[ALSA] hda-codec - Use snd_pci_quirk_lookup() for board config lookup
[deliverable/linux.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <linux/mutex.h>
29 #include <sound/core.h>
30 #include "hda_codec.h"
31 #include <sound/asoundef.h>
32 #include <sound/tlv.h>
33 #include <sound/initval.h>
34 #include "hda_local.h"
35
36
37 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
38 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
39 MODULE_LICENSE("GPL");
40
41
42 /*
43 * vendor / preset table
44 */
45
46 struct hda_vendor_id {
47 unsigned int id;
48 const char *name;
49 };
50
51 /* codec vendor labels */
52 static struct hda_vendor_id hda_vendor_ids[] = {
53 { 0x10ec, "Realtek" },
54 { 0x1057, "Motorola" },
55 { 0x11d4, "Analog Devices" },
56 { 0x13f6, "C-Media" },
57 { 0x14f1, "Conexant" },
58 { 0x434d, "C-Media" },
59 { 0x8384, "SigmaTel" },
60 {} /* terminator */
61 };
62
63 /* codec presets */
64 #include "hda_patch.h"
65
66
67 /**
68 * snd_hda_codec_read - send a command and get the response
69 * @codec: the HDA codec
70 * @nid: NID to send the command
71 * @direct: direct flag
72 * @verb: the verb to send
73 * @parm: the parameter for the verb
74 *
75 * Send a single command and read the corresponding response.
76 *
77 * Returns the obtained response value, or -1 for an error.
78 */
79 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
80 unsigned int verb, unsigned int parm)
81 {
82 unsigned int res;
83 mutex_lock(&codec->bus->cmd_mutex);
84 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
85 res = codec->bus->ops.get_response(codec);
86 else
87 res = (unsigned int)-1;
88 mutex_unlock(&codec->bus->cmd_mutex);
89 return res;
90 }
91
92 EXPORT_SYMBOL(snd_hda_codec_read);
93
94 /**
95 * snd_hda_codec_write - send a single command without waiting for response
96 * @codec: the HDA codec
97 * @nid: NID to send the command
98 * @direct: direct flag
99 * @verb: the verb to send
100 * @parm: the parameter for the verb
101 *
102 * Send a single command without waiting for response.
103 *
104 * Returns 0 if successful, or a negative error code.
105 */
106 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
107 unsigned int verb, unsigned int parm)
108 {
109 int err;
110 mutex_lock(&codec->bus->cmd_mutex);
111 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
112 mutex_unlock(&codec->bus->cmd_mutex);
113 return err;
114 }
115
116 EXPORT_SYMBOL(snd_hda_codec_write);
117
118 /**
119 * snd_hda_sequence_write - sequence writes
120 * @codec: the HDA codec
121 * @seq: VERB array to send
122 *
123 * Send the commands sequentially from the given array.
124 * The array must be terminated with NID=0.
125 */
126 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
127 {
128 for (; seq->nid; seq++)
129 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
130 }
131
132 EXPORT_SYMBOL(snd_hda_sequence_write);
133
134 /**
135 * snd_hda_get_sub_nodes - get the range of sub nodes
136 * @codec: the HDA codec
137 * @nid: NID to parse
138 * @start_id: the pointer to store the start NID
139 *
140 * Parse the NID and store the start NID of its sub-nodes.
141 * Returns the number of sub-nodes.
142 */
143 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
144 {
145 unsigned int parm;
146
147 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
148 *start_id = (parm >> 16) & 0x7fff;
149 return (int)(parm & 0x7fff);
150 }
151
152 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
153
154 /**
155 * snd_hda_get_connections - get connection list
156 * @codec: the HDA codec
157 * @nid: NID to parse
158 * @conn_list: connection list array
159 * @max_conns: max. number of connections to store
160 *
161 * Parses the connection list of the given widget and stores the list
162 * of NIDs.
163 *
164 * Returns the number of connections, or a negative error code.
165 */
166 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
167 hda_nid_t *conn_list, int max_conns)
168 {
169 unsigned int parm;
170 int i, conn_len, conns;
171 unsigned int shift, num_elems, mask;
172 hda_nid_t prev_nid;
173
174 snd_assert(conn_list && max_conns > 0, return -EINVAL);
175
176 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
177 if (parm & AC_CLIST_LONG) {
178 /* long form */
179 shift = 16;
180 num_elems = 2;
181 } else {
182 /* short form */
183 shift = 8;
184 num_elems = 4;
185 }
186 conn_len = parm & AC_CLIST_LENGTH;
187 mask = (1 << (shift-1)) - 1;
188
189 if (! conn_len)
190 return 0; /* no connection */
191
192 if (conn_len == 1) {
193 /* single connection */
194 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
195 conn_list[0] = parm & mask;
196 return 1;
197 }
198
199 /* multi connection */
200 conns = 0;
201 prev_nid = 0;
202 for (i = 0; i < conn_len; i++) {
203 int range_val;
204 hda_nid_t val, n;
205
206 if (i % num_elems == 0)
207 parm = snd_hda_codec_read(codec, nid, 0,
208 AC_VERB_GET_CONNECT_LIST, i);
209 range_val = !! (parm & (1 << (shift-1))); /* ranges */
210 val = parm & mask;
211 parm >>= shift;
212 if (range_val) {
213 /* ranges between the previous and this one */
214 if (! prev_nid || prev_nid >= val) {
215 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
216 continue;
217 }
218 for (n = prev_nid + 1; n <= val; n++) {
219 if (conns >= max_conns) {
220 snd_printk(KERN_ERR "Too many connections\n");
221 return -EINVAL;
222 }
223 conn_list[conns++] = n;
224 }
225 } else {
226 if (conns >= max_conns) {
227 snd_printk(KERN_ERR "Too many connections\n");
228 return -EINVAL;
229 }
230 conn_list[conns++] = val;
231 }
232 prev_nid = val;
233 }
234 return conns;
235 }
236
237
238 /**
239 * snd_hda_queue_unsol_event - add an unsolicited event to queue
240 * @bus: the BUS
241 * @res: unsolicited event (lower 32bit of RIRB entry)
242 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
243 *
244 * Adds the given event to the queue. The events are processed in
245 * the workqueue asynchronously. Call this function in the interrupt
246 * hanlder when RIRB receives an unsolicited event.
247 *
248 * Returns 0 if successful, or a negative error code.
249 */
250 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
251 {
252 struct hda_bus_unsolicited *unsol;
253 unsigned int wp;
254
255 if ((unsol = bus->unsol) == NULL)
256 return 0;
257
258 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
259 unsol->wp = wp;
260
261 wp <<= 1;
262 unsol->queue[wp] = res;
263 unsol->queue[wp + 1] = res_ex;
264
265 queue_work(unsol->workq, &unsol->work);
266
267 return 0;
268 }
269
270 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
271
272 /*
273 * process queueud unsolicited events
274 */
275 static void process_unsol_events(struct work_struct *work)
276 {
277 struct hda_bus_unsolicited *unsol =
278 container_of(work, struct hda_bus_unsolicited, work);
279 struct hda_bus *bus = unsol->bus;
280 struct hda_codec *codec;
281 unsigned int rp, caddr, res;
282
283 while (unsol->rp != unsol->wp) {
284 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
285 unsol->rp = rp;
286 rp <<= 1;
287 res = unsol->queue[rp];
288 caddr = unsol->queue[rp + 1];
289 if (! (caddr & (1 << 4))) /* no unsolicited event? */
290 continue;
291 codec = bus->caddr_tbl[caddr & 0x0f];
292 if (codec && codec->patch_ops.unsol_event)
293 codec->patch_ops.unsol_event(codec, res);
294 }
295 }
296
297 /*
298 * initialize unsolicited queue
299 */
300 static int init_unsol_queue(struct hda_bus *bus)
301 {
302 struct hda_bus_unsolicited *unsol;
303
304 if (bus->unsol) /* already initialized */
305 return 0;
306
307 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
308 if (! unsol) {
309 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
310 return -ENOMEM;
311 }
312 unsol->workq = create_singlethread_workqueue("hda_codec");
313 if (! unsol->workq) {
314 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
315 kfree(unsol);
316 return -ENOMEM;
317 }
318 INIT_WORK(&unsol->work, process_unsol_events);
319 unsol->bus = bus;
320 bus->unsol = unsol;
321 return 0;
322 }
323
324 /*
325 * destructor
326 */
327 static void snd_hda_codec_free(struct hda_codec *codec);
328
329 static int snd_hda_bus_free(struct hda_bus *bus)
330 {
331 struct list_head *p, *n;
332
333 if (! bus)
334 return 0;
335 if (bus->unsol) {
336 destroy_workqueue(bus->unsol->workq);
337 kfree(bus->unsol);
338 }
339 list_for_each_safe(p, n, &bus->codec_list) {
340 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
341 snd_hda_codec_free(codec);
342 }
343 if (bus->ops.private_free)
344 bus->ops.private_free(bus);
345 kfree(bus);
346 return 0;
347 }
348
349 static int snd_hda_bus_dev_free(struct snd_device *device)
350 {
351 struct hda_bus *bus = device->device_data;
352 return snd_hda_bus_free(bus);
353 }
354
355 /**
356 * snd_hda_bus_new - create a HDA bus
357 * @card: the card entry
358 * @temp: the template for hda_bus information
359 * @busp: the pointer to store the created bus instance
360 *
361 * Returns 0 if successful, or a negative error code.
