[PATCH] mm: PageLRU no testset
[deliverable/linux.git] / sound / pci / cmipci.c
1 /*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gameport.h>
31 #include <linux/moduleparam.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
42
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 "{C-Media,CMI8738B},"
48 "{C-Media,CMI8338A},"
49 "{C-Media,CMI8338B}}");
50
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
54
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
57 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS];
60 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
64
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
81
82 /*
83 * CM8x38 registers definition
84 */
85
86 #define CM_REG_FUNCTRL0 0x00
87 #define CM_RST_CH1 0x00080000
88 #define CM_RST_CH0 0x00040000
89 #define CM_CHEN1 0x00020000 /* ch1: enable */
90 #define CM_CHEN0 0x00010000 /* ch0: enable */
91 #define CM_PAUSE1 0x00000008 /* ch1: pause */
92 #define CM_PAUSE0 0x00000004 /* ch0: pause */
93 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
94 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
95
96 #define CM_REG_FUNCTRL1 0x04
97 #define CM_ASFC_MASK 0x0000E000 /* ADC sampling frequency */
98 #define CM_ASFC_SHIFT 13
99 #define CM_DSFC_MASK 0x00001C00 /* DAC sampling frequency */
100 #define CM_DSFC_SHIFT 10
101 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
102 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
103 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/OUT -> IN loopback */
104 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
105 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
106 #define CM_BREQ 0x00000010 /* bus master enabled */
107 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
108 #define CM_UART_EN 0x00000004 /* UART */
109 #define CM_JYSTK_EN 0x00000002 /* joy stick */
110
111 #define CM_REG_CHFORMAT 0x08
112
113 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */
114 #define CM_CHB3D 0x20000000 /* 4 channels */
115
116 #define CM_CHIP_MASK1 0x1f000000
117 #define CM_CHIP_037 0x01000000
118
119 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
120 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
121 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
122 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
123
124 #define CM_ADCBITLEN_MASK 0x0000C000
125 #define CM_ADCBITLEN_16 0x00000000
126 #define CM_ADCBITLEN_15 0x00004000
127 #define CM_ADCBITLEN_14 0x00008000
128 #define CM_ADCBITLEN_13 0x0000C000
129
130 #define CM_ADCDACLEN_MASK 0x00003000
131 #define CM_ADCDACLEN_060 0x00000000
132 #define CM_ADCDACLEN_066 0x00001000
133 #define CM_ADCDACLEN_130 0x00002000
134 #define CM_ADCDACLEN_280 0x00003000
135
136 #define CM_CH1_SRATE_176K 0x00000800
137 #define CM_CH1_SRATE_88K 0x00000400
138 #define CM_CH0_SRATE_176K 0x00000200
139 #define CM_CH0_SRATE_88K 0x00000100
140
141 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
142
143 #define CM_CH1FMT_MASK 0x0000000C
144 #define CM_CH1FMT_SHIFT 2
145 #define CM_CH0FMT_MASK 0x00000003
146 #define CM_CH0FMT_SHIFT 0
147
148 #define CM_REG_INT_HLDCLR 0x0C
149 #define CM_CHIP_MASK2 0xff000000
150 #define CM_CHIP_039 0x04000000
151 #define CM_CHIP_039_6CH 0x01000000
152 #define CM_CHIP_055 0x08000000
153 #define CM_CHIP_8768 0x20000000
154 #define CM_TDMA_INT_EN 0x00040000
155 #define CM_CH1_INT_EN 0x00020000
156 #define CM_CH0_INT_EN 0x00010000
157 #define CM_INT_HOLD 0x00000002
158 #define CM_INT_CLEAR 0x00000001
159
160 #define CM_REG_INT_STATUS 0x10
161 #define CM_INTR 0x80000000
162 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
163 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
164 #define CM_UARTINT 0x00010000
165 #define CM_LTDMAINT 0x00008000
166 #define CM_HTDMAINT 0x00004000
167 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
168 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
169 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
170 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
171 #define CM_CH1BUSY 0x00000008
172 #define CM_CH0BUSY 0x00000004
173 #define CM_CHINT1 0x00000002
174 #define CM_CHINT0 0x00000001
175
176 #define CM_REG_LEGACY_CTRL 0x14
177 #define CM_NXCHG 0x80000000 /* h/w multi channels? */
178 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
179 #define CM_VMPU_330 0x00000000
180 #define CM_VMPU_320 0x20000000
181 #define CM_VMPU_310 0x40000000
182 #define CM_VMPU_300 0x60000000
183 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
184 #define CM_VSBSEL_220 0x00000000
185 #define CM_VSBSEL_240 0x04000000
186 #define CM_VSBSEL_260 0x08000000
187 #define CM_VSBSEL_280 0x0C000000
188 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
189 #define CM_FMSEL_388 0x00000000
190 #define CM_FMSEL_3C8 0x01000000
191 #define CM_FMSEL_3E0 0x02000000
192 #define CM_FMSEL_3E8 0x03000000
193 #define CM_ENSPDOUT 0x00800000 /* enable XPDIF/OUT to I/O interface */
194 #define CM_SPDCOPYRHT 0x00400000 /* set copyright spdif in/out */
195 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
196 #define CM_SETRETRY 0x00010000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
197 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
198 #define CM_LINE_AS_BASS 0x00006000 /* use line-in as bass */
199
200 #define CM_REG_MISC_CTRL 0x18
201 #define CM_PWD 0x80000000
202 #define CM_RESET 0x40000000
203 #define CM_SFIL_MASK 0x30000000
204 #define CM_TXVX 0x08000000
205 #define CM_N4SPK3D 0x04000000 /* 4ch output */
206 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
207 #define CM_SPDIF48K 0x01000000 /* write */
208 #define CM_SPATUS48K 0x01000000 /* read */
209 #define CM_ENDBDAC 0x00800000 /* enable dual dac */
210 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
211 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
212 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-IN -> int. OUT */
213 #define CM_FM_EN 0x00080000 /* enalbe FM */
214 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
215 #define CM_VIDWPDSB 0x00010000
216 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
217 #define CM_MASK_EN 0x00004000
218 #define CM_VIDWPPRT 0x00002000
219 #define CM_SFILENB 0x00001000
220 #define CM_MMODE_MASK 0x00000E00
221 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
222 #define CM_ENCENTER 0x00000080
223 #define CM_FLINKON 0x00000040
224 #define CM_FLINKOFF 0x00000020
225 #define CM_MIDSMP 0x00000010
226 #define CM_UPDDMA_MASK 0x0000000C
227 #define CM_TWAIT_MASK 0x00000003
228
229 /* byte */
230 #define CM_REG_MIXER0 0x20
231
232 #define CM_REG_SB16_DATA 0x22
233 #define CM_REG_SB16_ADDR 0x23
234
235 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
236 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
237 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
238 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
239
240 #define CM_REG_MIXER1 0x24
241 #define CM_FMMUTE 0x80 /* mute FM */
242 #define CM_FMMUTE_SHIFT 7
243 #define CM_WSMUTE 0x40 /* mute PCM */
244 #define CM_WSMUTE_SHIFT 6
245 #define CM_SPK4 0x20 /* lin-in -> rear line out */
246 #define CM_SPK4_SHIFT 5
247 #define CM_REAR2FRONT 0x10 /* exchange rear/front */
248 #define CM_REAR2FRONT_SHIFT 4
249 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */
250 #define CM_WAVEINL_SHIFT 3
251 #define CM_WAVEINR 0x04 /* digical wave rec. right */
252 #define CM_WAVEINR_SHIFT 2
253 #define CM_X3DEN 0x02 /* 3D surround enable */
254 #define CM_X3DEN_SHIFT 1
255 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
256 #define CM_CDPLAY_SHIFT 0
257
258 #define CM_REG_MIXER2 0x25
259 #define CM_RAUXREN 0x80 /* AUX right capture */
260 #define CM_RAUXREN_SHIFT 7
261 #define CM_RAUXLEN 0x40 /* AUX left capture */
262 #define CM_RAUXLEN_SHIFT 6
263 #define CM_VAUXRM 0x20 /* AUX right mute */
264 #define CM_VAUXRM_SHIFT 5
265 #define CM_VAUXLM 0x10 /* AUX left mute */
266 #define CM_VAUXLM_SHIFT 4
267 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
268 #define CM_VADMIC_SHIFT 1
269 #define CM_MICGAINZ 0x01 /* mic boost */
270 #define CM_MICGAINZ_SHIFT 0
271
272 #define CM_REG_MIXER3 0x24
273 #define CM_REG_AUX_VOL 0x26
274 #define CM_VAUXL_MASK 0xf0
275 #define CM_VAUXR_MASK 0x0f
276
277 #define CM_REG_MISC 0x27
278 #define CM_XGPO1 0x20
279 // #define CM_XGPBIO 0x04
280 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
281 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
282 #define CM_SPDVALID 0x02 /* spdif input valid check */
283 #define CM_DMAUTO 0x01
284
285 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
286 /*
287 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
288 * or identical with AC97 codec?
289 */
290 #define CM_REG_EXTERN_CODEC CM_REG_AC97
291
292 /*
293 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
294 */
295 #define CM_REG_MPU_PCI 0x40
296
297 /*
298 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
299 */
300 #define CM_REG_FM_PCI 0x50
301
302 /*
303 * access from SB-mixer port
304 */
305 #define CM_REG_EXTENT_IND 0xf0
306 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
307 #define CM_VPHONE_SHIFT 5
308 #define CM_VPHOM 0x10 /* Phone mute control */
309 #define CM_VSPKM 0x08 /* Speaker mute control, default high */
310 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
311 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
312 #define CM_VADMIC3 0x01 /* Mic record boost */
313
314 /*
315 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
316 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
317 * unit (readonly?).
