e067a14a2d9e5f914b415e0de9ccb37e39aadf44
[deliverable/linux.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33
34
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38
39
40 /*
41 * vendor / preset table
42 */
43
44 struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47 };
48
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x11d4, "Analog Devices" },
53 { 0x13f6, "C-Media" },
54 { 0x434d, "C-Media" },
55 { 0x8384, "SigmaTel" },
56 {} /* terminator */
57 };
58
59 /* codec presets */
60 #include "hda_patch.h"
61
62
63 /**
64 * snd_hda_codec_read - send a command and get the response
65 * @codec: the HDA codec
66 * @nid: NID to send the command
67 * @direct: direct flag
68 * @verb: the verb to send
69 * @parm: the parameter for the verb
70 *
71 * Send a single command and read the corresponding response.
72 *
73 * Returns the obtained response value, or -1 for an error.
74 */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76 unsigned int verb, unsigned int parm)
77 {
78 unsigned int res;
79 down(&codec->bus->cmd_mutex);
80 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 up(&codec->bus->cmd_mutex);
85 return res;
86 }
87
88 /**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
95 *
96 * Send a single command without waiting for response.
97 *
98 * Returns 0 if successful, or a negative error code.
99 */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
102 {
103 int err;
104 down(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 up(&codec->bus->cmd_mutex);
107 return err;
108 }
109
110 /**
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
114 *
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
117 */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
129 *
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
132 */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135 unsigned int parm;
136
137 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138 *start_id = (parm >> 16) & 0x7fff;
139 return (int)(parm & 0x7fff);
140 }
141
142 /**
143 * snd_hda_get_connections - get connection list
144 * @codec: the HDA codec
145 * @nid: NID to parse
146 * @conn_list: connection list array
147 * @max_conns: max. number of connections to store
148 *
149 * Parses the connection list of the given widget and stores the list
150 * of NIDs.
151 *
152 * Returns the number of connections, or a negative error code.
153 */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155 hda_nid_t *conn_list, int max_conns)
156 {
157 unsigned int parm;
158 int i, j, conn_len, num_tupples, conns;
159 unsigned int shift, num_elems, mask;
160
161 snd_assert(conn_list && max_conns > 0, return -EINVAL);
162
163 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
164 if (parm & AC_CLIST_LONG) {
165 /* long form */
166 shift = 16;
167 num_elems = 2;
168 } else {
169 /* short form */
170 shift = 8;
171 num_elems = 4;
172 }
173 conn_len = parm & AC_CLIST_LENGTH;
174 num_tupples = num_elems / 2;
175 mask = (1 << (shift-1)) - 1;
176
177 if (! conn_len)
178 return 0; /* no connection */
179
180 if (conn_len == 1) {
181 /* single connection */
182 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183 conn_list[0] = parm & mask;
184 return 1;
185 }
186
187 /* multi connection */
188 conns = 0;
189 for (i = 0; i < conn_len; i += num_elems) {
190 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
191 for (j = 0; j < num_tupples; j++) {
192 int range_val;
193 hda_nid_t val1, val2, n;
194 range_val = parm & (1 << (shift-1)); /* ranges */
195 val1 = parm & mask;
196 parm >>= shift;
197 val2 = parm & mask;
198 parm >>= shift;
199 if (range_val) {
200 /* ranges between val1 and val2 */
201 if (val1 > val2) {
202 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
203 continue;
204 }
205 for (n = val1; n <= val2; n++) {
206 if (conns >= max_conns)
207 return -EINVAL;
208 conn_list[conns++] = n;
209 }
210 } else {
211 if (! val1)
212 break;
213 if (conns >= max_conns)
214 return -EINVAL;
215 conn_list[conns++] = val1;
216 if (! val2)
217 break;
218 if (conns >= max_conns)
219 return -EINVAL;
220 conn_list[conns++] = val2;
221 }
222 }
223 }
224 return conns;
225 }
226
227
228 /**
229 * snd_hda_queue_unsol_event - add an unsolicited event to queue
230 * @bus: the BUS
231 * @res: unsolicited event (lower 32bit of RIRB entry)
232 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
233 *
234 * Adds the given event to the queue. The events are processed in
235 * the workqueue asynchronously. Call this function in the interrupt
236 * hanlder when RIRB receives an unsolicited event.
237 *
238 * Returns 0 if successful, or a negative error code.
239 */
240 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
241 {
242 struct hda_bus_unsolicited *unsol;
243 unsigned int wp;
244
245 if ((unsol = bus->unsol) == NULL)
246 return 0;
247
248 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
249 unsol->wp = wp;
250
251 wp <<= 1;
252 unsol->queue[wp] = res;
253 unsol->queue[wp + 1] = res_ex;
254
255 queue_work(unsol->workq, &unsol->work);
256
257 return 0;
258 }
259
260 /*
261 * process queueud unsolicited events
262 */
263 static void process_unsol_events(void *data)
264 {
265 struct hda_bus *bus = data;
266 struct hda_bus_unsolicited *unsol = bus->unsol;
267 struct hda_codec *codec;
268 unsigned int rp, caddr, res;
269
270 while (unsol->rp != unsol->wp) {
271 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
272 unsol->rp = rp;
273 rp <<= 1;
274 res = unsol->queue[rp];
275 caddr = unsol->queue[rp + 1];
276 if (! (caddr & (1 << 4))) /* no unsolicited event? */
277 continue;
278 codec = bus->caddr_tbl[caddr & 0x0f];
279 if (codec && codec->patch_ops.unsol_event)
280 codec->patch_ops.unsol_event(codec, res);
281 }
282 }
283
284 /*
285 * initialize unsolicited queue
286 */
287 static int init_unsol_queue(struct hda_bus *bus)
288 {
289 struct hda_bus_unsolicited *unsol;
290
291 unsol = kcalloc(1, sizeof(*unsol), GFP_KERNEL);
292 if (! unsol) {
293 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
294 return -ENOMEM;
295 }
296 unsol->workq = create_workqueue("hda_codec");
297 if (! unsol->workq) {
298 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
299 kfree(unsol);
300 return -ENOMEM;
301 }
302 INIT_WORK(&unsol->work, process_unsol_events, bus);
303 bus->unsol = unsol;
304 return 0;
305 }
306
307 /*
308 * destructor
309 */
310 static void snd_hda_codec_free(struct hda_codec *codec);
311
312 static int snd_hda_bus_free(struct hda_bus *bus)
313 {
314 struct list_head *p, *n;
315
316 if (! bus)
317 return 0;
318 if (bus->unsol) {
319 destroy_workqueue(bus->unsol->workq);
320 kfree(bus->unsol);
321 }
322 list_for_each_safe(p, n, &bus->codec_list) {
323 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
324 snd_hda_codec_free(codec);
325 }
326 if (bus->ops.private_free)
327 bus->ops.private_free(bus);
328 kfree(bus);
329 return 0;
330 }
331
332 static int snd_hda_bus_dev_free(snd_device_t *device)
333 {
334 struct hda_bus *bus = device->device_data;
335 return snd_hda_bus_free(bus);
336 }
337
338 /**
339 * snd_hda_bus_new - create a HDA bus
340 * @card: the card entry
341 * @temp: the template for hda_bus information
342 * @busp: the pointer to store the created bus instance
343 *
344 * Returns 0 if successful, or a negative error code.