362 */
363 int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
364 struct hda_bus **busp)
365 {
366 struct hda_bus *bus;
367 int err;
368 static struct snd_device_ops dev_ops = {
369 .dev_free = snd_hda_bus_dev_free,
370 };
371
372 snd_assert(temp, return -EINVAL);
373 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
374
375 if (busp)
376 *busp = NULL;
377
378 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
379 if (bus == NULL) {
380 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
381 return -ENOMEM;
382 }
383
384 bus->card = card;
385 bus->private_data = temp->private_data;
386 bus->pci = temp->pci;
387 bus->modelname = temp->modelname;
388 bus->ops = temp->ops;
389
390 mutex_init(&bus->cmd_mutex);
391 INIT_LIST_HEAD(&bus->codec_list);
392
393 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
394 snd_hda_bus_free(bus);
395 return err;
396 }
397 if (busp)
398 *busp = bus;
399 return 0;
400 }
401
402 EXPORT_SYMBOL(snd_hda_bus_new);
403
404 /*
405 * find a matching codec preset
406 */
407 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
408 {
409 const struct hda_codec_preset **tbl, *preset;
410
411 for (tbl = hda_preset_tables; *tbl; tbl++) {
412 for (preset = *tbl; preset->id; preset++) {
413 u32 mask = preset->mask;
414 if (! mask)
415 mask = ~0;
416 if (preset->id == (codec->vendor_id & mask) &&
417 (! preset->rev ||
418 preset->rev == codec->revision_id))
419 return preset;
420 }
421 }
422 return NULL;
423 }
424
425 /*
426 * snd_hda_get_codec_name - store the codec name
427 */
428 void snd_hda_get_codec_name(struct hda_codec *codec,
429 char *name, int namelen)
430 {
431 const struct hda_vendor_id *c;
432 const char *vendor = NULL;
433 u16 vendor_id = codec->vendor_id >> 16;
434 char tmp[16];
435
436 for (c = hda_vendor_ids; c->id; c++) {
437 if (c->id == vendor_id) {
438 vendor = c->name;
439 break;
440 }
441 }
442 if (! vendor) {
443 sprintf(tmp, "Generic %04x", vendor_id);
444 vendor = tmp;
445 }
446 if (codec->preset && codec->preset->name)
447 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
448 else
449 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
450 }
451
452 /*
453 * look for an AFG and MFG nodes
454 */
455 static void setup_fg_nodes(struct hda_codec *codec)
456 {
457 int i, total_nodes;
458 hda_nid_t nid;
459
460 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
461 for (i = 0; i < total_nodes; i++, nid++) {
462 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
463 case AC_GRP_AUDIO_FUNCTION:
464 codec->afg = nid;
465 break;
466 case AC_GRP_MODEM_FUNCTION:
467 codec->mfg = nid;
468 break;
469 default:
470 break;
471 }
472 }
473 }
474
475 /*
476 * read widget caps for each widget and store in cache
477 */
478 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
479 {
480 int i;
481 hda_nid_t nid;
482
483 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
484 &codec->start_nid);
485 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
486 if (! codec->wcaps)
487 return -ENOMEM;
488 nid = codec->start_nid;
489 for (i = 0; i < codec->num_nodes; i++, nid++)
490 codec->wcaps[i] = snd_hda_param_read(codec, nid,
491 AC_PAR_AUDIO_WIDGET_CAP);
492 return 0;
493 }
494
495
496 /*
497 * codec destructor
498 */
499 static void snd_hda_codec_free(struct hda_codec *codec)
500 {
501 if (! codec)
502 return;
503 list_del(&codec->list);
504 codec->bus->caddr_tbl[codec->addr] = NULL;
505 if (codec->patch_ops.free)
506 codec->patch_ops.free(codec);
507 kfree(codec->amp_info);
508 kfree(codec->wcaps);
509 kfree(codec);
510 }
511
512 static void init_amp_hash(struct hda_codec *codec);
513
514 /**
515 * snd_hda_codec_new - create a HDA codec
516 * @bus: the bus to assign
517 * @codec_addr: the codec address
518 * @codecp: the pointer to store the generated codec
519 *
520 * Returns 0 if successful, or a negative error code.
521 */
522 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
523 struct hda_codec **codecp)
524 {
525 struct hda_codec *codec;
526 char component[13];
527 int err;
528
529 snd_assert(bus, return -EINVAL);
530 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
531
532 if (bus->caddr_tbl[codec_addr]) {
533 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
534 return -EBUSY;
535 }
536
537 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
538 if (codec == NULL) {
539 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
540 return -ENOMEM;
541 }
542
543 codec->bus = bus;
544 codec->addr = codec_addr;
545 mutex_init(&codec->spdif_mutex);
546 init_amp_hash(codec);
547
548 list_add_tail(&codec->list, &bus->codec_list);
549 bus->caddr_tbl[codec_addr] = codec;
550
551 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
552 if (codec->vendor_id == -1)
553 /* read again, hopefully the access method was corrected
554 * in the last read...
555 */
556 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
557 AC_PAR_VENDOR_ID);
558 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
559 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
560
561 setup_fg_nodes(codec);
562 if (! codec->afg && ! codec->mfg) {
563 snd_printdd("hda_codec: no AFG or MFG node found\n");
564 snd_hda_codec_free(codec);
565 return -ENODEV;
566 }
567
568 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
569 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
570 snd_hda_codec_free(codec);
571 return -ENOMEM;
572 }
573
574 if (! codec->subsystem_id) {
575 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
576 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
577 AC_VERB_GET_SUBSYSTEM_ID,
578 0);
579 }
580
581 codec->preset = find_codec_preset(codec);
582 if (! *bus->card->mixername)
583 snd_hda_get_codec_name(codec, bus->card->mixername,
584 sizeof(bus->card->mixername));
585
586 if (codec->preset && codec->preset->patch)
587 err = codec->preset->patch(codec);
588 else
589 err = snd_hda_parse_generic_codec(codec);
590 if (err < 0) {
591 snd_hda_codec_free(codec);
592 return err;
593 }
594
595 if (codec->patch_ops.unsol_event)
596 init_unsol_queue(bus);
597
598 snd_hda_codec_proc_new(codec);
599
600 sprintf(component, "HDA:%08x", codec->vendor_id);
601 snd_component_add(codec->bus->card, component);
602
603 if (codecp)
604 *codecp = codec;
605 return 0;
606 }
607
608 EXPORT_SYMBOL(snd_hda_codec_new);
609
610 /**
611 * snd_hda_codec_setup_stream - set up the codec for streaming
612 * @codec: the CODEC to set up
613 * @nid: the NID to set up
614 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
615 * @channel_id: channel id to pass, zero based.
616 * @format: stream format.