318 */
319 #define CM_REG_PLL 0xf8
320
321 /*
322 * extended registers
323 */
324 #define CM_REG_CH0_FRAME1 0x80 /* base address */
325 #define CM_REG_CH0_FRAME2 0x84
326 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
327 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
328 #define CM_REG_EXT_MISC 0x90
329 #define CM_REG_MISC_CTRL_8768 0x92 /* reg. name the same as 0x18 */
330 #define CM_CHB3D8C 0x20 /* 7.1 channels support */
331 #define CM_SPD32FMT 0x10 /* SPDIF/IN 32k */
332 #define CM_ADC2SPDIF 0x08 /* ADC output to SPDIF/OUT */
333 #define CM_SHAREADC 0x04 /* DAC in ADC as Center/LFE */
334 #define CM_REALTCMP 0x02 /* monitor the CMPL/CMPR of ADC */
335 #define CM_INVLRCK 0x01 /* invert ZVPORT's LRCK */
336
337 /*
338 * size of i/o region
339 */
340 #define CM_EXTENT_CODEC 0x100
341 #define CM_EXTENT_MIDI 0x2
342 #define CM_EXTENT_SYNTH 0x4
343
344
345 /*
346 * channels for playback / capture
347 */
348 #define CM_CH_PLAY 0
349 #define CM_CH_CAPT 1
350
351 /*
352 * flags to check device open/close
353 */
354 #define CM_OPEN_NONE 0
355 #define CM_OPEN_CH_MASK 0x01
356 #define CM_OPEN_DAC 0x10
357 #define CM_OPEN_ADC 0x20
358 #define CM_OPEN_SPDIF 0x40
359 #define CM_OPEN_MCHAN 0x80
360 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
361 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
362 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
363 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
364 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
365 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
366
367
368 #if CM_CH_PLAY == 1
369 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
370 #define CM_PLAYBACK_SPDF CM_SPDF_1
371 #define CM_CAPTURE_SPDF CM_SPDF_0
372 #else
373 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
374 #define CM_PLAYBACK_SPDF CM_SPDF_0
375 #define CM_CAPTURE_SPDF CM_SPDF_1
376 #endif
377
378
379 /*
380 * driver data
381 */
382
383 struct cmipci_pcm {
384 struct snd_pcm_substream *substream;
385 int running; /* dac/adc running? */
386 unsigned int dma_size; /* in frames */
387 unsigned int period_size; /* in frames */
388 unsigned int offset; /* physical address of the buffer */
389 unsigned int fmt; /* format bits */
390 int ch; /* channel (0/1) */
391 unsigned int is_dac; /* is dac? */
392 int bytes_per_frame;
393 int shift;
394 };
395
396 /* mixer elements toggled/resumed during ac3 playback */
397 struct cmipci_mixer_auto_switches {
398 const char *name; /* switch to toggle */
399 int toggle_on; /* value to change when ac3 mode */
400 };
401 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
402 {"PCM Playback Switch", 0},
403 {"IEC958 Output Switch", 1},
404 {"IEC958 Mix Analog", 0},
405 // {"IEC958 Out To DAC", 1}, // no longer used
406 {"IEC958 Loop", 0},
407 };
408 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
409
410 struct cmipci {
411 struct snd_card *card;
412
413 struct pci_dev *pci;
414 unsigned int device; /* device ID */
415 int irq;
416
417 unsigned long iobase;
418 unsigned int ctrl; /* FUNCTRL0 current value */
419
420 struct snd_pcm *pcm; /* DAC/ADC PCM */
421 struct snd_pcm *pcm2; /* 2nd DAC */
422 struct snd_pcm *pcm_spdif; /* SPDIF */
423
424 int chip_version;
425 int max_channels;
426 unsigned int has_dual_dac: 1;
427 unsigned int can_ac3_sw: 1;
428 unsigned int can_ac3_hw: 1;
429 unsigned int can_multi_ch: 1;
430 unsigned int do_soft_ac3: 1;
431
432 unsigned int spdif_playback_avail: 1; /* spdif ready? */
433 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
434 int spdif_counter; /* for software AC3 */
435
436 unsigned int dig_status;
437 unsigned int dig_pcm_status;
438
439 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
440
441 int opened[2]; /* open mode */
442 struct semaphore open_mutex;
443
444 unsigned int mixer_insensitive: 1;
445 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
446 int mixer_res_status[CM_SAVED_MIXERS];
447
448 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
449
450 /* external MIDI */
451 struct snd_rawmidi *rmidi;
452
453 #ifdef SUPPORT_JOYSTICK
454 struct gameport *gameport;
455 #endif
456
457 spinlock_t reg_lock;
458
459 #ifdef CONFIG_PM
460 unsigned int saved_regs[0x20];
461 unsigned char saved_mixers[0x20];
462 #endif
463 };
464
465
466 /* read/write operations for dword register */
467 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
468 {
469 outl(data, cm->iobase + cmd);
470 }
471
472 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
473 {
474 return inl(cm->iobase + cmd);
475 }
476
477 /* read/write operations for word register */
478 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
479 {
480 outw(data, cm->iobase + cmd);
481 }
482
483 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
484 {
485 return inw(cm->iobase + cmd);
486 }
487
488 /* read/write operations for byte register */
489 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
490 {
491 outb(data, cm->iobase + cmd);
492 }
493
494 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
495 {
496 return inb(cm->iobase + cmd);
497 }
498
499 /* bit operations for dword register */
500 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
501 {
502 unsigned int val, oval;
503 val = oval = inl(cm->iobase + cmd);
504 val |= flag;
505 if (val == oval)
506 return 0;
507 outl(val, cm->iobase + cmd);
508 return 1;
509 }
510
511 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
512 {
513 unsigned int val, oval;
514 val = oval = inl(cm->iobase + cmd);
515 val &= ~flag;
516 if (val == oval)
517 return 0;
518 outl(val, cm->iobase + cmd);
519 return 1;
520 }
521
522 /* bit operations for byte register */
523 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
524 {
525 unsigned char val, oval;
526 val = oval = inb(cm->iobase + cmd);
527 val |= flag;
528 if (val == oval)
529 return 0;
530 outb(val, cm->iobase + cmd);
531 return 1;
532 }
533
534 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
535 {
536 unsigned char val, oval;
537 val = oval = inb(cm->iobase + cmd);
538 val &= ~flag;
539 if (val == oval)
540 return 0;
541 outb(val, cm->iobase + cmd);
542 return 1;
543 }
544
545
546 /*
547 * PCM interface
548 */
549
550 /*
551 * calculate frequency
552 */
553
554 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
555
556 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
557 {
558 unsigned int i;
559 for (i = 0; i < ARRAY_SIZE(rates); i++) {
560 if (rates[i] == rate)
561 return i;
562 }
563 snd_BUG();
564 return 0;
565 }
566
567 #ifdef USE_VAR48KRATE
568 /*
569 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
570 * does it this way .. maybe not. Never get any information from C-Media about
571 * that <werner@suse.de>.
572 */
573 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
574 {
575 unsigned int delta, tolerance;
576 int xm, xn, xr;
577
578 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
579 rate <<= 1;
580 *n = -1;
581 if (*r > 0xff)
582 goto out;
583 tolerance = rate*CM_TOLERANCE_RATE;
584
585 for (xn = (1+2); xn < (0x1f+2); xn++) {
586 for (xm = (1+2); xm < (0xff+2); xm++) {
587 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
588
589 if (xr < rate)
590 delta = rate - xr;
591 else
592 delta = xr - rate;
593
594 /*
595 * If we found one, remember this,
596 * and try to find a closer one
597 */
598 if (delta < tolerance) {
599 tolerance = delta;
600 *m = xm - 2;
601 *n = xn - 2;
602 }
603 }
604 }
605 out:
606 return (*n > -1);
607 }
608
609 /*
610 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
611 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
612 * at the register CM_REG_FUNCTRL1 (0x04).
613 * Problem: other ways are also possible (any information about that?)
614 */
615 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
616 {
617 unsigned int reg = CM_REG_PLL + slot;
618 /*
619 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
620 * for DSFC/ASFC (000 upto 111).
621 */
622
623 /* FIXME: Init (Do we've to set an other register first before programming?) */
624
625 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
626 snd_cmipci_write_b(cm, reg, rate>>8);
627 snd_cmipci_write_b(cm, reg, rate&0xff);
628
629 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
630 }
631 #endif /* USE_VAR48KRATE */
632
633 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
634 struct snd_pcm_hw_params *hw_params)
635 {
636 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
637 }
638
639 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
640 struct snd_pcm_hw_params *hw_params)
641 {
642 struct cmipci *cm = snd_pcm_substream_chip(substream);
643 if (params_channels(hw_params) > 2) {
644 down(&cm->open_mutex);
645 if (cm->opened[CM_CH_PLAY]) {
646 up(&cm->open_mutex);
647 return -EBUSY;
648 }
649 /* reserve the channel A */
650 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
651 up(&cm->open_mutex);
652 }
653 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
654 }
655
656 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
657 {
658 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
659 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
660 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
661 udelay(10);
662 }
663
664 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
665 {
666 return snd_pcm_lib_free_pages(substream);
667 }
668
669
670 /*
671 */
672
673 static unsigned int hw_channels[] = {1, 2, 4, 5, 6, 8};
674 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
675 .count = 3,
676 .list = hw_channels,
677 .mask = 0,
678 };
679 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
680 .count = 5,
681 .list = hw_channels,
682 .mask = 0,
683 };
684 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
685 .count = 6,
686 .list = hw_channels,
687 .mask = 0,
688 };
689
690 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
691 {
692 if (channels > 2) {
693 if (! cm->can_multi_ch)
694 return -EINVAL;
695 if (rec->fmt != 0x03) /* stereo 16bit only */
696 return -EINVAL;
697
698 spin_lock_irq(&cm->reg_lock);
699 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
700 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
701 if (channels > 4) {
702 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
703 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
704 } else {
705 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
706 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
707 }
708 if (channels >= 6) {
709 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
710 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
711 } else {
712 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
713 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
714 }
715 if (cm->chip_version == 68) {
716 if (channels == 8) {
717 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
718 } else {
719 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
720 }
721 }
722 spin_unlock_irq(&cm->reg_lock);
723
724 } else {
725 if (cm->can_multi_ch) {
726 spin_lock_irq(&cm->reg_lock);
727 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
728 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
729 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
730 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
731 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
732 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
733 spin_unlock_irq(&cm->reg_lock);
734 }
735 }
736 return 0;
737 }
738
739
740 /*
741 * prepare playback/capture channel
742 * channel to be used must have been set in rec->ch.