345 */
346 int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
347 struct hda_bus **busp)
348 {
349 struct hda_bus *bus;
350 int err;
351 static snd_device_ops_t dev_ops = {
352 .dev_free = snd_hda_bus_dev_free,
353 };
354
355 snd_assert(temp, return -EINVAL);
356 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
357
358 if (busp)
359 *busp = NULL;
360
361 bus = kcalloc(1, sizeof(*bus), GFP_KERNEL);
362 if (bus == NULL) {
363 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
364 return -ENOMEM;
365 }
366
367 bus->card = card;
368 bus->private_data = temp->private_data;
369 bus->pci = temp->pci;
370 bus->modelname = temp->modelname;
371 bus->ops = temp->ops;
372
373 init_MUTEX(&bus->cmd_mutex);
374 INIT_LIST_HEAD(&bus->codec_list);
375
376 init_unsol_queue(bus);
377
378 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
379 snd_hda_bus_free(bus);
380 return err;
381 }
382 if (busp)
383 *busp = bus;
384 return 0;
385 }
386
387
388 /*
389 * find a matching codec preset
390 */
391 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
392 {
393 const struct hda_codec_preset **tbl, *preset;
394
395 for (tbl = hda_preset_tables; *tbl; tbl++) {
396 for (preset = *tbl; preset->id; preset++) {
397 u32 mask = preset->mask;
398 if (! mask)
399 mask = ~0;
400 if (preset->id == (codec->vendor_id & mask))
401 return preset;
402 }
403 }
404 return NULL;
405 }
406
407 /*
408 * snd_hda_get_codec_name - store the codec name
409 */
410 void snd_hda_get_codec_name(struct hda_codec *codec,
411 char *name, int namelen)
412 {
413 const struct hda_vendor_id *c;
414 const char *vendor = NULL;
415 u16 vendor_id = codec->vendor_id >> 16;
416 char tmp[16];
417
418 for (c = hda_vendor_ids; c->id; c++) {
419 if (c->id == vendor_id) {
420 vendor = c->name;
421 break;
422 }
423 }
424 if (! vendor) {
425 sprintf(tmp, "Generic %04x", vendor_id);
426 vendor = tmp;
427 }
428 if (codec->preset && codec->preset->name)
429 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
430 else
431 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
432 }
433
434 /*
435 * look for an AFG and MFG nodes
436 */
437 static void setup_fg_nodes(struct hda_codec *codec)
438 {
439 int i, total_nodes;
440 hda_nid_t nid;
441
442 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
443 for (i = 0; i < total_nodes; i++, nid++) {
444 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
445 case AC_GRP_AUDIO_FUNCTION:
446 codec->afg = nid;
447 break;
448 case AC_GRP_MODEM_FUNCTION:
449 codec->mfg = nid;
450 break;
451 default:
452 break;
453 }
454 }
455 }
456
457 /*
458 * codec destructor
459 */
460 static void snd_hda_codec_free(struct hda_codec *codec)
461 {
462 if (! codec)
463 return;
464 list_del(&codec->list);
465 codec->bus->caddr_tbl[codec->addr] = NULL;
466 if (codec->patch_ops.free)
467 codec->patch_ops.free(codec);
468 kfree(codec);
469 }
470
471 static void init_amp_hash(struct hda_codec *codec);
472
473 /**
474 * snd_hda_codec_new - create a HDA codec
475 * @bus: the bus to assign
476 * @codec_addr: the codec address
477 * @codecp: the pointer to store the generated codec
478 *
479 * Returns 0 if successful, or a negative error code.
480 */
481 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
482 struct hda_codec **codecp)
483 {
484 struct hda_codec *codec;
485 char component[13];
486 int err;
487
488 snd_assert(bus, return -EINVAL);
489 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
490
491 if (bus->caddr_tbl[codec_addr]) {
492 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
493 return -EBUSY;
494 }
495
496 codec = kcalloc(1, sizeof(*codec), GFP_KERNEL);
497 if (codec == NULL) {
498 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
499 return -ENOMEM;
500 }
501
502 codec->bus = bus;
503 codec->addr = codec_addr;
504 init_MUTEX(&codec->spdif_mutex);
505 init_amp_hash(codec);
506
507 list_add_tail(&codec->list, &bus->codec_list);
508 bus->caddr_tbl[codec_addr] = codec;
509
510 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
511 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
512 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
513
514 setup_fg_nodes(codec);
515 if (! codec->afg && ! codec->mfg) {
516 snd_printdd("hda_codec: no AFG or MFG node found\n");
517 snd_hda_codec_free(codec);
518 return -ENODEV;
519 }
520
521 codec->preset = find_codec_preset(codec);
522 if (! *bus->card->mixername)
523 snd_hda_get_codec_name(codec, bus->card->mixername,
524 sizeof(bus->card->mixername));
525
526 if (codec->preset && codec->preset->patch)
527 err = codec->preset->patch(codec);
528 else
529 err = snd_hda_parse_generic_codec(codec);
530 if (err < 0) {
531 snd_hda_codec_free(codec);
532 return err;
533 }
534
535 snd_hda_codec_proc_new(codec);
536
537 sprintf(component, "HDA:%08x", codec->vendor_id);
538 snd_component_add(codec->bus->card, component);
539
540 if (codecp)
541 *codecp = codec;
542 return 0;
543 }
544
545 /**
546 * snd_hda_codec_setup_stream - set up the codec for streaming
547 * @codec: the CODEC to set up
548 * @nid: the NID to set up
549 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
550 * @channel_id: channel id to pass, zero based.
551 * @format: stream format.
