[ALSA] Remove sound/driver.h
[deliverable/linux.git] / sound / pci / fm801.c
1 /*
2 * The driver for the ForteMedia FM801 based soundcards
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 *
5 * Support FM only card by Andy Shevchenko <andy@smile.org.ua>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <sound/core.h>
30 #include <sound/pcm.h>
31 #include <sound/tlv.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/mpu401.h>
34 #include <sound/opl3.h>
35 #include <sound/initval.h>
36
37 #include <asm/io.h>
38
39 #ifdef CONFIG_SND_FM801_TEA575X_BOOL
40 #include <sound/tea575x-tuner.h>
41 #define TEA575X_RADIO 1
42 #endif
43
44 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
45 MODULE_DESCRIPTION("ForteMedia FM801");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
48 "{Genius,SoundMaker Live 5.1}}");
49
50 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
51 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
52 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
53 /*
54 * Enable TEA575x tuner
55 * 1 = MediaForte 256-PCS
56 * 2 = MediaForte 256-PCPR
57 * 3 = MediaForte 64-PCR
58 * 16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card
59 * High 16-bits are video (radio) device number + 1
60 */
61 static int tea575x_tuner[SNDRV_CARDS];
62
63 module_param_array(index, int, NULL, 0444);
64 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
65 module_param_array(id, charp, NULL, 0444);
66 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
67 module_param_array(enable, bool, NULL, 0444);
68 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
69 module_param_array(tea575x_tuner, int, NULL, 0444);
70 MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");
71
72 /*
73 * Direct registers
74 */
75
76 #define FM801_REG(chip, reg) (chip->port + FM801_##reg)
77
78 #define FM801_PCM_VOL 0x00 /* PCM Output Volume */
79 #define FM801_FM_VOL 0x02 /* FM Output Volume */
80 #define FM801_I2S_VOL 0x04 /* I2S Volume */
81 #define FM801_REC_SRC 0x06 /* Record Source */
82 #define FM801_PLY_CTRL 0x08 /* Playback Control */
83 #define FM801_PLY_COUNT 0x0a /* Playback Count */
84 #define FM801_PLY_BUF1 0x0c /* Playback Bufer I */
85 #define FM801_PLY_BUF2 0x10 /* Playback Buffer II */
86 #define FM801_CAP_CTRL 0x14 /* Capture Control */
87 #define FM801_CAP_COUNT 0x16 /* Capture Count */
88 #define FM801_CAP_BUF1 0x18 /* Capture Buffer I */
89 #define FM801_CAP_BUF2 0x1c /* Capture Buffer II */
90 #define FM801_CODEC_CTRL 0x22 /* Codec Control */
91 #define FM801_I2S_MODE 0x24 /* I2S Mode Control */
92 #define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */
93 #define FM801_I2C_CTRL 0x29 /* I2C Control */
94 #define FM801_AC97_CMD 0x2a /* AC'97 Command */
95 #define FM801_AC97_DATA 0x2c /* AC'97 Data */
96 #define FM801_MPU401_DATA 0x30 /* MPU401 Data */
97 #define FM801_MPU401_CMD 0x31 /* MPU401 Command */
98 #define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */
99 #define FM801_GEN_CTRL 0x54 /* General Control */
100 #define FM801_IRQ_MASK 0x56 /* Interrupt Mask */
101 #define FM801_IRQ_STATUS 0x5a /* Interrupt Status */
102 #define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */
103 #define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */
104 #define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */
105 #define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */
106 #define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */
107
108 /* codec access */
109 #define FM801_AC97_READ (1<<7) /* read=1, write=0 */
110 #define FM801_AC97_VALID (1<<8) /* port valid=1 */
111 #define FM801_AC97_BUSY (1<<9) /* busy=1 */
112 #define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */
113
114 /* playback and record control register bits */
115 #define FM801_BUF1_LAST (1<<1)
116 #define FM801_BUF2_LAST (1<<2)
117 #define FM801_START (1<<5)
118 #define FM801_PAUSE (1<<6)
119 #define FM801_IMMED_STOP (1<<7)
120 #define FM801_RATE_SHIFT 8
121 #define FM801_RATE_MASK (15 << FM801_RATE_SHIFT)
122 #define FM801_CHANNELS_4 (1<<12) /* playback only */
123 #define FM801_CHANNELS_6 (2<<12) /* playback only */
124 #define FM801_CHANNELS_6MS (3<<12) /* playback only */
125 #define FM801_CHANNELS_MASK (3<<12)
126 #define FM801_16BIT (1<<14)
127 #define FM801_STEREO (1<<15)
128
129 /* IRQ status bits */
130 #define FM801_IRQ_PLAYBACK (1<<8)
131 #define FM801_IRQ_CAPTURE (1<<9)
132 #define FM801_IRQ_VOLUME (1<<14)
133 #define FM801_IRQ_MPU (1<<15)
134
135 /* GPIO control register */
136 #define FM801_GPIO_GP0 (1<<0) /* read/write */
137 #define FM801_GPIO_GP1 (1<<1)
138 #define FM801_GPIO_GP2 (1<<2)
139 #define FM801_GPIO_GP3 (1<<3)
140 #define FM801_GPIO_GP(x) (1<<(0+(x)))
141 #define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/
142 #define FM801_GPIO_GD1 (1<<9)
143 #define FM801_GPIO_GD2 (1<<10)
144 #define FM801_GPIO_GD3 (1<<11)
145 #define FM801_GPIO_GD(x) (1<<(8+(x)))
146 #define FM801_GPIO_GS0 (1<<12) /* function select: */
147 #define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */
148 #define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */
149 #define FM801_GPIO_GS3 (1<<15)
150 #define FM801_GPIO_GS(x) (1<<(12+(x)))
151
152 /*
153
154 */
155
156 struct fm801 {
157 int irq;
158
159 unsigned long port; /* I/O port number */
160 unsigned int multichannel: 1, /* multichannel support */
161 secondary: 1; /* secondary codec */
162 unsigned char secondary_addr; /* address of the secondary codec */
163 unsigned int tea575x_tuner; /* tuner flags */
164