617 */
618 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
619 int channel_id, int format)
620 {
621 if (! nid)
622 return;
623
624 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
625 nid, stream_tag, channel_id, format);
626 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
627 (stream_tag << 4) | channel_id);
628 msleep(1);
629 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
630 }
631
632 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
633
634 /*
635 * amp access functions
636 */
637
638 /* FIXME: more better hash key? */
639 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
640 #define INFO_AMP_CAPS (1<<0)
641 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
642
643 /* initialize the hash table */
644 static void init_amp_hash(struct hda_codec *codec)
645 {
646 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
647 codec->num_amp_entries = 0;
648 codec->amp_info_size = 0;
649 codec->amp_info = NULL;
650 }
651
652 /* query the hash. allocate an entry if not found. */
653 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
654 {
655 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
656 u16 cur = codec->amp_hash[idx];
657 struct hda_amp_info *info;
658
659 while (cur != 0xffff) {
660 info = &codec->amp_info[cur];
661 if (info->key == key)
662 return info;
663 cur = info->next;
664 }
665
666 /* add a new hash entry */
667 if (codec->num_amp_entries >= codec->amp_info_size) {
668 /* reallocate the array */
669 int new_size = codec->amp_info_size + 64;
670 struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
671 GFP_KERNEL);
672 if (! new_info) {
673 snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
674 return NULL;
675 }
676 if (codec->amp_info) {
677 memcpy(new_info, codec->amp_info,
678 codec->amp_info_size * sizeof(struct hda_amp_info));
679 kfree(codec->amp_info);
680 }
681 codec->amp_info_size = new_size;
682 codec->amp_info = new_info;
683 }
684 cur = codec->num_amp_entries++;
685 info = &codec->amp_info[cur];
686 info->key = key;
687 info->status = 0; /* not initialized yet */
688 info->next = codec->amp_hash[idx];
689 codec->amp_hash[idx] = cur;
690
691 return info;
692 }
693
694 /*
695 * query AMP capabilities for the given widget and direction
696 */
697 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
698 {
699 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
700
701 if (! info)
702 return 0;
703 if (! (info->status & INFO_AMP_CAPS)) {
704 if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
705 nid = codec->afg;
706 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
707 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
708 info->status |= INFO_AMP_CAPS;
709 }
710 return info->amp_caps;
711 }
712
713 /*
714 * read the current volume to info
715 * if the cache exists, read the cache value.
716 */
717 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
718 hda_nid_t nid, int ch, int direction, int index)
719 {
720 u32 val, parm;
721
722 if (info->status & INFO_AMP_VOL(ch))
723 return info->vol[ch];
724
725 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
726 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
727 parm |= index;
728 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
729 info->vol[ch] = val & 0xff;
730 info->status |= INFO_AMP_VOL(ch);
731 return info->vol[ch];
732 }
733
734 /*
735 * write the current volume in info to the h/w and update the cache
736 */
737 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
738 hda_nid_t nid, int ch, int direction, int index, int val)
739 {
740 u32 parm;
741
742 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
743 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
744 parm |= index << AC_AMP_SET_INDEX_SHIFT;
745 parm |= val;
746 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
747 info->vol[ch] = val;
748 }
749
750 /*
751 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
752 */
753 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
754 int direction, int index)
755 {
756 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
757 if (! info)
758 return 0;
759 return get_vol_mute(codec, info, nid, ch, direction, index);
760 }
761
762 /*
763 * update the AMP value, mask = bit mask to set, val = the value
764 */
765 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
766 int direction, int idx, int mask, int val)
767 {
768 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
769
770 if (! info)
771 return 0;
772 val &= mask;
773 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
774 if (info->vol[ch] == val && ! codec->in_resume)
775 return 0;
776 put_vol_mute(codec, info, nid, ch, direction, idx, val);
777 return 1;
778 }
779
780
781 /*
782 * AMP control callbacks
783 */
784 /* retrieve parameters from private_value */
785 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
786 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
787 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
788 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
789
790 /* volume */
791 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
792 {
793 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
794 u16 nid = get_amp_nid(kcontrol);
795 u8 chs = get_amp_channels(kcontrol);
796 int dir = get_amp_direction(kcontrol);
797 u32 caps;
798
799 caps = query_amp_caps(codec, nid, dir);
800 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
801 if (! caps) {
802 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
803 return -EINVAL;
804 }
805 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
806 uinfo->count = chs == 3 ? 2 : 1;
807 uinfo->value.integer.min = 0;
808 uinfo->value.integer.max = caps;
809 return 0;
810 }
811
812 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
813 {
814 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
815 hda_nid_t nid = get_amp_nid(kcontrol);
816 int chs = get_amp_channels(kcontrol);
817 int dir = get_amp_direction(kcontrol);
818 int idx = get_amp_index(kcontrol);
819 long *valp = ucontrol->value.integer.value;
820
821 if (chs & 1)
822 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
823 if (chs & 2)
824 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
825 return 0;
826 }
827
828 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
829 {
830 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
831 hda_nid_t nid = get_amp_nid(kcontrol);
832 int chs = get_amp_channels(kcontrol);
833 int dir = get_amp_direction(kcontrol);
834 int idx = get_amp_index(kcontrol);
835 long *valp = ucontrol->value.integer.value;
836 int change = 0;
837
838 if (chs & 1) {
839 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
840 0x7f, *valp);
841 valp++;
842 }
843 if (chs & 2)
844 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
845 0x7f, *valp);
846 return change;
847 }
848
849 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
850 unsigned int size, unsigned int __user *_tlv)
851 {
852 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
853 hda_nid_t nid = get_amp_nid(kcontrol);
854 int dir = get_amp_direction(kcontrol);
855 u32 caps, val1, val2;
856
857 if (size < 4 * sizeof(unsigned int))
858 return -ENOMEM;
859 caps = query_amp_caps(codec, nid, dir);
860 val2 = (((caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT) + 1) * 25;
861 val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
862 val1 = ((int)val1) * ((int)val2);
863 if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
864 return -EFAULT;
865 if (put_user(2 * sizeof(unsigned int), _tlv + 1))
866 return -EFAULT;
867 if (put_user(val1, _tlv + 2))
868 return -EFAULT;
869 if (put_user(val2, _tlv + 3))
870 return -EFAULT;
871 return 0;
872 }
873
874 /* switch */
875 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
876 {
877 int chs = get_amp_channels(kcontrol);
878
879 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
880 uinfo->count = chs == 3 ? 2 : 1;
881 uinfo->value.integer.min = 0;
882 uinfo->value.integer.max = 1;
883 return 0;
884 }
885
886 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
887 {
888 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
889 hda_nid_t nid = get_amp_nid(kcontrol);
890 int chs = get_amp_channels(kcontrol);
891 int dir = get_amp_direction(kcontrol);
892 int idx = get_amp_index(kcontrol);
893 long *valp = ucontrol->value.integer.value;
894
895 if (chs & 1)
896 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
897 if (chs & 2)
898 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
899 return 0;
900 }
901
902 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
903 {
904 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
905 hda_nid_t nid = get_amp_nid(kcontrol);
906 int chs = get_amp_channels(kcontrol);
907 int dir = get_amp_direction(kcontrol);
908 int idx = get_amp_index(kcontrol);
909 long *valp = ucontrol->value.integer.value;
910 int change = 0;
911
912 if (chs & 1) {
913 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
914 0x80, *valp ? 0 : 0x80);
915 valp++;
916 }
917 if (chs & 2)
918 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
919 0x80, *valp ? 0 : 0x80);
920
921 return change;
922 }
923
924 /*
925 * bound volume controls
926 *
927 * bind multiple volumes (# indices, from 0)
928 */
929
930 #define AMP_VAL_IDX_SHIFT 19
931 #define AMP_VAL_IDX_MASK (0x0f<<19)
932
933 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
934 {
935 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
936 unsigned long pval;
937 int err;
938
939 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
940 pval = kcontrol->private_value;
941 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
942 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
943 kcontrol->private_value = pval;
944 mutex_unlock(&codec->spdif_mutex);
945 return err;
946 }
947
948 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