743 */
744 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
745 struct snd_pcm_substream *substream)
746 {
747 unsigned int reg, freq, val;
748 struct snd_pcm_runtime *runtime = substream->runtime;
749
750 rec->fmt = 0;
751 rec->shift = 0;
752 if (snd_pcm_format_width(runtime->format) >= 16) {
753 rec->fmt |= 0x02;
754 if (snd_pcm_format_width(runtime->format) > 16)
755 rec->shift++; /* 24/32bit */
756 }
757 if (runtime->channels > 1)
758 rec->fmt |= 0x01;
759 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
760 snd_printd("cannot set dac channels\n");
761 return -EINVAL;
762 }
763
764 rec->offset = runtime->dma_addr;
765 /* buffer and period sizes in frame */
766 rec->dma_size = runtime->buffer_size << rec->shift;
767 rec->period_size = runtime->period_size << rec->shift;
768 if (runtime->channels > 2) {
769 /* multi-channels */
770 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
771 rec->period_size = (rec->period_size * runtime->channels) / 2;
772 }
773
774 spin_lock_irq(&cm->reg_lock);
775
776 /* set buffer address */
777 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
778 snd_cmipci_write(cm, reg, rec->offset);
779 /* program sample counts */
780 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
781 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
782 snd_cmipci_write_w(cm, reg + 2, rec->period_size - 1);
783
784 /* set adc/dac flag */
785 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
786 if (rec->is_dac)
787 cm->ctrl &= ~val;
788 else
789 cm->ctrl |= val;
790 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
791 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
792
793 /* set sample rate */
794 freq = snd_cmipci_rate_freq(runtime->rate);
795 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
796 if (rec->ch) {
797 val &= ~CM_ASFC_MASK;
798 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
799 } else {
800 val &= ~CM_DSFC_MASK;
801 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
802 }
803 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
804 //snd_printd("cmipci: functrl1 = %08x\n", val);
805
806 /* set format */
807 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
808 if (rec->ch) {
809 val &= ~CM_CH1FMT_MASK;
810 val |= rec->fmt << CM_CH1FMT_SHIFT;
811 } else {
812 val &= ~CM_CH0FMT_MASK;
813 val |= rec->fmt << CM_CH0FMT_SHIFT;
814 }
815 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
816 //snd_printd("cmipci: chformat = %08x\n", val);
817
818 rec->running = 0;
819 spin_unlock_irq(&cm->reg_lock);
820
821 return 0;
822 }
823
824 /*
825 * PCM trigger/stop
826 */
827 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
828 struct snd_pcm_substream *substream, int cmd)
829 {
830 unsigned int inthld, chen, reset, pause;
831 int result = 0;
832
833 inthld = CM_CH0_INT_EN << rec->ch;
834 chen = CM_CHEN0 << rec->ch;
835 reset = CM_RST_CH0 << rec->ch;
836 pause = CM_PAUSE0 << rec->ch;
837
838 spin_lock(&cm->reg_lock);
839 switch (cmd) {
840 case SNDRV_PCM_TRIGGER_START:
841 rec->running = 1;
842 /* set interrupt */
843 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
844 cm->ctrl |= chen;
845 /* enable channel */
846 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
847 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
848 break;
849 case SNDRV_PCM_TRIGGER_STOP:
850 rec->running = 0;
851 /* disable interrupt */
852 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
853 /* reset */
854 cm->ctrl &= ~chen;
855 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
856 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
857 break;
858 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
859 case SNDRV_PCM_TRIGGER_SUSPEND:
860 cm->ctrl |= pause;
861 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
862 break;
863 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
864 case SNDRV_PCM_TRIGGER_RESUME:
865 cm->ctrl &= ~pause;
866 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
867 break;
868 default:
869 result = -EINVAL;
870 break;
871 }
872 spin_unlock(&cm->reg_lock);
873 return result;
874 }
875
876 /*
877 * return the current pointer
878 */
879 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
880 struct snd_pcm_substream *substream)
881 {
882 size_t ptr;
883 unsigned int reg;
884 if (!rec->running)
885 return 0;
886 #if 1 // this seems better..
887 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
888 ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
889 ptr >>= rec->shift;
890 #else
891 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
892 ptr = snd_cmipci_read(cm, reg) - rec->offset;
893 ptr = bytes_to_frames(substream->runtime, ptr);
894 #endif
895 if (substream->runtime->channels > 2)
896 ptr = (ptr * 2) / substream->runtime->channels;
897 return ptr;
898 }
899
900 /*
901 * playback
902 */
903
904 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
905 int cmd)
906 {
907 struct cmipci *cm = snd_pcm_substream_chip(substream);
908 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], substream, cmd);
909 }
910
911 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
912 {
913 struct cmipci *cm = snd_pcm_substream_chip(substream);
914 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
915 }
916
917
918
919 /*
920 * capture
921 */
922
923 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
924 int cmd)
925 {
926 struct cmipci *cm = snd_pcm_substream_chip(substream);
927 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], substream, cmd);
928 }
929
930 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
931 {
932 struct cmipci *cm = snd_pcm_substream_chip(substream);
933 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
934 }
935
936
937 /*
938 * hw preparation for spdif
939 */
940
941 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
942 struct snd_ctl_elem_info *uinfo)
943 {
944 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
945 uinfo->count = 1;
946 return 0;
947 }
948
949 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
950 struct snd_ctl_elem_value *ucontrol)
951 {
952 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
953 int i;
954
955 spin_lock_irq(&chip->reg_lock);
956 for (i = 0; i < 4; i++)
957 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
958 spin_unlock_irq(&chip->reg_lock);
959 return 0;
960 }
961
962 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
963 struct snd_ctl_elem_value *ucontrol)
964 {
965 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
966 int i, change;
967 unsigned int val;
968
969 val = 0;
970 spin_lock_irq(&chip->reg_lock);
971 for (i = 0; i < 4; i++)
972 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
973 change = val != chip->dig_status;
974 chip->dig_status = val;
975 spin_unlock_irq(&chip->reg_lock);
976 return change;
977 }
978
979 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
980 {
981 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
982 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
983 .info = snd_cmipci_spdif_default_info,
984 .get = snd_cmipci_spdif_default_get,
985 .put = snd_cmipci_spdif_default_put
986 };
987
988 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
989 struct snd_ctl_elem_info *uinfo)
990 {
991 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
992 uinfo->count = 1;
993 return 0;
994 }
995
996 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
997 struct snd_ctl_elem_value *ucontrol)
998 {
999 ucontrol->value.iec958.status[0] = 0xff;
1000 ucontrol->value.iec958.status[1] = 0xff;
1001 ucontrol->value.iec958.status[2] = 0xff;
1002 ucontrol->value.iec958.status[3] = 0xff;
1003 return 0;
1004 }
1005
1006 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1007 {
1008 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1009 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1010 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1011 .info = snd_cmipci_spdif_mask_info,
1012 .get = snd_cmipci_spdif_mask_get,
1013 };
1014
1015 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1016 struct snd_ctl_elem_info *uinfo)
1017 {
1018 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1019 uinfo->count = 1;
1020 return 0;
1021 }
1022
1023 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1024 struct snd_ctl_elem_value *ucontrol)
1025 {
1026 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1027 int i;
1028
1029 spin_lock_irq(&chip->reg_lock);
1030 for (i = 0; i < 4; i++)
1031 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1032 spin_unlock_irq(&chip->reg_lock);
1033 return 0;
1034 }
1035
1036 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1037 struct snd_ctl_elem_value *ucontrol)
1038 {
1039 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1040 int i, change;
1041 unsigned int val;
1042
1043 val = 0;
1044 spin_lock_irq(&chip->reg_lock);
1045 for (i = 0; i < 4; i++)
1046 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1047 change = val != chip->dig_pcm_status;
1048 chip->dig_pcm_status = val;
1049 spin_unlock_irq(&chip->reg_lock);
1050 return change;
1051 }
1052
1053 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1054 {
1055 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1056 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1057 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1058 .info = snd_cmipci_spdif_stream_info,
1059 .get = snd_cmipci_spdif_stream_get,
1060 .put = snd_cmipci_spdif_stream_put
1061 };
1062
1063 /*
1064 */
1065
1066 /* save mixer setting and mute for AC3 playback */
1067 static int save_mixer_state(struct cmipci *cm)
1068 {
1069 if (! cm->mixer_insensitive) {
1070 struct snd_ctl_elem_value *val;
1071 unsigned int i;
1072
1073 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1074 if (!val)
1075 return -ENOMEM;
1076 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1077 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1078 if (ctl) {
1079 int event;
1080 memset(val, 0, sizeof(*val));
1081 ctl->get(ctl, val);
1082 cm->mixer_res_status[i] = val->value.integer.value[0];
1083 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1084 event = SNDRV_CTL_EVENT_MASK_INFO;
1085 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1086 ctl->put(ctl, val); /* toggle */
1087 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1088 }
1089 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1090 snd_ctl_notify(cm->card, event, &ctl->id);
1091 }
1092 }
1093 kfree(val);
1094 cm->mixer_insensitive = 1;
1095 }
1096 return 0;
1097 }
1098
1099
1100 /* restore the previously saved mixer status */
1101 static void restore_mixer_state(struct cmipci *cm)
1102 {
1103 if (cm->mixer_insensitive) {
1104 struct snd_ctl_elem_value *val;
1105 unsigned int i;
1106
1107 val = kmalloc(sizeof(*val), GFP_KERNEL);
1108 if (!val)
1109 return;
1110 cm->mixer_insensitive = 0; /* at first clear this;
1111 otherwise the changes will be ignored */
1112 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1113 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1114 if (ctl) {
1115 int event;
1116
1117 memset(val, 0, sizeof(*val));
1118 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1119 ctl->get(ctl, val);
1120 event = SNDRV_CTL_EVENT_MASK_INFO;
1121 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1122 val->value.integer.value[0] = cm->mixer_res_status[i];
1123 ctl->put(ctl, val);
1124 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1125 }
1126 snd_ctl_notify(cm->card, event, &ctl->id);
1127 }
1128 }
1129 kfree(val);
1130 }
1131 }
1132
1133 /* spinlock held! */
1134 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1135 {
1136 if (do_ac3) {
1137 /* AC3EN for 037 */
1138 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1139 /* AC3EN for 039 */
1140 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1141
1142 if (cm->can_ac3_hw) {
1143 /* SPD24SEL for 037, 0x02 */
1144 /* SPD24SEL for 039, 0x20, but cannot be set */
1145 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1146 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1147 } else { /* can_ac3_sw */
1148 /* SPD32SEL for 037 & 039, 0x20 */
1149 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1150 /* set 176K sample rate to fix 033 HW bug */
1151 if (cm->chip_version == 33) {
1152 if (rate >= 48000) {
1153 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1154 } else {
1155 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1156 }