165 unsigned short ply_ctrl; /* playback control */
166 unsigned short cap_ctrl; /* capture control */
167
168 unsigned long ply_buffer;
169 unsigned int ply_buf;
170 unsigned int ply_count;
171 unsigned int ply_size;
172 unsigned int ply_pos;
173
174 unsigned long cap_buffer;
175 unsigned int cap_buf;
176 unsigned int cap_count;
177 unsigned int cap_size;
178 unsigned int cap_pos;
179
180 struct snd_ac97_bus *ac97_bus;
181 struct snd_ac97 *ac97;
182 struct snd_ac97 *ac97_sec;
183
184 struct pci_dev *pci;
185 struct snd_card *card;
186 struct snd_pcm *pcm;
187 struct snd_rawmidi *rmidi;
188 struct snd_pcm_substream *playback_substream;
189 struct snd_pcm_substream *capture_substream;
190 unsigned int p_dma_size;
191 unsigned int c_dma_size;
192
193 spinlock_t reg_lock;
194 struct snd_info_entry *proc_entry;
195
196 #ifdef TEA575X_RADIO
197 struct snd_tea575x tea;
198 #endif
199
200 #ifdef CONFIG_PM
201 u16 saved_regs[0x20];
202 #endif
203 };
204
205 static struct pci_device_id snd_fm801_ids[] = {
206 { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */
207 { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */
208 { 0, }
209 };
210
211 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
212
213 /*
214 * common I/O routines
215 */
216
217 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
218 unsigned short mask, unsigned short value)
219 {
220 int change;
221 unsigned long flags;
222 unsigned short old, new;
223
224 spin_lock_irqsave(&chip->reg_lock, flags);
225 old = inw(chip->port + reg);
226 new = (old & ~mask) | value;
227 change = old != new;
228 if (change)
229 outw(new, chip->port + reg);
230 spin_unlock_irqrestore(&chip->reg_lock, flags);
231 return change;
232 }
233
234 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
235 unsigned short reg,
236 unsigned short val)
237 {
238 struct fm801 *chip = ac97->private_data;
239 int idx;
240
241 /*
242 * Wait until the codec interface is not ready..
243 */
244 for (idx = 0; idx < 100; idx++) {
245 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
246 goto ok1;
247 udelay(10);
248 }
249 snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
250 return;
251
252 ok1:
253 /* write data and address */
254 outw(val, FM801_REG(chip, AC97_DATA));
255 outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
256 /*
257 * Wait until the write command is not completed..
258 */
259 for (idx = 0; idx < 1000; idx++) {
260 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
261 return;
262 udelay(10);
263 }
264 snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
265 }
266
267 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
268 {
269 struct fm801 *chip = ac97->private_data;
270 int idx;
271
272 /*
273 * Wait until the codec interface is not ready..
274 */
275 for (idx = 0; idx < 100; idx++) {
276 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
277 goto ok1;
278 udelay(10);
279 }
280 snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
281 return 0;
282
283 ok1:
284 /* read command */
285 outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
286 FM801_REG(chip, AC97_CMD));
287 for (idx = 0; idx < 100; idx++) {
288 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
289 goto ok2;
290 udelay(10);
291 }
292 snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
293 return 0;
294
295 ok2:
296 for (idx = 0; idx < 1000; idx++) {
297 if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
298 goto ok3;
299 udelay(10);
300 }
301 snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
302 return 0;
303
304 ok3:
305 return inw(FM801_REG(chip, AC97_DATA));
306 }
307
308 static unsigned int rates[] = {
309 5500, 8000, 9600, 11025,
310 16000, 19200, 22050, 32000,
311 38400, 44100, 48000
312 };
313
314 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
315 .count = ARRAY_SIZE(rates),
316 .list = rates,
317 .mask = 0,
318 };
319
320 static unsigned int channels[] = {
321 2, 4, 6
322 };
323
324 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
325 .count = ARRAY_SIZE(channels),
326 .list = channels,
327 .mask = 0,
328 };
329
330 /*
331 * Sample rate routines
332 */
333
334 static unsigned short snd_fm801_rate_bits(unsigned int rate)
335 {
336 unsigned int idx;
337
338 for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
339 if (rates[idx] == rate)
340 return idx;
341 snd_BUG();
342 return ARRAY_SIZE(rates) - 1;
343 }
344
345 /*
346 * PCM part
347 */
348
349 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
350 int cmd)
351 {
352 struct fm801 *chip = snd_pcm_substream_chip(substream);
353
354 spin_lock(&chip->reg_lock);
355 switch (cmd) {
356 case SNDRV_PCM_TRIGGER_START:
357 chip->ply_ctrl &= ~(FM801_BUF1_LAST |
358 FM801_BUF2_LAST |
359 FM801_PAUSE);
360 chip->ply_ctrl |= FM801_START |
361 FM801_IMMED_STOP;
362 break;
363 case SNDRV_PCM_TRIGGER_STOP:
364 chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
365 break;
366 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
367 case SNDRV_PCM_TRIGGER_SUSPEND:
368 chip->ply_ctrl |= FM801_PAUSE;
369 break;
370 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
371 case SNDRV_PCM_TRIGGER_RESUME:
372 chip->ply_ctrl &= ~FM801_PAUSE;
373 break;
374 default:
375 spin_unlock(&chip->reg_lock);
376 snd_BUG();
377 return -EINVAL;
378 }
379 outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
380 spin_unlock(&chip->reg_lock);
381 return 0;
382 }
383
384 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
385 int cmd)
386 {
387 struct fm801 *chip = snd_pcm_substream_chip(substream);
388
389 spin_lock(&chip->reg_lock);
