfo->count = 1;
1006 return 0;
1007 }
1008
1009 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1010 struct snd_ctl_elem_value *ucontrol)
1011 {
1012 ucontrol->value.iec958.status[0] = 0xff;
1013 ucontrol->value.iec958.status[1] = 0xff;
1014 ucontrol->value.iec958.status[2] = 0xff;
1015 ucontrol->value.iec958.status[3] = 0xff;
1016 return 0;
1017 }
1018
1019 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1020 {
1021 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1022 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1023 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1024 .info = snd_cmipci_spdif_mask_info,
1025 .get = snd_cmipci_spdif_mask_get,
1026 };
1027
1028 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1029 struct snd_ctl_elem_info *uinfo)
1030 {
1031 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1032 uinfo->count = 1;
1033 return 0;
1034 }
1035
1036 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1037 struct snd_ctl_elem_value *ucontrol)
1038 {
1039 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1040 int i;
1041
1042 spin_lock_irq(&chip->reg_lock);
1043 for (i = 0; i < 4; i++)
1044 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1045 spin_unlock_irq(&chip->reg_lock);
1046 return 0;
1047 }
1048
1049 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1050 struct snd_ctl_elem_value *ucontrol)
1051 {
1052 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1053 int i, change;
1054 unsigned int val;
1055
1056 val = 0;
1057 spin_lock_irq(&chip->reg_lock);
1058 for (i = 0; i < 4; i++)
1059 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1060 change = val != chip->dig_pcm_status;
1061 chip->dig_pcm_status = val;
1062 spin_unlock_irq(&chip->reg_lock);
1063 return change;
1064 }
1065
1066 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1067 {
1068 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1069 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1070 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1071 .info = snd_cmipci_spdif_stream_info,
1072 .get = snd_cmipci_spdif_stream_get,
1073 .put = snd_cmipci_spdif_stream_put
1074 };
1075
1076 /*
1077 */
1078
1079 /* save mixer setting and mute for AC3 playback */
1080 static int save_mixer_state(struct cmipci *cm)
1081 {
1082 if (! cm->mixer_insensitive) {
1083 struct snd_ctl_elem_value *val;
1084 unsigned int i;
1085
1086 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1087 if (!val)
1088 return -ENOMEM;
1089 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1090 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1091 if (ctl) {
1092 int event;
1093 memset(val, 0, sizeof(*val));
1094 ctl->get(ctl, val);
1095 cm->mixer_res_status[i] = val->value.integer.value[0];
1096 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1097 event = SNDRV_CTL_EVENT_MASK_INFO;
1098 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1099 ctl->put(ctl, val); /* toggle */
1100 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1101 }
1102 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1103 snd_ctl_notify(cm->card, event, &ctl->id);
1104 }
1105 }
1106 kfree(val);
1107 cm->mixer_insensitive = 1;
1108 }
1109 return 0;
1110 }
1111
1112
1113 /* restore the previously saved mixer status */
1114 static void restore_mixer_state(struct cmipci *cm)
1115 {
1116 if (cm->mixer_insensitive) {
1117 struct snd_ctl_elem_value *val;
1118 unsigned int i;
1119
1120 val = kmalloc(sizeof(*val), GFP_KERNEL);
1121 if (!val)
1122 return;
1123 cm->mixer_insensitive = 0; /* at first clear this;
1124 otherwise the changes will be ignored */
1125 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1126 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1127 if (ctl) {
1128 int event;
1129
1130 memset(val, 0, sizeof(*val));
1131 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1132 ctl->get(ctl, val);
1133 event = SNDRV_CTL_EVENT_MASK_INFO;
1134 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1135 val->value.integer.value[0] = cm->mixer_res_status[i];
1136 ctl->put(ctl, val);
1137 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1138 }
1139 snd_ctl_notify(cm->card, event, &ctl->id);
1140 }
1141 }
1142 kfree(val);
1143 }
1144 }
1145
1146 /* spinlock held! */
1147 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1148 {
1149 if (do_ac3) {
1150 /* AC3EN for 037 */
1151 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1152 /* AC3EN for 039 */
1153 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1154
1155 if (cm->can_ac3_hw) {
1156 /* SPD24SEL for 037, 0x02 */
1157 /* SPD24SEL for 039, 0x20, but cannot be set */
1158 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1159 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1160 } else { /* can_ac3_sw */
1161 /* SPD32SEL for 037 & 039, 0x20 */
1162 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1163 /* set 176K sample rate to fix 033 HW bug */
1164 if (cm->chip_version == 33) {
1165 if (rate >= 48000) {
1166 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1167 } else {
1168 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1169 }
1170 }
1171 }
1172
1173 } else {
1174 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1175 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1176
1177 if (cm->can_ac3_hw) {
1178 /* chip model >= 37 */
1179 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1180 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1181 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1182 } else {
1183 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1184 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1185 }
1186 } else {
1187 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1189 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1190 }
1191 }
1192 }
1193
1194 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1195 {
1196 int rate, err;
1197
1198 rate = subs->runtime->rate;
1199
1200 if (up && do_ac3)
1201 if ((err = save_mixer_state(cm)) < 0)
1202 return err;
1203
1204 spin_lock_irq(&cm->reg_lock);
1205 cm->spdif_playback_avail = up;
1206 if (up) {
1207 /* they are controlled via "IEC958 Output Switch" */
1208 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1209 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1210 if (cm->spdif_playback_enabled)
1211 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1212 setup_ac3(cm, subs, do_ac3, rate);
1213
1214 if (rate == 48000 || rate == 96000)
1215 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1216 else
1217 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1218 if (rate > 48000)
1219 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1220 else
1221 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1222 } else {
1223 /* they are controlled via "IEC958 Output Switch" */
1224 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1225 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1226 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1227 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1228 setup_ac3(cm, subs, 0, 0);
1229 }
1230 spin_unlock_irq(&cm->reg_lock);
1231 return 0;
1232 }
1233
1234
1235 /*
1236 * preparation
1237 */
1238
1239 /* playback - enable spdif only on the certain condition */
1240 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1241 {
1242 struct cmipci *cm = snd_pcm_substream_chip(substream);
1243 int rate = substream->runtime->rate;
1244 int err, do_spdif, do_ac3 = 0;
1245
1246 do_spdif = (rate >= 44100 &&
1247 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1248 substream->runtime->channels == 2);