552 */
553 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
554 int channel_id, int format)
555 {
556 if (! nid)
557 return;
558
559 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
560 nid, stream_tag, channel_id, format);
561 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
562 (stream_tag << 4) | channel_id);
563 msleep(1);
564 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
565 }
566
567
568 /*
569 * amp access functions
570 */
571
572 /* FIXME: more better hash key? */
573 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
574 #define INFO_AMP_CAPS (1<<0)
575 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
576
577 /* initialize the hash table */
578 static void init_amp_hash(struct hda_codec *codec)
579 {
580 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
581 codec->num_amp_entries = 0;
582 }
583
584 /* query the hash. allocate an entry if not found. */
585 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
586 {
587 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
588 u16 cur = codec->amp_hash[idx];
589 struct hda_amp_info *info;
590
591 while (cur != 0xffff) {
592 info = &codec->amp_info[cur];
593 if (info->key == key)
594 return info;
595 cur = info->next;
596 }
597
598 /* add a new hash entry */
599 if (codec->num_amp_entries >= ARRAY_SIZE(codec->amp_info)) {
600 snd_printk(KERN_ERR "hda_codec: Tooooo many amps!\n");
601 return NULL;
602 }
603 cur = codec->num_amp_entries++;
604 info = &codec->amp_info[cur];
605 info->key = key;
606 info->status = 0; /* not initialized yet */
607 info->next = codec->amp_hash[idx];
608 codec->amp_hash[idx] = cur;
609
610 return info;
611 }
612
613 /*
614 * query AMP capabilities for the given widget and direction
615 */
616 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
617 {
618 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
619
620 if (! info)
621 return 0;
622 if (! (info->status & INFO_AMP_CAPS)) {
623 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
624 nid = codec->afg;
625 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
626 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
627 info->status |= INFO_AMP_CAPS;
628 }
629 return info->amp_caps;
630 }
631
632 /*
633 * read the current volume to info
634 * if the cache exists, read the cache value.
635 */
636 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
637 hda_nid_t nid, int ch, int direction, int index)
638 {
639 u32 val, parm;
640
641 if (info->status & INFO_AMP_VOL(ch))
642 return info->vol[ch];
643
644 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
645 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
646 parm |= index;
647 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
648 info->vol[ch] = val & 0xff;
649 info->status |= INFO_AMP_VOL(ch);
650 return info->vol[ch];
651 }
652
653 /*
654 * write the current volume in info to the h/w and update the cache
655 */
656 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
657 hda_nid_t nid, int ch, int direction, int index, int val)
658 {
659 u32 parm;
660
661 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
662 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
663 parm |= index << AC_AMP_SET_INDEX_SHIFT;
664 parm |= val;
665 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
666 info->vol[ch] = val;
667 }
668
669 /*
670 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
671 */
672 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
673 {
674 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
675 if (! info)
676 return 0;
677 return get_vol_mute(codec, info, nid, ch, direction, index);
678 }
679
680 /*
681 * update the AMP value, mask = bit mask to set, val = the value
682 */
683 static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
684 {
685 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
686
687 if (! info)
688 return 0;
689 val &= mask;
690 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
691 if (info->vol[ch] == val && ! codec->in_resume)
692 return 0;
693 put_vol_mute(codec, info, nid, ch, direction, idx, val);
694 return 1;
695 }
696
697
698 /*
699 * AMP control callbacks
700 */
701 /* retrieve parameters from private_value */
702 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
703 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
704 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
705 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
706
707 /* volume */
708 int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
709 {
710 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
711 u16 nid = get_amp_nid(kcontrol);
712 u8 chs = get_amp_channels(kcontrol);
713 int dir = get_amp_direction(kcontrol);
714 u32 caps;
715
716 caps = query_amp_caps(codec, nid, dir);
717 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
718 if (! caps) {
719 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
720 return -EINVAL;
721 }
722 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
723 uinfo->count = chs == 3 ? 2 : 1;
724 uinfo->value.integer.min = 0;
725 uinfo->value.integer.max = caps;
726 return 0;
727 }
728
729 int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
730 {
731 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
732 hda_nid_t nid = get_amp_nid(kcontrol);
733 int chs = get_amp_channels(kcontrol);
734 int dir = get_amp_direction(kcontrol);
735 int idx = get_amp_index(kcontrol);
736 long *valp = ucontrol->value.integer.value;
737
738 if (chs & 1)
739 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
740 if (chs & 2)
741 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
742 return 0;
743 }
744
745 int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
746 {
747 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
748 hda_nid_t nid = get_amp_nid(kcontrol);
749 int chs = get_amp_channels(kcontrol);
750 int dir = get_amp_direction(kcontrol);
751 int idx = get_amp_index(kcontrol);
752 long *valp = ucontrol->value.integer.value;
753 int change = 0;
754
755 if (chs & 1) {
756 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
757 0x7f, *valp);
758 valp++;
759 }
760 if (chs & 2)
761 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
762 0x7f, *valp);
763 return change;
764 }
765
766 /* switch */
767 int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
768 {
769 int chs = get_amp_channels(kcontrol);
770
771 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
772 uinfo->count = chs == 3 ? 2 : 1;
773 uinfo->value.integer.min = 0;
774 uinfo->value.integer.max = 1;
775 return 0;
776 }
777
778 int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
779 {
780 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
781 hda_nid_t nid = get_amp_nid(kcontrol);
782 int chs = get_amp_channels(kcontrol);
783 int dir = get_amp_direction(kcontrol);
784 int idx = get_amp_index(kcontrol);
785 long *valp = ucontrol->value.integer.value;
786
787 if (chs & 1)
788 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
789 if (chs & 2)
790 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
791 return 0;
792 }
793
794 int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
795 {
796 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
797 hda_nid_t nid = get_amp_nid(kcontrol);
798 int chs = get_amp_channels(kcontrol);
799 int dir = get_amp_direction(kcontrol);
800 int idx = get_amp_index(kcontrol);
801 long *valp = ucontrol->value.integer.value;
802 int change = 0;
803
804 if (chs & 1) {
805 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
806 0x80, *valp ? 0 : 0x80);
807 valp++;
808 }
809 if (chs & 2)
810 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
811 0x80, *valp ? 0 : 0x80);
812
813 return change;
814 }
815
816 /*
817 * SPDIF out controls
818 */
819
820 static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
821 {
822 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
823 uinfo->count = 1;
824 return 0;
825 }
826
827 static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
828 {
829 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
830 IEC958_AES0_NONAUDIO |
831 IEC958_AES0_CON_EMPHASIS_5015 |
832 IEC958_AES0_CON_NOT_COPYRIGHT;
833 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
834 IEC958_AES1_CON_ORIGINAL;
835 return 0;
836 }
837
838 static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