1157 }
1158 }
1159
1160 } else {
1161 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1162 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1163
1164 if (cm->can_ac3_hw) {
1165 /* chip model >= 37 */
1166 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1167 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1168 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1169 } else {
1170 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1171 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1172 }
1173 } else {
1174 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1175 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1176 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1177 }
1178 }
1179 }
1180
1181 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1182 {
1183 int rate, err;
1184
1185 rate = subs->runtime->rate;
1186
1187 if (up && do_ac3)
1188 if ((err = save_mixer_state(cm)) < 0)
1189 return err;
1190
1191 spin_lock_irq(&cm->reg_lock);
1192 cm->spdif_playback_avail = up;
1193 if (up) {
1194 /* they are controlled via "IEC958 Output Switch" */
1195 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1196 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1197 if (cm->spdif_playback_enabled)
1198 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1199 setup_ac3(cm, subs, do_ac3, rate);
1200
1201 if (rate == 48000)
1202 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1203 else
1204 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1205
1206 } else {
1207 /* they are controlled via "IEC958 Output Switch" */
1208 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1209 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1210 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1211 setup_ac3(cm, subs, 0, 0);
1212 }
1213 spin_unlock_irq(&cm->reg_lock);
1214 return 0;
1215 }
1216
1217
1218 /*
1219 * preparation
1220 */
1221
1222 /* playback - enable spdif only on the certain condition */
1223 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1224 {
1225 struct cmipci *cm = snd_pcm_substream_chip(substream);
1226 int rate = substream->runtime->rate;
1227 int err, do_spdif, do_ac3 = 0;
1228
1229 do_spdif = ((rate == 44100 || rate == 48000) &&
1230 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1231 substream->runtime->channels == 2);
1232 if (do_spdif && cm->can_ac3_hw)
1233 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1234 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1235 return err;
1236 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1237 }
1238
1239 /* playback (via device #2) - enable spdif always */
1240 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1241 {
1242 struct cmipci *cm = snd_pcm_substream_chip(substream);
1243 int err, do_ac3;
1244
1245 if (cm->can_ac3_hw)
1246 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1247 else
1248 do_ac3 = 1; /* doesn't matter */
1249 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1250 return err;
1251 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1252 }
1253
1254 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1255 {
1256 struct cmipci *cm = snd_pcm_substream_chip(substream);
1257 setup_spdif_playback(cm, substream, 0, 0);
1258 restore_mixer_state(cm);
1259 return snd_cmipci_hw_free(substream);
1260 }
1261
1262 /* capture */
1263 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1264 {
1265 struct cmipci *cm = snd_pcm_substream_chip(substream);
1266 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1267 }
1268
1269 /* capture with spdif (via device #2) */
1270 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1271 {
1272 struct cmipci *cm = snd_pcm_substream_chip(substream);
1273
1274 spin_lock_irq(&cm->reg_lock);
1275 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1276 spin_unlock_irq(&cm->reg_lock);
1277
1278 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1279 }
1280
1281 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1282 {
1283 struct cmipci *cm = snd_pcm_substream_chip(subs);
1284
1285 spin_lock_irq(&cm->reg_lock);
1286 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1287 spin_unlock_irq(&cm->reg_lock);
1288
1289 return snd_cmipci_hw_free(subs);
1290 }
1291
1292
1293 /*
1294 * interrupt handler
1295 */
1296 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1297 {
1298 struct cmipci *cm = dev_id;
1299 unsigned int status, mask = 0;
1300
1301 /* fastpath out, to ease interrupt sharing */
1302 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1303 if (!(status & CM_INTR))
1304 return IRQ_NONE;
1305
1306 /* acknowledge interrupt */
1307 spin_lock(&cm->reg_lock);
1308 if (status & CM_CHINT0)
1309 mask |= CM_CH0_INT_EN;
1310 if (status & CM_CHINT1)
1311 mask |= CM_CH1_INT_EN;
1312 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1313 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1314 spin_unlock(&cm->reg_lock);
1315
1316 if (cm->rmidi && (status & CM_UARTINT))
1317 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data, regs);
1318
1319 if (cm->pcm) {
1320 if ((status & CM_CHINT0) && cm->channel[0].running)
1321 snd_pcm_period_elapsed(cm->channel[0].substream);
1322 if ((status & CM_CHINT1) && cm->channel[1].running)
1323 snd_pcm_period_elapsed(cm->channel[1].substream);
1324 }
1325 return IRQ_HANDLED;
1326 }
1327
1328 /*
1329 * h/w infos
1330 */
1331
1332 /* playback on channel A */
1333 static struct snd_pcm_hardware snd_cmipci_playback =
1334 {
1335 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1336 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1337 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1338 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1339 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1340 .rate_min = 5512,
1341 .rate_max = 48000,
1342 .channels_min = 1,
1343 .channels_max = 2,
1344 .buffer_bytes_max = (128*1024),
1345 .period_bytes_min = 64,
1346 .period_bytes_max = (128*1024),
1347 .periods_min = 2,
1348 .periods_max = 1024,
1349 .fifo_size = 0,
1350 };
1351
1352 /* capture on channel B */
1353 static struct snd_pcm_hardware snd_cmipci_capture =
1354 {
1355 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1356 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1357 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1358 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1359 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1360 .rate_min = 5512,
1361 .rate_max = 48000,
1362 .channels_min = 1,
1363 .channels_max = 2,
1364 .buffer_bytes_max = (128*1024),
1365 .period_bytes_min = 64,
1366 .period_bytes_max = (128*1024),
1367 .periods_min = 2,
1368 .periods_max = 1024,
1369 .fifo_size = 0,
1370 };
1371
1372 /* playback on channel B - stereo 16bit only? */
1373 static struct snd_pcm_hardware snd_cmipci_playback2 =
1374 {
1375 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1376 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1377 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1378 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1379 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1380 .rate_min = 5512,
1381 .rate_max = 48000,
1382 .channels_min = 2,
1383 .channels_max = 2,
1384 .buffer_bytes_max = (128*1024),
1385 .period_bytes_min = 64,
1386 .period_bytes_max = (128*1024),
1387 .periods_min = 2,
1388 .periods_max = 1024,
1389 .fifo_size = 0,
1390 };
1391
1392 /* spdif playback on channel A */
1393 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1394 {
1395 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1396 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1397 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1398 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1399 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1400 .rate_min = 44100,
1401 .rate_max = 48000,
1402 .channels_min = 2,
1403 .channels_max = 2,
1404 .buffer_bytes_max = (128*1024),
1405 .period_bytes_min = 64,
1406 .period_bytes_max = (128*1024),
1407 .periods_min = 2,
1408 .periods_max = 1024,
1409 .fifo_size = 0,
1410 };
1411
1412 /* spdif playback on channel A (32bit, IEC958 subframes) */
1413 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1414 {
1415 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1416 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1417 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1418 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1419 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1420 .rate_min = 44100,
1421 .rate_max = 48000,
1422 .channels_min = 2,
1423 .channels_max = 2,
1424 .buffer_bytes_max = (128*1024),
1425 .period_bytes_min = 64,
1426 .period_bytes_max = (128*1024),
1427 .periods_min = 2,
1428 .periods_max = 1024,
1429 .fifo_size = 0,
1430 };
1431
1432 /* spdif capture on channel B */
1433 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1434 {
1435 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1436 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1437 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1438 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1439 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1440 .rate_min = 44100,
1441 .rate_max = 48000,
1442 .channels_min = 2,
1443 .channels_max = 2,
1444 .buffer_bytes_max = (128*1024),
1445 .period_bytes_min = 64,
1446 .period_bytes_max = (128*1024),
1447 .periods_min = 2,
1448 .periods_max = 1024,
1449 .fifo_size = 0,
1450 };
1451
1452 /*
1453 * check device open/close
1454 */
1455 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1456 {
1457 int ch = mode & CM_OPEN_CH_MASK;
1458
1459 /* FIXME: a file should wait until the device becomes free
1460 * when it's opened on blocking mode. however, since the current
1461 * pcm framework doesn't pass file pointer before actually opened,
1462 * we can't know whether blocking mode or not in open callback..
1463 */
1464 down(&cm->open_mutex);
1465 if (cm->opened[ch]) {
1466 up(&cm->open_mutex);
1467 return -EBUSY;
1468 }
1469 cm->opened[ch] = mode;
1470 cm->channel[ch].substream = subs;
1471 if (! (mode & CM_OPEN_DAC)) {
1472 /* disable dual DAC mode */
1473 cm->channel[ch].is_dac = 0;
1474 spin_lock_irq(&cm->reg_lock);
1475 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1476 spin_unlock_irq(&cm->reg_lock);
1477 }
1478 up(&cm->open_mutex);
1479 return 0;
1480 }
1481
1482 static void close_device_check(struct cmipci *cm, int mode)
1483 {
1484 int ch = mode & CM_OPEN_CH_MASK;
1485
1486 down(&cm->open_mutex);
1487 if (cm->opened[ch] == mode) {
1488 if (cm->channel[ch].substream) {
1489 snd_cmipci_ch_reset(cm, ch);
1490 cm->channel[ch].running = 0;
1491 cm->channel[ch].substream = NULL;
1492 }
1493 cm->opened[ch] = 0;
1494 if (! cm->channel[ch].is_dac) {
1495 /* enable dual DAC mode again */
1496 cm->channel[ch].is_dac = 1;
1497 spin_lock_irq(&cm->reg_lock);
1498 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1499 spin_unlock_irq(&cm->reg_lock);
1500 }
1501 }
1502 up(&cm->open_mutex);
1503 }
1504
1505 /*
1506 */
1507
1508 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1509 {
1510 struct cmipci *cm = snd_pcm_substream_chip(substream);
1511 struct snd_pcm_runtime *runtime = substream->runtime;
1512 int err;
1513
1514 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1515 return err;
1516 runtime->hw = snd_cmipci_playback;
1517 runtime->hw.channels_max = cm->max_channels;
1518 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1519 cm->dig_pcm_status = cm->dig_status;
1520 return 0;
1521 }
1522
1523 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1524 {
1525 struct cmipci *cm = snd_pcm_substream_chip(substream);
1526 struct snd_pcm_runtime *runtime = substream->runtime;
1527 int err;
1528
1529 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1530 return err;
1531 runtime->hw = snd_cmipci_capture;
1532 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1533 runtime->hw.rate_min = 41000;
1534 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1535 }
1536 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1537 return 0;
1538 }
1539
1540 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1541 {
1542 struct cmipci *cm = snd_pcm_substream_chip(substream);
1543 struct snd_pcm_runtime *runtime = substream->runtime;
1544 int err;
1545
1546 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1547 return err;