1249 if (do_spdif && cm->can_ac3_hw)
1250 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1251 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1252 return err;
1253 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1254 }
1255
1256 /* playback (via device #2) - enable spdif always */
1257 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1258 {
1259 struct cmipci *cm = snd_pcm_substream_chip(substream);
1260 int err, do_ac3;
1261
1262 if (cm->can_ac3_hw)
1263 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1264 else
1265 do_ac3 = 1; /* doesn't matter */
1266 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1267 return err;
1268 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1269 }
1270
1271 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1272 {
1273 struct cmipci *cm = snd_pcm_substream_chip(substream);
1274 setup_spdif_playback(cm, substream, 0, 0);
1275 restore_mixer_state(cm);
1276 return snd_cmipci_hw_free(substream);
1277 }
1278
1279 /* capture */
1280 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1281 {
1282 struct cmipci *cm = snd_pcm_substream_chip(substream);
1283 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1284 }
1285
1286 /* capture with spdif (via device #2) */
1287 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1288 {
1289 struct cmipci *cm = snd_pcm_substream_chip(substream);
1290
1291 spin_lock_irq(&cm->reg_lock);
1292 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1293 spin_unlock_irq(&cm->reg_lock);
1294
1295 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1296 }
1297
1298 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1299 {
1300 struct cmipci *cm = snd_pcm_substream_chip(subs);
1301
1302 spin_lock_irq(&cm->reg_lock);
1303 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1304 spin_unlock_irq(&cm->reg_lock);
1305
1306 return snd_cmipci_hw_free(subs);
1307 }
1308
1309
1310 /*
1311 * interrupt handler
1312 */
1313 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1314 {
1315 struct cmipci *cm = dev_id;
1316 unsigned int status, mask = 0;
1317
1318 /* fastpath out, to ease interrupt sharing */
1319 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1320 if (!(status & CM_INTR))
1321 return IRQ_NONE;
1322
1323 /* acknowledge interrupt */
1324 spin_lock(&cm->reg_lock);
1325 if (status & CM_CHINT0)
1326 mask |= CM_CH0_INT_EN;
1327 if (status & CM_CHINT1)
1328 mask |= CM_CH1_INT_EN;
1329 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1330 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1331 spin_unlock(&cm->reg_lock);
1332
1333 if (cm->rmidi && (status & CM_UARTINT))
1334 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1335
1336 if (cm->pcm) {
1337 if ((status & CM_CHINT0) && cm->channel[0].running)
1338 snd_pcm_period_elapsed(cm->channel[0].substream);
1339 if ((status & CM_CHINT1) && cm->channel[1].running)
1340 snd_pcm_period_elapsed(cm->channel[1].substream);
1341 }
1342 return IRQ_HANDLED;
1343 }
1344
1345 /*
1346 * h/w infos
1347 */
1348
1349 /* playback on channel A */
1350 static struct snd_pcm_hardware snd_cmipci_playback =
1351 {
1352 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1353 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1354 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1355 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1356 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1357 .rate_min = 5512,
1358 .rate_max = 48000,
1359 .channels_min = 1,
1360 .channels_max = 2,
1361 .buffer_bytes_max = (128*1024),
1362 .period_bytes_min = 64,
1363 .period_bytes_max = (128*1024),
1364 .periods_min = 2,
1365 .periods_max = 1024,
1366 .fifo_size = 0,
1367 };
1368
1369 /* capture on channel B */
1370 static struct snd_pcm_hardware snd_cmipci_capture =
1371 {
1372 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1373 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1374 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1375 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1376 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1377 .rate_min = 5512,
1378 .rate_max = 48000,
1379 .channels_min = 1,
1380 .channels_max = 2,
1381 .buffer_bytes_max = (128*1024),
1382 .period_bytes_min = 64,
1383 .period_bytes_max = (128*1024),
1384 .periods_min = 2,
1385 .periods_max = 1024,
1386 .fifo_size = 0,
1387 };
1388
1389 /* playback on channel B - stereo 16bit only? */
1390 static struct snd_pcm_hardware snd_cmipci_playback2 =
1391 {
1392 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1393 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1394 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1395 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1396 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1397 .rate_min = 5512,
1398 .rate_max = 48000,
1399 .channels_min = 2,
1400 .channels_max = 2,
1401 .buffer_bytes_max = (128*1024),
1402 .period_bytes_min = 64,
1403 .period_bytes_max = (128*1024),
1404 .periods_min = 2,
1405 .periods_max = 1024,
1406 .fifo_size = 0,
1407 };
1408
1409 /* spdif playback on channel A */
1410 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1411 {
1412 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1413 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1414 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1415 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1416 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1417 .rate_min = 44100,
1418 .rate_max = 48000,
1419 .channels_min = 2,
1420 .channels_max = 2,
1421 .buffer_bytes_max = (128*1024),
1422 .period_bytes_min = 64,
1423 .period_bytes_max = (128*1024),
1424 .periods_min = 2,
1425 .periods_max = 1024,
1426 .fifo_size = 0,
1427 };
1428
1429 /* spdif playback on channel A (32bit, IEC958 subframes) */
1430 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1431 {
1432 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1433 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1434 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1435 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1436 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1437 .rate_min = 44100,
1438 .rate_max = 48000,
1439 .channels_min = 2,
1440 .channels_max = 2,
1441 .buffer_bytes_max = (128*1024),
1442 .period_bytes_min = 64,
1443 .period_bytes_max = (128*1024),
1444 .periods_min = 2,
1445 .periods_max = 1024,
1446 .fifo_size = 0,
1447 };
1448
1449 /* spdif capture on channel B */
1450 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1451 {
1452 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1453 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1454 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1455 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1456 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1457 .rate_min = 44100,
1458 .rate_max = 48000,
1459 .channels_min = 2,
1460 .channels_max = 2,
1461 .buffer_bytes_max = (128*1024),
1462 .period_bytes_min = 64,
1463 .period_bytes_max = (128*1024),
1464 .periods_min = 2,
1465 .periods_max = 1024,
1466 .fifo_size = 0,
1467 };
1468
1469 /*
1470 * check device open/close
1471 */
1472 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1473 {
1474 int ch = mode & CM_OPEN_CH_MASK;
1475
1476 /* FIXME: a file should wait until the device becomes free
1477 * when it's opened on blocking mode. however, since the current
1478 * pcm framework doesn't pass file pointer before actually opened,
1479 * we can't know whether blocking mode or not in open callback..