839 {
840 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
841 IEC958_AES0_NONAUDIO |
842 IEC958_AES0_PRO_EMPHASIS_5015;
843 return 0;
844 }
845
846 static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
847 {
848 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
849
850 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
851 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
852 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
853 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
854
855 return 0;
856 }
857
858 /* convert from SPDIF status bits to HDA SPDIF bits
859 * bit 0 (DigEn) is always set zero (to be filled later)
860 */
861 static unsigned short convert_from_spdif_status(unsigned int sbits)
862 {
863 unsigned short val = 0;
864
865 if (sbits & IEC958_AES0_PROFESSIONAL)
866 val |= 1 << 6;
867 if (sbits & IEC958_AES0_NONAUDIO)
868 val |= 1 << 5;
869 if (sbits & IEC958_AES0_PROFESSIONAL) {
870 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
871 val |= 1 << 3;
872 } else {
873 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
874 val |= 1 << 3;
875 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
876 val |= 1 << 4;
877 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
878 val |= 1 << 7;
879 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
880 }
881 return val;
882 }
883
884 /* convert to SPDIF status bits from HDA SPDIF bits
885 */
886 static unsigned int convert_to_spdif_status(unsigned short val)
887 {
888 unsigned int sbits = 0;
889
890 if (val & (1 << 5))
891 sbits |= IEC958_AES0_NONAUDIO;
892 if (val & (1 << 6))
893 sbits |= IEC958_AES0_PROFESSIONAL;
894 if (sbits & IEC958_AES0_PROFESSIONAL) {
895 if (sbits & (1 << 3))
896 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
897 } else {
898 if (val & (1 << 3))
899 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
900 if (! (val & (1 << 4)))
901 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
902 if (val & (1 << 7))
903 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
904 sbits |= val & (0x7f << 8);
905 }
906 return sbits;
907 }
908
909 static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
910 {
911 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
912 hda_nid_t nid = kcontrol->private_value;
913 unsigned short val;
914 int change;
915
916 down(&codec->spdif_mutex);
917 codec->spdif_status = ucontrol->value.iec958.status[0] |
918 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
919 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
920 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
921 val = convert_from_spdif_status(codec->spdif_status);
922 val |= codec->spdif_ctls & 1;
923 change = codec->spdif_ctls != val;
924 codec->spdif_ctls = val;
925
926 if (change || codec->in_resume) {
927 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
928 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
929 }
930
931 up(&codec->spdif_mutex);
932 return change;
933 }
934
935 static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
936 {
937 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
938 uinfo->count = 1;
939 uinfo->value.integer.min = 0;
940 uinfo->value.integer.max = 1;
941 return 0;
942 }
943
944 static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
945 {
946 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
947
948 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
949 return 0;
950 }
951
952 static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
953 {
954 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
955 hda_nid_t nid = kcontrol->private_value;
956 unsigned short val;
957 int change;
958
959 down(&codec->spdif_mutex);
960 val = codec->spdif_ctls & ~1;
961 if (ucontrol->value.integer.value[0])
962 val |= 1;
963 change = codec->spdif_ctls != val;
964 if (change || codec->in_resume) {
965 codec->spdif_ctls = val;
966 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
967 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
968 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
969 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
970 }
971 up(&codec->spdif_mutex);
972 return change;
973 }
974
975 static snd_kcontrol_new_t dig_mixes[] = {
976 {
977 .access = SNDRV_CTL_ELEM_ACCESS_READ,
978 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
979 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
980 .info = snd_hda_spdif_mask_info,
981 .get = snd_hda_spdif_cmask_get,
982 },
983 {
984 .access = SNDRV_CTL_ELEM_ACCESS_READ,
985 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
986 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
987 .info = snd_hda_spdif_mask_info,
988 .get = snd_hda_spdif_pmask_get,
989 },
990 {
991 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
992 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
993 .info = snd_hda_spdif_mask_info,
994 .get = snd_hda_spdif_default_get,
995 .put = snd_hda_spdif_default_put,
996 },
997 {
998 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
999 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1000 .info = snd_hda_spdif_out_switch_info,
1001 .get = snd_hda_spdif_out_switch_get,
1002 .put = snd_hda_spdif_out_switch_put,
1003 },
1004 { } /* end */
1005 };
1006
1007 /**
1008 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1009 * @codec: the HDA codec
1010 * @nid: audio out widget NID
1011 *
1012 * Creates controls related with the SPDIF output.
1013 * Called from each patch supporting the SPDIF out.
1014 *
1015 * Returns 0 if successful, or a negative error code.
1016 */
1017 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1018 {
1019 int err;
1020 snd_kcontrol_t *kctl;
1021 snd_kcontrol_new_t *dig_mix;
1022
1023 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1024 kctl = snd_ctl_new1(dig_mix, codec);
1025 kctl->private_value = nid;
1026 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1027 return err;
1028 }
1029 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1030 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1031 return 0;
1032 }
1033
1034 /*
1035 * SPDIF input
1036 */
1037
1038 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1039
1040 static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1041 {
1042 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1043
1044 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1045 return 0;
1046 }
1047
1048 static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1049 {
1050 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1051 hda_nid_t nid = kcontrol->private_value;
1052 unsigned int val = !!ucontrol->value.integer.value[0];
1053 int change;
1054
1055 down(&codec->spdif_mutex);
1056 change = codec->spdif_in_enable != val;
1057 if (change || codec->in_resume) {
1058 codec->spdif_in_enable = val;
1059 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1060 }
1061 up(&codec->spdif_mutex);
1062 return change;
1063 }
1064
1065 static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1066 {
1067 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1068 hda_nid_t nid = kcontrol->private_value;
1069 unsigned short val;
1070 unsigned int sbits;
1071
1072 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1073 sbits = convert_to_spdif_status(val);
1074 ucontrol->value.iec958.status[0] = sbits;
1075 ucontrol->value.iec958.status[1] = sbits >> 8;
1076 ucontrol->value.iec958.status[2] = sbits >> 16;
1077 ucontrol->value.iec958.status[3] = sbits >> 24;
1078 return 0;
1079 }
1080
1081 static snd_kcontrol_new_t dig_in_ctls[] = {
1082 {
1083 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1084 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1085 .info = snd_hda_spdif_in_switch_info,
1086 .get = snd_hda_spdif_in_switch_get,
1087 .put = snd_hda_spdif_in_switch_put,
1088 },
1089 {
1090 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1091 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1092 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1093 .info = snd_hda_spdif_mask_info,
1094 .get = snd_hda_spdif_in_status_get,
1095 },
1096 { } /* end */
1097 };
1098
1099 /**
1100 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1101 * @codec: the HDA codec
1102 * @nid: audio in widget NID
1103 *
1104 * Creates controls related with the SPDIF input.
