[ALSA] hda-codec - Minor rewrites
[deliverable/linux.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33
34
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38
39
40 /*
41 * vendor / preset table
42 */
43
44 struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47 };
48
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x11d4, "Analog Devices" },
53 { 0x13f6, "C-Media" },
54 { 0x434d, "C-Media" },
55 { 0x8384, "SigmaTel" },
56 {} /* terminator */
57 };
58
59 /* codec presets */
60 #include "hda_patch.h"
61
62
63 /**
64 * snd_hda_codec_read - send a command and get the response
65 * @codec: the HDA codec
66 * @nid: NID to send the command
67 * @direct: direct flag
68 * @verb: the verb to send
69 * @parm: the parameter for the verb
70 *
71 * Send a single command and read the corresponding response.
72 *
73 * Returns the obtained response value, or -1 for an error.
74 */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76 unsigned int verb, unsigned int parm)
77 {
78 unsigned int res;
79 down(&codec->bus->cmd_mutex);
80 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 up(&codec->bus->cmd_mutex);
85 return res;
86 }
87
88 /**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
95 *
96 * Send a single command without waiting for response.
97 *
98 * Returns 0 if successful, or a negative error code.
99 */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
102 {
103 int err;
104 down(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 up(&codec->bus->cmd_mutex);
107 return err;
108 }
109
110 /**
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
114 *
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
117 */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
129 *
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
132 */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135 unsigned int parm;
136
137 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138 *start_id = (parm >> 16) & 0x7fff;
139 return (int)(parm & 0x7fff);
140 }
141
142 /**
143 * snd_hda_get_connections - get connection list
144 * @codec: the HDA codec
145 * @nid: NID to parse
146 * @conn_list: connection list array
147 * @max_conns: max. number of connections to store
148 *
149 * Parses the connection list of the given widget and stores the list
150 * of NIDs.
151 *
152 * Returns the number of connections, or a negative error code.
153 */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155 hda_nid_t *conn_list, int max_conns)
156 {
157 unsigned int parm;
158 int i, j, conn_len, num_tupples, conns;
159 unsigned int shift, num_elems, mask;
160
161 snd_assert(conn_list && max_conns > 0, return -EINVAL);
162
163 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
164 if (parm & AC_CLIST_LONG) {
165 /* long form */
166 shift = 16;
167 num_elems = 2;
168 } else {
169 /* short form */
170 shift = 8;
171 num_elems = 4;
172 }
173 conn_len = parm & AC_CLIST_LENGTH;
174 num_tupples = num_elems / 2;
175 mask = (1 << (shift-1)) - 1;
176
177 if (! conn_len)
178 return 0; /* no connection */
179
180 if (conn_len == 1) {
181 /* single connection */
182 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183 conn_list[0] = parm & mask;
184 return 1;
185 }
186
187 /* multi connection */
188 conns = 0;
189 for (i = 0; i < conn_len; i += num_elems) {
190 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
191 for (j = 0; j < num_tupples; j++) {
192 int range_val;
193 hda_nid_t val1, val2, n;
194 range_val = parm & (1 << (shift-1)); /* ranges */
195 val1 = parm & mask;
196 parm >>= shift;
197 val2 = parm & mask;
198 parm >>= shift;
199 if (range_val) {
200 /* ranges between val1 and val2 */
201 if (val1 > val2) {
202 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
203 continue;
204 }
205 for (n = val1; n <= val2; n++) {
206 if (conns >= max_conns)
207 return -EINVAL;
208 conn_list[conns++] = n;
209 }
210 } else {
211 if (! val1)
212 break;
213 if (conns >= max_conns)
214 return -EINVAL;
215 conn_list[conns++] = val1;
216 if (! val2)
217 break;
218 if (conns >= max_conns)
219 return -EINVAL;
220 conn_list[conns++] = val2;
221 }
222 }
223 }
224 return conns;
225 }
226
227
228 /**
229 * snd_hda_queue_unsol_event - add an unsolicited event to queue
230 * @bus: the BUS
231 * @res: unsolicited event (lower 32bit of RIRB entry)
232 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
233 *
234 * Adds the given event to the queue. The events are processed in
235 * the workqueue asynchronously. Call this function in the interrupt
236 * hanlder when RIRB receives an unsolicited event.
237 *
238 * Returns 0 if successful, or a negative error code.
239 */
240 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
241 {
242 struct hda_bus_unsolicited *unsol;
243 unsigned int wp;
244
245 if ((unsol = bus->unsol) == NULL)
246 return 0;
247
248 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
249 unsol->wp = wp;
250
251 wp <<= 1;
252 unsol->queue[wp] = res;
253 unsol->queue[wp + 1] = res_ex;
254
255 queue_work(unsol->workq, &unsol->work);
256
257 return 0;
258 }
259
260 /*
261 * process queueud unsolicited events
262 */
263 static void process_unsol_events(void *data)
264 {
265 struct hda_bus *bus = data;
266 struct hda_bus_unsolicited *unsol = bus->unsol;
267 struct hda_codec *codec;
268 unsigned int rp, caddr, res;
269
270 while (unsol->rp != unsol->wp) {
271 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
272 unsol->rp = rp;
273 rp <<= 1;
274 res = unsol->queue[rp];
275 caddr = unsol->queue[rp + 1];
276 if (! (caddr & (1 << 4))) /* no unsolicited event? */
277 continue;
278 codec = bus->caddr_tbl[caddr & 0x0f];
279 if (codec && codec->patch_ops.unsol_event)
280 codec->patch_ops.unsol_event(codec, res);
281 }
282 }
283
284 /*
285 * initialize unsolicited queue
286 */
287 static int init_unsol_queue(struct hda_bus *bus)
288 {
289 struct hda_bus_unsolicited *unsol;
290
291 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
292 if (! unsol) {
293 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
294 return -ENOMEM;
295 }
296 unsol->workq = create_workqueue("hda_codec");
297 if (! unsol->workq) {
298 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
299 kfree(unsol);
300 return -ENOMEM;
301 }
302 INIT_WORK(&unsol->work, process_unsol_events, bus);
303 bus->unsol = unsol;
304 return 0;
305 }
306
307 /*
308 * destructor
309 */
310 static void snd_hda_codec_free(struct hda_codec *codec);
311
312 static int snd_hda_bus_free(struct hda_bus *bus)
313 {
314 struct list_head *p, *n;
315
316 if (! bus)
317 return 0;
318 if (bus->unsol) {
319 destroy_workqueue(bus->unsol->workq);
320 kfree(bus->unsol);
321 }
322 list_for_each_safe(p, n, &bus->codec_list) {
323 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
324 snd_hda_codec_free(codec);
325 }
326 if (bus->ops.private_free)
327 bus->ops.private_free(bus);
328 kfree(bus);
329 return 0;
330 }
331
332 static int snd_hda_bus_dev_free(snd_device_t *device)
333 {
334 struct hda_bus *bus = device->device_data;
335 return snd_hda_bus_free(bus);
336 }
337
338 /**
339 * snd_hda_bus_new - create a HDA bus
340 * @card: the card entry
341 * @temp: the template for hda_bus information
342 * @busp: the pointer to store the created bus instance
343 *
344 * Returns 0 if successful, or a negative error code.