1480 */
1481 mutex_lock(&cm->open_mutex);
1482 if (cm->opened[ch]) {
1483 mutex_unlock(&cm->open_mutex);
1484 return -EBUSY;
1485 }
1486 cm->opened[ch] = mode;
1487 cm->channel[ch].substream = subs;
1488 if (! (mode & CM_OPEN_DAC)) {
1489 /* disable dual DAC mode */
1490 cm->channel[ch].is_dac = 0;
1491 spin_lock_irq(&cm->reg_lock);
1492 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1493 spin_unlock_irq(&cm->reg_lock);
1494 }
1495 mutex_unlock(&cm->open_mutex);
1496 return 0;
1497 }
1498
1499 static void close_device_check(struct cmipci *cm, int mode)
1500 {
1501 int ch = mode & CM_OPEN_CH_MASK;
1502
1503 mutex_lock(&cm->open_mutex);
1504 if (cm->opened[ch] == mode) {
1505 if (cm->channel[ch].substream) {
1506 snd_cmipci_ch_reset(cm, ch);
1507 cm->channel[ch].running = 0;
1508 cm->channel[ch].substream = NULL;
1509 }
1510 cm->opened[ch] = 0;
1511 if (! cm->channel[ch].is_dac) {
1512 /* enable dual DAC mode again */
1513 cm->channel[ch].is_dac = 1;
1514 spin_lock_irq(&cm->reg_lock);
1515 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1516 spin_unlock_irq(&cm->reg_lock);
1517 }
1518 }
1519 mutex_unlock(&cm->open_mutex);
1520 }
1521
1522 /*
1523 */
1524
1525 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1526 {
1527 struct cmipci *cm = snd_pcm_substream_chip(substream);
1528 struct snd_pcm_runtime *runtime = substream->runtime;
1529 int err;
1530
1531 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1532 return err;
1533 runtime->hw = snd_cmipci_playback;
1534 if (cm->chip_version == 68) {
1535 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1536 SNDRV_PCM_RATE_96000;
1537 runtime->hw.rate_max = 96000;
1538 }
1539 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1540 cm->dig_pcm_status = cm->dig_status;
1541 return 0;
1542 }
1543
1544 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1545 {
1546 struct cmipci *cm = snd_pcm_substream_chip(substream);
1547 struct snd_pcm_runtime *runtime = substream->runtime;
1548 int err;
1549
1550 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1551 return err;
1552 runtime->hw = snd_cmipci_capture;
1553 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1554 runtime->hw.rate_min = 41000;
1555 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1556 }
1557 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1558 return 0;
1559 }
1560
1561 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1562 {
1563 struct cmipci *cm = snd_pcm_substream_chip(substream);
1564 struct snd_pcm_runtime *runtime = substream->runtime;
1565 int err;
1566
1567 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1568 return err;
1569 runtime->hw = snd_cmipci_playback2;
1570 mutex_lock(&cm->open_mutex);
1571 if (! cm->opened[CM_CH_PLAY]) {
1572 if (cm->can_multi_ch) {
1573 runtime->hw.channels_max = cm->max_channels;
1574 if (cm->max_channels == 4)
1575 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1576 else if (cm->max_channels == 6)
1577 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1578 else if (cm->max_channels == 8)
1579 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1580 }
1581 if (cm->chip_version == 68) {
1582 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1583 SNDRV_PCM_RATE_96000;
1584 runtime->hw.rate_max = 96000;
1585 }
1586 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1587 }
1588 mutex_unlock(&cm->open_mutex);
1589 return 0;
1590 }
1591
1592 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1593 {
1594 struct cmipci *cm = snd_pcm_substream_chip(substream);
1595 struct snd_pcm_runtime *runtime = substream->runtime;
1596 int err;
1597
1598 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1599 return err;
1600 if (cm->can_ac3_hw) {
1601 runtime->hw = snd_cmipci_playback_spdif;
1602 if (cm->chip_version >= 37)
1603 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1604 if (cm->chip_version == 68) {
1605 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1606 SNDRV_PCM_RATE_96000;
1607 runtime->hw.rate_max = 96000;
1608 }
1609 } else {
1610 runtime->hw = snd_cmipci_playback_iec958_subframe;
1611 }
1612 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1613 cm->dig_pcm_status = cm->dig_status;
1614 return 0;
1615 }
1616
1617 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1618 {
1619 struct cmipci *cm = snd_pcm_substream_chip(substream);
1620 struct snd_pcm_runtime *runtime = substream->runtime;
1621 int err;
1622
1623 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1624 return err;
1625 runtime->hw = snd_cmipci_capture_spdif;
1626 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1627 return 0;
1628 }
1629
1630
1631 /*
1632 */
1633
1634 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1635 {
1636 struct cmipci *cm = snd_pcm_substream_chip(substream);
1637 close_device_check(cm, CM_OPEN_PLAYBACK);
1638 return 0;
1639 }
1640
1641 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1642 {
1643 struct cmipci *cm = snd_pcm_substream_chip(substream);
1644 close_device_check(cm, CM_OPEN_CAPTURE);
1645 return 0;
1646 }
1647
1648 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1649 {
1650 struct cmipci *cm = snd_pcm_substream_chip(substream);
1651 close_device_check(cm, CM_OPEN_PLAYBACK2);
1652 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1653 return 0;
1654 }
1655
1656 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1657 {
1658 struct cmipci *cm = snd_pcm_substream_chip(substream);
1659 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1660 return 0;
1661 }
1662
1663 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1664 {
1665 struct cmipci *cm = snd_pcm_substream_chip(substream);
1666 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1667 return 0;
1668 }
1669
1670
1671 /*
1672 */
1673
1674 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1675 .open = snd_cmipci_playback_open,
1676 .close = snd_cmipci_playback_close,
1677 .ioctl = snd_pcm_lib_ioctl,
1678 .hw_params = snd_cmipci_hw_params,
1679 .hw_free = snd_cmipci_playback_hw_free,
1680 .prepare = snd_cmipci_playback_prepare,
1681 .trigger = snd_cmipci_playback_trigger,
1682 .pointer = snd_cmipci_playback_pointer,
1683 };
1684
1685 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1686 .open = snd_cmipci_capture_open,
1687 .close = snd_cmipci_capture_close,
1688 .ioctl = snd_pcm_lib_ioctl,
1689 .hw_params = snd_cmipci_hw_params,
1690 .hw_free = snd_cmipci_hw_free,
1691 .prepare = snd_cmipci_capture_prepare,
1692 .trigger = snd_cmipci_capture_trigger,
1693 .pointer = snd_cmipci_capture_pointer,
1694 };
1695
1696 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1697 .open = snd_cmipci_playback2_open,
1698 .close = snd_cmipci_playback2_close,
1699 .ioctl = snd_pcm_lib_ioctl,
1700 .hw_params = snd_cmipci_playback2_hw_params,
1701 .hw_free = snd_cmipci_hw_free,
1702 .prepare = snd_cmipci_capture_prepare, /* channel B */
1703 .trigger = snd_cmipci_capture_trigger, /* channel B */
1704 .pointer = snd_cmipci_capture_pointer, /* channel B */
1705 };
1706
1707 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1708 .open = snd_cmipci_playback_spdif_open,
1709 .close = snd_cmipci_playback_spdif_close,
1710 .ioctl = snd_pcm_lib_ioctl,
1711 .hw_params = snd_cmipci_hw_params,
1712 .hw_free = snd_cmipci_playback_hw_free,
1713 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1714 .trigger = snd_cmipci_playback_trigger,
1715 .pointer = snd_cmipci_playback_pointer,
1716 };
1717
1718 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1719 .open = snd_cmipci_capture_spdif_open,
1720 .close = snd_cmipci_capture_spdif_close,
1721 .ioctl = snd_pcm_lib_ioctl,
1722 .hw_params = snd_cmipci_hw_params,
1723 .hw_free = snd_cmipci_capture_spdif_hw_free,
1724 .prepare = snd_cmipci_capture_spdif_prepare,
1725 .trigger = snd_cmipci_capture_trigger,
1726 .pointer = snd_cmipci_capture_pointer,
1727 };
1728
1729
1730 /*
1731 */
1732
1733 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1734 {
1735 struct snd_pcm *pcm;
1736 int err;
1737
1738 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1739 if (err < 0)
1740 return err;
1741
1742 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1743 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1744
1745 pcm->private_data = cm;
1746 pcm->info_flags = 0;
1747 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1748 cm->pcm = pcm;
1749
1750 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1751 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1752
1753 return 0;
1754 }
1755
1756 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1757 {
1758 struct snd_pcm *pcm;
1759 int err;
1760
1761 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1762 if (err < 0)
1763 return err;
1764
1765 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1766
1767 pcm->private_data = cm;
1768 pcm->info_flags = 0;
1769 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1770 cm->pcm2 = pcm;
1771
1772 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1773 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1774
1775 return 0;
1776 }
1777
1778 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1779 {
1780 struct snd_pcm *pcm;
1781 int err;
1782
1783 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1784 if (err < 0)
1785 return err;
1786
1787 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1788 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1789
1790 pcm->private_data = cm;
1791 pcm->info_flags = 0;
1792 strcpy(pcm->name, "C-Media PCI IEC958");
1793 cm->pcm_spdif = pcm;
1794
1795 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1796 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1797
1798 return 0;
1799 }
1800
1801 /*
1802 * mixer interface:
1803 * - CM8338/8738 has a compatible mixer interface with SB16, but
1804 * lack of some elements like tone control, i/o gain and AGC.