390 switch (cmd) {
391 case SNDRV_PCM_TRIGGER_START:
392 chip->cap_ctrl &= ~(FM801_BUF1_LAST |
393 FM801_BUF2_LAST |
394 FM801_PAUSE);
395 chip->cap_ctrl |= FM801_START |
396 FM801_IMMED_STOP;
397 break;
398 case SNDRV_PCM_TRIGGER_STOP:
399 chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
400 break;
401 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
402 case SNDRV_PCM_TRIGGER_SUSPEND:
403 chip->cap_ctrl |= FM801_PAUSE;
404 break;
405 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
406 case SNDRV_PCM_TRIGGER_RESUME:
407 chip->cap_ctrl &= ~FM801_PAUSE;
408 break;
409 default:
410 spin_unlock(&chip->reg_lock);
411 snd_BUG();
412 return -EINVAL;
413 }
414 outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
415 spin_unlock(&chip->reg_lock);
416 return 0;
417 }
418
419 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
420 struct snd_pcm_hw_params *hw_params)
421 {
422 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
423 }
424
425 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
426 {
427 return snd_pcm_lib_free_pages(substream);
428 }
429
430 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
431 {
432 struct fm801 *chip = snd_pcm_substream_chip(substream);
433 struct snd_pcm_runtime *runtime = substream->runtime;
434
435 chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
436 chip->ply_count = snd_pcm_lib_period_bytes(substream);
437 spin_lock_irq(&chip->reg_lock);
438 chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
439 FM801_STEREO | FM801_RATE_MASK |
440 FM801_CHANNELS_MASK);
441 if (snd_pcm_format_width(runtime->format) == 16)
442 chip->ply_ctrl |= FM801_16BIT;
443 if (runtime->channels > 1) {
444 chip->ply_ctrl |= FM801_STEREO;
445 if (runtime->channels == 4)
446 chip->ply_ctrl |= FM801_CHANNELS_4;
447 else if (runtime->channels == 6)
448 chip->ply_ctrl |= FM801_CHANNELS_6;
449 }
450 chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
451 chip->ply_buf = 0;
452 outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
453 outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
454 chip->ply_buffer = runtime->dma_addr;
455 chip->ply_pos = 0;
456 outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
457 outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
458 spin_unlock_irq(&chip->reg_lock);
459 return 0;
460 }
461
462 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
463 {
464 struct fm801 *chip = snd_pcm_substream_chip(substream);
465 struct snd_pcm_runtime *runtime = substream->runtime;
466
467 chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
468 chip->cap_count = snd_pcm_lib_period_bytes(substream);
469 spin_lock_irq(&chip->reg_lock);
470 chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
471 FM801_STEREO | FM801_RATE_MASK);
472 if (snd_pcm_format_width(runtime->format) == 16)
473 chip->cap_ctrl |= FM801_16BIT;
474 if (runtime->channels > 1)
475 chip->cap_ctrl |= FM801_STEREO;
476 chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
477 chip->cap_buf = 0;
478 outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
479 outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
480 chip->cap_buffer = runtime->dma_addr;
481 chip->cap_pos = 0;
482 outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
483 outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
484 spin_unlock_irq(&chip->reg_lock);
485 return 0;
486 }
487
488 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
489 {
490 struct fm801 *chip = snd_pcm_substream_chip(substream);
491 size_t ptr;
492
493 if (!(chip->ply_ctrl & FM801_START))
494 return 0;
495 spin_lock(&chip->reg_lock);
496 ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
497 if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
498 ptr += chip->ply_count;
499 ptr %= chip->ply_size;
500 }
501 spin_unlock(&chip->reg_lock);
502 return bytes_to_frames(substream->runtime, ptr);
503 }
504
505 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
506 {
507 struct fm801 *chip = snd_pcm_substream_chip(substream);
508 size_t ptr;
509
510 if (!(chip->cap_ctrl & FM801_START))
511 return 0;
512 spin_lock(&chip->reg_lock);
513 ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
514 if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
515 ptr += chip->cap_count;
516 ptr %= chip->cap_size;
517 }
518 spin_unlock(&chip->reg_lock);
519 return bytes_to_frames(substream->runtime, ptr);
520 }
521
522 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
523 {
524 struct fm801 *chip = dev_id;
525 unsigned short status;
526 unsigned int tmp;
527
528 status = inw(FM801_REG(chip, IRQ_STATUS));
529 status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
530 if (! status)
531 return IRQ_NONE;
532 /* ack first */
533 outw(status, FM801_REG(chip, IRQ_STATUS));
534 if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
535 spin_lock(&chip->reg_lock);
536 chip->ply_buf++;
537 chip->ply_pos += chip->ply_count;
538 chip->ply_pos %= chip->ply_size;
539 tmp = chip->ply_pos + chip->ply_count;
540 tmp %= chip->ply_size;
541 outl(chip->ply_buffer + tmp,
542 (chip->ply_buf & 1) ?
543 FM801_REG(chip, PLY_BUF1) :
544 FM801_REG(chip, PLY_BUF2));
545 spin_unlock(&chip->reg_lock);
546 snd_pcm_period_elapsed(chip->playback_substream);
547 }
548 if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
549 spin_lock(&chip->reg_lock);
550 chip->cap_buf++;
551 chip->cap_pos += chip->cap_count;
552 chip->cap_pos %= chip->cap_size;
553 tmp = chip->cap_pos + chip->cap_count;
554 tmp %= chip->cap_size;
555 outl(chip->cap_buffer + tmp,
556 (chip->cap_buf & 1) ?