1548 runtime->hw = snd_cmipci_playback2;
1549 down(&cm->open_mutex);
1550 if (! cm->opened[CM_CH_PLAY]) {
1551 if (cm->can_multi_ch) {
1552 runtime->hw.channels_max = cm->max_channels;
1553 if (cm->max_channels == 4)
1554 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1555 else if (cm->max_channels == 6)
1556 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1557 else if (cm->max_channels == 8)
1558 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1559 }
1560 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1561 }
1562 up(&cm->open_mutex);
1563 return 0;
1564 }
1565
1566 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1567 {
1568 struct cmipci *cm = snd_pcm_substream_chip(substream);
1569 struct snd_pcm_runtime *runtime = substream->runtime;
1570 int err;
1571
1572 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1573 return err;
1574 if (cm->can_ac3_hw) {
1575 runtime->hw = snd_cmipci_playback_spdif;
1576 if (cm->chip_version >= 37)
1577 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1578 } else {
1579 runtime->hw = snd_cmipci_playback_iec958_subframe;
1580 }
1581 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1582 cm->dig_pcm_status = cm->dig_status;
1583 return 0;
1584 }
1585
1586 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1587 {
1588 struct cmipci *cm = snd_pcm_substream_chip(substream);
1589 struct snd_pcm_runtime *runtime = substream->runtime;
1590 int err;
1591
1592 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1593 return err;
1594 runtime->hw = snd_cmipci_capture_spdif;
1595 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1596 return 0;
1597 }
1598
1599
1600 /*
1601 */
1602
1603 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1604 {
1605 struct cmipci *cm = snd_pcm_substream_chip(substream);
1606 close_device_check(cm, CM_OPEN_PLAYBACK);
1607 return 0;
1608 }
1609
1610 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1611 {
1612 struct cmipci *cm = snd_pcm_substream_chip(substream);
1613 close_device_check(cm, CM_OPEN_CAPTURE);
1614 return 0;
1615 }
1616
1617 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1618 {
1619 struct cmipci *cm = snd_pcm_substream_chip(substream);
1620 close_device_check(cm, CM_OPEN_PLAYBACK2);
1621 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1622 return 0;
1623 }
1624
1625 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1626 {
1627 struct cmipci *cm = snd_pcm_substream_chip(substream);
1628 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1629 return 0;
1630 }
1631
1632 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1633 {
1634 struct cmipci *cm = snd_pcm_substream_chip(substream);
1635 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1636 return 0;
1637 }
1638
1639
1640 /*
1641 */
1642
1643 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1644 .open = snd_cmipci_playback_open,
1645 .close = snd_cmipci_playback_close,
1646 .ioctl = snd_pcm_lib_ioctl,
1647 .hw_params = snd_cmipci_hw_params,
1648 .hw_free = snd_cmipci_playback_hw_free,
1649 .prepare = snd_cmipci_playback_prepare,
1650 .trigger = snd_cmipci_playback_trigger,
1651 .pointer = snd_cmipci_playback_pointer,
1652 };
1653
1654 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1655 .open = snd_cmipci_capture_open,
1656 .close = snd_cmipci_capture_close,
1657 .ioctl = snd_pcm_lib_ioctl,
1658 .hw_params = snd_cmipci_hw_params,
1659 .hw_free = snd_cmipci_hw_free,
1660 .prepare = snd_cmipci_capture_prepare,
1661 .trigger = snd_cmipci_capture_trigger,
1662 .pointer = snd_cmipci_capture_pointer,
1663 };
1664
1665 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1666 .open = snd_cmipci_playback2_open,
1667 .close = snd_cmipci_playback2_close,
1668 .ioctl = snd_pcm_lib_ioctl,
1669 .hw_params = snd_cmipci_playback2_hw_params,
1670 .hw_free = snd_cmipci_hw_free,
1671 .prepare = snd_cmipci_capture_prepare, /* channel B */
1672 .trigger = snd_cmipci_capture_trigger, /* channel B */
1673 .pointer = snd_cmipci_capture_pointer, /* channel B */
1674 };
1675
1676 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1677 .open = snd_cmipci_playback_spdif_open,
1678 .close = snd_cmipci_playback_spdif_close,
1679 .ioctl = snd_pcm_lib_ioctl,
1680 .hw_params = snd_cmipci_hw_params,
1681 .hw_free = snd_cmipci_playback_hw_free,
1682 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1683 .trigger = snd_cmipci_playback_trigger,
1684 .pointer = snd_cmipci_playback_pointer,
1685 };
1686
1687 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1688 .open = snd_cmipci_capture_spdif_open,
1689 .close = snd_cmipci_capture_spdif_close,
1690 .ioctl = snd_pcm_lib_ioctl,
1691 .hw_params = snd_cmipci_hw_params,
1692 .hw_free = snd_cmipci_capture_spdif_hw_free,
1693 .prepare = snd_cmipci_capture_spdif_prepare,
1694 .trigger = snd_cmipci_capture_trigger,
1695 .pointer = snd_cmipci_capture_pointer,
1696 };
1697
1698
1699 /*
1700 */
1701
1702 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1703 {
1704 struct snd_pcm *pcm;
1705 int err;
1706
1707 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1708 if (err < 0)
1709 return err;
1710
1711 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1712 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1713
1714 pcm->private_data = cm;
1715 pcm->info_flags = 0;
1716 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1717 cm->pcm = pcm;
1718
1719 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1720 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1721
1722 return 0;
1723 }
1724
1725 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1726 {
1727 struct snd_pcm *pcm;
1728 int err;
1729
1730 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1731 if (err < 0)
1732 return err;
1733
1734 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1735
1736 pcm->private_data = cm;
1737 pcm->info_flags = 0;
1738 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1739 cm->pcm2 = pcm;
1740
1741 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1742 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1743
1744 return 0;
1745 }
1746
1747 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1748 {
1749 struct snd_pcm *pcm;
1750 int err;
1751
1752 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1753 if (err < 0)
1754 return err;
1755
1756 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1757 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1758
1759 pcm->private_data = cm;
1760 pcm->info_flags = 0;
1761 strcpy(pcm->name, "C-Media PCI IEC958");
1762 cm->pcm_spdif = pcm;
1763
1764 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1765 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1766
1767 return 0;
1768 }
1769
1770 /*
1771 * mixer interface:
1772 * - CM8338/8738 has a compatible mixer interface with SB16, but
1773 * lack of some elements like tone control, i/o gain and AGC.
1774 * - Access to native registers:
1775 * - A 3D switch
1776 * - Output mute switches
1777 */
1778
1779 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1780 {
1781 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1782 outb(data, s->iobase + CM_REG_SB16_DATA);
1783 }
1784
1785 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1786 {
1787 unsigned char v;
1788
1789 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1790 v = inb(s->iobase + CM_REG_SB16_DATA);
1791 return v;
1792 }
1793
1794 /*
1795 * general mixer element
1796 */
1797 struct cmipci_sb_reg {
1798 unsigned int left_reg, right_reg;
1799 unsigned int left_shift, right_shift;
1800 unsigned int mask;
1801 unsigned int invert: 1;
1802 unsigned int stereo: 1;
1803 };
1804
1805 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1806 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1807
1808 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1809 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1810 .info = snd_cmipci_info_volume, \
1811 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1812 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1813 }
1814
1815 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1816 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1817 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1818 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1819
1820 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1821 {
1822 r->left_reg = val & 0xff;
1823 r->right_reg = (val >> 8) & 0xff;
1824 r->left_shift = (val >> 16) & 0x07;
1825 r->right_shift = (val >> 19) & 0x07;
1826 r->invert = (val >> 22) & 1;
1827 r->stereo = (val >> 23) & 1;
1828 r->mask = (val >> 24) & 0xff;
1829 }
1830
1831 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1832 struct snd_ctl_elem_info *uinfo)
1833 {
1834 struct cmipci_sb_reg reg;
1835
1836 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1837 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1838 uinfo->count = reg.stereo + 1;
1839 uinfo->value.integer.min = 0;
1840 uinfo->value.integer.max = reg.mask;
1841 return 0;
1842 }
1843
1844 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
1845 struct snd_ctl_elem_value *ucontrol)
1846 {
1847 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1848 struct cmipci_sb_reg reg;
1849 int val;
1850
1851 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1852 spin_lock_irq(&cm->reg_lock);
1853 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1854 if (reg.invert)
1855 val = reg.mask - val;
1856 ucontrol->value.integer.value[0] = val;
1857 if (reg.stereo) {
1858 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1859 if (reg.invert)
1860 val = reg.mask - val;
1861 ucontrol->value.integer.value[1] = val;
1862 }
1863 spin_unlock_irq(&cm->reg_lock);
1864 return 0;
1865 }
1866
1867 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
1868 struct snd_ctl_elem_value *ucontrol)
1869 {
1870 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1871 struct cmipci_sb_reg reg;
1872 int change;
1873 int left, right, oleft, oright;
1874
1875 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1876 left = ucontrol->value.integer.value[0] & reg.mask;
1877 if (reg.invert)
1878 left = reg.mask - left;
1879 left <<= reg.left_shift;
1880 if (reg.stereo) {
1881 right = ucontrol->value.integer.value[1] & reg.mask;
1882 if (reg.invert)
1883 right = reg.mask - right;
1884 right <<= reg.right_shift;
1885 } else
1886 right = 0;
1887 spin_lock_irq(&cm->reg_lock);
1888 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
1889 left |= oleft & ~(reg.mask << reg.left_shift);
1890 change = left != oleft;
1891 if (reg.stereo) {
1892 if (reg.left_reg != reg.right_reg) {
1893 snd_cmipci_mixer_write(cm, reg.left_reg, left);
1894 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
1895 } else
1896 oright = left;
1897 right |= oright & ~(reg.mask << reg.right_shift);
1898 change |= right != oright;
1899 snd_cmipci_mixer_write(cm, reg.right_reg, right);
1900 } else
1901 snd_cmipci_mixer_write(cm, reg.left_reg, left);
1902 spin_unlock_irq(&cm->reg_lock);
1903 return change;
1904 }
1905
1906 /*
1907 * input route (left,right) -> (left,right)
1908 */
1909 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
1910 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1911 .info = snd_cmipci_info_input_sw, \
1912 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
1913 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
1914 }
1915
1916 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
1917 struct snd_ctl_elem_info *uinfo)
1918 {
1919 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1920 uinfo->count = 4;
1921 uinfo->value.integer.min = 0;
1922 uinfo->value.integer.max = 1;
1923 return 0;
1924 }
1925
1926 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
1927 struct snd_ctl_elem_value *ucontrol)
1928 {
1929 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1930 struct cmipci_sb_reg reg;
1931 int val1, val2;
1932
1933 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1934 spin_lock_irq(&cm->reg_lock);
1935 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1936 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1937 spin_unlock_irq(&cm->reg_lock);
1938 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
1939 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
1940 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