949 {
950 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
951 unsigned long pval;
952 int i, indices, err = 0, change = 0;
953
954 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
955 pval = kcontrol->private_value;
956 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
957 for (i = 0; i < indices; i++) {
958 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
959 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
960 if (err < 0)
961 break;
962 change |= err;
963 }
964 kcontrol->private_value = pval;
965 mutex_unlock(&codec->spdif_mutex);
966 return err < 0 ? err : change;
967 }
968
969 /*
970 * SPDIF out controls
971 */
972
973 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
974 {
975 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
976 uinfo->count = 1;
977 return 0;
978 }
979
980 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
981 {
982 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
983 IEC958_AES0_NONAUDIO |
984 IEC958_AES0_CON_EMPHASIS_5015 |
985 IEC958_AES0_CON_NOT_COPYRIGHT;
986 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
987 IEC958_AES1_CON_ORIGINAL;
988 return 0;
989 }
990
991 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
992 {
993 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
994 IEC958_AES0_NONAUDIO |
995 IEC958_AES0_PRO_EMPHASIS_5015;
996 return 0;
997 }
998
999 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1000 {
1001 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1002
1003 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1004 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1005 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1006 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1007
1008 return 0;
1009 }
1010
1011 /* convert from SPDIF status bits to HDA SPDIF bits
1012 * bit 0 (DigEn) is always set zero (to be filled later)
1013 */
1014 static unsigned short convert_from_spdif_status(unsigned int sbits)
1015 {
1016 unsigned short val = 0;
1017
1018 if (sbits & IEC958_AES0_PROFESSIONAL)
1019 val |= 1 << 6;
1020 if (sbits & IEC958_AES0_NONAUDIO)
1021 val |= 1 << 5;
1022 if (sbits & IEC958_AES0_PROFESSIONAL) {
1023 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
1024 val |= 1 << 3;
1025 } else {
1026 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
1027 val |= 1 << 3;
1028 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1029 val |= 1 << 4;
1030 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1031 val |= 1 << 7;
1032 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1033 }
1034 return val;
1035 }
1036
1037 /* convert to SPDIF status bits from HDA SPDIF bits
1038 */
1039 static unsigned int convert_to_spdif_status(unsigned short val)
1040 {
1041 unsigned int sbits = 0;
1042
1043 if (val & (1 << 5))
1044 sbits |= IEC958_AES0_NONAUDIO;
1045 if (val & (1 << 6))
1046 sbits |= IEC958_AES0_PROFESSIONAL;
1047 if (sbits & IEC958_AES0_PROFESSIONAL) {
1048 if (sbits & (1 << 3))
1049 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1050 } else {
1051 if (val & (1 << 3))
1052 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1053 if (! (val & (1 << 4)))
1054 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1055 if (val & (1 << 7))
1056 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1057 sbits |= val & (0x7f << 8);
1058 }
1059 return sbits;
1060 }
1061
1062 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1063 {
1064 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1065 hda_nid_t nid = kcontrol->private_value;
1066 unsigned short val;
1067 int change;
1068
1069 mutex_lock(&codec->spdif_mutex);
1070 codec->spdif_status = ucontrol->value.iec958.status[0] |
1071 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1072 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1073 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1074 val = convert_from_spdif_status(codec->spdif_status);
1075 val |= codec->spdif_ctls & 1;
1076 change = codec->spdif_ctls != val;
1077 codec->spdif_ctls = val;
1078
1079 if (change || codec->in_resume) {
1080 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1081 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
1082 }
1083
1084 mutex_unlock(&codec->spdif_mutex);
1085 return change;
1086 }
1087
1088 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1089 {
1090 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1091 uinfo->count = 1;
1092 uinfo->value.integer.min = 0;
1093 uinfo->value.integer.max = 1;
1094 return 0;
1095 }
1096
1097 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1098 {
1099 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1100
1101 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1102 return 0;
1103 }
1104
1105 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1106 {
1107 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1108 hda_nid_t nid = kcontrol->private_value;
1109 unsigned short val;
1110 int change;
1111
1112 mutex_lock(&codec->spdif_mutex);
1113 val = codec->spdif_ctls & ~1;
1114 if (ucontrol->value.integer.value[0])
1115 val |= 1;
1116 change = codec->spdif_ctls != val;
1117 if (change || codec->in_resume) {
1118 codec->spdif_ctls = val;
1119 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1120 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1121 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1122 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1123 }
1124 mutex_unlock(&codec->spdif_mutex);
1125 return change;
1126 }
1127
1128 static struct snd_kcontrol_new dig_mixes[] = {
1129 {
1130 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1131 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1132 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1133 .info = snd_hda_spdif_mask_info,
1134 .get = snd_hda_spdif_cmask_get,
1135 },
1136 {
1137 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1138 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1139 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1140 .info = snd_hda_spdif_mask_info,
1141 .get = snd_hda_spdif_pmask_get,
1142 },
1143 {
1144 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1145 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1146 .info = snd_hda_spdif_mask_info,
1147 .get = snd_hda_spdif_default_get,
1148 .put = snd_hda_spdif_default_put,
1149 },
1150 {
1151 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1152 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1153 .info = snd_hda_spdif_out_switch_info,
1154 .get = snd_hda_spdif_out_switch_get,
1155 .put = snd_hda_spdif_out_switch_put,
1156 },
1157 { } /* end */
1158 };
1159
1160 /**
1161 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1162 * @codec: the HDA codec
1163 * @nid: audio out widget NID
1164 *
1165 * Creates controls related with the SPDIF output.
1166 * Called from each patch supporting the SPDIF out.
1167 *
1168 * Returns 0 if successful, or a negative error code.
1169 */
1170 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1171 {
1172 int err;
1173 struct snd_kcontrol *kctl;
1174 struct snd_kcontrol_new *dig_mix;
1175
1176 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1177 kctl = snd_ctl_new1(dig_mix, codec);
1178 kctl->private_value = nid;
1179 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1180 return err;
1181 }
1182 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1183 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1184 return 0;
1185 }
1186
1187 /*
1188 * SPDIF input
1189 */
1190
1191 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1192
1193 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1194 {
1195 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1196
1197 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1198 return 0;
1199 }
1200
1201 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1202 {
1203 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1204 hda_nid_t nid = kcontrol->private_value;
1205 unsigned int val = !!ucontrol->value.integer.value[0];
1206 int change;
1207
1208 mutex_lock(&codec->spdif_mutex);
1209 change = codec->spdif_in_enable != val;
1210 if (change || codec->in_resume) {
1211 codec->spdif_in_enable = val;
1212 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1213 }
1214 mutex_unlock(&codec->spdif_mutex);
1215 return change;
1216 }
1217
1218 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1219 {
1220 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1221 hda_nid_t nid = kcontrol->private_value;
1222 unsigned short val;
1223 unsigned int sbits;
1224
1225 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1226 sbits = convert_to_spdif_status(val);
1227 ucontrol->value.iec958.status[0] = sbits;
1228 ucontrol->value.iec958.status[1] = sbits >> 8;
1229 ucontrol->value.iec958.status[2] = sbits >> 16;
1230 ucontrol->value.iec958.status[3] = sbits >> 24;
1231 return 0;
1232 }
1233
1234 static struct snd_kcontrol_new dig_in_ctls[] = {
1235 {
1236 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1237 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1238 .info = snd_hda_spdif_in_switch_info,
1239 .get = snd_hda_spdif_in_switch_get,
1240 .put = snd_hda_spdif_in_switch_put,
1241 },
1242 {
1243 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1244 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1245 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1246 .info = snd_hda_spdif_mask_info,
1247 .get = snd_hda_spdif_in_status_get,
1248 },
1249 { } /* end */
1250 };
1251
1252 /**
1253 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1254 * @codec: the HDA codec
1255 * @nid: audio in widget NID
1256 *
1257 * Creates controls related with the SPDIF input.
1258 * Called from each patch supporting the SPDIF in.
1259 *
1260 * Returns 0 if successful, or a negative error code.