1805 * - Access to native registers:
1806 * - A 3D switch
1807 * - Output mute switches
1808 */
1809
1810 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1811 {
1812 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1813 outb(data, s->iobase + CM_REG_SB16_DATA);
1814 }
1815
1816 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1817 {
1818 unsigned char v;
1819
1820 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1821 v = inb(s->iobase + CM_REG_SB16_DATA);
1822 return v;
1823 }
1824
1825 /*
1826 * general mixer element
1827 */
1828 struct cmipci_sb_reg {
1829 unsigned int left_reg, right_reg;
1830 unsigned int left_shift, right_shift;
1831 unsigned int mask;
1832 unsigned int invert: 1;
1833 unsigned int stereo: 1;
1834 };
1835
1836 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1837 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1838
1839 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1840 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1841 .info = snd_cmipci_info_volume, \
1842 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1843 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1844 }
1845
1846 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1847 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1848 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1849 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1850
1851 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1852 {
1853 r->left_reg = val & 0xff;
1854 r->right_reg = (val >> 8) & 0xff;
1855 r->left_shift = (val >> 16) & 0x07;
1856 r->right_shift = (val >> 19) & 0x07;
1857 r->invert = (val >> 22) & 1;
1858 r->stereo = (val >> 23) & 1;
1859 r->mask = (val >> 24) & 0xff;
1860 }
1861
1862 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1863 struct snd_ctl_elem_info *uinfo)
1864 {
1865 struct cmipci_sb_reg reg;
1866
1867 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1868 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1869 uinfo->count = reg.stereo + 1;
1870 uinfo->value.integer.min = 0;
1871 uinfo->value.integer.max = reg.mask;
1872 return 0;
1873 }
1874
1875 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
1876 struct snd_ctl_elem_value *ucontrol)
1877 {
1878 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1879 struct cmipci_sb_reg reg;
1880 int val;
1881
1882 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1883 spin_lock_irq(&cm->reg_lock);
1884 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1885 if (reg.invert)
1886 val = reg.mask - val;
1887 ucontrol->value.integer.value[0] = val;
1888 if (reg.stereo) {
1889 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1890 if (reg.invert)
1891 val = reg.mask - val;
1892 ucontrol->value.integer.value[1] = val;
1893 }
1894 spin_unlock_irq(&cm->reg_lock);
1895 return 0;
1896 }
1897
1898 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
1899 struct snd_ctl_elem_value *ucontrol)
1900 {
1901 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1902 struct cmipci_sb_reg reg;
1903 int change;
1904 int left, right, oleft, oright;
1905
1906 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1907 left = ucontrol->value.integer.value[0] & reg.mask;
1908 if (reg.invert)
1909 left = reg.mask - left;
1910 left <<= reg.left_shift;
1911 if (reg.stereo) {
1912 right = ucontrol->value.integer.value[1] & reg.mask;
1913 if (reg.invert)
1914 right = reg.mask - right;
1915 right <<= reg.right_shift;
1916 } else
1917 right = 0;
1918 spin_lock_irq(&cm->reg_lock);
1919 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
1920 left |= oleft & ~(reg.mask << reg.left_shift);
1921 change = left != oleft;
1922 if (reg.stereo) {
1923 if (reg.left_reg != reg.right_reg) {
1924 snd_cmipci_mixer_write(cm, reg.left_reg, left);
1925 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
1926 } else
1927 oright = left;
1928 right |= oright & ~(reg.mask << reg.right_shift);
1929 change |= right != oright;
1930 snd_cmipci_mixer_write(cm, reg.right_reg, right);
1931 } else
1932 snd_cmipci_mixer_write(cm, reg.left_reg, left);
1933 spin_unlock_irq(&cm->reg_lock);
1934 return change;
1935 }
1936
1937 /*
1938 * input route (left,right) -> (left,right)
1939 */
1940 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
1941 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1942 .info = snd_cmipci_info_input_sw, \
1943 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
1944 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
1945 }
1946
1947 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
1948 struct snd_ctl_elem_info *uinfo)
1949 {
1950 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1951 uinfo->count = 4;
1952 uinfo->value.integer.min = 0;
1953 uinfo->value.integer.max = 1;
1954 return 0;
1955 }
1956
1957 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
1958 struct snd_ctl_elem_value *ucontrol)
1959 {
1960 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1961 struct cmipci_sb_reg reg;
1962 int val1, val2;
1963
1964 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1965 spin_lock_irq(&cm->reg_lock);
1966 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1967 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1968 spin_unlock_irq(&cm->reg_lock);
1969 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
1970 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
1971 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
1972 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
1973 return 0;
1974 }
1975
1976 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
1977 struct snd_ctl_elem_value *ucontrol)
1978 {
1979 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1980 struct cmipci_sb_reg reg;
1981 int change;
1982 int val1, val2, oval1, oval2;
1983
1984 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1985 spin_lock_irq(&cm->reg_lock);
1986 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1987 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1988 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1989 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1990 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
1991 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
1992 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
1993 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
1994 change = val1 != oval1 || val2 != oval2;
1995 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
1996 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
1997 spin_unlock_irq(&cm->reg_lock);
1998 return change;
1999 }
2000
2001 /*
2002 * native mixer switches/volumes
2003 */
2004
2005 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2006 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2007 .info = snd_cmipci_info_native_mixer, \
2008 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2009 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2010 }
2011
2012 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2013 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014 .info = snd_cmipci_info_native_mixer, \
2015 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2016 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2017 }
2018
2019 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2020 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2021 .info = snd_cmipci_info_native_mixer, \
2022 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2023 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2024 }
2025
2026 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2027 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2028 .info = snd_cmipci_info_native_mixer, \
2029 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2030 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2031 }
2032
2033 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2034 struct snd_ctl_elem_info *uinfo)
2035 {
2036 struct cmipci_sb_reg reg;
2037
2038 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2039 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2040 uinfo->count = reg.stereo + 1;
2041 uinfo->value.integer.min = 0;
2042 uinfo->value.integer.max = reg.mask;
2043 return 0;
2044
2045 }
2046
2047 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2048 struct snd_ctl_elem_value *ucontrol)
2049 {
2050 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2051 struct cmipci_sb_reg reg;
2052 unsigned char oreg, val;
2053
2054 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2055 spin_lock_irq(&cm->reg_lock);
2056 oreg = inb(cm->iobase + reg.left_reg);
2057 val = (oreg >> reg.left_shift) & reg.mask;
2058 if (reg.invert)
2059 val = reg.mask - val;
2060 ucontrol->value.integer.value[0] = val;
2061 if (reg.stereo) {
2062 val = (oreg >> reg.right_shift) & reg.mask;
2063 if (reg.invert)
2064 val = reg.mask - val;
2065 ucontrol->value.integer.value[1] = val;
2066 }
2067 spin_unlock_irq(&cm->reg_lock);
2068 return 0;
2069 }
2070
2071 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2072 struct snd_ctl_elem_value *ucontrol)
2073 {
2074 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075 struct cmipci_sb_reg reg;
2076 unsigned char oreg, nreg, val;
2077
2078 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2079 spin_lock_irq(&cm->reg_lock);
2080 oreg = inb(cm->iobase + reg.left_reg);
2081 val = ucontrol->value.integer.value[0] & reg.mask;
2082 if (reg.invert)
2083 val = reg.mask - val;
2084 nreg = oreg & ~(reg.mask << reg.left_shift);
2085 nreg |= (val << reg.left_shift);
2086 if (reg.stereo) {
2087 val = ucontrol->value.integer.value[1] & reg.mask;
2088 if (reg.invert)
2089 val = reg.mask - val;
2090 nreg &= ~(reg.mask << reg.right_shift);
2091 nreg |= (val << reg.right_shift);
2092 }
2093 outb(nreg, cm->iobase + reg.left_reg);
2094 spin_unlock_irq(&cm->reg_lock);
2095 return (nreg != oreg);
2096 }
2097
2098 /*
2099 * special case - check mixer sensitivity
2100 */
2101 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2102 struct snd_ctl_elem_value *ucontrol)
2103 {
2104 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2105 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2106 }
2107
2108 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2109 struct snd_ctl_elem_value *ucontrol)
2110 {
2111 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2112 if (cm->mixer_insensitive) {
2113 /* ignored */
2114 return 0;
2115 }
2116 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2117 }
2118
2119
2120 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2121 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2122 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2123 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2124 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2125 { /* switch with sensitivity */
2126 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2127 .name = "PCM Playback Switch",
2128 .info = snd_cmipci_info_native_mixer,
2129 .get = snd_cmipci_get_native_mixer_sensitive,
2130 .put = snd_cmipci_put_native_mixer_sensitive,
2131 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2132 },
2133 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2134 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2135 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2136 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2137 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2138 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2139 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2140 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2141 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2142 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2143 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2144 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2145 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2146 CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2147 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2148 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2149 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2150 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2151 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2152 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2153 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2154 CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2155 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2156 };
2157
2158 /*
2159 * other switches
2160 */
2161
2162 struct cmipci_switch_args {
2163 int reg; /* register index */
2164 unsigned int mask; /* mask bits */
2165 unsigned int mask_on; /* mask bits to turn on */
2166 unsigned int is_byte: 1; /* byte access? */
2167 unsigned int ac3_sensitive: 1; /* access forbidden during
2168 * non-audio operation?