1105 * Called from each patch supporting the SPDIF in.
1106 *
1107 * Returns 0 if successful, or a negative error code.
1108 */
1109 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1110 {
1111 int err;
1112 snd_kcontrol_t *kctl;
1113 snd_kcontrol_new_t *dig_mix;
1114
1115 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1116 kctl = snd_ctl_new1(dig_mix, codec);
1117 kctl->private_value = nid;
1118 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1119 return err;
1120 }
1121 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1122 return 0;
1123 }
1124
1125
1126 /**
1127 * snd_hda_build_controls - build mixer controls
1128 * @bus: the BUS
1129 *
1130 * Creates mixer controls for each codec included in the bus.
1131 *
1132 * Returns 0 if successful, otherwise a negative error code.
1133 */
1134 int snd_hda_build_controls(struct hda_bus *bus)
1135 {
1136 struct list_head *p;
1137
1138 /* build controls */
1139 list_for_each(p, &bus->codec_list) {
1140 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1141 int err;
1142 if (! codec->patch_ops.build_controls)
1143 continue;
1144 err = codec->patch_ops.build_controls(codec);
1145 if (err < 0)
1146 return err;
1147 }
1148
1149 /* initialize */
1150 list_for_each(p, &bus->codec_list) {
1151 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1152 int err;
1153 if (! codec->patch_ops.init)
1154 continue;
1155 err = codec->patch_ops.init(codec);
1156 if (err < 0)
1157 return err;
1158 }
1159 return 0;
1160 }
1161
1162
1163 /*
1164 * stream formats
1165 */
1166 static unsigned int rate_bits[][3] = {
1167 /* rate in Hz, ALSA rate bitmask, HDA format value */
1168
1169 /* autodetected value used in snd_hda_query_supported_pcm */
1170 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1171 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1172 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1173 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1174 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1175 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1176 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1177 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1178 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1179 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1180 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1181
1182 /* not autodetected value */
1183 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1184 { 0 }
1185 };
1186
1187 /**
1188 * snd_hda_calc_stream_format - calculate format bitset
1189 * @rate: the sample rate
1190 * @channels: the number of channels
1191 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1192 * @maxbps: the max. bps
1193 *
1194 * Calculate the format bitset from the given rate, channels and th PCM format.
1195 *
1196 * Return zero if invalid.
1197 */
1198 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1199 unsigned int channels,
1200 unsigned int format,
1201 unsigned int maxbps)
1202 {
1203 int i;
1204 unsigned int val = 0;
1205
1206 for (i = 0; rate_bits[i][0]; i++)
1207 if (rate_bits[i][0] == rate) {
1208 val = rate_bits[i][2];
1209 break;
1210 }
1211 if (! rate_bits[i][0]) {
1212 snd_printdd("invalid rate %d\n", rate);
1213 return 0;
1214 }
1215
1216 if (channels == 0 || channels > 8) {
1217 snd_printdd("invalid channels %d\n", channels);
1218 return 0;
1219 }
1220 val |= channels - 1;
1221
1222 switch (snd_pcm_format_width(format)) {
1223 case 8: val |= 0x00; break;
1224 case 16: val |= 0x10; break;
1225 case 20:
1226 case 24:
1227 case 32:
1228 if (maxbps >= 32)
1229 val |= 0x40;
1230 else if (maxbps >= 24)
1231 val |= 0x30;
1232 else
1233 val |= 0x20;
1234 break;
1235 default:
1236 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1237 return 0;
1238 }
1239
1240 return val;
1241 }
1242
1243 /**
1244 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1245 * @codec: the HDA codec
1246 * @nid: NID to query
1247 * @ratesp: the pointer to store the detected rate bitflags
1248 * @formatsp: the pointer to store the detected formats
1249 * @bpsp: the pointer to store the detected format widths
1250 *
1251 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1252 * or @bsps argument is ignored.
1253 *
1254 * Returns 0 if successful, otherwise a negative error code.
1255 */
1256 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1257 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1258 {
1259 int i;
1260 unsigned int val, streams;
1261
1262 val = 0;
1263 if (nid != codec->afg &&
1264 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1265 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1266 if (val == -1)
1267 return -EIO;
1268 }
1269 if (! val)
1270 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1271
1272 if (ratesp) {
1273 u32 rates = 0;
1274 for (i = 0; rate_bits[i][0]; i++) {
1275 if (val & (1 << i))
1276 rates |= rate_bits[i][1];
1277 }
1278 *ratesp = rates;
1279 }
1280
1281 if (formatsp || bpsp) {
1282 u64 formats = 0;
1283 unsigned int bps;
1284 unsigned int wcaps;
1285
1286 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1287 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1288 if (streams == -1)
1289 return -EIO;
1290 if (! streams) {
1291 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1292 if (streams == -1)
1293 return -EIO;
1294 }
1295
1296 bps = 0;
1297 if (streams & AC_SUPFMT_PCM) {
1298 if (val & AC_SUPPCM_BITS_8) {
1299 formats |= SNDRV_PCM_FMTBIT_U8;
1300 bps = 8;
1301 }
1302 if (val & AC_SUPPCM_BITS_16) {
1303 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1304 bps = 16;
1305 }
1306 if (wcaps & AC_WCAP_DIGITAL) {
1307 if (val & AC_SUPPCM_BITS_32)
1308 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1309 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1310 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1311 if (val & AC_SUPPCM_BITS_24)
1312 bps = 24;
1313 else if (val & AC_SUPPCM_BITS_20)
1314 bps = 20;
1315 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1316 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1317 if (val & AC_SUPPCM_BITS_32)
1318 bps = 32;
1319 else if (val & AC_SUPPCM_BITS_20)
1320 bps = 20;
1321 else if (val & AC_SUPPCM_BITS_24)
1322 bps = 24;
1323 }
1324 }
1325 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1326 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1327 bps = 32;
1328 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1329 /* temporary hack: we have still no proper support
1330 * for the direct AC3 stream...