345 */
346 int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
347 struct hda_bus **busp)
348 {
349 struct hda_bus *bus;
350 int err;
351 static snd_device_ops_t dev_ops = {
352 .dev_free = snd_hda_bus_dev_free,
353 };
354
355 snd_assert(temp, return -EINVAL);
356 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
357
358 if (busp)
359 *busp = NULL;
360
361 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
362 if (bus == NULL) {
363 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
364 return -ENOMEM;
365 }
366
367 bus->card = card;
368 bus->private_data = temp->private_data;
369 bus->pci = temp->pci;
370 bus->modelname = temp->modelname;
371 bus->ops = temp->ops;
372
373 init_MUTEX(&bus->cmd_mutex);
374 INIT_LIST_HEAD(&bus->codec_list);
375
376 init_unsol_queue(bus);
377
378 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
379 snd_hda_bus_free(bus);
380 return err;
381 }
382 if (busp)
383 *busp = bus;
384 return 0;
385 }
386
387
388 /*
389 * find a matching codec preset
390 */
391 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
392 {
393 const struct hda_codec_preset **tbl, *preset;
394
395 for (tbl = hda_preset_tables; *tbl; tbl++) {
396 for (preset = *tbl; preset->id; preset++) {
397 u32 mask = preset->mask;
398 if (! mask)
399 mask = ~0;
400 if (preset->id == (codec->vendor_id & mask))
401 return preset;
402 }
403 }
404 return NULL;
405 }
406
407 /*
408 * snd_hda_get_codec_name - store the codec name
409 */
410 void snd_hda_get_codec_name(struct hda_codec *codec,
411 char *name, int namelen)
412 {
413 const struct hda_vendor_id *c;
414 const char *vendor = NULL;
415 u16 vendor_id = codec->vendor_id >> 16;
416 char tmp[16];
417
418 for (c = hda_vendor_ids; c->id; c++) {
419 if (c->id == vendor_id) {
420 vendor = c->name;
421 break;
422 }
423 }
424 if (! vendor) {
425 sprintf(tmp, "Generic %04x", vendor_id);
426 vendor = tmp;
427 }
428 if (codec->preset && codec->preset->name)
429 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
430 else
431 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
432 }
433
434 /*
435 * look for an AFG and MFG nodes
436 */
437 static void setup_fg_nodes(struct hda_codec *codec)
438 {
439 int i, total_nodes;
440 hda_nid_t nid;
441
442 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
443 for (i = 0; i < total_nodes; i++, nid++) {
444 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
445 case AC_GRP_AUDIO_FUNCTION:
446 codec->afg = nid;
447 break;
448 case AC_GRP_MODEM_FUNCTION:
449 codec->mfg = nid;
450 break;
451 default:
452 break;
453 }
454 }
455 }
456
457 /*
458 * codec destructor
459 */
460 static void snd_hda_codec_free(struct hda_codec *codec)
461 {
462 if (! codec)
463 return;
464 list_del(&codec->list);
465 codec->bus->caddr_tbl[codec->addr] = NULL;
466 if (codec->patch_ops.free)
467 codec->patch_ops.free(codec);
468 kfree(codec);
469 }
470
471 static void init_amp_hash(struct hda_codec *codec);
472
473 /**
474 * snd_hda_codec_new - create a HDA codec
475 * @bus: the bus to assign
476 * @codec_addr: the codec address
477 * @codecp: the pointer to store the generated codec
478 *
479 * Returns 0 if successful, or a negative error code.
480 */
481 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
482 struct hda_codec **codecp)
483 {
484 struct hda_codec *codec;
485 char component[13];
486 int err;
487
488 snd_assert(bus, return -EINVAL);
489 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
490
491 if (bus->caddr_tbl[codec_addr]) {
492 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
493 return -EBUSY;
494 }
495
496 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
497 if (codec == NULL) {
498 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
499 return -ENOMEM;
500 }
501
502 codec->bus = bus;
503 codec->addr = codec_addr;
504 init_MUTEX(&codec->spdif_mutex);
505 init_amp_hash(codec);
506
507 list_add_tail(&codec->list, &bus->codec_list);
508 bus->caddr_tbl[codec_addr] = codec;
509
510 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
511 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
512 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
513
514 setup_fg_nodes(codec);
515 if (! codec->afg && ! codec->mfg) {
516 snd_printdd("hda_codec: no AFG or MFG node found\n");
517 snd_hda_codec_free(codec);
518 return -ENODEV;
519 }
520
521 if (! codec->subsystem_id) {
522 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
523 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
524 AC_VERB_GET_SUBSYSTEM_ID,
525 0);
526 }
527
528 codec->preset = find_codec_preset(codec);
529 if (! *bus->card->mixername)
530 snd_hda_get_codec_name(codec, bus->card->mixername,
531 sizeof(bus->card->mixername));
532
533 if (codec->preset && codec->preset->patch)
534 err = codec->preset->patch(codec);
535 else
536 err = snd_hda_parse_generic_codec(codec);
537 if (err < 0) {
538 snd_hda_codec_free(codec);
539 return err;
540 }
541
542 snd_hda_codec_proc_new(codec);
543
544 sprintf(component, "HDA:%08x", codec->vendor_id);
545 snd_component_add(codec->bus->card, component);
546
547 if (codecp)
548 *codecp = codec;
549 return 0;
550 }
551
552 /**
553 * snd_hda_codec_setup_stream - set up the codec for streaming
554 * @codec: the CODEC to set up
555 * @nid: the NID to set up
556 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
557 * @channel_id: channel id to pass, zero based.
558 * @format: stream format.