2169 */
2170 };
2171
2172 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2173
2174 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2175 struct snd_ctl_elem_value *ucontrol,
2176 struct cmipci_switch_args *args)
2177 {
2178 unsigned int val;
2179 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2180
2181 spin_lock_irq(&cm->reg_lock);
2182 if (args->ac3_sensitive && cm->mixer_insensitive) {
2183 ucontrol->value.integer.value[0] = 0;
2184 spin_unlock_irq(&cm->reg_lock);
2185 return 0;
2186 }
2187 if (args->is_byte)
2188 val = inb(cm->iobase + args->reg);
2189 else
2190 val = snd_cmipci_read(cm, args->reg);
2191 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2192 spin_unlock_irq(&cm->reg_lock);
2193 return 0;
2194 }
2195
2196 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2197 struct snd_ctl_elem_value *ucontrol)
2198 {
2199 struct cmipci_switch_args *args;
2200 args = (struct cmipci_switch_args *)kcontrol->private_value;
2201 snd_assert(args != NULL, return -EINVAL);
2202 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2203 }
2204
2205 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2206 struct snd_ctl_elem_value *ucontrol,
2207 struct cmipci_switch_args *args)
2208 {
2209 unsigned int val;
2210 int change;
2211 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2212
2213 spin_lock_irq(&cm->reg_lock);
2214 if (args->ac3_sensitive && cm->mixer_insensitive) {
2215 /* ignored */
2216 spin_unlock_irq(&cm->reg_lock);
2217 return 0;
2218 }
2219 if (args->is_byte)
2220 val = inb(cm->iobase + args->reg);
2221 else
2222 val = snd_cmipci_read(cm, args->reg);
2223 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2224 args->mask_on : (args->mask & ~args->mask_on));
2225 if (change) {
2226 val &= ~args->mask;
2227 if (ucontrol->value.integer.value[0])
2228 val |= args->mask_on;
2229 else
2230 val |= (args->mask & ~args->mask_on);
2231 if (args->is_byte)
2232 outb((unsigned char)val, cm->iobase + args->reg);
2233 else
2234 snd_cmipci_write(cm, args->reg, val);
2235 }
2236 spin_unlock_irq(&cm->reg_lock);
2237 return change;
2238 }
2239
2240 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2241 struct snd_ctl_elem_value *ucontrol)
2242 {
2243 struct cmipci_switch_args *args;
2244 args = (struct cmipci_switch_args *)kcontrol->private_value;
2245 snd_assert(args != NULL, return -EINVAL);
2246 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2247 }
2248
2249 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2250 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2251 .reg = xreg, \
2252 .mask = xmask, \
2253 .mask_on = xmask_on, \
2254 .is_byte = xis_byte, \
2255 .ac3_sensitive = xac3, \
2256 }
2257
2258 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2259 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2260
2261 #if 0 /* these will be controlled in pcm device */
2262 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2263 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2264 #endif
2265 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2266 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2267 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2268 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2269 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2270 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2271 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2272 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2273 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2274 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2275 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2276 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2277 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2278 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2279 #if CM_CH_PLAY == 1
2280 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2281 #else
2282 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2283 #endif
2284 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2285 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_SPK4, 1, 0);
2286 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS, 0, 0);
2287 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2288 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2289
2290 #define DEFINE_SWITCH(sname, stype, sarg) \
2291 { .name = sname, \
2292 .iface = stype, \
2293 .info = snd_cmipci_uswitch_info, \
2294 .get = snd_cmipci_uswitch_get, \
2295 .put = snd_cmipci_uswitch_put, \
2296 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2297 }
2298
2299 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2300 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2301
2302
2303 /*
2304 * callbacks for spdif output switch
2305 * needs toggle two registers..