1331 */
1332 formats |= SNDRV_PCM_FMTBIT_U8;
1333 bps = 8;
1334 }
1335 if (formatsp)
1336 *formatsp = formats;
1337 if (bpsp)
1338 *bpsp = bps;
1339 }
1340
1341 return 0;
1342 }
1343
1344 /**
1345 * snd_hda_is_supported_format - check whether the given node supports the format val
1346 *
1347 * Returns 1 if supported, 0 if not.
1348 */
1349 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1350 unsigned int format)
1351 {
1352 int i;
1353 unsigned int val = 0, rate, stream;
1354
1355 if (nid != codec->afg &&
1356 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1357 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1358 if (val == -1)
1359 return 0;
1360 }
1361 if (! val) {
1362 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1363 if (val == -1)
1364 return 0;
1365 }
1366
1367 rate = format & 0xff00;
1368 for (i = 0; rate_bits[i][0]; i++)
1369 if (rate_bits[i][2] == rate) {
1370 if (val & (1 << i))
1371 break;
1372 return 0;
1373 }
1374 if (! rate_bits[i][0])
1375 return 0;
1376
1377 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1378 if (stream == -1)
1379 return 0;
1380 if (! stream && nid != codec->afg)
1381 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1382 if (! stream || stream == -1)
1383 return 0;
1384
1385 if (stream & AC_SUPFMT_PCM) {
1386 switch (format & 0xf0) {
1387 case 0x00:
1388 if (! (val & AC_SUPPCM_BITS_8))
1389 return 0;
1390 break;
1391 case 0x10:
1392 if (! (val & AC_SUPPCM_BITS_16))
1393 return 0;
1394 break;
1395 case 0x20:
1396 if (! (val & AC_SUPPCM_BITS_20))
1397 return 0;
1398 break;
1399 case 0x30:
1400 if (! (val & AC_SUPPCM_BITS_24))
1401 return 0;
1402 break;
1403 case 0x40:
1404 if (! (val & AC_SUPPCM_BITS_32))
1405 return 0;
1406 break;
1407 default:
1408 return 0;
1409 }
1410 } else {
1411 /* FIXME: check for float32 and AC3? */
1412 }
1413
1414 return 1;
1415 }
1416
1417 /*
1418 * PCM stuff
1419 */
1420 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1421 struct hda_codec *codec,
1422 snd_pcm_substream_t *substream)
1423 {
1424 return 0;
1425 }
1426
1427 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1428 struct hda_codec *codec,
1429 unsigned int stream_tag,
1430 unsigned int format,
1431 snd_pcm_substream_t *substream)
1432 {
1433 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1434 return 0;
1435 }
1436
1437 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1438 struct hda_codec *codec,
1439 snd_pcm_substream_t *substream)
1440 {
1441 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1442 return 0;
1443 }
1444
1445 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1446 {
1447 if (info->nid) {
1448 /* query support PCM information from the given NID */
1449 if (! info->rates || ! info->formats)
1450 snd_hda_query_supported_pcm(codec, info->nid,
1451 info->rates ? NULL : &info->rates,
1452 info->formats ? NULL : &info->formats,
1453 info->maxbps ? NULL : &info->maxbps);
1454 }
1455 if (info->ops.open == NULL)
1456 info->ops.open = hda_pcm_default_open_close;
1457 if (info->ops.close == NULL)
1458 info->ops.close = hda_pcm_default_open_close;
1459 if (info->ops.prepare == NULL) {
1460 snd_assert(info->nid, return -EINVAL);
1461 info->ops.prepare = hda_pcm_default_prepare;
1462 }
1463 if (info->ops.cleanup == NULL) {
1464 snd_assert(info->nid, return -EINVAL);
1465 info->ops.cleanup = hda_pcm_default_cleanup;
1466 }
1467 return 0;
1468 }
1469
1470 /**
1471 * snd_hda_build_pcms - build PCM information
1472 * @bus: the BUS
1473 *
1474 * Create PCM information for each codec included in the bus.
1475 *
1476 * The build_pcms codec patch is requested to set up codec->num_pcms and
1477 * codec->pcm_info properly. The array is referred by the top-level driver
1478 * to create its PCM instances.
1479 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1480 * callback.
1481 *
1482 * At least, substreams, channels_min and channels_max must be filled for
1483 * each stream. substreams = 0 indicates that the stream doesn't exist.
1484 * When rates and/or formats are zero, the supported values are queried
1485 * from the given nid. The nid is used also by the default ops.prepare
1486 * and ops.cleanup callbacks.
1487 *
1488 * The driver needs to call ops.open in its open callback. Similarly,
1489 * ops.close is supposed to be called in the close callback.
1490 * ops.prepare should be called in the prepare or hw_params callback
1491 * with the proper parameters for set up.
1492 * ops.cleanup should be called in hw_free for clean up of streams.
1493 *
1494 * This function returns 0 if successfull, or a negative error code.
1495 */
1496 int snd_hda_build_pcms(struct hda_bus *bus)
1497 {
1498 struct list_head *p;
1499
1500 list_for_each(p, &bus->codec_list) {
1501 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1502 unsigned int pcm, s;
1503 int err;
1504 if (! codec->patch_ops.build_pcms)
1505 continue;
1506 err = codec->patch_ops.build_pcms(codec);
1507 if (err < 0)
1508 return err;
1509 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1510 for (s = 0; s < 2; s++) {
1511 struct hda_pcm_stream *info;
1512 info = &codec->pcm_info[pcm].stream[s];
1513 if (! info->substreams)
1514 continue;
1515 err = set_pcm_default_values(codec, info);
1516 if (err < 0)
1517 return err;
1518 }
1519 }
1520 }
1521 return 0;
1522 }
1523
1524
1525 /**
1526 * snd_hda_check_board_config - compare the current codec with the config table
1527 * @codec: the HDA codec
1528 * @tbl: configuration table, terminated by null entries
1529 *
1530 * Compares the modelname or PCI subsystem id of the current codec with the
1531 * given configuration table. If a matching entry is found, returns its
1532 * config value (supposed to be 0 or positive).
1533 *
1534 * If no entries are matching, the function returns a negative value.