1261 */
1262 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1263 {
1264 int err;
1265 struct snd_kcontrol *kctl;
1266 struct snd_kcontrol_new *dig_mix;
1267
1268 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1269 kctl = snd_ctl_new1(dig_mix, codec);
1270 kctl->private_value = nid;
1271 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1272 return err;
1273 }
1274 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1275 return 0;
1276 }
1277
1278
1279 /*
1280 * set power state of the codec
1281 */
1282 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1283 unsigned int power_state)
1284 {
1285 hda_nid_t nid, nid_start;
1286 int nodes;
1287
1288 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1289 power_state);
1290
1291 nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1292 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1293 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1294 snd_hda_codec_write(codec, nid, 0,
1295 AC_VERB_SET_POWER_STATE,
1296 power_state);
1297 }
1298
1299 if (power_state == AC_PWRST_D0)
1300 msleep(10);
1301 }
1302
1303
1304 /**
1305 * snd_hda_build_controls - build mixer controls
1306 * @bus: the BUS
1307 *
1308 * Creates mixer controls for each codec included in the bus.
1309 *
1310 * Returns 0 if successful, otherwise a negative error code.
1311 */
1312 int snd_hda_build_controls(struct hda_bus *bus)
1313 {
1314 struct list_head *p;
1315
1316 /* build controls */
1317 list_for_each(p, &bus->codec_list) {
1318 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1319 int err;
1320 if (! codec->patch_ops.build_controls)
1321 continue;
1322 err = codec->patch_ops.build_controls(codec);
1323 if (err < 0)
1324 return err;
1325 }
1326
1327 /* initialize */
1328 list_for_each(p, &bus->codec_list) {
1329 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1330 int err;
1331 hda_set_power_state(codec,
1332 codec->afg ? codec->afg : codec->mfg,
1333 AC_PWRST_D0);
1334 if (! codec->patch_ops.init)
1335 continue;
1336 err = codec->patch_ops.init(codec);
1337 if (err < 0)
1338 return err;
1339 }
1340 return 0;
1341 }
1342
1343 EXPORT_SYMBOL(snd_hda_build_controls);
1344
1345 /*
1346 * stream formats
1347 */
1348 struct hda_rate_tbl {
1349 unsigned int hz;
1350 unsigned int alsa_bits;
1351 unsigned int hda_fmt;
1352 };
1353
1354 static struct hda_rate_tbl rate_bits[] = {
1355 /* rate in Hz, ALSA rate bitmask, HDA format value */
1356
1357 /* autodetected value used in snd_hda_query_supported_pcm */
1358 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1359 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1360 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1361 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1362 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1363 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1364 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1365 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1366 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1367 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1368 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1369
1370 { 0 } /* terminator */
1371 };
1372
1373 /**
1374 * snd_hda_calc_stream_format - calculate format bitset
1375 * @rate: the sample rate
1376 * @channels: the number of channels
1377 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1378 * @maxbps: the max. bps
1379 *
1380 * Calculate the format bitset from the given rate, channels and th PCM format.
1381 *
1382 * Return zero if invalid.
1383 */
1384 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1385 unsigned int channels,
1386 unsigned int format,
1387 unsigned int maxbps)
1388 {
1389 int i;
1390 unsigned int val = 0;
1391
1392 for (i = 0; rate_bits[i].hz; i++)
1393 if (rate_bits[i].hz == rate) {
1394 val = rate_bits[i].hda_fmt;
1395 break;
1396 }
1397 if (! rate_bits[i].hz) {
1398 snd_printdd("invalid rate %d\n", rate);
1399 return 0;
1400 }
1401
1402 if (channels == 0 || channels > 8) {
1403 snd_printdd("invalid channels %d\n", channels);
1404 return 0;
1405 }
1406 val |= channels - 1;
1407
1408 switch (snd_pcm_format_width(format)) {
1409 case 8: val |= 0x00; break;
1410 case 16: val |= 0x10; break;
1411 case 20:
1412 case 24:
1413 case 32:
1414 if (maxbps >= 32)
1415 val |= 0x40;
1416 else if (maxbps >= 24)
1417 val |= 0x30;
1418 else
1419 val |= 0x20;
1420 break;
1421 default:
1422 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1423 return 0;
1424 }
1425
1426 return val;
1427 }
1428
1429 EXPORT_SYMBOL(snd_hda_calc_stream_format);
1430
1431 /**
1432 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1433 * @codec: the HDA codec
1434 * @nid: NID to query
1435 * @ratesp: the pointer to store the detected rate bitflags
1436 * @formatsp: the pointer to store the detected formats
1437 * @bpsp: the pointer to store the detected format widths
1438 *
1439 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1440 * or @bsps argument is ignored.
1441 *
1442 * Returns 0 if successful, otherwise a negative error code.
1443 */
1444 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1445 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1446 {
1447 int i;
1448 unsigned int val, streams;
1449
1450 val = 0;
1451 if (nid != codec->afg &&
1452 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1453 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1454 if (val == -1)
1455 return -EIO;
1456 }
1457 if (! val)
1458 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1459
1460 if (ratesp) {
1461 u32 rates = 0;
1462 for (i = 0; rate_bits[i].hz; i++) {
1463 if (val & (1 << i))
1464 rates |= rate_bits[i].alsa_bits;
1465 }
1466 *ratesp = rates;
1467 }
1468
1469 if (formatsp || bpsp) {
1470 u64 formats = 0;
1471 unsigned int bps;
1472 unsigned int wcaps;
1473
1474 wcaps = get_wcaps(codec, nid);
1475 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1476 if (streams == -1)
1477 return -EIO;
1478 if (! streams) {
1479 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1480 if (streams == -1)
1481 return -EIO;
1482 }
1483
1484 bps = 0;
1485 if (streams & AC_SUPFMT_PCM) {
1486 if (val & AC_SUPPCM_BITS_8) {
1487 formats |= SNDRV_PCM_FMTBIT_U8;
1488 bps = 8;
1489 }
1490 if (val & AC_SUPPCM_BITS_16) {
1491 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1492 bps = 16;
1493 }
1494 if (wcaps & AC_WCAP_DIGITAL) {
1495 if (val & AC_SUPPCM_BITS_32)
1496 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1497 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1498 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1499 if (val & AC_SUPPCM_BITS_24)
1500 bps = 24;
1501 else if (val & AC_SUPPCM_BITS_20)
1502 bps = 20;
1503 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1504 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1505 if (val & AC_SUPPCM_BITS_32)
1506 bps = 32;
1507 else if (val & AC_SUPPCM_BITS_24)
1508 bps = 24;
1509 else if (val & AC_SUPPCM_BITS_20)
1510 bps = 20;
1511 }
1512 }
1513 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1514 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1515 bps = 32;
1516 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1517 /* temporary hack: we have still no proper support
1518 * for the direct AC3 stream...
1519 */
1520 formats |= SNDRV_PCM_FMTBIT_U8;
1521 bps = 8;
1522 }
1523 if (formatsp)
1524 *formatsp = formats;
1525 if (bpsp)
1526 *bpsp = bps;
1527 }
1528
1529 return 0;
1530 }
1531
1532 /**
1533 * snd_hda_is_supported_format - check whether the given node supports the format val
1534 *
1535 * Returns 1 if supported, 0 if not.