2306 */
2307 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2308 struct snd_ctl_elem_value *ucontrol)
2309 {
2310 int changed;
2311 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2312 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2313 return changed;
2314 }
2315
2316 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2317 struct snd_ctl_elem_value *ucontrol)
2318 {
2319 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2320 int changed;
2321 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2322 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2323 if (changed) {
2324 if (ucontrol->value.integer.value[0]) {
2325 if (chip->spdif_playback_avail)
2326 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2327 } else {
2328 if (chip->spdif_playback_avail)
2329 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2330 }
2331 }
2332 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2333 return changed;
2334 }
2335
2336
2337 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2338 struct snd_ctl_elem_info *uinfo)
2339 {
2340 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2341 static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2342 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2343 uinfo->count = 1;
2344 uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2345 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2346 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2347 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2348 return 0;
2349 }
2350
2351 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2352 {
2353 unsigned int val;
2354 if (cm->chip_version >= 39) {
2355 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2356 if (val & CM_LINE_AS_BASS)
2357 return 2;
2358 }
2359 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2360 if (val & CM_SPK4)
2361 return 1;
2362 return 0;
2363 }
2364
2365 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2366 struct snd_ctl_elem_value *ucontrol)
2367 {
2368 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2369
2370 spin_lock_irq(&cm->reg_lock);
2371 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2372 spin_unlock_irq(&cm->reg_lock);
2373 return 0;
2374 }
2375
2376 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2377 struct snd_ctl_elem_value *ucontrol)
2378 {
2379 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2380 int change;
2381
2382 spin_lock_irq(&cm->reg_lock);
2383 if (ucontrol->value.enumerated.item[0] == 2)
2384 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2385 else
2386 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2387 if (ucontrol->value.enumerated.item[0] == 1)
2388 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2389 else
2390 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2391 spin_unlock_irq(&cm->reg_lock);
2392 return change;
2393 }
2394
2395 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2396 struct snd_ctl_elem_info *uinfo)
2397 {
2398 static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2399 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2400 uinfo->count = 1;
2401 uinfo->value.enumerated.items = 2;
2402 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2403 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2404 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2405 return 0;
2406 }
2407
2408 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2409 struct snd_ctl_elem_value *ucontrol)
2410 {
2411 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2412 /* same bit as spdi_phase */
2413 spin_lock_irq(&cm->reg_lock);
2414 ucontrol->value.enumerated.item[0] =
2415 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2416 spin_unlock_irq(&cm->reg_lock);
2417 return 0;
2418 }
2419
2420 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2421 struct snd_ctl_elem_value *ucontrol)
2422 {
2423 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2424 int change;
2425
2426 spin_lock_irq(&cm->reg_lock);
2427 if (ucontrol->value.enumerated.item[0])
2428 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2429 else
2430 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2431 spin_unlock_irq(&cm->reg_lock);
2432 return change;
2433 }
2434
2435 /* both for CM8338/8738 */
2436 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2437 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2438 {
2439 .name = "Line-In Mode",
2440 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2441 .info = snd_cmipci_line_in_mode_info,
2442 .get = snd_cmipci_line_in_mode_get,
2443 .put = snd_cmipci_line_in_mode_put,
2444 },
2445 };
2446
2447 /* for non-multichannel chips */
2448 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2449 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2450
2451 /* only for CM8738 */
2452 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2453 #if 0 /* controlled in pcm device */
2454 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2455 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2456 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2457 #endif
2458 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2459 { .name = "IEC958 Output Switch",
2460 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2461 .info = snd_cmipci_uswitch_info,
2462 .get = snd_cmipci_spdout_enable_get,
2463 .put = snd_cmipci_spdout_enable_put,
2464 },
2465 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2466 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2467 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2468 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2469 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2470 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2471 };
2472
2473 /* only for model 033/037 */
2474 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2475 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2476 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2477 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2478 };
2479
2480 /* only for model 039 or later */
2481 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2482 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2483 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2484 {
2485 .name = "Mic-In Mode",
2486 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2487 .info = snd_cmipci_mic_in_mode_info,
2488 .get = snd_cmipci_mic_in_mode_get,
2489 .put = snd_cmipci_mic_in_mode_put,
2490 }
2491 };
2492
2493 /* card control switches */
2494 static struct snd_kcontrol_new snd_cmipci_control_switches[] __devinitdata = {
2495 // DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */
2496 DEFINE_CARD_SWITCH("Modem", modem),
2497 };
2498
2499
2500 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2501 {
2502 struct snd_card *card;
2503 struct snd_kcontrol_new *sw;
2504 struct snd_kcontrol *kctl;
2505 unsigned int idx;
2506 int err;
2507
2508 snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2509
2510 card = cm->card;
2511
2512 strcpy(card->mixername, "CMedia PCI");
2513
2514 spin_lock_irq(&cm->reg_lock);
2515 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2516 spin_unlock_irq(&cm->reg_lock);
2517
2518 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2519 if (cm->chip_version == 68) { // 8768 has no PCM volume
2520 if (!strcmp(snd_cmipci_mixers[idx].name,
2521 "PCM Playback Volume"))
2522 continue;
2523 }
2524 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2525 return err;
2526 }
2527
2528 /* mixer switches */
2529 sw = snd_cmipci_mixer_switches;
2530 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2531 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2532 if (err < 0)
2533 return err;
2534 }
2535 if (! cm->can_multi_ch) {
2536 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2537 if (err < 0)
2538 return err;
2539 }
2540 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2541 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2542 sw = snd_cmipci_8738_mixer_switches;
2543 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2544 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2545 if (err < 0)
2546 return err;
2547 }
2548 if (cm->can_ac3_hw) {
2549 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2550 return err;
2551 kctl->id.device = pcm_spdif_device;
2552 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2553 return err;
2554 kctl->id.device = pcm_spdif_device;
2555 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2556 return err;
2557 kctl->id.device = pcm_spdif_device;
2558 }
2559 if (cm->chip_version <= 37) {
2560 sw = snd_cmipci_old_mixer_switches;
2561 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2562 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2563 if (err < 0)
2564 return err;
2565 }
2566 }
2567 }
2568 if (cm->chip_version >= 39) {
2569 sw = snd_cmipci_extra_mixer_switches;
2570 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2571 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2572 if (err < 0)
2573 return err;
2574 }
2575 }
2576
2577 /* card switches */
2578 sw = snd_cmipci_control_switches;
2579 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) {
2580 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2581 if (err < 0)
2582 return err;
2583 }
2584
2585 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2586 struct snd_ctl_elem_id id;