557 FM801_REG(chip, CAP_BUF1) :
558 FM801_REG(chip, CAP_BUF2));
559 spin_unlock(&chip->reg_lock);
560 snd_pcm_period_elapsed(chip->capture_substream);
561 }
562 if (chip->rmidi && (status & FM801_IRQ_MPU))
563 snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
564 if (status & FM801_IRQ_VOLUME)
565 ;/* TODO */
566
567 return IRQ_HANDLED;
568 }
569
570 static struct snd_pcm_hardware snd_fm801_playback =
571 {
572 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
573 SNDRV_PCM_INFO_BLOCK_TRANSFER |
574 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
575 SNDRV_PCM_INFO_MMAP_VALID),
576 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
577 .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
578 .rate_min = 5500,
579 .rate_max = 48000,
580 .channels_min = 1,
581 .channels_max = 2,
582 .buffer_bytes_max = (128*1024),
583 .period_bytes_min = 64,
584 .period_bytes_max = (128*1024),
585 .periods_min = 1,
586 .periods_max = 1024,
587 .fifo_size = 0,
588 };
589
590 static struct snd_pcm_hardware snd_fm801_capture =
591 {
592 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
593 SNDRV_PCM_INFO_BLOCK_TRANSFER |
594 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
595 SNDRV_PCM_INFO_MMAP_VALID),
596 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
597 .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
598 .rate_min = 5500,
599 .rate_max = 48000,
600 .channels_min = 1,
601 .channels_max = 2,
602 .buffer_bytes_max = (128*1024),
603 .period_bytes_min = 64,
604 .period_bytes_max = (128*1024),
605 .periods_min = 1,
606 .periods_max = 1024,
607 .fifo_size = 0,
608 };
609
610 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
611 {
612 struct fm801 *chip = snd_pcm_substream_chip(substream);
613 struct snd_pcm_runtime *runtime = substream->runtime;
614 int err;
615
616 chip->playback_substream = substream;
617 runtime->hw = snd_fm801_playback;
618 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
619 &hw_constraints_rates);
620 if (chip->multichannel) {
621 runtime->hw.channels_max = 6;
622 snd_pcm_hw_constraint_list(runtime, 0,
623 SNDRV_PCM_HW_PARAM_CHANNELS,
624 &hw_constraints_channels);
625 }
626 if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
627 return err;
628 return 0;
629 }
630
631 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
632 {
633 struct fm801 *chip = snd_pcm_substream_chip(substream);
634 struct snd_pcm_runtime *runtime = substream->runtime;
635 int err;
636
637 chip->capture_substream = substream;
638 runtime->hw = snd_fm801_capture;
639 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
640 &hw_constraints_rates);
641 if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
642 return err;
643 return 0;
644 }
645
646 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
647 {
648 struct fm801 *chip = snd_pcm_substream_chip(substream);
649
650 chip->playback_substream = NULL;
651 return 0;
652 }
653
654 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
655 {
656 struct fm801 *chip = snd_pcm_substream_chip(substream);
657
658 chip->capture_substream = NULL;
659 return 0;
660 }
661
662 static struct snd_pcm_ops snd_fm801_playback_ops = {
663 .open = snd_fm801_playback_open,
664 .close = snd_fm801_playback_close,
665 .ioctl = snd_pcm_lib_ioctl,
666 .hw_params = snd_fm801_hw_params,
667 .hw_free = snd_fm801_hw_free,
668 .prepare = snd_fm801_playback_prepare,
669 .trigger = snd_fm801_playback_trigger,
670 .pointer = snd_fm801_playback_pointer,
671 };
672
673 static struct snd_pcm_ops snd_fm801_capture_ops = {
674 .open = snd_fm801_capture_open,
675 .close = snd_fm801_capture_close,
676 .ioctl = snd_pcm_lib_ioctl,
677 .hw_params = snd_fm801_hw_params,
678 .hw_free = snd_fm801_hw_free,
679 .prepare = snd_fm801_capture_prepare,
680 .trigger = snd_fm801_capture_trigger,
681 .pointer = snd_fm801_capture_pointer,
682 };
683
684 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
685 {
686 struct snd_pcm *pcm;
687 int err;
688
689 if (rpcm)
690 *rpcm = NULL;
691 if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
692 return err;
693
694 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
695 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
696
697 pcm->private_data = chip;
698 pcm->info_flags = 0;
699 strcpy(pcm->name, "FM801");
700 chip->pcm = pcm;
701
702 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
703 snd_dma_pci_data(chip->pci),
704 chip->multichannel ? 128*1024 : 64*1024, 128*1024);
705
706 if (rpcm)
707 *rpcm = pcm;
708 return 0;
709 }
710
711 /*
712 * TEA5757 radio
713 */
714
715 #ifdef TEA575X_RADIO
716
717 /* 256PCS GPIO numbers */
718 #define TEA_256PCS_DATA 1
719 #define TEA_256PCS_WRITE_ENABLE 2 /* inverted */
720 #define TEA_256PCS_BUS_CLOCK 3
721
722 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
723 {
724 struct fm801 *chip = tea->private_data;
725 unsigned short reg;
726 int i = 25;
727
728 spin_lock_irq(&chip->reg_lock);
729 reg = inw(FM801_REG(chip, GPIO_CTRL));
730 /* use GPIO lines and set write enable bit */
731 reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
732 FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
733 FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
734 /* all of lines are in the write direction */
735 /* clear data and clock lines */
736 reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
737 FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
738 FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
739 FM801_GPIO_GP(TEA_256PCS_DATA) |
740 FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
741 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
742 outw(reg, FM801_REG(chip, GPIO_CTRL));
743 udelay(1);
744
745 while (i--) {
746 if (val & (1 << i))
747 reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
748 else
749 reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
750 outw(reg, FM801_REG(chip, GPIO_CTRL));
751 udelay(1);
752 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
753 outw(reg, FM801_REG(chip, GPIO_CTRL));
754 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
755 outw(reg, FM801_REG(chip, GPIO_CTRL));
756 udelay(1);
757 }
758
759 /* and reset the write enable bit */
760 reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
761 FM801_GPIO_GP(TEA_256PCS_DATA);
762 outw(reg, FM801_REG(chip, GPIO_CTRL));
763 spin_unlock_irq(&chip->reg_lock);
764 }
765
766 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
767 {
768 struct fm801 *chip = tea->private_data;
