[ALSA] Add Analog Devices vendor name
[deliverable/linux.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33
34
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38
39
40 /*
41 * vendor / preset table
42 */
43
44 struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47 };
48
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x11d4, "Analog Devices" },
53 { 0x13f6, "C-Media" },
54 { 0x434d, "C-Media" },
55 { 0x8384, "SigmaTel" },
56 {} /* terminator */
57 };
58
59 /* codec presets */
60 #include "hda_patch.h"
61
62
63 /**
64 * snd_hda_codec_read - send a command and get the response
65 * @codec: the HDA codec
66 * @nid: NID to send the command
67 * @direct: direct flag
68 * @verb: the verb to send
69 * @parm: the parameter for the verb
70 *
71 * Send a single command and read the corresponding response.
72 *
73 * Returns the obtained response value, or -1 for an error.
74 */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76 unsigned int verb, unsigned int parm)
77 {
78 unsigned int res;
79 down(&codec->bus->cmd_mutex);
80 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 up(&codec->bus->cmd_mutex);
85 return res;
86 }
87
88 /**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
95 *
96 * Send a single command without waiting for response.
97 *
98 * Returns 0 if successful, or a negative error code.
99 */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
102 {
103 int err;
104 down(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 up(&codec->bus->cmd_mutex);
107 return err;
108 }
109
110 /**
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
114 *
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
117 */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
129 *
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
132 */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135 unsigned int parm;
136
137 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138 *start_id = (parm >> 16) & 0x7fff;
139 return (int)(parm & 0x7fff);
140 }
141
142 /**
143 * snd_hda_get_connections - get connection list
144 * @codec: the HDA codec
145 * @nid: NID to parse
146 * @conn_list: connection list array
147 * @max_conns: max. number of connections to store
148 *
149 * Parses the connection list of the given widget and stores the list
150 * of NIDs.
151 *
152 * Returns the number of connections, or a negative error code.
153 */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155 hda_nid_t *conn_list, int max_conns)
156 {
157 unsigned int parm;
158 int i, j, conn_len, num_tupples, conns;
159 unsigned int shift, num_elems, mask;
160
161 snd_assert(conn_list && max_conns > 0, return -EINVAL);
162
163 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
164 if (parm & AC_CLIST_LONG) {
165 /* long form */
166 shift = 16;
167 num_elems = 2;
168 } else {
169 /* short form */
170 shift = 8;
171 num_elems = 4;
172 }
173 conn_len = parm & AC_CLIST_LENGTH;
174 num_tupples = num_elems / 2;
175 mask = (1 << (shift-1)) - 1;
176
177 if (! conn_len)
178 return 0; /* no connection */
179
180 if (conn_len == 1) {
181 /* single connection */
182 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183 conn_list[0] = parm & mask;
184 return 1;
185 }
186
187 /* multi connection */
188 conns = 0;
189 for (i = 0; i < conn_len; i += num_elems) {
190 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
191 for (j = 0; j < num_tupples; j++) {
192 int range_val;
193 hda_nid_t val1, val2, n;
194 range_val = parm & (1 << (shift-1)); /* ranges */
195 val1 = parm & mask;
196 parm >>= shift;
197 val2 = parm & mask;
198 parm >>= shift;
199 if (range_val) {
200 /* ranges between val1 and val2 */
201 if (val1 > val2) {
202 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
203 continue;
204 }
205 for (n = val1; n <= val2; n++) {
206 if (conns >= max_conns)
207 return -EINVAL;
208 conn_list[conns++] = n;
209 }
210 } else {
211 if (! val1)
212 break;
213 if (conns >= max_conns)
214 return -EINVAL;
215 conn_list[conns++] = val1;
216 if (! val2)
217 break;
218 if (conns >= max_conns)
219 return -EINVAL;
220 conn_list[conns++] = val2;
221 }
222 }
223 }
224 return conns;
225 }
226
227
228 /**
229 * snd_hda_queue_unsol_event - add an unsolicited event to queue
230 * @bus: the BUS
231 * @res: unsolicited event (lower 32bit of RIRB entry)
232 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
233 *
234 * Adds the given event to the queue. The events are processed in
235 * the workqueue asynchronously. Call this function in the interrupt
236 * hanlder when RIRB receives an unsolicited event.
237 *
238 * Returns 0 if successful, or a negative error code.