1536 */
1537 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1538 unsigned int format)
1539 {
1540 int i;
1541 unsigned int val = 0, rate, stream;
1542
1543 if (nid != codec->afg &&
1544 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1545 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1546 if (val == -1)
1547 return 0;
1548 }
1549 if (! val) {
1550 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1551 if (val == -1)
1552 return 0;
1553 }
1554
1555 rate = format & 0xff00;
1556 for (i = 0; rate_bits[i].hz; i++)
1557 if (rate_bits[i].hda_fmt == rate) {
1558 if (val & (1 << i))
1559 break;
1560 return 0;
1561 }
1562 if (! rate_bits[i].hz)
1563 return 0;
1564
1565 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1566 if (stream == -1)
1567 return 0;
1568 if (! stream && nid != codec->afg)
1569 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1570 if (! stream || stream == -1)
1571 return 0;
1572
1573 if (stream & AC_SUPFMT_PCM) {
1574 switch (format & 0xf0) {
1575 case 0x00:
1576 if (! (val & AC_SUPPCM_BITS_8))
1577 return 0;
1578 break;
1579 case 0x10:
1580 if (! (val & AC_SUPPCM_BITS_16))
1581 return 0;
1582 break;
1583 case 0x20:
1584 if (! (val & AC_SUPPCM_BITS_20))
1585 return 0;
1586 break;
1587 case 0x30:
1588 if (! (val & AC_SUPPCM_BITS_24))
1589 return 0;
1590 break;
1591 case 0x40:
1592 if (! (val & AC_SUPPCM_BITS_32))
1593 return 0;
1594 break;
1595 default:
1596 return 0;
1597 }
1598 } else {
1599 /* FIXME: check for float32 and AC3? */
1600 }
1601
1602 return 1;
1603 }
1604
1605 /*
1606 * PCM stuff
1607 */
1608 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1609 struct hda_codec *codec,
1610 struct snd_pcm_substream *substream)
1611 {
1612 return 0;
1613 }
1614
1615 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1616 struct hda_codec *codec,
1617 unsigned int stream_tag,
1618 unsigned int format,
1619 struct snd_pcm_substream *substream)
1620 {
1621 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1622 return 0;
1623 }
1624
1625 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1626 struct hda_codec *codec,
1627 struct snd_pcm_substream *substream)
1628 {
1629 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1630 return 0;
1631 }
1632
1633 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1634 {
1635 if (info->nid) {
1636 /* query support PCM information from the given NID */
1637 if (! info->rates || ! info->formats)
1638 snd_hda_query_supported_pcm(codec, info->nid,
1639 info->rates ? NULL : &info->rates,
1640 info->formats ? NULL : &info->formats,
1641 info->maxbps ? NULL : &info->maxbps);
1642 }
1643 if (info->ops.open == NULL)
1644 info->ops.open = hda_pcm_default_open_close;
1645 if (info->ops.close == NULL)
1646 info->ops.close = hda_pcm_default_open_close;
1647 if (info->ops.prepare == NULL) {
1648 snd_assert(info->nid, return -EINVAL);
1649 info->ops.prepare = hda_pcm_default_prepare;
1650 }
1651 if (info->ops.cleanup == NULL) {
1652 snd_assert(info->nid, return -EINVAL);
1653 info->ops.cleanup = hda_pcm_default_cleanup;
1654 }
1655 return 0;
1656 }
1657
1658 /**
1659 * snd_hda_build_pcms - build PCM information
1660 * @bus: the BUS
1661 *
1662 * Create PCM information for each codec included in the bus.
1663 *
1664 * The build_pcms codec patch is requested to set up codec->num_pcms and
1665 * codec->pcm_info properly. The array is referred by the top-level driver
1666 * to create its PCM instances.
1667 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1668 * callback.
1669 *
1670 * At least, substreams, channels_min and channels_max must be filled for
1671 * each stream. substreams = 0 indicates that the stream doesn't exist.
1672 * When rates and/or formats are zero, the supported values are queried
1673 * from the given nid. The nid is used also by the default ops.prepare
1674 * and ops.cleanup callbacks.
1675 *
1676 * The driver needs to call ops.open in its open callback. Similarly,
1677 * ops.close is supposed to be called in the close callback.
1678 * ops.prepare should be called in the prepare or hw_params callback
1679 * with the proper parameters for set up.
1680 * ops.cleanup should be called in hw_free for clean up of streams.
1681 *
1682 * This function returns 0 if successfull, or a negative error code.
1683 */
1684 int snd_hda_build_pcms(struct hda_bus *bus)
1685 {
1686 struct list_head *p;
1687
1688 list_for_each(p, &bus->codec_list) {
1689 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1690 unsigned int pcm, s;
1691 int err;
1692 if (! codec->patch_ops.build_pcms)
1693 continue;
1694 err = codec->patch_ops.build_pcms(codec);
1695 if (err < 0)
1696 return err;
1697 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1698 for (s = 0; s < 2; s++) {
1699 struct hda_pcm_stream *info;
1700 info = &codec->pcm_info[pcm].stream[s];
1701 if (! info->substreams)
1702 continue;
1703 err = set_pcm_default_values(codec, info);
1704 if (err < 0)
1705 return err;
1706 }
1707 }
1708 }
1709 return 0;
1710 }
1711
1712 EXPORT_SYMBOL(snd_hda_build_pcms);
1713
1714 /**
1715 * snd_hda_check_board_config - compare the current codec with the config table
1716 * @codec: the HDA codec
1717 * @num_configs: number of config enums
1718 * @models: array of model name strings
1719 * @tbl: configuration table, terminated by null entries
1720 *
1721 * Compares the modelname or PCI subsystem id of the current codec with the
1722 * given configuration table. If a matching entry is found, returns its
1723 * config value (supposed to be 0 or positive).
1724 *
1725 * If no entries are matching, the function returns a negative value.
1726 */
1727 int snd_hda_check_board_config(struct hda_codec *codec,
1728 int num_configs, const char **models,
1729 const struct snd_pci_quirk *tbl)
1730 {
1731 if (codec->bus->modelname && models) {
1732 int i;
1733 for (i = 0; i < num_configs; i++) {
1734 if (models[i] &&
1735 !strcmp(codec->bus->modelname, models[i])) {
1736 snd_printd(KERN_INFO "hda_codec: model '%s' is "
1737 "selected\n", models[i]);
1738 return i;
1739 }
1740 }
1741 }
1742
1743 if (!codec->bus->pci || !tbl)
1744 return -1;
1745
1746 tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
1747 if (!tbl)
1748 return -1;
1749 if (tbl->value >= 0 && tbl->value < num_configs) {
1750 #ifdef CONFIG_SND_DEBUG_DETECT
1751 char tmp[10];
1752 const char *model = NULL;
1753 if (models)
1754 model = models[tbl->value];
1755 if (!model) {
1756 sprintf(tmp, "#%d", tbl->value);
1757 model = tmp;
1758 }
1759 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
1760 "for config %x:%x (%s)\n",
1761 model, tbl->subvendor, tbl->subdevice,
1762 (tbl->name ? tbl->name : "Unknown device"));
1763 #endif
1764 return tbl->value;
1765 }
1766 return -1;
1767 }
1768
1769 /**
1770 * snd_hda_add_new_ctls - create controls from the array
1771 * @codec: the HDA codec
1772 * @knew: the array of struct snd_kcontrol_new
1773 *
1774 * This helper function creates and add new controls in the given array.
1775 * The array must be terminated with an empty entry as terminator.
1776 *
1777 * Returns 0 if successful, or a negative error code.