1941 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
1942 return 0;
1943 }
1944
1945 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
1946 struct snd_ctl_elem_value *ucontrol)
1947 {
1948 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1949 struct cmipci_sb_reg reg;
1950 int change;
1951 int val1, val2, oval1, oval2;
1952
1953 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1954 spin_lock_irq(&cm->reg_lock);
1955 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1956 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1957 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1958 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1959 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
1960 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
1961 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
1962 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
1963 change = val1 != oval1 || val2 != oval2;
1964 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
1965 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
1966 spin_unlock_irq(&cm->reg_lock);
1967 return change;
1968 }
1969
1970 /*
1971 * native mixer switches/volumes
1972 */
1973
1974 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
1975 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1976 .info = snd_cmipci_info_native_mixer, \
1977 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1978 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
1979 }
1980
1981 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
1982 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1983 .info = snd_cmipci_info_native_mixer, \
1984 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1985 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
1986 }
1987
1988 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
1989 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1990 .info = snd_cmipci_info_native_mixer, \
1991 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1992 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
1993 }
1994
1995 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
1996 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1997 .info = snd_cmipci_info_native_mixer, \
1998 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1999 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2000 }
2001
2002 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2003 struct snd_ctl_elem_info *uinfo)
2004 {
2005 struct cmipci_sb_reg reg;
2006
2007 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2008 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2009 uinfo->count = reg.stereo + 1;
2010 uinfo->value.integer.min = 0;
2011 uinfo->value.integer.max = reg.mask;
2012 return 0;
2013
2014 }
2015
2016 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2017 struct snd_ctl_elem_value *ucontrol)
2018 {
2019 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2020 struct cmipci_sb_reg reg;
2021 unsigned char oreg, val;
2022
2023 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2024 spin_lock_irq(&cm->reg_lock);
2025 oreg = inb(cm->iobase + reg.left_reg);
2026 val = (oreg >> reg.left_shift) & reg.mask;
2027 if (reg.invert)
2028 val = reg.mask - val;
2029 ucontrol->value.integer.value[0] = val;
2030 if (reg.stereo) {
2031 val = (oreg >> reg.right_shift) & reg.mask;
2032 if (reg.invert)
2033 val = reg.mask - val;
2034 ucontrol->value.integer.value[1] = val;
2035 }
2036 spin_unlock_irq(&cm->reg_lock);
2037 return 0;
2038 }
2039
2040 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2041 struct snd_ctl_elem_value *ucontrol)
2042 {
2043 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2044 struct cmipci_sb_reg reg;
2045 unsigned char oreg, nreg, val;
2046
2047 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2048 spin_lock_irq(&cm->reg_lock);
2049 oreg = inb(cm->iobase + reg.left_reg);
2050 val = ucontrol->value.integer.value[0] & reg.mask;
2051 if (reg.invert)
2052 val = reg.mask - val;
2053 nreg = oreg & ~(reg.mask << reg.left_shift);
2054 nreg |= (val << reg.left_shift);
2055 if (reg.stereo) {
2056 val = ucontrol->value.integer.value[1] & reg.mask;
2057 if (reg.invert)
2058 val = reg.mask - val;
2059 nreg &= ~(reg.mask << reg.right_shift);
2060 nreg |= (val << reg.right_shift);
2061 }
2062 outb(nreg, cm->iobase + reg.left_reg);
2063 spin_unlock_irq(&cm->reg_lock);
2064 return (nreg != oreg);
2065 }
2066
2067 /*
2068 * special case - check mixer sensitivity
2069 */
2070 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2071 struct snd_ctl_elem_value *ucontrol)
2072 {
2073 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2074 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2075 }
2076
2077 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2078 struct snd_ctl_elem_value *ucontrol)
2079 {
2080 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2081 if (cm->mixer_insensitive) {
2082 /* ignored */
2083 return 0;
2084 }
2085 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2086 }
2087
2088
2089 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2090 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2091 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2092 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2093 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2094 { /* switch with sensitivity */
2095 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2096 .name = "PCM Playback Switch",
2097 .info = snd_cmipci_info_native_mixer,
2098 .get = snd_cmipci_get_native_mixer_sensitive,
2099 .put = snd_cmipci_put_native_mixer_sensitive,
2100 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2101 },
2102 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2103 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2104 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2105 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2106 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2107 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2108 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2109 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2110 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2111 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2112 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2113 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2114 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2115 CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2116 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2117 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2118 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2119 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2120 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2121 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2122 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2123 CMIPCI_DOUBLE("PC Speaker Playnack Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2124 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2125 };
2126
2127 /*
2128 * other switches
2129 */
2130
2131 struct cmipci_switch_args {
2132 int reg; /* register index */
2133 unsigned int mask; /* mask bits */
2134 unsigned int mask_on; /* mask bits to turn on */
2135 unsigned int is_byte: 1; /* byte access? */
2136 unsigned int ac3_sensitive: 1; /* access forbidden during
2137 * non-audio operation?
2138 */
2139 };
2140
2141 static int snd_cmipci_uswitch_info(struct snd_kcontrol *kcontrol,
2142 struct snd_ctl_elem_info *uinfo)
2143 {
2144 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2145 uinfo->count = 1;
2146 uinfo->value.integer.min = 0;
2147 uinfo->value.integer.max = 1;
2148 return 0;
2149 }
2150
2151 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2152 struct snd_ctl_elem_value *ucontrol,
2153 struct cmipci_switch_args *args)
2154 {
2155 unsigned int val;
2156 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2157
2158 spin_lock_irq(&cm->reg_lock);
2159 if (args->ac3_sensitive && cm->mixer_insensitive) {
2160 ucontrol->value.integer.value[0] = 0;
2161 spin_unlock_irq(&cm->reg_lock);
2162 return 0;
2163 }
2164 if (args->is_byte)
2165 val = inb(cm->iobase + args->reg);
2166 else
2167 val = snd_cmipci_read(cm, args->reg);
2168 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2169 spin_unlock_irq(&cm->reg_lock);
2170 return 0;
2171 }
2172
2173 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2174 struct snd_ctl_elem_value *ucontrol)
2175 {
2176 struct cmipci_switch_args *args;
2177 args = (struct cmipci_switch_args *)kcontrol->private_value;
2178 snd_assert(args != NULL, return -EINVAL);
2179 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2180 }
2181
2182 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2183 struct snd_ctl_elem_value *ucontrol,
2184 struct cmipci_switch_args *args)
2185 {
2186 unsigned int val;
2187 int change;
2188 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2189
2190 spin_lock_irq(&cm->reg_lock);
2191 if (args->ac3_sensitive && cm->mixer_insensitive) {
2192 /* ignored */
2193 spin_unlock_irq(&cm->reg_lock);
2194 return 0;
2195 }
2196 if (args->is_byte)
2197 val = inb(cm->iobase + args->reg);
2198 else
2199 val = snd_cmipci_read(cm, args->reg);
2200 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? args->mask : 0);
2201 if (change) {
2202 val &= ~args->mask;
2203 if (ucontrol->value.integer.value[0])
2204 val |= args->mask_on;
2205 else
2206 val |= (args->mask & ~args->mask_on);
2207 if (args->is_byte)
2208 outb((unsigned char)val, cm->iobase + args->reg);
2209 else
2210 snd_cmipci_write(cm, args->reg, val);
2211 }
2212 spin_unlock_irq(&cm->reg_lock);
2213 return change;
2214 }
2215
2216 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2217 struct snd_ctl_elem_value *ucontrol)
2218 {
2219 struct cmipci_switch_args *args;
2220 args = (struct cmipci_switch_args *)kcontrol->private_value;
2221 snd_assert(args != NULL, return -EINVAL);
2222 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2223 }
2224
2225 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2226 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2227 .reg = xreg, \
2228 .mask = xmask, \
2229 .mask_on = xmask_on, \
2230 .is_byte = xis_byte, \
2231 .ac3_sensitive = xac3, \
2232 }
2233
2234 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2235 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2236
2237 #if 0 /* these will be controlled in pcm device */
2238 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2239 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2240 #endif
2241 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2242 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2243 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2244 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2245 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2246 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2247 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2248 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2249 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2250 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2251 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2252 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2253 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2254 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2255 #if CM_CH_PLAY == 1
2256 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2257 #else
2258 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2259 #endif
2260 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2261 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_SPK4, 1, 0);
2262 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS, 0, 0);
2263 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2264 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2265
2266 #define DEFINE_SWITCH(sname, stype, sarg) \
2267 { .name = sname, \
2268 .iface = stype, \
2269 .info = snd_cmipci_uswitch_info, \
2270 .get = snd_cmipci_uswitch_get, \
2271 .put = snd_cmipci_uswitch_put, \
2272 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2273 }
2274
2275 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2276 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2277
2278
2279 /*
2280 * callbacks for spdif output switch
2281 * needs toggle two registers..