1535 */
1536 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1537 {
1538 const struct hda_board_config *c;
1539
1540 if (codec->bus->modelname) {
1541 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1542 if (c->modelname &&
1543 ! strcmp(codec->bus->modelname, c->modelname)) {
1544 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1545 return c->config;
1546 }
1547 }
1548 }
1549
1550 if (codec->bus->pci) {
1551 u16 subsystem_vendor, subsystem_device;
1552 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1553 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1554 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1555 if (c->pci_subvendor == subsystem_vendor &&
1556 (! c->pci_subdevice /* all match */||
1557 (c->pci_subdevice == subsystem_device))) {
1558 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1559 subsystem_vendor, subsystem_device, c->config);
1560 return c->config;
1561 }
1562 }
1563 }
1564 return -1;
1565 }
1566
1567 /**
1568 * snd_hda_add_new_ctls - create controls from the array
1569 * @codec: the HDA codec
1570 * @knew: the array of snd_kcontrol_new_t
1571 *
1572 * This helper function creates and add new controls in the given array.
1573 * The array must be terminated with an empty entry as terminator.
1574 *
1575 * Returns 0 if successful, or a negative error code.
1576 */
1577 int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1578 {
1579 int err;
1580
1581 for (; knew->name; knew++) {
1582 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1583 if (err < 0)
1584 return err;
1585 }
1586 return 0;
1587 }
1588
1589
1590 /*
1591 * input MUX helper
1592 */
1593 int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1594 {
1595 unsigned int index;
1596
1597 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1598 uinfo->count = 1;
1599 uinfo->value.enumerated.items = imux->num_items;
1600 index = uinfo->value.enumerated.item;
1601 if (index >= imux->num_items)
1602 index = imux->num_items - 1;
1603 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1604 return 0;
1605 }
1606
1607 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1608 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1609 unsigned int *cur_val)
1610 {
1611 unsigned int idx;
1612
1613 idx = ucontrol->value.enumerated.item[0];
1614 if (idx >= imux->num_items)
1615 idx = imux->num_items - 1;
1616 if (*cur_val == idx && ! codec->in_resume)
1617 return 0;
1618 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1619 imux->items[idx].index);
1620 *cur_val = idx;
1621 return 1;
1622 }
1623
1624
1625 /*
1626 * Multi-channel / digital-out PCM helper functions
1627 */
1628
1629 /*
1630 * open the digital out in the exclusive mode
1631 */
1632 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1633 {
1634 down(&codec->spdif_mutex);
1635 if (mout->dig_out_used) {
1636 up(&codec->spdif_mutex);
1637 return -EBUSY; /* already being used */
1638 }
1639 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1640 up(&codec->spdif_mutex);
1641 return 0;
1642 }
1643
1644 /*
1645 * release the digital out
1646 */
1647 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1648 {
1649 down(&codec->spdif_mutex);
1650 mout->dig_out_used = 0;
1651 up(&codec->spdif_mutex);
1652 return 0;
1653 }
1654
1655 /*
1656 * set up more restrictions for analog out
1657 */
1658 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1659 snd_pcm_substream_t *substream)
1660 {
1661 substream->runtime->hw.channels_max = mout->max_channels;
1662 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1663 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1664 }
1665
1666 /*
1667 * set up the i/o for analog out
1668 * when the digital out is available, copy the front out to digital out, too.
1669 */
1670 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1671 unsigned int stream_tag,
1672 unsigned int format,
1673 snd_pcm_substream_t *substream)
1674 {
1675 hda_nid_t *nids = mout->dac_nids;
1676 int chs = substream->runtime->channels;
1677 int i;
1678
1679 down(&codec->spdif_mutex);
1680 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1681 if (chs == 2 &&
1682 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1683 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1684 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1685 /* setup digital receiver */
1686 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1687 stream_tag, 0, format);
1688 } else {
1689 mout->dig_out_used = 0;
1690 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1691 }
1692 }
1693 up(&codec->spdif_mutex);
1694
1695 /* front */
1696 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1697 if (mout->hp_nid)
1698 /* headphone out will just decode front left/right (stereo) */
1699 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1700 /* surrounds */
1701 for (i = 1; i < mout->num_dacs; i++) {
1702 if (chs >= (i + 1) * 2) /* independent out */
1703 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1704 format);
1705 else /* copy front */
1706 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1707 format);
1708 }
1709 return 0;
1710 }
1711
1712 /*
1713 * clean up the setting for analog out
1714 */
1715 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1716 {
1717 hda_nid_t *nids = mout->dac_nids;
1718 int i;
1719
1720 for (i = 0; i < mout->num_dacs; i++)
1721 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1722 if (mout->hp_nid)
1723 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1724 down(&codec->spdif_mutex);
1725 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1726 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1727 mout->dig_out_used = 0;
1728 }
1729 up(&codec->spdif_mutex);
1730 return 0;
1731 }
1732
1733 /*
1734 * Helper for automatic ping configuration
1735 */
1736 /* parse all pin widgets and store the useful pin nids to cfg */
1737 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg)
1738 {
1739 hda_nid_t nid, nid_start;
1740 int i, j, nodes;
1741 short seq, sequences[4], assoc_line_out;
1742
1743 memset(cfg, 0, sizeof(*cfg));
1744
1745 memset(sequences, 0, sizeof(sequences));
1746 assoc_line_out = 0;
1747
1748 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1749 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1750 unsigned int wid_caps = snd_hda_param_read(codec, nid,
1751 AC_PAR_AUDIO_WIDGET_CAP);