769 unsigned short reg;
770 unsigned int val = 0;
771 int i;
772
773 spin_lock_irq(&chip->reg_lock);
774 reg = inw(FM801_REG(chip, GPIO_CTRL));
775 /* use GPIO lines, set data direction to input */
776 reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
777 FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
778 FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
779 FM801_GPIO_GD(TEA_256PCS_DATA) |
780 FM801_GPIO_GP(TEA_256PCS_DATA) |
781 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
782 /* all of lines are in the write direction, except data */
783 /* clear data, write enable and clock lines */
784 reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
785 FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
786 FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
787
788 for (i = 0; i < 24; i++) {
789 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
790 outw(reg, FM801_REG(chip, GPIO_CTRL));
791 udelay(1);
792 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
793 outw(reg, FM801_REG(chip, GPIO_CTRL));
794 udelay(1);
795 val <<= 1;
796 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
797 val |= 1;
798 }
799
800 spin_unlock_irq(&chip->reg_lock);
801
802 return val;
803 }
804
805 /* 256PCPR GPIO numbers */
806 #define TEA_256PCPR_BUS_CLOCK 0
807 #define TEA_256PCPR_DATA 1
808 #define TEA_256PCPR_WRITE_ENABLE 2 /* inverted */
809
810 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
811 {
812 struct fm801 *chip = tea->private_data;
813 unsigned short reg;
814 int i = 25;
815
816 spin_lock_irq(&chip->reg_lock);
817 reg = inw(FM801_REG(chip, GPIO_CTRL));
818 /* use GPIO lines and set write enable bit */
819 reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
820 FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
821 FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
822 /* all of lines are in the write direction */
823 /* clear data and clock lines */
824 reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
825 FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
826 FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
827 FM801_GPIO_GP(TEA_256PCPR_DATA) |
828 FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
829 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
830 outw(reg, FM801_REG(chip, GPIO_CTRL));
831 udelay(1);
832
833 while (i--) {
834 if (val & (1 << i))
835 reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
836 else
837 reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
838 outw(reg, FM801_REG(chip, GPIO_CTRL));
839 udelay(1);
840 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
841 outw(reg, FM801_REG(chip, GPIO_CTRL));
842 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
843 outw(reg, FM801_REG(chip, GPIO_CTRL));
844 udelay(1);
845 }
846
847 /* and reset the write enable bit */
848 reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
849 FM801_GPIO_GP(TEA_256PCPR_DATA);
850 outw(reg, FM801_REG(chip, GPIO_CTRL));
851 spin_unlock_irq(&chip->reg_lock);
852 }
853
854 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
855 {
856 struct fm801 *chip = tea->private_data;
857 unsigned short reg;
858 unsigned int val = 0;
859 int i;
860
861 spin_lock_irq(&chip->reg_lock);
862 reg = inw(FM801_REG(chip, GPIO_CTRL));
863 /* use GPIO lines, set data direction to input */
864 reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
865 FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
866 FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
867 FM801_GPIO_GD(TEA_256PCPR_DATA) |
868 FM801_GPIO_GP(TEA_256PCPR_DATA) |
869 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
870 /* all of lines are in the write direction, except data */
871 /* clear data, write enable and clock lines */
872 reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
873 FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
874 FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
875
876 for (i = 0; i < 24; i++) {
877 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
878 outw(reg, FM801_REG(chip, GPIO_CTRL));
879 udelay(1);
880 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
881 outw(reg, FM801_REG(chip, GPIO_CTRL));
882 udelay(1);
883 val <<= 1;
884 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
885 val |= 1;
886 }
887
888 spin_unlock_irq(&chip->reg_lock);
889
890 return val;
891 }
892
893 /* 64PCR GPIO numbers */
894 #define TEA_64PCR_BUS_CLOCK 0
895 #define TEA_64PCR_WRITE_ENABLE 1 /* inverted */
896 #define TEA_64PCR_DATA 2
897
898 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
899 {
900 struct fm801 *chip = tea->private_data;
901 unsigned short reg;
902 int i = 25;
903
904 spin_lock_irq(&chip->reg_lock);
905 reg = inw(FM801_REG(chip, GPIO_CTRL));
906 /* use GPIO lines and set write enable bit */
907 reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
908 FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
909 FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
910 /* all of lines are in the write direction */
911 /* clear data and clock lines */
912 reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
913 FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
914 FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
915 FM801_GPIO_GP(TEA_64PCR_DATA) |
916 FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
917 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
918 outw(reg, FM801_REG(chip, GPIO_CTRL));
919 udelay(1);
920
921 while (i--) {
922 if (val & (1 << i))
923 reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
924 else
925 reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
926 outw(reg, FM801_REG(chip, GPIO_CTRL));
927 udelay(1);
928 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
929 outw(reg, FM801_REG(chip, GPIO_CTRL));
930 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
931 outw(reg, FM801_REG(chip, GPIO_CTRL));
932 udelay(1);
933 }
934
935 /* and reset the write enable bit */
936 reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
937 FM801_GPIO_GP(TEA_64PCR_DATA);
938 outw(reg, FM801_REG(chip, GPIO_CTRL));
939 spin_unlock_irq(&chip->reg_lock);
940 }
941
942 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
943 {
944 struct fm801 *chip = tea->private_data;
945 unsigned short reg;
946 unsigned int val = 0;
947 int i;
948
949 spin_lock_irq(&chip->reg_lock);
950 reg = inw(FM801_REG(chip, GPIO_CTRL));
951 /* use GPIO lines, set data direction to input */