559 */
560 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
561 int channel_id, int format)
562 {
563 if (! nid)
564 return;
565
566 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
567 nid, stream_tag, channel_id, format);
568 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
569 (stream_tag << 4) | channel_id);
570 msleep(1);
571 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
572 }
573
574
575 /*
576 * amp access functions
577 */
578
579 /* FIXME: more better hash key? */
580 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
581 #define INFO_AMP_CAPS (1<<0)
582 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
583
584 /* initialize the hash table */
585 static void init_amp_hash(struct hda_codec *codec)
586 {
587 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
588 codec->num_amp_entries = 0;
589 }
590
591 /* query the hash. allocate an entry if not found. */
592 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
593 {
594 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
595 u16 cur = codec->amp_hash[idx];
596 struct hda_amp_info *info;
597
598 while (cur != 0xffff) {
599 info = &codec->amp_info[cur];
600 if (info->key == key)
601 return info;
602 cur = info->next;
603 }
604
605 /* add a new hash entry */
606 if (codec->num_amp_entries >= ARRAY_SIZE(codec->amp_info)) {
607 snd_printk(KERN_ERR "hda_codec: Tooooo many amps!\n");
608 return NULL;
609 }
610 cur = codec->num_amp_entries++;
611 info = &codec->amp_info[cur];
612 info->key = key;
613 info->status = 0; /* not initialized yet */
614 info->next = codec->amp_hash[idx];
615 codec->amp_hash[idx] = cur;
616
617 return info;
618 }
619
620 /*
621 * query AMP capabilities for the given widget and direction
622 */
623 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
624 {
625 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
626
627 if (! info)
628 return 0;
629 if (! (info->status & INFO_AMP_CAPS)) {
630 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
631 nid = codec->afg;
632 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
633 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
634 info->status |= INFO_AMP_CAPS;
635 }
636 return info->amp_caps;
637 }
638
639 /*
640 * read the current volume to info
641 * if the cache exists, read the cache value.
642 */
643 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
644 hda_nid_t nid, int ch, int direction, int index)
645 {
646 u32 val, parm;
647
648 if (info->status & INFO_AMP_VOL(ch))
649 return info->vol[ch];
650
651 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
652 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
653 parm |= index;
654 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
655 info->vol[ch] = val & 0xff;
656 info->status |= INFO_AMP_VOL(ch);
657 return info->vol[ch];
658 }
659
660 /*
661 * write the current volume in info to the h/w and update the cache
662 */
663 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
664 hda_nid_t nid, int ch, int direction, int index, int val)
665 {
666 u32 parm;
667
668 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
669 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
670 parm |= index << AC_AMP_SET_INDEX_SHIFT;
671 parm |= val;
672 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
673 info->vol[ch] = val;
674 }
675
676 /*
677 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
678 */
679 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
680 {
681 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
682 if (! info)
683 return 0;
684 return get_vol_mute(codec, info, nid, ch, direction, index);
685 }
686
687 /*
688 * update the AMP value, mask = bit mask to set, val = the value
689 */
690 static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
691 {
692 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
693
694 if (! info)
695 return 0;
696 val &= mask;
697 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
698 if (info->vol[ch] == val && ! codec->in_resume)
699 return 0;
700 put_vol_mute(codec, info, nid, ch, direction, idx, val);
701 return 1;
702 }
703
704
705 /*
706 * AMP control callbacks
707 */
708 /* retrieve parameters from private_value */
709 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
710 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
711 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
712 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
713
714 /* volume */
715 int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
716 {
717 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
718 u16 nid = get_amp_nid(kcontrol);
719 u8 chs = get_amp_channels(kcontrol);
720 int dir = get_amp_direction(kcontrol);
721 u32 caps;
722
723 caps = query_amp_caps(codec, nid, dir);
724 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
725 if (! caps) {
726 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
727 return -EINVAL;
728 }
729 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
730 uinfo->count = chs == 3 ? 2 : 1;
731 uinfo->value.integer.min = 0;
732 uinfo->value.integer.max = caps;
733 return 0;
734 }
735
736 int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
737 {
738 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
739 hda_nid_t nid = get_amp_nid(kcontrol);
740 int chs = get_amp_channels(kcontrol);
741 int dir = get_amp_direction(kcontrol);
742 int idx = get_amp_index(kcontrol);
743 long *valp = ucontrol->value.integer.value;
744
745 if (chs & 1)
746 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
747 if (chs & 2)
748 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
749 return 0;
750 }
751
752 int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
753 {
754 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
755 hda_nid_t nid = get_amp_nid(kcontrol);
756 int chs = get_amp_channels(kcontrol);
757 int dir = get_amp_direction(kcontrol);
758 int idx = get_amp_index(kcontrol);
759 long *valp = ucontrol->value.integer.value;
760 int change = 0;
761
762 if (chs & 1) {
763 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
764 0x7f, *valp);
765 valp++;
766 }
767 if (chs & 2)
768 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
769 0x7f, *valp);
770 return change;
771 }
772
773 /* switch */
774 int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
775 {
776 int chs = get_amp_channels(kcontrol);
777
778 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
779 uinfo->count = chs == 3 ? 2 : 1;
780 uinfo->value.integer.min = 0;
781 uinfo->value.integer.max = 1;
782 return 0;
783 }
784
785 int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
786 {
787 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
788 hda_nid_t nid = get_amp_nid(kcontrol);
789 int chs = get_amp_channels(kcontrol);
790 int dir = get_amp_direction(kcontrol);
791 int idx = get_amp_index(kcontrol);
792 long *valp = ucontrol->value.integer.value;
793
794 if (chs & 1)
795 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
796 if (chs & 2)
797 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
798 return 0;
799 }
800
801 int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
802 {
803 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
804 hda_nid_t nid = get_amp_nid(kcontrol);
805 int chs = get_amp_channels(kcontrol);
806 int dir = get_amp_direction(kcontrol);
807 int idx = get_amp_index(kcontrol);
808 long *valp = ucontrol->value.integer.value;
809 int change = 0;
810
811 if (chs & 1) {
812 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
813 0x80, *valp ? 0 : 0x80);
814 valp++;
815 }
816 if (chs & 2)
817 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
818 0x80, *valp ? 0 : 0x80);
819
820 return change;
821 }
822
823 /*
824 * bound volume controls
825 *
826 * bind multiple volumes (# indices, from 0)
827 */
828
829 #define AMP_VAL_IDX_SHIFT 19
830 #define AMP_VAL_IDX_MASK (0x0f<<19)
831
832 int snd_hda_mixer_bind_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
833 {
834 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
835 unsigned long pval;
836 int err;
837
838 down(&codec->spdif_mutex); /* reuse spdif_mutex */
839 pval = kcontrol->private_value;
840 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
841 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
842 kcontrol->private_value = pval;
843 up(&codec->spdif_mutex);
844 return err;
845 }
846
847 int snd_hda_mixer_bind_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
848 {
849 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
850 unsigned long pval;
851 int i, indices, err = 0, change = 0;
852
853 down(&codec->spdif_mutex); /* reuse spdif_mutex */
854 pval = kcontrol->private_value;
855 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
856 for (i = 0; i < indices; i++) {
857 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
858 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
859 if (err < 0)
860 break;
861 change |= err;
862 }
863 kcontrol->private_value = pval;
864 up(&codec->spdif_mutex);