2587 struct snd_kcontrol *ctl;
2588 memset(&id, 0, sizeof(id));
2589 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2590 strcpy(id.name, cm_saved_mixer[idx].name);
2591 if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2592 cm->mixer_res_ctl[idx] = ctl;
2593 }
2594
2595 return 0;
2596 }
2597
2598
2599 /*
2600 * proc interface
2601 */
2602
2603 #ifdef CONFIG_PROC_FS
2604 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2605 struct snd_info_buffer *buffer)
2606 {
2607 struct cmipci *cm = entry->private_data;
2608 int i;
2609
2610 snd_iprintf(buffer, "%s\n\n", cm->card->longname);
2611 for (i = 0; i < 0x40; i++) {
2612 int v = inb(cm->iobase + i);
2613 if (i % 4 == 0)
2614 snd_iprintf(buffer, "%02x: ", i);
2615 snd_iprintf(buffer, "%02x", v);
2616 if (i % 4 == 3)
2617 snd_iprintf(buffer, "\n");
2618 else
2619 snd_iprintf(buffer, " ");
2620 }
2621 }
2622
2623 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2624 {
2625 struct snd_info_entry *entry;
2626
2627 if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2628 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2629 }
2630 #else /* !CONFIG_PROC_FS */
2631 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2632 #endif
2633
2634
2635 static struct pci_device_id snd_cmipci_ids[] = {
2636 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2637 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2638 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2639 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2640 {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2641 {0,},
2642 };
2643
2644
2645 /*
2646 * check chip version and capabilities
2647 * driver name is modified according to the chip model
2648 */
2649 static void __devinit query_chip(struct cmipci *cm)
2650 {
2651 unsigned int detect;
2652
2653 /* check reg 0Ch, bit 24-31 */
2654 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2655 if (! detect) {
2656 /* check reg 08h, bit 24-28 */
2657 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2658 switch (detect) {
2659 case 0:
2660 cm->chip_version = 33;
2661 if (cm->do_soft_ac3)
2662 cm->can_ac3_sw = 1;
2663 else
2664 cm->can_ac3_hw = 1;
2665 break;
2666 case 1:
2667 cm->chip_version = 37;
2668 cm->can_ac3_hw = 1;
2669 break;
2670 default:
2671 cm->chip_version = 39;
2672 cm->can_ac3_hw = 1;
2673 break;
2674 }
2675 cm->max_channels = 2;
2676 } else {
2677 if (detect & CM_CHIP_039) {
2678 cm->chip_version = 39;
2679 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2680 cm->max_channels = 6;
2681 else
2682 cm->max_channels = 4;
2683 } else if (detect & CM_CHIP_8768) {
2684 cm->chip_version = 68;
2685 cm->max_channels = 8;
2686 } else {
2687 cm->chip_version = 55;
2688 cm->max_channels = 6;
2689 }
2690 cm->can_ac3_hw = 1;
2691 cm->can_multi_ch = 1;
2692 }
2693 }
2694
2695 #ifdef SUPPORT_JOYSTICK
2696 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2697 {
2698 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2699 struct gameport *gp;
2700 struct resource *r = NULL;
2701 int i, io_port = 0;
2702
2703 if (joystick_port[dev] == 0)
2704 return -ENODEV;
2705
2706 if (joystick_port[dev] == 1) { /* auto-detect */
2707 for (i = 0; ports[i]; i++) {
2708 io_port = ports[i];
2709 r = request_region(io_port, 1, "CMIPCI gameport");
2710 if (r)
2711 break;
2712 }
2713 } else {
2714 io_port = joystick_port[dev];
2715 r = request_region(io_port, 1, "CMIPCI gameport");
2716 }
2717
2718 if (!r) {
2719 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2720 return -EBUSY;
2721 }
2722
2723 cm->gameport = gp = gameport_allocate_port();
2724 if (!gp) {
2725 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2726 release_and_free_resource(r);
2727 return -ENOMEM;
2728 }
2729 gameport_set_name(gp, "C-Media Gameport");
2730 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2731 gameport_set_dev_parent(gp, &cm->pci->dev);
2732 gp->io = io_port;
2733 gameport_set_port_data(gp, r);
2734
2735 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2736
2737 gameport_register_port(cm->gameport);
2738
2739 return 0;
2740 }
2741
2742 static void snd_cmipci_free_gameport(struct cmipci *cm)
2743 {
2744 if (cm->gameport) {
2745 struct resource *r = gameport_get_port_data(cm->gameport);
2746
2747 gameport_unregister_port(cm->gameport);
2748 cm->gameport = NULL;
2749
2750 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2751 release_and_free_resource(r);
2752 }
2753 }
2754 #else
2755 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2756 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2757 #endif
2758
2759 static int snd_cmipci_free(struct cmipci *cm)
2760 {
2761 if (cm->irq >= 0) {
2762 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2763 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2764 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2765 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2766 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2767 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2768 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2769
2770 /* reset mixer */
2771 snd_cmipci_mixer_write(cm, 0, 0);
2772
2773 synchronize_irq(cm->irq);
2774
2775 free_irq(cm->irq, cm);
2776 }
2777
2778 snd_cmipci_free_gameport(cm);
2779 pci_release_regions(cm->pci);
2780 pci_disable_device(cm->pci);
2781 kfree(cm);
2782 return 0;
2783 }
2784
2785 static int snd_cmipci_dev_free(struct snd_device *device)
2786 {
2787 struct cmipci *cm = device->device_data;
2788 return snd_cmipci_free(cm);
2789 }
2790
2791 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2792 {
2793 long iosynth;
2794 unsigned int val;
2795 struct snd_opl3 *opl3;
2796 int err;
2797
2798 if (!fm_port)
2799 goto disable_fm;
2800
2801 if (cm->chip_version > 33) {
2802 /* first try FM regs in PCI port range */
2803 iosynth = cm->iobase + CM_REG_FM_PCI;
2804 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2805 OPL3_HW_OPL3, 1, &opl3);
2806 } else {
2807 err = -EIO;
2808 }
2809 if (err < 0) {
2810 /* then try legacy ports */
2811 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2812 iosynth = fm_port;
2813 switch (iosynth) {
2814 case 0x3E8: val |= CM_FMSEL_3E8; break;
2815 case 0x3E0: val |= CM_FMSEL_3E0; break;
2816 case 0x3C8: val |= CM_FMSEL_3C8; break;
2817 case 0x388: val |= CM_FMSEL_388; break;
2818 default:
2819 goto disable_fm;
2820 }
2821 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2822 /* enable FM */
2823 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2824
2825 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2826 OPL3_HW_OPL3, 0, &opl3) < 0) {
2827 printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2828 "skipping...\n", iosynth);
2829 goto disable_fm;
2830 }
2831 }
2832 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2833 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2834 return err;
2835 }
2836 return 0;
2837
2838 disable_fm:
2839 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2840 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2841 return 0;
2842 }
2843
2844 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2845 int dev, struct cmipci **rcmipci)
2846 {
2847 struct cmipci *cm;
2848 int err;
2849 static struct snd_device_ops ops = {
2850 .dev_free = snd_cmipci_dev_free,
2851 };
2852 unsigned int val;
2853 long iomidi;
2854 int integrated_midi = 0;
2855 int pcm_index, pcm_spdif_index;
2856 static struct pci_device_id intel_82437vx[] = {
2857 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2858 { },
2859 };
2860
2861 *rcmipci = NULL;
2862
2863 if ((err = pci_enable_device(pci)) < 0)
2864 return err;
2865
2866 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2867 if (cm == NULL) {
2868 pci_disable_device(pci);
2869 return -ENOMEM;
2870 }
2871
2872 spin_lock_init(&cm->reg_lock);
2873 mutex_init(&cm->open_mutex);
2874 cm->device = pci->device;
2875 cm->card = card;
2876 cm->pci = pci;
2877 cm->irq = -1;
2878 cm->channel[0].ch = 0;
2879 cm->channel[1].ch = 1;
2880 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2881
2882 if ((err = pci_request_regions(pci, card->driver)) < 0) {
2883 kfree(cm);
2884 pci_disable_device(pci);
2885 return err;
2886 }
2887 cm->iobase = pci_resource_start(pci, 0);
2888
2889 if (request_irq(pci->irq, snd_cmipci_interrupt,
2890 IRQF_SHARED, card->driver, cm)) {
2891 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2892 snd_cmipci_free(cm);
2893 return -EBUSY;
2894 }
2895 cm->irq = pci->irq;
2896
2897 pci_set_master(cm->pci);
2898
2899 /*
2900 * check chip version, max channels and capabilities
2901 */
2902
2903 cm->chip_version = 0;
2904 cm->max_channels = 2;
2905 cm->do_soft_ac3 = soft_ac3[dev];
2906
2907 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
2908 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
2909 query_chip(cm);
2910 /* added -MCx suffix for chip supporting multi-channels */
2911 if (cm->can_multi_ch)
2912 sprintf(cm->card->driver + strlen(cm->card->driver),
2913 "-MC%d", cm->max_channels);
2914 else if (cm->can_ac3_sw)
2915 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
2916
2917 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2918 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2919
2920 #if CM_CH_PLAY == 1
2921 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