1778 */
1779 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1780 {
1781 int err;
1782
1783 for (; knew->name; knew++) {
1784 struct snd_kcontrol *kctl;
1785 kctl = snd_ctl_new1(knew, codec);
1786 if (! kctl)
1787 return -ENOMEM;
1788 err = snd_ctl_add(codec->bus->card, kctl);
1789 if (err < 0) {
1790 if (! codec->addr)
1791 return err;
1792 kctl = snd_ctl_new1(knew, codec);
1793 if (! kctl)
1794 return -ENOMEM;
1795 kctl->id.device = codec->addr;
1796 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1797 return err;
1798 }
1799 }
1800 return 0;
1801 }
1802
1803
1804 /*
1805 * Channel mode helper
1806 */
1807 int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
1808 const struct hda_channel_mode *chmode, int num_chmodes)
1809 {
1810 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1811 uinfo->count = 1;
1812 uinfo->value.enumerated.items = num_chmodes;
1813 if (uinfo->value.enumerated.item >= num_chmodes)
1814 uinfo->value.enumerated.item = num_chmodes - 1;
1815 sprintf(uinfo->value.enumerated.name, "%dch",
1816 chmode[uinfo->value.enumerated.item].channels);
1817 return 0;
1818 }
1819
1820 int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1821 const struct hda_channel_mode *chmode, int num_chmodes,
1822 int max_channels)
1823 {
1824 int i;
1825
1826 for (i = 0; i < num_chmodes; i++) {
1827 if (max_channels == chmode[i].channels) {
1828 ucontrol->value.enumerated.item[0] = i;
1829 break;
1830 }
1831 }
1832 return 0;
1833 }
1834
1835 int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1836 const struct hda_channel_mode *chmode, int num_chmodes,
1837 int *max_channelsp)
1838 {
1839 unsigned int mode;
1840
1841 mode = ucontrol->value.enumerated.item[0];
1842 snd_assert(mode < num_chmodes, return -EINVAL);
1843 if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
1844 return 0;
1845 /* change the current channel setting */
1846 *max_channelsp = chmode[mode].channels;
1847 if (chmode[mode].sequence)
1848 snd_hda_sequence_write(codec, chmode[mode].sequence);
1849 return 1;
1850 }
1851
1852 /*
1853 * input MUX helper
1854 */
1855 int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
1856 {
1857 unsigned int index;
1858
1859 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1860 uinfo->count = 1;
1861 uinfo->value.enumerated.items = imux->num_items;
1862 index = uinfo->value.enumerated.item;
1863 if (index >= imux->num_items)
1864 index = imux->num_items - 1;
1865 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1866 return 0;
1867 }
1868
1869 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1870 struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
1871 unsigned int *cur_val)
1872 {
1873 unsigned int idx;
1874
1875 idx = ucontrol->value.enumerated.item[0];
1876 if (idx >= imux->num_items)
1877 idx = imux->num_items - 1;
1878 if (*cur_val == idx && ! codec->in_resume)
1879 return 0;
1880 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1881 imux->items[idx].index);
1882 *cur_val = idx;
1883 return 1;
1884 }
1885
1886
1887 /*
1888 * Multi-channel / digital-out PCM helper functions
1889 */
1890
1891 /*
1892 * open the digital out in the exclusive mode
1893 */
1894 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1895 {
1896 mutex_lock(&codec->spdif_mutex);
1897 if (mout->dig_out_used) {
1898 mutex_unlock(&codec->spdif_mutex);
1899 return -EBUSY; /* already being used */
1900 }
1901 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1902 mutex_unlock(&codec->spdif_mutex);
1903 return 0;
1904 }
1905
1906 /*
1907 * release the digital out
1908 */
1909 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1910 {
1911 mutex_lock(&codec->spdif_mutex);
1912 mout->dig_out_used = 0;
1913 mutex_unlock(&codec->spdif_mutex);
1914 return 0;
1915 }
1916
1917 /*
1918 * set up more restrictions for analog out
1919 */
1920 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1921 struct snd_pcm_substream *substream)
1922 {
1923 substream->runtime->hw.channels_max = mout->max_channels;
1924 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1925 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1926 }
1927
1928 /*
1929 * set up the i/o for analog out
1930 * when the digital out is available, copy the front out to digital out, too.
1931 */
1932 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1933 unsigned int stream_tag,
1934 unsigned int format,
1935 struct snd_pcm_substream *substream)
1936 {
1937 hda_nid_t *nids = mout->dac_nids;
1938 int chs = substream->runtime->channels;
1939 int i;
1940
1941 mutex_lock(&codec->spdif_mutex);
1942 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1943 if (chs == 2 &&
1944 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1945 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1946 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1947 /* setup digital receiver */
1948 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1949 stream_tag, 0, format);
1950 } else {
1951 mout->dig_out_used = 0;
1952 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1953 }
1954 }
1955 mutex_unlock(&codec->spdif_mutex);
1956
1957 /* front */
1958 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1959 if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
1960 /* headphone out will just decode front left/right (stereo) */
1961 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1962 /* extra outputs copied from front */
1963 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
1964 if (mout->extra_out_nid[i])
1965 snd_hda_codec_setup_stream(codec,
1966 mout->extra_out_nid[i],
1967 stream_tag, 0, format);
1968
1969 /* surrounds */
1970 for (i = 1; i < mout->num_dacs; i++) {
1971 if (chs >= (i + 1) * 2) /* independent out */
1972 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1973 format);
1974 else /* copy front */
1975 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1976 format);
1977 }
1978 return 0;
1979 }
1980
1981 /*
1982 * clean up the setting for analog out
1983 */
1984 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1985 {
1986 hda_nid_t *nids = mout->dac_nids;
1987 int i;
1988
1989 for (i = 0; i < mout->num_dacs; i++)
1990 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1991 if (mout->hp_nid)
1992 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1993 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
1994 if (mout->extra_out_nid[i])
1995 snd_hda_codec_setup_stream(codec,
1996 mout->extra_out_nid[i],
1997 0, 0, 0);
1998 mutex_lock(&codec->spdif_mutex);
1999 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2000 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2001 mout->dig_out_used = 0;
2002 }
2003 mutex_unlock(&codec->spdif_mutex);
2004 return 0;
2005 }
2006
2007 /*
2008 * Helper for automatic ping configuration
2009 */
2010
2011 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2012 {
2013 for (; *list; list++)
2014 if (*list == nid)
2015 return 1;
2016 return 0;
2017 }
2018
2019 /*
2020 * Parse all pin widgets and store the useful pin nids to cfg
2021 *
2022 * The number of line-outs or any primary output is stored in line_outs,
2023 * and the corresponding output pins are assigned to line_out_pins[],
2024 * in the order of front, rear, CLFE, side, ...
2025 *
2026 * If more extra outputs (speaker and headphone) are found, the pins are
2027 * assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
2028 * is detected, one of speaker of HP pins is assigned as the primary
2029 * output, i.e. to line_out_pins[0]. So, line_outs is always positive
2030 * if any analog output exists.
2031 *
2032 * The analog input pins are assigned to input_pins array.
2033 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2034 * respectively.