865 return err < 0 ? err : change;
866 }
867
868 /*
869 * SPDIF out controls
870 */
871
872 static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
873 {
874 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
875 uinfo->count = 1;
876 return 0;
877 }
878
879 static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
880 {
881 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
882 IEC958_AES0_NONAUDIO |
883 IEC958_AES0_CON_EMPHASIS_5015 |
884 IEC958_AES0_CON_NOT_COPYRIGHT;
885 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
886 IEC958_AES1_CON_ORIGINAL;
887 return 0;
888 }
889
890 static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
891 {
892 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
893 IEC958_AES0_NONAUDIO |
894 IEC958_AES0_PRO_EMPHASIS_5015;
895 return 0;
896 }
897
898 static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
899 {
900 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
901
902 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
903 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
904 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
905 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
906
907 return 0;
908 }
909
910 /* convert from SPDIF status bits to HDA SPDIF bits
911 * bit 0 (DigEn) is always set zero (to be filled later)
912 */
913 static unsigned short convert_from_spdif_status(unsigned int sbits)
914 {
915 unsigned short val = 0;
916
917 if (sbits & IEC958_AES0_PROFESSIONAL)
918 val |= 1 << 6;
919 if (sbits & IEC958_AES0_NONAUDIO)
920 val |= 1 << 5;
921 if (sbits & IEC958_AES0_PROFESSIONAL) {
922 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
923 val |= 1 << 3;
924 } else {
925 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
926 val |= 1 << 3;
927 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
928 val |= 1 << 4;
929 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
930 val |= 1 << 7;
931 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
932 }
933 return val;
934 }
935
936 /* convert to SPDIF status bits from HDA SPDIF bits
937 */
938 static unsigned int convert_to_spdif_status(unsigned short val)
939 {
940 unsigned int sbits = 0;
941
942 if (val & (1 << 5))
943 sbits |= IEC958_AES0_NONAUDIO;
944 if (val & (1 << 6))
945 sbits |= IEC958_AES0_PROFESSIONAL;
946 if (sbits & IEC958_AES0_PROFESSIONAL) {
947 if (sbits & (1 << 3))
948 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
949 } else {
950 if (val & (1 << 3))
951 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
952 if (! (val & (1 << 4)))
953 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
954 if (val & (1 << 7))
955 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
956 sbits |= val & (0x7f << 8);
957 }
958 return sbits;
959 }
960
961 static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
962 {
963 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
964 hda_nid_t nid = kcontrol->private_value;
965 unsigned short val;
966 int change;
967
968 down(&codec->spdif_mutex);
969 codec->spdif_status = ucontrol->value.iec958.status[0] |
970 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
971 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
972 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
973 val = convert_from_spdif_status(codec->spdif_status);
974 val |= codec->spdif_ctls & 1;
975 change = codec->spdif_ctls != val;
976 codec->spdif_ctls = val;
977
978 if (change || codec->in_resume) {
979 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
980 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
981 }
982
983 up(&codec->spdif_mutex);
984 return change;
985 }
986
987 static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
988 {
989 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
990 uinfo->count = 1;
991 uinfo->value.integer.min = 0;
992 uinfo->value.integer.max = 1;
993 return 0;
994 }
995
996 static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
997 {
998 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
999
1000 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1001 return 0;
1002 }
1003
1004 static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1005 {
1006 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1007 hda_nid_t nid = kcontrol->private_value;
1008 unsigned short val;
1009 int change;
1010
1011 down(&codec->spdif_mutex);
1012 val = codec->spdif_ctls & ~1;
1013 if (ucontrol->value.integer.value[0])
1014 val |= 1;
1015 change = codec->spdif_ctls != val;
1016 if (change || codec->in_resume) {
1017 codec->spdif_ctls = val;
1018 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1019 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1020 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1021 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1022 }
1023 up(&codec->spdif_mutex);
1024 return change;
1025 }
1026
1027 static snd_kcontrol_new_t dig_mixes[] = {
1028 {
1029 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1030 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1031 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1032 .info = snd_hda_spdif_mask_info,
1033 .get = snd_hda_spdif_cmask_get,
1034 },
1035 {
1036 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1037 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1038 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1039 .info = snd_hda_spdif_mask_info,
1040 .get = snd_hda_spdif_pmask_get,
1041 },
1042 {
1043 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1044 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1045 .info = snd_hda_spdif_mask_info,
1046 .get = snd_hda_spdif_default_get,
1047 .put = snd_hda_spdif_default_put,
1048 },
1049 {
1050 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1051 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1052 .info = snd_hda_spdif_out_switch_info,
1053 .get = snd_hda_spdif_out_switch_get,
1054 .put = snd_hda_spdif_out_switch_put,
1055 },
1056 { } /* end */
1057 };
1058
1059 /**
1060 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1061 * @codec: the HDA codec
1062 * @nid: audio out widget NID
1063 *
1064 * Creates controls related with the SPDIF output.
1065 * Called from each patch supporting the SPDIF out.
1066 *
1067 * Returns 0 if successful, or a negative error code.
1068 */
1069 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1070 {
1071 int err;
1072 snd_kcontrol_t *kctl;
1073 snd_kcontrol_new_t *dig_mix;
1074
1075 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1076 kctl = snd_ctl_new1(dig_mix, codec);
1077 kctl->private_value = nid;
1078 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1079 return err;
1080 }
1081 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1082 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1083 return 0;
1084 }
1085
1086 /*
1087 * SPDIF input
1088 */
1089
1090 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1091
1092 static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1093 {
1094 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1095
1096 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1097 return 0;
1098 }
1099
1100 static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1101 {
1102 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1103 hda_nid_t nid = kcontrol->private_value;
1104 unsigned int val = !!ucontrol->value.integer.value[0];
1105 int change;
1106
1107 down(&codec->spdif_mutex);
1108 change = codec->spdif_in_enable != val;
1109 if (change || codec->in_resume) {
1110 codec->spdif_in_enable = val;
1111 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1112 }
1113 up(&codec->spdif_mutex);
1114 return change;
1115 }
1116
1117 static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1118 {
1119 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1120 hda_nid_t nid = kcontrol->private_value;
1121 unsigned short val;
1122 unsigned int sbits;
1123
1124 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1125 sbits = convert_to_spdif_status(val);
1126 ucontrol->value.iec958.status[0] = sbits;
1127 ucontrol->value.iec958.status[1] = sbits >> 8;
1128 ucontrol->value.iec958.status[2] = sbits >> 16;
1129 ucontrol->value.iec958.status[3] = sbits >> 24;
1130 return 0;
1131 }
1132
1133 static snd_kcontrol_new_t dig_in_ctls[] = {
1134 {
1135 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1136 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1137 .info = snd_hda_spdif_in_switch_info,
1138 .get = snd_hda_spdif_in_switch_get,
1139 .put = snd_hda_spdif_in_switch_put,
1140 },
1141 {
1142 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1143 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1144 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1145 .info = snd_hda_spdif_mask_info,
1146 .get = snd_hda_spdif_in_status_get,
1147 },
1148 { } /* end */
1149 };
1150
1151 /**
1152 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1153 * @codec: the HDA codec
1154 * @nid: audio in widget NID
1155 *
1156 * Creates controls related with the SPDIF input.