952 reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
953 FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
954 FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
955 FM801_GPIO_GD(TEA_64PCR_DATA) |
956 FM801_GPIO_GP(TEA_64PCR_DATA) |
957 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
958 /* all of lines are in the write direction, except data */
959 /* clear data, write enable and clock lines */
960 reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
961 FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
962 FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
963
964 for (i = 0; i < 24; i++) {
965 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
966 outw(reg, FM801_REG(chip, GPIO_CTRL));
967 udelay(1);
968 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
969 outw(reg, FM801_REG(chip, GPIO_CTRL));
970 udelay(1);
971 val <<= 1;
972 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
973 val |= 1;
974 }
975
976 spin_unlock_irq(&chip->reg_lock);
977
978 return val;
979 }
980
981 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
982 {
983 /* 1 = MediaForte 256-PCS */
984 .write = snd_fm801_tea575x_256pcs_write,
985 .read = snd_fm801_tea575x_256pcs_read,
986 },
987 {
988 /* 2 = MediaForte 256-PCPR */
989 .write = snd_fm801_tea575x_256pcpr_write,
990 .read = snd_fm801_tea575x_256pcpr_read,
991 },
992 {
993 /* 3 = MediaForte 64-PCR */
994 .write = snd_fm801_tea575x_64pcr_write,
995 .read = snd_fm801_tea575x_64pcr_read,
996 }
997 };
998 #endif
999
1000 /*
1001 * Mixer routines
1002 */
1003
1004 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1005 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1006 .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1007 .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1008
1009 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1010 struct snd_ctl_elem_info *uinfo)
1011 {
1012 int mask = (kcontrol->private_value >> 16) & 0xff;
1013
1014 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1015 uinfo->count = 1;
1016 uinfo->value.integer.min = 0;
1017 uinfo->value.integer.max = mask;
1018 return 0;
1019 }
1020
1021 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1022 struct snd_ctl_elem_value *ucontrol)
1023 {
1024 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1025 int reg = kcontrol->private_value & 0xff;
1026 int shift = (kcontrol->private_value >> 8) & 0xff;
1027 int mask = (kcontrol->private_value >> 16) & 0xff;
1028 int invert = (kcontrol->private_value >> 24) & 0xff;
1029
1030 ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1031 if (invert)
1032 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1033 return 0;
1034 }
1035
1036 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1037 struct snd_ctl_elem_value *ucontrol)
1038 {
1039 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1040 int reg = kcontrol->private_value & 0xff;
1041 int shift = (kcontrol->private_value >> 8) & 0xff;
1042 int mask = (kcontrol->private_value >> 16) & 0xff;
1043 int invert = (kcontrol->private_value >> 24) & 0xff;
1044 unsigned short val;
1045
1046 val = (ucontrol->value.integer.value[0] & mask);
1047 if (invert)
1048 val = mask - val;
1049 return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1050 }
1051
1052 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1053 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1054 .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1055 .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1056 #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
1057 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1058 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1059 .name = xname, .info = snd_fm801_info_double, \
1060 .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1061 .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
1062 .tlv = { .p = (xtlv) } }
1063
1064 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1065 struct snd_ctl_elem_info *uinfo)
1066 {
1067 int mask = (kcontrol->private_value >> 16) & 0xff;
1068
1069 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1070 uinfo->count = 2;
1071 uinfo->value.integer.min = 0;
1072 uinfo->value.integer.max = mask;
1073 return 0;
1074 }
1075
1076 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1077 struct snd_ctl_elem_value *ucontrol)
1078 {
1079 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1080 int reg = kcontrol->private_value & 0xff;
1081 int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1082 int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1083 int mask = (kcontrol->private_value >> 16) & 0xff;
1084 int invert = (kcontrol->private_value >> 24) & 0xff;
1085
1086 spin_lock_irq(&chip->reg_lock);
1087 ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1088 ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1089 spin_unlock_irq(&chip->reg_lock);
1090 if (invert) {
1091 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1092 ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1093 }
1094 return 0;
1095 }
1096
1097 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1098 struct snd_ctl_elem_value *ucontrol)
1099 {
1100 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1101 int reg = kcontrol->private_value & 0xff;
1102 int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1103 int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1104 int mask = (kcontrol->private_value >> 16) & 0xff;
1105 int invert = (kcontrol->private_value >> 24) & 0xff;
1106 unsigned short val1, val2;
1107
1108 val1 = ucontrol->value.integer.value[0] & mask;
1109 val2 = ucontrol->value.integer.value[1] & mask;
1110 if (invert) {
1111 val1 = mask - val1;
1112 val2 = mask - val2;
1113 }
1114 return snd_fm801_update_bits(chip, reg,
1115 (mask << shift_left) | (mask << shift_right),
1116 (val1 << shift_left ) | (val2 << shift_right));
1117 }
1118
1119 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1120 struct snd_ctl_elem_info *uinfo)
1121 {
1122 static char *texts[5] = {
1123 "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1124 };
1125
1126 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1127 uinfo->count = 1;
1128 uinfo->value.enumerated.items = 5;
1129 if (uinfo->value.enumerated.item > 4)
1130 uinfo->value.enumerated.item = 4;
1131 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1132 return 0;
1133 }
1134
1135 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1136 struct snd_ctl_elem_value *ucontrol)