1752 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1753 unsigned int def_conf;
1754 short assoc, loc;
1755
1756 /* read all default configuration for pin complex */
1757 if (wid_type != AC_WID_PIN)
1758 continue;
1759 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1760 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1761 continue;
1762 loc = get_defcfg_location(def_conf);
1763 switch (get_defcfg_device(def_conf)) {
1764 case AC_JACK_LINE_OUT:
1765 case AC_JACK_SPEAKER:
1766 seq = get_defcfg_sequence(def_conf);
1767 assoc = get_defcfg_association(def_conf);
1768 if (! assoc)
1769 continue;
1770 if (! assoc_line_out)
1771 assoc_line_out = assoc;
1772 else if (assoc_line_out != assoc)
1773 continue;
1774 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1775 continue;
1776 cfg->line_out_pins[cfg->line_outs] = nid;
1777 sequences[cfg->line_outs] = seq;
1778 cfg->line_outs++;
1779 break;
1780 case AC_JACK_HP_OUT:
1781 cfg->hp_pin = nid;
1782 break;
1783 case AC_JACK_MIC_IN:
1784 if (loc == AC_JACK_LOC_FRONT)
1785 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1786 else
1787 cfg->input_pins[AUTO_PIN_MIC] = nid;
1788 break;
1789 case AC_JACK_LINE_IN:
1790 if (loc == AC_JACK_LOC_FRONT)
1791 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
1792 else
1793 cfg->input_pins[AUTO_PIN_LINE] = nid;
1794 break;
1795 case AC_JACK_CD:
1796 cfg->input_pins[AUTO_PIN_CD] = nid;
1797 break;
1798 case AC_JACK_AUX:
1799 cfg->input_pins[AUTO_PIN_AUX] = nid;
1800 break;
1801 case AC_JACK_SPDIF_OUT:
1802 cfg->dig_out_pin = nid;
1803 break;
1804 case AC_JACK_SPDIF_IN:
1805 cfg->dig_in_pin = nid;
1806 break;
1807 }
1808 }
1809
1810 /* sort by sequence */
1811 for (i = 0; i < cfg->line_outs; i++)
1812 for (j = i + 1; j < cfg->line_outs; j++)
1813 if (sequences[i] > sequences[j]) {
1814 seq = sequences[i];
1815 sequences[i] = sequences[j];
1816 sequences[j] = seq;
1817 nid = cfg->line_out_pins[i];
1818 cfg->line_out_pins[i] = cfg->line_out_pins[j];
1819 cfg->line_out_pins[j] = nid;
1820 }
1821
1822 /* Reorder the surround channels
1823 * ALSA sequence is front/surr/clfe/side
1824 * HDA sequence is:
1825 * 4-ch: front/surr => OK as it is
1826 * 6-ch: front/clfe/surr
1827 * 8-ch: front/clfe/side/surr
1828 */
1829 switch (cfg->line_outs) {
1830 case 3:
1831 nid = cfg->line_out_pins[1];
1832 cfg->line_out_pins[1] = cfg->line_out_pins[2];
1833 cfg->line_out_pins[2] = nid;
1834 break;
1835 case 4:
1836 nid = cfg->line_out_pins[1];
1837 cfg->line_out_pins[1] = cfg->line_out_pins[3];
1838 cfg->line_out_pins[3] = cfg->line_out_pins[2];
1839 cfg->line_out_pins[2] = nid;
1840 break;
1841 }
1842
1843 return 0;
1844 }
1845
1846 #ifdef CONFIG_PM
1847 /*
1848 * power management
1849 */
1850
1851 /**
1852 * snd_hda_suspend - suspend the codecs
1853 * @bus: the HDA bus
1854 * @state: suspsend state
1855 *
1856 * Returns 0 if successful.
1857 */
1858 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1859 {
1860 struct list_head *p;
1861
1862 /* FIXME: should handle power widget capabilities */
1863 list_for_each(p, &bus->codec_list) {
1864 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1865 if (codec->patch_ops.suspend)
1866 codec->patch_ops.suspend(codec, state);
1867 }
1868 return 0;
1869 }
1870
1871 /**
1872 * snd_hda_resume - resume the codecs
1873 * @bus: the HDA bus
1874 * @state: resume state
1875 *
1876 * Returns 0 if successful.
1877 */
1878 int snd_hda_resume(struct hda_bus *bus)
1879 {
1880 struct list_head *p;
1881
1882 list_for_each(p, &bus->codec_list) {
1883 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1884 if (codec->patch_ops.resume)
1885 codec->patch_ops.resume(codec);
1886 }
1887 return 0;
1888 }
1889
1890 /**
1891 * snd_hda_resume_ctls - resume controls in the new control list
1892 * @codec: the HDA codec
1893 * @knew: the array of snd_kcontrol_new_t
1894 *
1895 * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1896 * originally for snd_hda_add_new_ctls().
1897 * The array must be terminated with an empty entry as terminator.
1898 */
1899 int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1900 {
1901 snd_ctl_elem_value_t *val;
1902
1903 val = kmalloc(sizeof(*val), GFP_KERNEL);
1904 if (! val)
1905 return -ENOMEM;
1906 codec->in_resume = 1;
1907 for (; knew->name; knew++) {
1908 int i, count;
1909 count = knew->count ? knew->count : 1;
1910 for (i = 0; i < count; i++) {
1911 memset(val, 0, sizeof(*val));
1912 val->id.iface = knew->iface;
1913 val->id.device = knew->device;
1914 val->id.subdevice = knew->subdevice;
1915 strcpy(val->id.name, knew->name);
1916 val->id.index = knew->index ? knew->index : i;
1917 /* Assume that get callback reads only from cache,
1918 * not accessing to the real hardware
1919 */
1920 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1921 continue;
1922 snd_ctl_elem_write(codec->bus->card, NULL, val);
1923 }
1924 }
1925 codec->in_resume = 0;
1926 kfree(val);
1927 return 0;
1928 }
1929
1930 /**
1931 * snd_hda_resume_spdif_out - resume the digital out
1932 * @codec: the HDA codec
1933 */
1934 int snd_hda_resume_spdif_out(struct hda_codec *codec)
1935 {
1936 return snd_hda_resume_ctls(codec, dig_mixes);
1937 }
1938
1939 /**
1940 * snd_hda_resume_spdif_in - resume the digital in
1941 * @codec: the HDA codec
1942 */
1943 int snd_hda_resume_spdif_in(struct hda_codec *codec)
1944 {
1945 return snd_hda_resume_ctls(codec, dig_in_ctls);
1946 }
1947 #endif
1948
1949 /*
1950 * symbols exported for controller modules
1951 */
1952 EXPORT_SYMBOL(snd_hda_codec_read);
1953 EXPORT_SYMBOL(snd_hda_codec_write);
1954 EXPORT_SYMBOL(snd_hda_sequence_write);
1955 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
1956 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
1957 EXPORT_SYMBOL(snd_hda_bus_new);
1958 EXPORT_SYMBOL(snd_hda_codec_new);
1959 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
1960 EXPORT_SYMBOL(snd_hda_calc_stream_format);
1961 EXPORT_SYMBOL(snd_hda_build_pcms);
1962 EXPORT_SYMBOL(snd_hda_build_controls);
1963 #ifdef CONFIG_PM
1964 EXPORT_SYMBOL(snd_hda_suspend);
1965 EXPORT_SYMBOL(snd_hda_resume);
1966 #endif
1967
1968 /*
1969 * INIT part
1970 */
1971
1972 static int __init alsa_hda_init(void)
1973 {
1974 return 0;
1975 }
1976
1977 static void __exit alsa_hda_exit(void)
1978 {
1979 }
1980
1981 module_init(alsa_hda_init)
1982 module_exit(alsa_hda_exit)
This page took 0.071441 seconds and 4 git commands to generate.