2922 #else
2923 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
2924 #endif
2925
2926 /* initialize codec registers */
2927 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2928 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2929 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2930 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2931 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2932
2933 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
2934 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
2935 #if CM_CH_PLAY == 1
2936 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2937 #else
2938 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2939 #endif
2940 /* Set Bus Master Request */
2941 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
2942
2943 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
2944 switch (pci->device) {
2945 case PCI_DEVICE_ID_CMEDIA_CM8738:
2946 case PCI_DEVICE_ID_CMEDIA_CM8738B:
2947 if (!pci_dev_present(intel_82437vx))
2948 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
2949 break;
2950 default:
2951 break;
2952 }
2953
2954 sprintf(card->shortname, "C-Media %s", card->driver);
2955 if (cm->chip_version < 68) {
2956 val = pci->device < 0x110 ? 8338 : 8738;
2957 sprintf(card->longname,
2958 "C-Media CMI%d (model %d) at 0x%lx, irq %i",
2959 val, cm->chip_version, cm->iobase, cm->irq);
2960 } else {
2961 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
2962 case 0:
2963 val = 8769;
2964 break;
2965 case 2:
2966 val = 8762;
2967 break;
2968 default:
2969 switch ((pci->subsystem_vendor << 16) |
2970 pci->subsystem_device) {
2971 case 0x13f69761:
2972 case 0x584d3741:
2973 case 0x584d3751:
2974 case 0x584d3761:
2975 case 0x584d3771:
2976 case 0x72848384:
2977 val = 8770;
2978 break;
2979 default:
2980 val = 8768;
2981 break;
2982 }
2983 }
2984 sprintf(card->longname, "C-Media CMI%d at 0x%lx, irq %i",
2985 val, cm->iobase, cm->irq);
2986 }
2987
2988 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
2989 snd_cmipci_free(cm);
2990 return err;
2991 }
2992
2993 val = 0;
2994 if (cm->chip_version > 33 && mpu_port[dev] == 1) {
2995 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
2996 if (val != 0x00 && val != 0xff) {
2997 iomidi = cm->iobase + CM_REG_MPU_PCI;
2998 integrated_midi = 1;
2999 }
3000 }
3001 if (!integrated_midi) {
3002 iomidi = mpu_port[dev];
3003 switch (iomidi) {
3004 case 0x320: val = CM_VMPU_320; break;
3005 case 0x310: val = CM_VMPU_310; break;
3006 case 0x300: val = CM_VMPU_300; break;
3007 case 0x330: val = CM_VMPU_330; break;
3008 default:
3009 iomidi = 0; break;
3010 }
3011 if (iomidi > 0) {
3012 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3013 /* enable UART */
3014 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3015 }
3016 }
3017
3018 if (cm->chip_version < 68) {
3019 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3020 if (err < 0)
3021 return err;
3022 }
3023
3024 /* reset mixer */
3025 snd_cmipci_mixer_write(cm, 0, 0);
3026
3027 snd_cmipci_proc_init(cm);
3028
3029 /* create pcm devices */
3030 pcm_index = pcm_spdif_index = 0;
3031 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3032 return err;
3033 pcm_index++;
3034 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3035 return err;
3036 pcm_index++;
3037 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3038 pcm_spdif_index = pcm_index;
3039 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3040 return err;
3041 }
3042
3043 /* create mixer interface & switches */
3044 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3045 return err;
3046
3047 if (iomidi > 0) {
3048 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3049 iomidi,
3050 (integrated_midi ?
3051 MPU401_INFO_INTEGRATED : 0),
3052 cm->irq, 0, &cm->rmidi)) < 0) {
3053 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3054 }
3055 }
3056
3057 #ifdef USE_VAR48KRATE
3058 for (val = 0; val < ARRAY_SIZE(rates); val++)
3059 snd_cmipci_set_pll(cm, rates[val], val);
3060
3061 /*
3062 * (Re-)Enable external switch spdo_48k
3063 */
3064 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3065 #endif /* USE_VAR48KRATE */
3066
3067 if (snd_cmipci_create_gameport(cm, dev) < 0)
3068 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3069
3070 snd_card_set_dev(card, &pci->dev);
3071
3072 *rcmipci = cm;
3073 return 0;
3074 }
3075
3076 /*
3077 */
3078
3079 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3080
3081 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3082 const struct pci_device_id *pci_id)
3083 {
3084 static int dev;
3085 struct snd_card *card;
3086 struct cmipci *cm;
3087 int err;
3088
3089 if (dev >= SNDRV_CARDS)
3090 return -ENODEV;
3091 if (! enable[dev]) {
3092 dev++;
3093 return -ENOENT;
3094 }
3095
3096 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
3097 if (card == NULL)
3098 return -ENOMEM;
3099
3100 switch (pci->device) {
3101 case PCI_DEVICE_ID_CMEDIA_CM8738:
3102 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3103 strcpy(card->driver, "CMI8738");
3104 break;
3105 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3106 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3107 strcpy(card->driver, "CMI8338");
3108 break;
3109 default:
3110 strcpy(card->driver, "CMIPCI");
3111 break;
3112 }
3113
3114 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3115 snd_card_free(card);
3116 return err;
3117 }
3118 card->private_data = cm;
3119
3120 if ((err = snd_card_register(card)) < 0) {
3121 snd_card_free(card);
3122 return err;
3123 }
3124 pci_set_drvdata(pci, card);
3125 dev++;
3126 return 0;
3127
3128 }
3129
3130 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3131 {
3132 snd_card_free(pci_get_drvdata(pci));
3133 pci_set_drvdata(pci, NULL);
3134 }
3135
3136
3137 #ifdef CONFIG_PM
3138 /*
3139 * power management
3140 */
3141 static unsigned char saved_regs[] = {
3142 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3143 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3144 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3145 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3146 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3147 };
3148
3149 static unsigned char saved_mixers[] = {
3150 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3151 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3152 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3153 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3154 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3155 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3156 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3157 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3158 };
3159
3160 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3161 {
3162 struct snd_card *card = pci_get_drvdata(pci);
3163 struct cmipci *cm = card->private_data;
3164 int i;
3165
3166 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3167
3168 snd_pcm_suspend_all(cm->pcm);
3169 snd_pcm_suspend_all(cm->pcm2);
3170 snd_pcm_suspend_all(cm->pcm_spdif);
3171
3172 /* save registers */
3173 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3174 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3175 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3176 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3177
3178 /* disable ints */
3179 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3180
3181 pci_disable_device(pci);
3182 pci_save_state(pci);
3183 pci_set_power_state(pci, pci_choose_state(pci, state));
3184 return 0;
3185 }
3186
3187 static int snd_cmipci_resume(struct pci_dev *pci)
3188 {
3189 struct snd_card *card = pci_get_drvdata(pci);
3190 struct cmipci *cm = card->private_data;
3191 int i;
3192
3193 pci_set_power_state(pci, PCI_D0);
3194 pci_restore_state(pci);
3195 if (pci_enable_device(pci) < 0) {
3196 printk(KERN_ERR "cmipci: pci_enable_device failed, "
3197 "disabling device\n");
3198 snd_card_disconnect(card);
3199 return -EIO;
3200 }
3201 pci_set_master(pci);
3202
3203 /* reset / initialize to a sane state */
3204 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3205 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3206 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3207 snd_cmipci_mixer_write(cm, 0, 0);
3208
3209 /* restore registers */
3210 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3211 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3212 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3213 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3214
3215 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3216 return 0;
3217 }
3218 #endif /* CONFIG_PM */
3219
3220 static struct pci_driver driver = {
3221 .name = "C-Media PCI",
3222 .id_table = snd_cmipci_ids,
3223 .probe = snd_cmipci_probe,
3224 .remove = __devexit_p(snd_cmipci_remove),
3225 #ifdef CONFIG_PM
3226 .suspend = snd_cmipci_suspend,
3227 .resume = snd_cmipci_resume,
3228 #endif
3229 };
3230
3231 static int __init alsa_card_cmipci_init(void)
3232 {
3233 return pci_register_driver(&driver);
3234 }
3235
3236 static void __exit alsa_card_cmipci_exit(void)
3237 {
3238 pci_unregister_driver(&driver);
3239 }
3240
3241 module_init(alsa_card_cmipci_init)
3242 module_exit(alsa_card_cmipci_exit)
This page took 0.163524 seconds and 5 git commands to generate.