1137 {
1138 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1139 unsigned short val;
1140
1141 val = inw(FM801_REG(chip, REC_SRC)) & 7;
1142 if (val > 4)
1143 val = 4;
1144 ucontrol->value.enumerated.item[0] = val;
1145 return 0;
1146 }
1147
1148 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1149 struct snd_ctl_elem_value *ucontrol)
1150 {
1151 struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1152 unsigned short val;
1153
1154 if ((val = ucontrol->value.enumerated.item[0]) > 4)
1155 return -EINVAL;
1156 return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1157 }
1158
1159 static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
1160
1161 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1162
1163 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1164 FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
1165 db_scale_dsp),
1166 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1167 FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
1168 db_scale_dsp),
1169 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1170 FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
1171 db_scale_dsp),
1172 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1173 {
1174 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1175 .name = "Digital Capture Source",
1176 .info = snd_fm801_info_mux,
1177 .get = snd_fm801_get_mux,
1178 .put = snd_fm801_put_mux,
1179 }
1180 };
1181
1182 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1183
1184 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1185 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1186 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1187 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1188 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1189 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1190 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1191 };
1192
1193 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1194 {
1195 struct fm801 *chip = bus->private_data;
1196 chip->ac97_bus = NULL;
1197 }
1198
1199 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1200 {
1201 struct fm801 *chip = ac97->private_data;
1202 if (ac97->num == 0) {
1203 chip->ac97 = NULL;
1204 } else {
1205 chip->ac97_sec = NULL;
1206 }
1207 }
1208
1209 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1210 {
1211 struct snd_ac97_template ac97;
1212 unsigned int i;
1213 int err;
1214 static struct snd_ac97_bus_ops ops = {
1215 .write = snd_fm801_codec_write,
1216 .read = snd_fm801_codec_read,
1217 };
1218
1219 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1220 return err;
1221 chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1222
1223 memset(&ac97, 0, sizeof(ac97));
1224 ac97.private_data = chip;
1225 ac97.private_free = snd_fm801_mixer_free_ac97;
1226 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1227 return err;
1228 if (chip->secondary) {
1229 ac97.num = 1;
1230 ac97.addr = chip->secondary_addr;
1231 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1232 return err;
1233 }
1234 for (i = 0; i < FM801_CONTROLS; i++)
1235 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1236 if (chip->multichannel) {
1237 for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1238 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1239 }
1240 return 0;
1241 }
1242
1243 /*
1244 * initialization routines
1245 */
1246
1247 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1248 unsigned short reg, unsigned long waits)
1249 {
1250 unsigned long timeout = jiffies + waits;
1251
1252 outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1253 FM801_REG(chip, AC97_CMD));
1254 udelay(5);
1255 do {
1256 if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1257 == FM801_AC97_VALID)
1258 return 0;
1259 schedule_timeout_uninterruptible(1);
1260 } while (time_after(timeout, jiffies));
1261 return -EIO;
1262 }
1263
1264 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1265 {
1266 int id;
1267 unsigned short cmdw;
1268
1269 if (chip->tea575x_tuner & 0x0010)
1270 goto __ac97_ok;
1271
1272 /* codec cold reset + AC'97 warm reset */
1273 outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1274 inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1275 udelay(100);
1276 outw(0, FM801_REG(chip, CODEC_CTRL));
1277
1278 if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
1279 snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
1280 if (! resume)
1281 return -EIO;
1282 }
1283
1284 if (chip->multichannel) {
1285 if (chip->secondary_addr) {
1286 wait_for_codec(chip, chip->secondary_addr,
1287 AC97_VENDOR_ID1, msecs_to_jiffies(50));
1288 } else {
1289 /* my card has the secondary codec */
1290 /* at address #3, so the loop is inverted */
1291 for (id = 3; id > 0; id--) {
1292 if (! wait_for_codec(chip, id, AC97_VENDOR_ID1,
1293 msecs_to_jiffies(50))) {
1294 cmdw = inw(FM801_REG(chip, AC97_DATA));
1295 if (cmdw != 0xffff && cmdw != 0) {
1296 chip->secondary = 1;
1297 chip->secondary_addr = id;
1298 break;
1299 }
1300 }
1301 }
1302 }
1303
1304 /* the recovery phase, it seems that probing for non-existing codec might */
1305 /* cause timeout problems */
1306 wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1307 }
1308
1309 __ac97_ok:
1310
1311 /* init volume */
1312 outw(0x0808, FM801_REG(chip, PCM_VOL));
1313 outw(0x9f1f, FM801_REG(chip, FM_VOL));
1314 outw(0x8808, FM801_REG(chip, I2S_VOL));
1315
1316 /* I2S control - I2S mode */
1317 outw(0x0003, FM801_REG(chip, I2S_MODE));
1318
1319 /* interrupt setup */
1320 cmdw = inw(FM801_REG(chip, IRQ_MASK));
1321 if (chip->irq < 0)
1322 cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */
1323 else
1324 cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */
1325 outw(cmdw, FM801_REG(chip, IRQ_MASK));
1326
1327 /* interrupt clear */
1328 outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1329
1330 return 0;
1331 }
1332
1333
1334 static int snd_fm801_free(struct fm801 *chip)
1335 {
1336 unsigned short cmdw;
1337
1338 if (chip->irq < 0)
1339 goto __end_hw;
1340
1341 /* interrupt setup - mask everything */
1342 cmdw = inw(FM801_REG(chip, IRQ_MASK));
1343 cmdw |= 0x00c3;
1344 outw(cmdw, FM801_REG(chip, IRQ_MASK));
1345
1346 __end_hw:
1347 #ifdef TEA575X_RADIO
1348 snd_tea575x_exit(&chip->tea);
1349 #endif
1350 if (chip->irq >= 0)
1351 free_irq(chip->irq, chip);
1352 pci_release_regions(chip->pci);
1353 pci_disable_device(chip->pci);