1157 * Called from each patch supporting the SPDIF in.
1158 *
1159 * Returns 0 if successful, or a negative error code.
1160 */
1161 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1162 {
1163 int err;
1164 snd_kcontrol_t *kctl;
1165 snd_kcontrol_new_t *dig_mix;
1166
1167 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1168 kctl = snd_ctl_new1(dig_mix, codec);
1169 kctl->private_value = nid;
1170 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1171 return err;
1172 }
1173 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1174 return 0;
1175 }
1176
1177
1178 /**
1179 * snd_hda_build_controls - build mixer controls
1180 * @bus: the BUS
1181 *
1182 * Creates mixer controls for each codec included in the bus.
1183 *
1184 * Returns 0 if successful, otherwise a negative error code.
1185 */
1186 int snd_hda_build_controls(struct hda_bus *bus)
1187 {
1188 struct list_head *p;
1189
1190 /* build controls */
1191 list_for_each(p, &bus->codec_list) {
1192 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1193 int err;
1194 if (! codec->patch_ops.build_controls)
1195 continue;
1196 err = codec->patch_ops.build_controls(codec);
1197 if (err < 0)
1198 return err;
1199 }
1200
1201 /* initialize */
1202 list_for_each(p, &bus->codec_list) {
1203 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1204 int err;
1205 if (! codec->patch_ops.init)
1206 continue;
1207 err = codec->patch_ops.init(codec);
1208 if (err < 0)
1209 return err;
1210 }
1211 return 0;
1212 }
1213
1214
1215 /*
1216 * stream formats
1217 */
1218 struct hda_rate_tbl {
1219 unsigned int hz;
1220 unsigned int alsa_bits;
1221 unsigned int hda_fmt;
1222 };
1223
1224 static struct hda_rate_tbl rate_bits[] = {
1225 /* rate in Hz, ALSA rate bitmask, HDA format value */
1226
1227 /* autodetected value used in snd_hda_query_supported_pcm */
1228 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1229 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1230 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1231 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1232 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1233 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1234 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1235 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1236 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1237 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1238 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1239
1240 /* not autodetected value */
1241 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1242
1243 { 0 } /* terminator */
1244 };
1245
1246 /**
1247 * snd_hda_calc_stream_format - calculate format bitset
1248 * @rate: the sample rate
1249 * @channels: the number of channels
1250 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1251 * @maxbps: the max. bps
1252 *
1253 * Calculate the format bitset from the given rate, channels and th PCM format.
1254 *
1255 * Return zero if invalid.
1256 */
1257 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1258 unsigned int channels,
1259 unsigned int format,
1260 unsigned int maxbps)
1261 {
1262 int i;
1263 unsigned int val = 0;
1264
1265 for (i = 0; rate_bits[i].hz; i++)
1266 if (rate_bits[i].hz == rate) {
1267 val = rate_bits[i].hda_fmt;
1268 break;
1269 }
1270 if (! rate_bits[i].hz) {
1271 snd_printdd("invalid rate %d\n", rate);
1272 return 0;
1273 }
1274
1275 if (channels == 0 || channels > 8) {
1276 snd_printdd("invalid channels %d\n", channels);
1277 return 0;
1278 }
1279 val |= channels - 1;
1280
1281 switch (snd_pcm_format_width(format)) {
1282 case 8: val |= 0x00; break;
1283 case 16: val |= 0x10; break;
1284 case 20:
1285 case 24:
1286 case 32:
1287 if (maxbps >= 32)
1288 val |= 0x40;
1289 else if (maxbps >= 24)
1290 val |= 0x30;
1291 else
1292 val |= 0x20;
1293 break;
1294 default:
1295 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1296 return 0;
1297 }
1298
1299 return val;
1300 }
1301
1302 /**
1303 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1304 * @codec: the HDA codec
1305 * @nid: NID to query
1306 * @ratesp: the pointer to store the detected rate bitflags
1307 * @formatsp: the pointer to store the detected formats
1308 * @bpsp: the pointer to store the detected format widths
1309 *
1310 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1311 * or @bsps argument is ignored.
1312 *
1313 * Returns 0 if successful, otherwise a negative error code.
1314 */
1315 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1316 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1317 {
1318 int i;
1319 unsigned int val, streams;
1320
1321 val = 0;
1322 if (nid != codec->afg &&
1323 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1324 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1325 if (val == -1)
1326 return -EIO;
1327 }
1328 if (! val)
1329 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1330
1331 if (ratesp) {
1332 u32 rates = 0;
1333 for (i = 0; rate_bits[i].hz; i++) {
1334 if (val & (1 << i))
1335 rates |= rate_bits[i].alsa_bits;
1336 }
1337 *ratesp = rates;
1338 }
1339
1340 if (formatsp || bpsp) {
1341 u64 formats = 0;
1342 unsigned int bps;
1343 unsigned int wcaps;
1344
1345 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1346 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1347 if (streams == -1)
1348 return -EIO;
1349 if (! streams) {
1350 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1351 if (streams == -1)
1352 return -EIO;
1353 }
1354
1355 bps = 0;
1356 if (streams & AC_SUPFMT_PCM) {
1357 if (val & AC_SUPPCM_BITS_8) {
1358 formats |= SNDRV_PCM_FMTBIT_U8;
1359 bps = 8;
1360 }
1361 if (val & AC_SUPPCM_BITS_16) {
1362 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1363 bps = 16;
1364 }
1365 if (wcaps & AC_WCAP_DIGITAL) {
1366 if (val & AC_SUPPCM_BITS_32)
1367 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1368 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1369 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1370 if (val & AC_SUPPCM_BITS_24)
1371 bps = 24;
1372 else if (val & AC_SUPPCM_BITS_20)
1373 bps = 20;
1374 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1375 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1376 if (val & AC_SUPPCM_BITS_32)
1377 bps = 32;
1378 else if (val & AC_SUPPCM_BITS_20)
1379 bps = 20;
1380 else if (val & AC_SUPPCM_BITS_24)
1381 bps = 24;
1382 }
1383 }
1384 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1385 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1386 bps = 32;
1387 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1388 /* temporary hack: we have still no proper support
1389 * for the direct AC3 stream...