2035 */
2036 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
2037 hda_nid_t *ignore_nids)
2038 {
2039 hda_nid_t nid, nid_start;
2040 int i, j, nodes;
2041 short seq, assoc_line_out, sequences[ARRAY_SIZE(cfg->line_out_pins)];
2042
2043 memset(cfg, 0, sizeof(*cfg));
2044
2045 memset(sequences, 0, sizeof(sequences));
2046 assoc_line_out = 0;
2047
2048 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2049 for (nid = nid_start; nid < nodes + nid_start; nid++) {
2050 unsigned int wid_caps = get_wcaps(codec, nid);
2051 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2052 unsigned int def_conf;
2053 short assoc, loc;
2054
2055 /* read all default configuration for pin complex */
2056 if (wid_type != AC_WID_PIN)
2057 continue;
2058 /* ignore the given nids (e.g. pc-beep returns error) */
2059 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2060 continue;
2061
2062 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
2063 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2064 continue;
2065 loc = get_defcfg_location(def_conf);
2066 switch (get_defcfg_device(def_conf)) {
2067 case AC_JACK_LINE_OUT:
2068 seq = get_defcfg_sequence(def_conf);
2069 assoc = get_defcfg_association(def_conf);
2070 if (! assoc)
2071 continue;
2072 if (! assoc_line_out)
2073 assoc_line_out = assoc;
2074 else if (assoc_line_out != assoc)
2075 continue;
2076 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2077 continue;
2078 cfg->line_out_pins[cfg->line_outs] = nid;
2079 sequences[cfg->line_outs] = seq;
2080 cfg->line_outs++;
2081 break;
2082 case AC_JACK_SPEAKER:
2083 if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2084 continue;
2085 cfg->speaker_pins[cfg->speaker_outs] = nid;
2086 cfg->speaker_outs++;
2087 break;
2088 case AC_JACK_HP_OUT:
2089 if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2090 continue;
2091 cfg->hp_pins[cfg->hp_outs] = nid;
2092 cfg->hp_outs++;
2093 break;
2094 case AC_JACK_MIC_IN: {
2095 int preferred, alt;
2096 if (loc == AC_JACK_LOC_FRONT) {
2097 preferred = AUTO_PIN_FRONT_MIC;
2098 alt = AUTO_PIN_MIC;
2099 } else {
2100 preferred = AUTO_PIN_MIC;
2101 alt = AUTO_PIN_FRONT_MIC;
2102 }
2103 if (!cfg->input_pins[preferred])
2104 cfg->input_pins[preferred] = nid;
2105 else if (!cfg->input_pins[alt])
2106 cfg->input_pins[alt] = nid;
2107 break;
2108 }
2109 case AC_JACK_LINE_IN:
2110 if (loc == AC_JACK_LOC_FRONT)
2111 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2112 else
2113 cfg->input_pins[AUTO_PIN_LINE] = nid;
2114 break;
2115 case AC_JACK_CD:
2116 cfg->input_pins[AUTO_PIN_CD] = nid;
2117 break;
2118 case AC_JACK_AUX:
2119 cfg->input_pins[AUTO_PIN_AUX] = nid;
2120 break;
2121 case AC_JACK_SPDIF_OUT:
2122 cfg->dig_out_pin = nid;
2123 break;
2124 case AC_JACK_SPDIF_IN:
2125 cfg->dig_in_pin = nid;
2126 break;
2127 }
2128 }
2129
2130 /* sort by sequence */
2131 for (i = 0; i < cfg->line_outs; i++)
2132 for (j = i + 1; j < cfg->line_outs; j++)
2133 if (sequences[i] > sequences[j]) {
2134 seq = sequences[i];
2135 sequences[i] = sequences[j];
2136 sequences[j] = seq;
2137 nid = cfg->line_out_pins[i];
2138 cfg->line_out_pins[i] = cfg->line_out_pins[j];
2139 cfg->line_out_pins[j] = nid;
2140 }
2141
2142 /* Reorder the surround channels
2143 * ALSA sequence is front/surr/clfe/side
2144 * HDA sequence is:
2145 * 4-ch: front/surr => OK as it is
2146 * 6-ch: front/clfe/surr
2147 * 8-ch: front/clfe/side/surr
2148 */
2149 switch (cfg->line_outs) {
2150 case 3:
2151 nid = cfg->line_out_pins[1];
2152 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2153 cfg->line_out_pins[2] = nid;
2154 break;
2155 case 4:
2156 nid = cfg->line_out_pins[1];
2157 cfg->line_out_pins[1] = cfg->line_out_pins[3];
2158 cfg->line_out_pins[3] = cfg->line_out_pins[2];
2159 cfg->line_out_pins[2] = nid;
2160 break;
2161 }
2162
2163 /*
2164 * debug prints of the parsed results
2165 */
2166 snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2167 cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2168 cfg->line_out_pins[2], cfg->line_out_pins[3],
2169 cfg->line_out_pins[4]);
2170 snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2171 cfg->speaker_outs, cfg->speaker_pins[0],
2172 cfg->speaker_pins[1], cfg->speaker_pins[2],
2173 cfg->speaker_pins[3], cfg->speaker_pins[4]);
2174 snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2175 cfg->hp_outs, cfg->hp_pins[0],
2176 cfg->hp_pins[1], cfg->hp_pins[2],
2177 cfg->hp_pins[3], cfg->hp_pins[4]);
2178 snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2179 " cd=0x%x, aux=0x%x\n",
2180 cfg->input_pins[AUTO_PIN_MIC],
2181 cfg->input_pins[AUTO_PIN_FRONT_MIC],
2182 cfg->input_pins[AUTO_PIN_LINE],
2183 cfg->input_pins[AUTO_PIN_FRONT_LINE],
2184 cfg->input_pins[AUTO_PIN_CD],
2185 cfg->input_pins[AUTO_PIN_AUX]);
2186
2187 /*
2188 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2189 * as a primary output
2190 */
2191 if (! cfg->line_outs) {
2192 if (cfg->speaker_outs) {
2193 cfg->line_outs = cfg->speaker_outs;
2194 memcpy(cfg->line_out_pins, cfg->speaker_pins,
2195 sizeof(cfg->speaker_pins));
2196 cfg->speaker_outs = 0;
2197 memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2198 } else if (cfg->hp_outs) {
2199 cfg->line_outs = cfg->hp_outs;
2200 memcpy(cfg->line_out_pins, cfg->hp_pins,
2201 sizeof(cfg->hp_pins));
2202 cfg->hp_outs = 0;
2203 memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2204 }
2205 }
2206
2207 return 0;
2208 }
2209
2210 /* labels for input pins */
2211 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2212 "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2213 };
2214
2215
2216 #ifdef CONFIG_PM
2217 /*
2218 * power management
2219 */
2220
2221 /**
2222 * snd_hda_suspend - suspend the codecs
2223 * @bus: the HDA bus
2224 * @state: suspsend state
2225 *
2226 * Returns 0 if successful.
2227 */
2228 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2229 {
2230 struct list_head *p;
2231
2232 /* FIXME: should handle power widget capabilities */
2233 list_for_each(p, &bus->codec_list) {
2234 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2235 if (codec->patch_ops.suspend)
2236 codec->patch_ops.suspend(codec, state);
2237 hda_set_power_state(codec,
2238 codec->afg ? codec->afg : codec->mfg,
2239 AC_PWRST_D3);
2240 }
2241 return 0;
2242 }
2243
2244 EXPORT_SYMBOL(snd_hda_suspend);
2245
2246 /**
2247 * snd_hda_resume - resume the codecs
2248 * @bus: the HDA bus
2249 * @state: resume state
2250 *
2251 * Returns 0 if successful.
2252 */
2253 int snd_hda_resume(struct hda_bus *bus)
2254 {
2255 struct list_head *p;
2256
2257 list_for_each(p, &bus->codec_list) {
2258 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2259 hda_set_power_state(codec,
2260 codec->afg ? codec->afg : codec->mfg,
2261 AC_PWRST_D0);
2262 if (codec->patch_ops.resume)
2263 codec->patch_ops.resume(codec);
2264 }
2265 return 0;
2266 }
2267
2268 EXPORT_SYMBOL(snd_hda_resume);
2269
2270 /**
2271 * snd_hda_resume_ctls - resume controls in the new control list
2272 * @codec: the HDA codec
2273 * @knew: the array of struct snd_kcontrol_new
2274 *
2275 * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2276 * originally for snd_hda_add_new_ctls().
2277 * The array must be terminated with an empty entry as terminator.
2278 */
2279 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2280 {
2281 struct snd_ctl_elem_value *val;
2282
2283 val = kmalloc(sizeof(*val), GFP_KERNEL);
2284 if (! val)
2285 return -ENOMEM;
2286 codec->in_resume = 1;
2287 for (; knew->name; knew++) {
2288 int i, count;
2289 count = knew->count ? knew->count : 1;
2290 for (i = 0; i < count; i++) {
2291 memset(val, 0, sizeof(*val));
2292 val->id.iface = knew->iface;
2293 val->id.device = knew->device;
2294 val->id.subdevice = knew->subdevice;
2295 strcpy(val->id.name, knew->name);
2296 val->id.index = knew->index ? knew->index : i;
2297 /* Assume that get callback reads only from cache,
2298 * not accessing to the real hardware
2299 */
2300 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2301 continue;
2302 snd_ctl_elem_write(codec->bus->card, NULL, val);
2303 }
2304 }
2305 codec->in_resume = 0;
2306 kfree(val);
2307 return 0;
2308 }
2309
2310 /**
2311 * snd_hda_resume_spdif_out - resume the digital out
2312 * @codec: the HDA codec
2313 */
2314 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2315 {
2316 return snd_hda_resume_ctls(codec, dig_mixes);
2317 }
2318
2319 /**
2320 * snd_hda_resume_spdif_in - resume the digital in
2321 * @codec: the HDA codec
2322 */
2323 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2324 {
2325 return snd_hda_resume_ctls(codec, dig_in_ctls);
2326 }
2327 #endif
2328
2329 /*
2330 * INIT part
2331 */
2332
2333 static int __init alsa_hda_init(void)
2334 {
2335 return 0;
2336 }
2337
2338 static void __exit alsa_hda_exit(void)
2339 {
2340 }
2341
2342 module_init(alsa_hda_init)
2343 module_exit(alsa_hda_exit)
This page took 0.078378 seconds and 5 git commands to generate.