2282 */
2283 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2284 struct snd_ctl_elem_value *ucontrol)
2285 {
2286 int changed;
2287 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2288 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2289 return changed;
2290 }
2291
2292 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2293 struct snd_ctl_elem_value *ucontrol)
2294 {
2295 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2296 int changed;
2297 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2298 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2299 if (changed) {
2300 if (ucontrol->value.integer.value[0]) {
2301 if (chip->spdif_playback_avail)
2302 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2303 } else {
2304 if (chip->spdif_playback_avail)
2305 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2306 }
2307 }
2308 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2309 return changed;
2310 }
2311
2312
2313 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2314 struct snd_ctl_elem_info *uinfo)
2315 {
2316 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2317 static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2318 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2319 uinfo->count = 1;
2320 uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2321 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2322 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2323 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2324 return 0;
2325 }
2326
2327 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2328 {
2329 unsigned int val;
2330 if (cm->chip_version >= 39) {
2331 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2332 if (val & CM_LINE_AS_BASS)
2333 return 2;
2334 }
2335 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2336 if (val & CM_SPK4)
2337 return 1;
2338 return 0;
2339 }
2340
2341 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2342 struct snd_ctl_elem_value *ucontrol)
2343 {
2344 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2345
2346 spin_lock_irq(&cm->reg_lock);
2347 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2348 spin_unlock_irq(&cm->reg_lock);
2349 return 0;
2350 }
2351
2352 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2353 struct snd_ctl_elem_value *ucontrol)
2354 {
2355 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2356 int change;
2357
2358 spin_lock_irq(&cm->reg_lock);
2359 if (ucontrol->value.enumerated.item[0] == 2)
2360 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2361 else
2362 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2363 if (ucontrol->value.enumerated.item[0] == 1)
2364 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2365 else
2366 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2367 spin_unlock_irq(&cm->reg_lock);
2368 return change;
2369 }
2370
2371 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2372 struct snd_ctl_elem_info *uinfo)
2373 {
2374 static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2375 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2376 uinfo->count = 1;
2377 uinfo->value.enumerated.items = 2;
2378 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2379 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2380 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2381 return 0;
2382 }
2383
2384 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2385 struct snd_ctl_elem_value *ucontrol)
2386 {
2387 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2388 /* same bit as spdi_phase */
2389 spin_lock_irq(&cm->reg_lock);
2390 ucontrol->value.enumerated.item[0] =
2391 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2392 spin_unlock_irq(&cm->reg_lock);
2393 return 0;
2394 }
2395
2396 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2397 struct snd_ctl_elem_value *ucontrol)
2398 {
2399 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2400 int change;
2401
2402 spin_lock_irq(&cm->reg_lock);
2403 if (ucontrol->value.enumerated.item[0])
2404 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2405 else
2406 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2407 spin_unlock_irq(&cm->reg_lock);
2408 return change;
2409 }
2410
2411 /* both for CM8338/8738 */
2412 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2413 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2414 {
2415 .name = "Line-In Mode",
2416 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2417 .info = snd_cmipci_line_in_mode_info,
2418 .get = snd_cmipci_line_in_mode_get,
2419 .put = snd_cmipci_line_in_mode_put,
2420 },
2421 };
2422
2423 /* for non-multichannel chips */
2424 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2425 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2426
2427 /* only for CM8738 */
2428 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2429 #if 0 /* controlled in pcm device */
2430 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2431 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2432 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2433 #endif
2434 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2435 { .name = "IEC958 Output Switch",
2436 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2437 .info = snd_cmipci_uswitch_info,
2438 .get = snd_cmipci_spdout_enable_get,
2439 .put = snd_cmipci_spdout_enable_put,
2440 },
2441 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2442 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2443 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2444 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2445 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2446 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2447 };
2448
2449 /* only for model 033/037 */
2450 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2451 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2452 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2453 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2454 };
2455
2456 /* only for model 039 or later */
2457 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2458 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2459 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2460 {
2461 .name = "Mic-In Mode",
2462 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2463 .info = snd_cmipci_mic_in_mode_info,
2464 .get = snd_cmipci_mic_in_mode_get,
2465 .put = snd_cmipci_mic_in_mode_put,
2466 }
2467 };
2468
2469 /* card control switches */
2470 static struct snd_kcontrol_new snd_cmipci_control_switches[] __devinitdata = {
2471 // DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */
2472 DEFINE_CARD_SWITCH("Modem", modem),
2473 };
2474
2475
2476 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2477 {
2478 struct snd_card *card;
2479 struct snd_kcontrol_new *sw;
2480 struct snd_kcontrol *kctl;
2481 unsigned int idx;
2482 int err;
2483
2484 snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2485
2486 card = cm->card;
2487
2488 strcpy(card->mixername, "CMedia PCI");
2489
2490 spin_lock_irq(&cm->reg_lock);
2491 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2492 spin_unlock_irq(&cm->reg_lock);
2493
2494 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2495 if (cm->chip_version == 68) { // 8768 has no PCM volume
2496 if (!strcmp(snd_cmipci_mixers[idx].name,
2497 "PCM Playback Volume"))
2498 continue;
2499 }
2500 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2501 return err;
2502 }
2503
2504 /* mixer switches */
2505 sw = snd_cmipci_mixer_switches;
2506 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2507 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2508 if (err < 0)
2509 return err;
2510 }
2511 if (! cm->can_multi_ch) {
2512 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2513 if (err < 0)
2514 return err;
2515 }
2516 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2517 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2518 sw = snd_cmipci_8738_mixer_switches;
2519 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2520 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2521 if (err < 0)
2522 return err;
2523 }
2524 if (cm->can_ac3_hw) {
2525 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2526 return err;
2527 kctl->id.device = pcm_spdif_device;
2528 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2529 return err;
2530 kctl->id.device = pcm_spdif_device;
2531 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2532 return err;
2533 kctl->id.device = pcm_spdif_device;
2534 }
2535 if (cm->chip_version <= 37) {
2536 sw = snd_cmipci_old_mixer_switches;
2537 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2538 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2539 if (err < 0)
2540 return err;
2541 }
2542 }
2543 }
2544 if (cm->chip_version >= 39) {
2545 sw = snd_cmipci_extra_mixer_switches;
2546 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2547 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2548 if (err < 0)
2549 return err;
2550 }
2551 }
2552
2553 /* card switches */
2554 sw = snd_cmipci_control_switches;
2555 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) {
2556 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2557 if (err < 0)
2558 return err;
2559 }
2560
2561 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2562 struct snd_ctl_elem_id id;
2563 struct snd_kcontrol *ctl;
2564 memset(&id, 0, sizeof(id));
2565 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2566 strcpy(id.name, cm_saved_mixer[idx].name);
2567 if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2568 cm->mixer_res_ctl[idx] = ctl;
2569 }
2570
2571 return 0;
2572 }
2573
2574
2575 /*
2576 * proc interface
2577 */
2578
2579 #ifdef CONFIG_PROC_FS
2580 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2581 struct snd_info_buffer *buffer)
2582 {
2583 struct cmipci *cm = entry->private_data;
2584 int i;
2585
2586 snd_iprintf(buffer, "%s\n\n", cm->card->longname);
2587 for (i = 0; i < 0x40; i++) {
2588 int v = inb(cm->iobase + i);
2589 if (i % 4 == 0)
2590 snd_iprintf(buffer, "%02x: ", i);
2591 snd_iprintf(buffer, "%02x", v);
2592 if (i % 4 == 3)
2593 snd_iprintf(buffer, "\n");
2594 else
2595 snd_iprintf(buffer, " ");
2596 }
2597 }
2598
2599 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2600 {
2601 struct snd_info_entry *entry;
2602
2603 if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2604 snd_info_set_text_ops(entry, cm, 1024, snd_cmipci_proc_read);
2605 }
2606 #else /* !CONFIG_PROC_FS */
2607 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2608 #endif
2609
2610
2611 static struct pci_device_id snd_cmipci_ids[] = {
2612 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2613 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2614 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2615 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2616 {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2617 {0,},
2618 };
2619
2620
2621 /*
2622 * check chip version and capabilities
2623 * driver name is modified according to the chip model
2624 */
2625 static void __devinit query_chip(struct cmipci *cm)
2626 {
2627 unsigned int detect;
2628
2629 /* check reg 0Ch, bit 24-31 */
2630 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2631 if (! detect) {
2632 /* check reg 08h, bit 24-28 */
2633 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2634 if (! detect) {
2635 cm->chip_version = 33;
2636 cm->max_channels = 2;
2637 if (cm->do_soft_ac3)
2638 cm->can_ac3_sw = 1;
2639 else
2640 cm->can_ac3_hw = 1;
2641 cm->has_dual_dac = 1;
2642 } else {
2643 cm->chip_version = 37;
2644 cm->max_channels = 2;
2645 cm->can_ac3_hw = 1;
2646 cm->has_dual_dac = 1;
2647 }
2648 } else {
2649 /* check reg 0Ch, bit 26 */
2650 if (detect & CM_CHIP_8768) {
2651 cm->chip_version = 68;
2652 cm->max_channels = 8;
2653 cm->can_ac3_hw = 1;
2654 cm->has_dual_dac = 1;
2655 cm->can_multi_ch = 1;
2656 } else if (detect & CM_CHIP_055) {
2657 cm->chip_version = 55;
2658 cm->max_channels = 6;
2659 cm->can_ac3_hw = 1;
2660 cm->has_dual_dac = 1;
2661 cm->can_multi_ch = 1;
2662 } else if (detect & CM_CHIP_039) {
2663 cm->chip_version = 39;
2664 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2665 cm->max_channels = 6;
2666 else
2667 cm->max_channels = 4;
2668 cm->can_ac3_hw = 1;
2669 cm->has_dual_dac = 1;
2670 cm->can_multi_ch = 1;
2671 } else {
2672 printk(KERN_ERR "chip %x version not supported\n", detect);
2673 }
2674 }
2675 }
2676
2677 #ifdef SUPPORT_JOYSTICK
2678 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2679 {
2680 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2681 struct gameport *gp;
2682 struct resource *r = NULL;
2683 int i, io_port = 0;
2684
2685 if (joystick_port[dev] == 0)
2686 return -ENODEV;
2687
2688 if (joystick_port[dev] == 1) { /* auto-detect */
2689 for (i = 0; ports[i]; i++) {
2690 io_port = ports[i];
2691 r = request_region(io_port, 1, "CMIPCI gameport");
2692 if (r)
2693 break;
2694 }
2695 } else {
2696 io_port = joystick_port[dev];
2697 r = request_region(io_port, 1, "CMIPCI gameport");
2698 }
2699
2700 if (!r) {
2701 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2702 return -EBUSY;
2703 }
2704
2705 cm->gameport = gp = gameport_allocate_port();
2706 if (!gp) {
2707 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2708 release_and_free_resource(r);
2709 return -ENOMEM;
2710 }
2711 gameport_set_name(gp, "C-Media Gameport");
2712 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2713 gameport_set_dev_parent(gp, &cm->pci->dev);
2714 gp->io = io_port;
2715 gameport_set_port_data(gp, r);
2716