1390 */
1391 formats |= SNDRV_PCM_FMTBIT_U8;
1392 bps = 8;
1393 }
1394 if (formatsp)
1395 *formatsp = formats;
1396 if (bpsp)
1397 *bpsp = bps;
1398 }
1399
1400 return 0;
1401 }
1402
1403 /**
1404 * snd_hda_is_supported_format - check whether the given node supports the format val
1405 *
1406 * Returns 1 if supported, 0 if not.
1407 */
1408 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1409 unsigned int format)
1410 {
1411 int i;
1412 unsigned int val = 0, rate, stream;
1413
1414 if (nid != codec->afg &&
1415 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1416 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1417 if (val == -1)
1418 return 0;
1419 }
1420 if (! val) {
1421 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1422 if (val == -1)
1423 return 0;
1424 }
1425
1426 rate = format & 0xff00;
1427 for (i = 0; rate_bits[i].hz; i++)
1428 if (rate_bits[i].hda_fmt == rate) {
1429 if (val & (1 << i))
1430 break;
1431 return 0;
1432 }
1433 if (! rate_bits[i].hz)
1434 return 0;
1435
1436 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1437 if (stream == -1)
1438 return 0;
1439 if (! stream && nid != codec->afg)
1440 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1441 if (! stream || stream == -1)
1442 return 0;
1443
1444 if (stream & AC_SUPFMT_PCM) {
1445 switch (format & 0xf0) {
1446 case 0x00:
1447 if (! (val & AC_SUPPCM_BITS_8))
1448 return 0;
1449 break;
1450 case 0x10:
1451 if (! (val & AC_SUPPCM_BITS_16))
1452 return 0;
1453 break;
1454 case 0x20:
1455 if (! (val & AC_SUPPCM_BITS_20))
1456 return 0;
1457 break;
1458 case 0x30:
1459 if (! (val & AC_SUPPCM_BITS_24))
1460 return 0;
1461 break;
1462 case 0x40:
1463 if (! (val & AC_SUPPCM_BITS_32))
1464 return 0;
1465 break;
1466 default:
1467 return 0;
1468 }
1469 } else {
1470 /* FIXME: check for float32 and AC3? */
1471 }
1472
1473 return 1;
1474 }
1475
1476 /*
1477 * PCM stuff
1478 */
1479 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1480 struct hda_codec *codec,
1481 snd_pcm_substream_t *substream)
1482 {
1483 return 0;
1484 }
1485
1486 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1487 struct hda_codec *codec,
1488 unsigned int stream_tag,
1489 unsigned int format,
1490 snd_pcm_substream_t *substream)
1491 {
1492 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1493 return 0;
1494 }
1495
1496 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1497 struct hda_codec *codec,
1498 snd_pcm_substream_t *substream)
1499 {
1500 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1501 return 0;
1502 }
1503
1504 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1505 {
1506 if (info->nid) {
1507 /* query support PCM information from the given NID */
1508 if (! info->rates || ! info->formats)
1509 snd_hda_query_supported_pcm(codec, info->nid,
1510 info->rates ? NULL : &info->rates,
1511 info->formats ? NULL : &info->formats,
1512 info->maxbps ? NULL : &info->maxbps);
1513 }
1514 if (info->ops.open == NULL)
1515 info->ops.open = hda_pcm_default_open_close;
1516 if (info->ops.close == NULL)
1517 info->ops.close = hda_pcm_default_open_close;
1518 if (info->ops.prepare == NULL) {
1519 snd_assert(info->nid, return -EINVAL);
1520 info->ops.prepare = hda_pcm_default_prepare;
1521 }
1522 if (info->ops.cleanup == NULL) {
1523 snd_assert(info->nid, return -EINVAL);
1524 info->ops.cleanup = hda_pcm_default_cleanup;
1525 }
1526 return 0;
1527 }
1528
1529 /**
1530 * snd_hda_build_pcms - build PCM information
1531 * @bus: the BUS
1532 *
1533 * Create PCM information for each codec included in the bus.
1534 *
1535 * The build_pcms codec patch is requested to set up codec->num_pcms and
1536 * codec->pcm_info properly. The array is referred by the top-level driver
1537 * to create its PCM instances.
1538 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1539 * callback.
1540 *
1541 * At least, substreams, channels_min and channels_max must be filled for
1542 * each stream. substreams = 0 indicates that the stream doesn't exist.
1543 * When rates and/or formats are zero, the supported values are queried
1544 * from the given nid. The nid is used also by the default ops.prepare
1545 * and ops.cleanup callbacks.
1546 *
1547 * The driver needs to call ops.open in its open callback. Similarly,
1548 * ops.close is supposed to be called in the close callback.
1549 * ops.prepare should be called in the prepare or hw_params callback
1550 * with the proper parameters for set up.
1551 * ops.cleanup should be called in hw_free for clean up of streams.
1552 *
1553 * This function returns 0 if successfull, or a negative error code.
1554 */
1555 int snd_hda_build_pcms(struct hda_bus *bus)
1556 {
1557 struct list_head *p;
1558
1559 list_for_each(p, &bus->codec_list) {
1560 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1561 unsigned int pcm, s;
1562 int err;
1563 if (! codec->patch_ops.build_pcms)
1564 continue;
1565 err = codec->patch_ops.build_pcms(codec);
1566 if (err < 0)
1567 return err;
1568 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1569 for (s = 0; s < 2; s++) {
1570 struct hda_pcm_stream *info;
1571 info = &codec->pcm_info[pcm].stream[s];
1572 if (! info->substreams)
1573 continue;
1574 err = set_pcm_default_values(codec, info);
1575 if (err < 0)
1576 return err;
1577 }
1578 }
1579 }
1580 return 0;
1581 }
1582
1583
1584 /**
1585 * snd_hda_check_board_config - compare the current codec with the config table
1586 * @codec: the HDA codec
1587 * @tbl: configuration table, terminated by null entries
1588 *
1589 * Compares the modelname or PCI subsystem id of the current codec with the
1590 * given configuration table. If a matching entry is found, returns its
1591 * config value (supposed to be 0 or positive).
1592 *
1593 * If no entries are matching, the function returns a negative value.