1354
1355 kfree(chip);
1356 return 0;
1357 }
1358
1359 static int snd_fm801_dev_free(struct snd_device *device)
1360 {
1361 struct fm801 *chip = device->device_data;
1362 return snd_fm801_free(chip);
1363 }
1364
1365 static int __devinit snd_fm801_create(struct snd_card *card,
1366 struct pci_dev * pci,
1367 int tea575x_tuner,
1368 struct fm801 ** rchip)
1369 {
1370 struct fm801 *chip;
1371 int err;
1372 static struct snd_device_ops ops = {
1373 .dev_free = snd_fm801_dev_free,
1374 };
1375
1376 *rchip = NULL;
1377 if ((err = pci_enable_device(pci)) < 0)
1378 return err;
1379 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1380 if (chip == NULL) {
1381 pci_disable_device(pci);
1382 return -ENOMEM;
1383 }
1384 spin_lock_init(&chip->reg_lock);
1385 chip->card = card;
1386 chip->pci = pci;
1387 chip->irq = -1;
1388 chip->tea575x_tuner = tea575x_tuner;
1389 if ((err = pci_request_regions(pci, "FM801")) < 0) {
1390 kfree(chip);
1391 pci_disable_device(pci);
1392 return err;
1393 }
1394 chip->port = pci_resource_start(pci, 0);
1395 if ((tea575x_tuner & 0x0010) == 0) {
1396 if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
1397 "FM801", chip)) {
1398 snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1399 snd_fm801_free(chip);
1400 return -EBUSY;
1401 }
1402 chip->irq = pci->irq;
1403 pci_set_master(pci);
1404 }
1405
1406 if (pci->revision >= 0xb1) /* FM801-AU */
1407 chip->multichannel = 1;
1408
1409 snd_fm801_chip_init(chip, 0);
1410
1411 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1412 snd_fm801_free(chip);
1413 return err;
1414 }
1415
1416 snd_card_set_dev(card, &pci->dev);
1417
1418 #ifdef TEA575X_RADIO
1419 if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) {
1420 chip->tea.dev_nr = tea575x_tuner >> 16;
1421 chip->tea.card = card;
1422 chip->tea.freq_fixup = 10700;
1423 chip->tea.private_data = chip;
1424 chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1];
1425 snd_tea575x_init(&chip->tea);
1426 }
1427 #endif
1428
1429 *rchip = chip;
1430 return 0;
1431 }
1432
1433 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1434 const struct pci_device_id *pci_id)
1435 {
1436 static int dev;
1437 struct snd_card *card;
1438 struct fm801 *chip;
1439 struct snd_opl3 *opl3;
1440 int err;
1441
1442 if (dev >= SNDRV_CARDS)
1443 return -ENODEV;
1444 if (!enable[dev]) {
1445 dev++;
1446 return -ENOENT;
1447 }
1448
1449 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
1450 if (card == NULL)
1451 return -ENOMEM;
1452 if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1453 snd_card_free(card);
1454 return err;
1455 }
1456 card->private_data = chip;
1457
1458 strcpy(card->driver, "FM801");
1459 strcpy(card->shortname, "ForteMedia FM801-");
1460 strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1461 sprintf(card->longname, "%s at 0x%lx, irq %i",
1462 card->shortname, chip->port, chip->irq);
1463
1464 if (tea575x_tuner[dev] & 0x0010)
1465 goto __fm801_tuner_only;
1466
1467 if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1468 snd_card_free(card);
1469 return err;
1470 }
1471 if ((err = snd_fm801_mixer(chip)) < 0) {
1472 snd_card_free(card);
1473 return err;
1474 }
1475 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1476 FM801_REG(chip, MPU401_DATA),
1477 MPU401_INFO_INTEGRATED,
1478 chip->irq, 0, &chip->rmidi)) < 0) {
1479 snd_card_free(card);
1480 return err;
1481 }
1482 if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1483 FM801_REG(chip, OPL3_BANK1),
1484 OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1485 snd_card_free(card);
1486 return err;
1487 }
1488 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1489 snd_card_free(card);
1490 return err;
1491 }
1492
1493 __fm801_tuner_only:
1494 if ((err = snd_card_register(card)) < 0) {
1495 snd_card_free(card);
1496 return err;
1497 }
1498 pci_set_drvdata(pci, card);
1499 dev++;
1500 return 0;
1501 }
1502
1503 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1504 {
1505 snd_card_free(pci_get_drvdata(pci));
1506 pci_set_drvdata(pci, NULL);
1507 }
1508
1509 #ifdef CONFIG_PM
1510 static unsigned char saved_regs[] = {
1511 FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1512 FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1513 FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1514 FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1515 };
1516
1517 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1518 {
1519 struct snd_card *card = pci_get_drvdata(pci);
1520 struct fm801 *chip = card->private_data;
1521 int i;
1522
1523 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1524 snd_pcm_suspend_all(chip->pcm);
1525 snd_ac97_suspend(chip->ac97);
1526 snd_ac97_suspend(chip->ac97_sec);
1527 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1528 chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1529 /* FIXME: tea575x suspend */
1530
1531 pci_disable_device(pci);
1532 pci_save_state(pci);
1533 pci_set_power_state(pci, pci_choose_state(pci, state));
1534 return 0;
1535 }
1536
1537 static int snd_fm801_resume(struct pci_dev *pci)
1538 {
1539 struct snd_card *card = pci_get_drvdata(pci);
1540 struct fm801 *chip = card->private_data;
1541 int i;
1542
1543 pci_set_power_state(pci, PCI_D0);
1544 pci_restore_state(pci);
1545 if (pci_enable_device(pci) < 0) {
1546 printk(KERN_ERR "fm801: pci_enable_device failed, "
1547 "disabling device\n");
1548 snd_card_disconnect(card);
1549 return -EIO;
1550 }
1551 pci_set_master(pci);
1552
1553 snd_fm801_chip_init(chip, 1);
1554 snd_ac97_resume(chip->ac97);
1555 snd_ac97_resume(chip->ac97_sec);
1556 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1557 outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1558
1559 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1560 return 0;
1561 }
1562 #endif
1563
1564 static struct pci_driver driver = {
1565 .name = "FM801",
1566 .id_table = snd_fm801_ids,
1567 .probe = snd_card_fm801_probe,
1568 .remove = __devexit_p(snd_card_fm801_remove),
1569 #ifdef CONFIG_PM
1570 .suspend = snd_fm801_suspend,
1571 .resume = snd_fm801_resume,
1572 #endif
1573 };
1574
1575 static int __init alsa_card_fm801_init(void)
1576 {
1577 return pci_register_driver(&driver);
1578 }
1579
1580 static void __exit alsa_card_fm801_exit(void)
1581 {
1582 pci_unregister_driver(&driver);
1583 }
1584
1585 module_init(alsa_card_fm801_init)
1586 module_exit(alsa_card_fm801_exit)
This page took 0.108133 seconds and 6 git commands to generate.