2717 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2718
2719 gameport_register_port(cm->gameport);
2720
2721 return 0;
2722 }
2723
2724 static void snd_cmipci_free_gameport(struct cmipci *cm)
2725 {
2726 if (cm->gameport) {
2727 struct resource *r = gameport_get_port_data(cm->gameport);
2728
2729 gameport_unregister_port(cm->gameport);
2730 cm->gameport = NULL;
2731
2732 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2733 release_and_free_resource(r);
2734 }
2735 }
2736 #else
2737 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2738 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2739 #endif
2740
2741 static int snd_cmipci_free(struct cmipci *cm)
2742 {
2743 if (cm->irq >= 0) {
2744 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2745 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2746 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2747 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2748 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2749 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2750 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2751
2752 /* reset mixer */
2753 snd_cmipci_mixer_write(cm, 0, 0);
2754
2755 synchronize_irq(cm->irq);
2756
2757 free_irq(cm->irq, cm);
2758 }
2759
2760 snd_cmipci_free_gameport(cm);
2761 pci_release_regions(cm->pci);
2762 pci_disable_device(cm->pci);
2763 kfree(cm);
2764 return 0;
2765 }
2766
2767 static int snd_cmipci_dev_free(struct snd_device *device)
2768 {
2769 struct cmipci *cm = device->device_data;
2770 return snd_cmipci_free(cm);
2771 }
2772
2773 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2774 {
2775 long iosynth;
2776 unsigned int val;
2777 struct snd_opl3 *opl3;
2778 int err;
2779
2780 /* first try FM regs in PCI port range */
2781 iosynth = cm->iobase + CM_REG_FM_PCI;
2782 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2783 OPL3_HW_OPL3, 1, &opl3);
2784 if (err < 0) {
2785 /* then try legacy ports */
2786 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2787 iosynth = fm_port;
2788 switch (iosynth) {
2789 case 0x3E8: val |= CM_FMSEL_3E8; break;
2790 case 0x3E0: val |= CM_FMSEL_3E0; break;
2791 case 0x3C8: val |= CM_FMSEL_3C8; break;
2792 case 0x388: val |= CM_FMSEL_388; break;
2793 default:
2794 return 0;
2795 }
2796 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2797 /* enable FM */
2798 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2799
2800 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2801 OPL3_HW_OPL3, 0, &opl3) < 0) {
2802 printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2803 "skipping...\n", iosynth);
2804 /* disable FM */
2805 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL,
2806 val & ~CM_FMSEL_MASK);
2807 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2808 return 0;
2809 }
2810 }
2811 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2812 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2813 return err;
2814 }
2815 return 0;
2816 }
2817
2818 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2819 int dev, struct cmipci **rcmipci)
2820 {
2821 struct cmipci *cm;
2822 int err;
2823 static struct snd_device_ops ops = {
2824 .dev_free = snd_cmipci_dev_free,
2825 };
2826 unsigned int val = 0;
2827 long iomidi;
2828 int integrated_midi;
2829 int pcm_index, pcm_spdif_index;
2830 static struct pci_device_id intel_82437vx[] = {
2831 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2832 { },
2833 };
2834
2835 *rcmipci = NULL;
2836
2837 if ((err = pci_enable_device(pci)) < 0)
2838 return err;
2839
2840 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2841 if (cm == NULL) {
2842 pci_disable_device(pci);
2843 return -ENOMEM;
2844 }
2845
2846 spin_lock_init(&cm->reg_lock);
2847 init_MUTEX(&cm->open_mutex);
2848 cm->device = pci->device;
2849 cm->card = card;
2850 cm->pci = pci;
2851 cm->irq = -1;
2852 cm->channel[0].ch = 0;
2853 cm->channel[1].ch = 1;
2854 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2855
2856 if ((err = pci_request_regions(pci, card->driver)) < 0) {
2857 kfree(cm);
2858 pci_disable_device(pci);
2859 return err;
2860 }
2861 cm->iobase = pci_resource_start(pci, 0);
2862
2863 if (request_irq(pci->irq, snd_cmipci_interrupt,
2864 SA_INTERRUPT|SA_SHIRQ, card->driver, cm)) {
2865 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2866 snd_cmipci_free(cm);
2867 return -EBUSY;
2868 }
2869 cm->irq = pci->irq;
2870
2871 pci_set_master(cm->pci);
2872
2873 /*
2874 * check chip version, max channels and capabilities
2875 */
2876
2877 cm->chip_version = 0;
2878 cm->max_channels = 2;
2879 cm->do_soft_ac3 = soft_ac3[dev];
2880
2881 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
2882 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
2883 query_chip(cm);
2884 /* added -MCx suffix for chip supporting multi-channels */
2885 if (cm->can_multi_ch)
2886 sprintf(cm->card->driver + strlen(cm->card->driver),
2887 "-MC%d", cm->max_channels);
2888 else if (cm->can_ac3_sw)
2889 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
2890
2891 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2892 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2893
2894 #if CM_CH_PLAY == 1
2895 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
2896 #else
2897 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
2898 #endif
2899
2900 /* initialize codec registers */
2901 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2902 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2903 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2904 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2905 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2906
2907 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
2908 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
2909 #if CM_CH_PLAY == 1
2910 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2911 #else
2912 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2913 #endif
2914 /* Set Bus Master Request */
2915 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
2916
2917 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
2918 switch (pci->device) {
2919 case PCI_DEVICE_ID_CMEDIA_CM8738:
2920 case PCI_DEVICE_ID_CMEDIA_CM8738B:
2921 if (!pci_dev_present(intel_82437vx))
2922 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
2923 break;
2924 default:
2925 break;
2926 }
2927
2928 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
2929 snd_cmipci_free(cm);
2930 return err;
2931 }
2932
2933 integrated_midi = snd_cmipci_read_b(cm, CM_REG_MPU_PCI) != 0xff;
2934 if (integrated_midi)
2935 iomidi = cm->iobase + CM_REG_MPU_PCI;
2936 else {
2937 iomidi = mpu_port[dev];
2938 switch (iomidi) {
2939 case 0x320: val = CM_VMPU_320; break;
2940 case 0x310: val = CM_VMPU_310; break;
2941 case 0x300: val = CM_VMPU_300; break;
2942 case 0x330: val = CM_VMPU_330; break;
2943 default:
2944 iomidi = 0; break;
2945 }
2946 if (iomidi > 0) {
2947 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2948 /* enable UART */
2949 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
2950 }
2951 }
2952
2953 if ((err = snd_cmipci_create_fm(cm, fm_port[dev])) < 0)
2954 return err;
2955
2956 /* reset mixer */
2957 snd_cmipci_mixer_write(cm, 0, 0);
2958
2959 snd_cmipci_proc_init(cm);
2960
2961 /* create pcm devices */
2962 pcm_index = pcm_spdif_index = 0;
2963 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
2964 return err;
2965 pcm_index++;
2966 if (cm->has_dual_dac) {
2967 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
2968 return err;
2969 pcm_index++;
2970 }
2971 if (cm->can_ac3_hw || cm->can_ac3_sw) {
2972 pcm_spdif_index = pcm_index;
2973 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
2974 return err;
2975 }
2976
2977 /* create mixer interface & switches */
2978 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
2979 return err;
2980
2981 if (iomidi > 0) {
2982 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
2983 iomidi, integrated_midi,
2984 cm->irq, 0, &cm->rmidi)) < 0) {
2985 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
2986 }
2987 }
2988
2989 #ifdef USE_VAR48KRATE
2990 for (val = 0; val < ARRAY_SIZE(rates); val++)
2991 snd_cmipci_set_pll(cm, rates[val], val);
2992
2993 /*
2994 * (Re-)Enable external switch spdo_48k
2995 */
2996 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
2997 #endif /* USE_VAR48KRATE */
2998
2999 if (snd_cmipci_create_gameport(cm, dev) < 0)
3000 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3001
3002 snd_card_set_dev(card, &pci->dev);
3003
3004 *rcmipci = cm;
3005 return 0;
3006 }
3007
3008 /*
3009 */
3010
3011 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3012
3013 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3014 const struct pci_device_id *pci_id)
3015 {
3016 static int dev;
3017 struct snd_card *card;
3018 struct cmipci *cm;
3019 int err;
3020
3021 if (dev >= SNDRV_CARDS)
3022 return -ENODEV;
3023 if (! enable[dev]) {
3024 dev++;
3025 return -ENOENT;
3026 }
3027
3028 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
3029 if (card == NULL)
3030 return -ENOMEM;
3031
3032 switch (pci->device) {
3033 case PCI_DEVICE_ID_CMEDIA_CM8738:
3034 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3035 strcpy(card->driver, "CMI8738");
3036 break;
3037 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3038 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3039 strcpy(card->driver, "CMI8338");
3040 break;
3041 default:
3042 strcpy(card->driver, "CMIPCI");
3043 break;
3044 }
3045
3046 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3047 snd_card_free(card);
3048 return err;
3049 }
3050 card->private_data = cm;
3051
3052 sprintf(card->shortname, "C-Media PCI %s", card->driver);
3053 sprintf(card->longname, "%s (model %d) at 0x%lx, irq %i",
3054 card->shortname,
3055 cm->chip_version,
3056 cm->iobase,
3057 cm->irq);
3058
3059 //snd_printd("%s is detected\n", card->longname);
3060
3061 if ((err = snd_card_register(card)) < 0) {
3062 snd_card_free(card);
3063 return err;
3064 }
3065 pci_set_drvdata(pci, card);
3066 dev++;
3067 return 0;
3068
3069 }
3070
3071 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3072 {
3073 snd_card_free(pci_get_drvdata(pci));
3074 pci_set_drvdata(pci, NULL);
3075 }
3076
3077
3078 #ifdef CONFIG_PM
3079 /*
3080 * power management
3081 */
3082 static unsigned char saved_regs[] = {
3083 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3084 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3085 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3086 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3087 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3088 };
3089
3090 static unsigned char saved_mixers[] = {
3091 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3092 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3093 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3094 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3095 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3096 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3097 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3098 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3099 };
3100
3101 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3102 {
3103 struct snd_card *card = pci_get_drvdata(pci);
3104 struct cmipci *cm = card->private_data;
3105 int i;
3106
3107 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3108
3109 snd_pcm_suspend_all(cm->pcm);
3110 snd_pcm_suspend_all(cm->pcm2);
3111 snd_pcm_suspend_all(cm->pcm_spdif);
3112
3113 /* save registers */
3114 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3115 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3116 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3117 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3118
3119 /* disable ints */
3120 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3121
3122 pci_set_power_state(pci, PCI_D3hot);
3123 pci_disable_device(pci);
3124 pci_save_state(pci);
3125 return 0;
3126 }
3127
3128 static int snd_cmipci_resume(struct pci_dev *pci)
3129 {
3130 struct snd_card *card = pci_get_drvdata(pci);
3131 struct cmipci *cm = card->private_data;
3132 int i;
3133
3134 pci_restore_state(pci);
3135 pci_enable_device(pci);
3136 pci_set_power_state(pci, PCI_D0);
3137 pci_set_master(pci);
3138
3139 /* reset / initialize to a sane state */
3140 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3141 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3142 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3143 snd_cmipci_mixer_write(cm, 0, 0);
3144
3145 /* restore registers */
3146 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3147 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3148 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3149 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3150
3151 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3152 return 0;
3153 }
3154 #endif /* CONFIG_PM */
3155
3156 static struct pci_driver driver = {
3157 .name = "C-Media PCI",
3158 .id_table = snd_cmipci_ids,
3159 .probe = snd_cmipci_probe,
3160 .remove = __devexit_p(snd_cmipci_remove),
3161 #ifdef CONFIG_PM
3162 .suspend = snd_cmipci_suspend,
3163 .resume = snd_cmipci_resume,
3164 #endif
3165 };
3166
3167 static int __init alsa_card_cmipci_init(void)
3168 {
3169 return pci_register_driver(&driver);
3170 }
3171
3172 static void __exit alsa_card_cmipci_exit(void)
3173 {
3174 pci_unregister_driver(&driver);
3175 }
3176
3177 module_init(alsa_card_cmipci_init)
3178 module_exit(alsa_card_cmipci_exit)
This page took 0.123718 seconds and 5 git commands to generate.