1594 */
1595 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1596 {
1597 const struct hda_board_config *c;
1598
1599 if (codec->bus->modelname) {
1600 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1601 if (c->modelname &&
1602 ! strcmp(codec->bus->modelname, c->modelname)) {
1603 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1604 return c->config;
1605 }
1606 }
1607 }
1608
1609 if (codec->bus->pci) {
1610 u16 subsystem_vendor, subsystem_device;
1611 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1612 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1613 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1614 if (c->pci_subvendor == subsystem_vendor &&
1615 (! c->pci_subdevice /* all match */||
1616 (c->pci_subdevice == subsystem_device))) {
1617 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1618 subsystem_vendor, subsystem_device, c->config);
1619 return c->config;
1620 }
1621 }
1622 }
1623 return -1;
1624 }
1625
1626 /**
1627 * snd_hda_add_new_ctls - create controls from the array
1628 * @codec: the HDA codec
1629 * @knew: the array of snd_kcontrol_new_t
1630 *
1631 * This helper function creates and add new controls in the given array.
1632 * The array must be terminated with an empty entry as terminator.
1633 *
1634 * Returns 0 if successful, or a negative error code.
1635 */
1636 int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1637 {
1638 int err;
1639
1640 for (; knew->name; knew++) {
1641 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1642 if (err < 0)
1643 return err;
1644 }
1645 return 0;
1646 }
1647
1648
1649 /*
1650 * input MUX helper
1651 */
1652 int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1653 {
1654 unsigned int index;
1655
1656 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1657 uinfo->count = 1;
1658 uinfo->value.enumerated.items = imux->num_items;
1659 index = uinfo->value.enumerated.item;
1660 if (index >= imux->num_items)
1661 index = imux->num_items - 1;
1662 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1663 return 0;
1664 }
1665
1666 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1667 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1668 unsigned int *cur_val)
1669 {
1670 unsigned int idx;
1671
1672 idx = ucontrol->value.enumerated.item[0];
1673 if (idx >= imux->num_items)
1674 idx = imux->num_items - 1;
1675 if (*cur_val == idx && ! codec->in_resume)
1676 return 0;
1677 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1678 imux->items[idx].index);
1679 *cur_val = idx;
1680 return 1;
1681 }
1682
1683
1684 /*
1685 * Multi-channel / digital-out PCM helper functions
1686 */
1687
1688 /*
1689 * open the digital out in the exclusive mode
1690 */
1691 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1692 {
1693 down(&codec->spdif_mutex);
1694 if (mout->dig_out_used) {
1695 up(&codec->spdif_mutex);
1696 return -EBUSY; /* already being used */
1697 }
1698 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1699 up(&codec->spdif_mutex);
1700 return 0;
1701 }
1702
1703 /*
1704 * release the digital out
1705 */
1706 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1707 {
1708 down(&codec->spdif_mutex);
1709 mout->dig_out_used = 0;
1710 up(&codec->spdif_mutex);
1711 return 0;
1712 }
1713
1714 /*
1715 * set up more restrictions for analog out
1716 */
1717 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1718 snd_pcm_substream_t *substream)
1719 {
1720 substream->runtime->hw.channels_max = mout->max_channels;
1721 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1722 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1723 }
1724
1725 /*
1726 * set up the i/o for analog out
1727 * when the digital out is available, copy the front out to digital out, too.
1728 */
1729 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1730 unsigned int stream_tag,
1731 unsigned int format,
1732 snd_pcm_substream_t *substream)
1733 {
1734 hda_nid_t *nids = mout->dac_nids;
1735 int chs = substream->runtime->channels;
1736 int i;
1737
1738 down(&codec->spdif_mutex);
1739 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1740 if (chs == 2 &&
1741 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1742 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1743 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1744 /* setup digital receiver */
1745 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1746 stream_tag, 0, format);
1747 } else {
1748 mout->dig_out_used = 0;
1749 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1750 }
1751 }
1752 up(&codec->spdif_mutex);
1753
1754 /* front */
1755 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1756 if (mout->hp_nid)
1757 /* headphone out will just decode front left/right (stereo) */
1758 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1759 /* surrounds */
1760 for (i = 1; i < mout->num_dacs; i++) {
1761 if (chs >= (i + 1) * 2) /* independent out */
1762 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1763 format);
1764 else /* copy front */
1765 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1766 format);
1767 }
1768 return 0;
1769 }
1770
1771 /*
1772 * clean up the setting for analog out
1773 */
1774 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1775 {
1776 hda_nid_t *nids = mout->dac_nids;
1777 int i;
1778
1779 for (i = 0; i < mout->num_dacs; i++)
1780 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1781 if (mout->hp_nid)
1782 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1783 down(&codec->spdif_mutex);
1784 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1785 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1786 mout->dig_out_used = 0;
1787 }
1788 up(&codec->spdif_mutex);
1789 return 0;
1790 }
1791
1792 /*
1793 * Helper for automatic ping configuration
1794 */
1795 /* parse all pin widgets and store the useful pin nids to cfg */
1796 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg)
1797 {
1798 hda_nid_t nid, nid_start;
1799 int i, j, nodes;
1800 short seq, sequences[4], assoc_line_out;
1801
1802 memset(cfg, 0, sizeof(*cfg));
1803
1804 memset(sequences, 0, sizeof(sequences));
1805 assoc_line_out = 0;
1806
1807 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1808 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1809 unsigned int wid_caps = snd_hda_param_read(codec, nid,
1810 AC_PAR_AUDIO_WIDGET_CAP);
1811 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1812 unsigned int def_conf;
1813 short assoc, loc;
1814
1815 /* read all default configuration for pin complex */
1816 if (wid_type != AC_WID_PIN)
1817 continue;
1818 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1819 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1820 continue;
1821 loc = get_defcfg_location(def_conf);
1822 switch (get_defcfg_device(def_conf)) {
1823 case AC_JACK_LINE_OUT:
1824 case AC_JACK_SPEAKER:
1825 seq = get_defcfg_sequence(def_conf);
1826 assoc = get_defcfg_association(def_conf);
1827 if (! assoc)
1828 continue;
1829 if (! assoc_line_out)
1830 assoc_line_out = assoc;
1831 else if (assoc_line_out != assoc)
1832 continue;
1833 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1834 continue;
1835 cfg->line_out_pins[cfg->line_outs] = nid;
1836 sequences[cfg->line_outs] = seq;
1837 cfg->line_outs++;
1838 break;
1839 case AC_JACK_HP_OUT:
1840 cfg->hp_pin = nid;
1841 break;
1842 case AC_JACK_MIC_IN:
1843 if (loc == AC_JACK_LOC_FRONT)
1844 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1845 else
1846 cfg->input_pins[AUTO_PIN_MIC] = nid;
1847 break;
1848 case AC_JACK_LINE_IN:
1849 if (loc == AC_JACK_LOC_FRONT)
1850 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
1851 else
1852 cfg->input_pins[AUTO_PIN_LINE] = nid;
1853 break;
1854 case AC_JACK_CD:
1855 cfg->input_pins[AUTO_PIN_CD] = nid;
1856 break;
1857 case AC_JACK_AUX:
1858 cfg->input_pins[AUTO_PIN_AUX] = nid;
1859 break;
1860 case AC_JACK_SPDIF_OUT:
1861 cfg->dig_out_pin = nid;
1862 break;
1863 case AC_JACK_SPDIF_IN:
1864 cfg->dig_in_pin = nid;
1865 break;
1866 }
1867 }
1868
1869 /* sort by sequence */
1870 for (i = 0; i < cfg->line_outs; i++)
1871 for (j = i + 1; j < cfg->line_outs; j++)
1872 if (sequences[i] > sequences[j]) {
1873 seq = sequences[i];
1874 sequences[i] = sequences[j];
1875 sequences[j] = seq;
1876 nid = cfg->line_out_pins[i];
1877 cfg->line_out_pins[i] = cfg->line_out_pins[j];
1878 cfg->line_out_pins[j] = nid;
1879 }
1880
1881 /* Reorder the surround channels
1882 * ALSA sequence is front/surr/clfe/side
1883 * HDA sequence is:
1884 * 4-ch: front/surr => OK as it is
1885 * 6-ch: front/clfe/surr
1886 * 8-ch: front/clfe/side/surr
1887 */
1888 switch (cfg->line_outs) {
1889 case 3:
1890 nid = cfg->line_out_pins[1];
1891 cfg->line_out_pins[1] = cfg->line_out_pins[2];
1892 cfg->line_out_pins[2] = nid;
1893 break;
1894 case 4:
1895 nid = cfg->line_out_pins[1];
1896 cfg->line_out_pins[1] = cfg->line_out_pins[3];
1897 cfg->line_out_pins[3] = cfg->line_out_pins[2];
1898 cfg->line_out_pins[2] = nid;
1899 break;
1900 }
1901
1902 return 0;
1903 }
1904
1905 #ifdef CONFIG_PM
1906 /*
1907 * power management
1908 */
1909
1910 /**
1911 * snd_hda_suspend - suspend the codecs
1912 * @bus: the HDA bus
1913 * @state: suspsend state
1914 *
1915 * Returns 0 if successful.
1916 */
1917 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1918 {
1919 struct list_head *p;
1920
1921 /* FIXME: should handle power widget capabilities */
1922 list_for_each(p, &bus->codec_list) {
1923 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1924 if (codec->patch_ops.suspend)
1925 codec->patch_ops.suspend(codec, state);
1926 }
1927 return 0;
1928 }
1929
1930 /**
1931 * snd_hda_resume - resume the codecs
1932 * @bus: the HDA bus
1933 * @state: resume state
1934 *
1935 * Returns 0 if successful.
1936 */
1937 int snd_hda_resume(struct hda_bus *bus)
1938 {
1939 struct list_head *p;
1940
1941 list_for_each(p, &bus->codec_list) {
1942 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1943 if (codec->patch_ops.resume)
1944 codec->patch_ops.resume(codec);
1945 }
1946 return 0;
1947 }
1948
1949 /**
1950 * snd_hda_resume_ctls - resume controls in the new control list
1951 * @codec: the HDA codec
1952 * @knew: the array of snd_kcontrol_new_t
1953 *
1954 * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1955 * originally for snd_hda_add_new_ctls().
1956 * The array must be terminated with an empty entry as terminator.
1957 */
1958 int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1959 {
1960 snd_ctl_elem_value_t *val;
1961
1962 val = kmalloc(sizeof(*val), GFP_KERNEL);
1963 if (! val)
1964 return -ENOMEM;
1965 codec->in_resume = 1;
1966 for (; knew->name; knew++) {
1967 int i, count;
1968 count = knew->count ? knew->count : 1;
1969 for (i = 0; i < count; i++) {
1970 memset(val, 0, sizeof(*val));
1971 val->id.iface = knew->iface;
1972 val->id.device = knew->device;
1973 val->id.subdevice = knew->subdevice;
1974 strcpy(val->id.name, knew->name);
1975 val->id.index = knew->index ? knew->index : i;
1976 /* Assume that get callback reads only from cache,
1977 * not accessing to the real hardware
1978 */
1979 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1980 continue;
1981 snd_ctl_elem_write(codec->bus->card, NULL, val);
1982 }
1983 }
1984 codec->in_resume = 0;
1985 kfree(val);
1986 return 0;
1987 }
1988
1989 /**
1990 * snd_hda_resume_spdif_out - resume the digital out
1991 * @codec: the HDA codec
1992 */
1993 int snd_hda_resume_spdif_out(struct hda_codec *codec)
1994 {
1995 return snd_hda_resume_ctls(codec, dig_mixes);
1996 }
1997
1998 /**
1999 * snd_hda_resume_spdif_in - resume the digital in
2000 * @codec: the HDA codec
2001 */
2002 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2003 {
2004 return snd_hda_resume_ctls(codec, dig_in_ctls);
2005 }
2006 #endif
2007
2008 /*
2009 * symbols exported for controller modules
2010 */
2011 EXPORT_SYMBOL(snd_hda_codec_read);
2012 EXPORT_SYMBOL(snd_hda_codec_write);
2013 EXPORT_SYMBOL(snd_hda_sequence_write);
2014 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
2015 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
2016 EXPORT_SYMBOL(snd_hda_bus_new);
2017 EXPORT_SYMBOL(snd_hda_codec_new);
2018 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
2019 EXPORT_SYMBOL(snd_hda_calc_stream_format);
2020 EXPORT_SYMBOL(snd_hda_build_pcms);
2021 EXPORT_SYMBOL(snd_hda_build_controls);
2022 #ifdef CONFIG_PM
2023 EXPORT_SYMBOL(snd_hda_suspend);
2024 EXPORT_SYMBOL(snd_hda_resume);
2025 #endif
2026
2027 /*
2028 * INIT part
2029 */
2030
2031 static int __init alsa_hda_init(void)
2032 {
2033 return 0;
2034 }
2035
2036 static void __exit alsa_hda_exit(void)
2037 {
2038 }
2039
2040 module_init(alsa_hda_init)
2041 module_exit(alsa_hda_exit)
This page took 0.112834 seconds and 5 git commands to generate.