239 */
240 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
241 {
242 struct hda_bus_unsolicited *unsol;
243 unsigned int wp;
244
245 if ((unsol = bus->unsol) == NULL)
246 return 0;
247
248 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
249 unsol->wp = wp;
250
251 wp <<= 1;
252 unsol->queue[wp] = res;
253 unsol->queue[wp + 1] = res_ex;
254
255 queue_work(unsol->workq, &unsol->work);
256
257 return 0;
258 }
259
260 /*
261 * process queueud unsolicited events
262 */
263 static void process_unsol_events(void *data)
264 {
265 struct hda_bus *bus = data;
266 struct hda_bus_unsolicited *unsol = bus->unsol;
267 struct hda_codec *codec;
268 unsigned int rp, caddr, res;
269
270 while (unsol->rp != unsol->wp) {
271 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
272 unsol->rp = rp;
273 rp <<= 1;
274 res = unsol->queue[rp];
275 caddr = unsol->queue[rp + 1];
276 if (! (caddr & (1 << 4))) /* no unsolicited event? */
277 continue;
278 codec = bus->caddr_tbl[caddr & 0x0f];
279 if (codec && codec->patch_ops.unsol_event)
280 codec->patch_ops.unsol_event(codec, res);
281 }
282 }
283
284 /*
285 * initialize unsolicited queue
286 */
287 static int init_unsol_queue(struct hda_bus *bus)
288 {
289 struct hda_bus_unsolicited *unsol;
290
291 unsol = kcalloc(1, sizeof(*unsol), GFP_KERNEL);
292 if (! unsol) {
293 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
294 return -ENOMEM;
295 }
296 unsol->workq = create_workqueue("hda_codec");
297 if (! unsol->workq) {
298 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
299 kfree(unsol);
300 return -ENOMEM;
301 }
302 INIT_WORK(&unsol->work, process_unsol_events, bus);
303 bus->unsol = unsol;
304 return 0;
305 }
306
307 /*
308 * destructor
309 */
310 static void snd_hda_codec_free(struct hda_codec *codec);
311
312 static int snd_hda_bus_free(struct hda_bus *bus)
313 {
314 struct list_head *p, *n;
315
316 if (! bus)
317 return 0;
318 if (bus->unsol) {
319 destroy_workqueue(bus->unsol->workq);
320 kfree(bus->unsol);
321 }
322 list_for_each_safe(p, n, &bus->codec_list) {
323 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
324 snd_hda_codec_free(codec);
325 }
326 if (bus->ops.private_free)
327 bus->ops.private_free(bus);
328 kfree(bus);
329 return 0;
330 }
331
332 static int snd_hda_bus_dev_free(snd_device_t *device)
333 {
334 struct hda_bus *bus = device->device_data;
335 return snd_hda_bus_free(bus);
336 }
337
338 /**
339 * snd_hda_bus_new - create a HDA bus
340 * @card: the card entry
341 * @temp: the template for hda_bus information
342 * @busp: the pointer to store the created bus instance
343 *
344 * Returns 0 if successful, or a negative error code.
345 */
346 int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
347 struct hda_bus **busp)
348 {
349 struct hda_bus *bus;
350 int err;
351 static snd_device_ops_t dev_ops = {
352 .dev_free = snd_hda_bus_dev_free,
353 };
354
355 snd_assert(temp, return -EINVAL);
356 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
357
358 if (busp)
359 *busp = NULL;
360
361 bus = kcalloc(1, sizeof(*bus), GFP_KERNEL);
362 if (bus == NULL) {
363 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
364 return -ENOMEM;
365 }
366
367 bus->card = card;
368 bus->private_data = temp->private_data;
369 bus->pci = temp->pci;
370 bus->modelname = temp->modelname;
371 bus->ops = temp->ops;
372
373 init_MUTEX(&bus->cmd_mutex);
374 INIT_LIST_HEAD(&bus->codec_list);
375
376 init_unsol_queue(bus);
377
378 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
379 snd_hda_bus_free(bus);
380 return err;
381 }
382 if (busp)
383 *busp = bus;
384 return 0;
385 }
386
387
388 /*
389 * find a matching codec preset
390 */
391 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
392 {
393 const struct hda_codec_preset **tbl, *preset;
394
395 for (tbl = hda_preset_tables; *tbl; tbl++) {
396 for (preset = *tbl; preset->id; preset++) {
397 u32 mask = preset->mask;
398 if (! mask)
399 mask = ~0;
400 if (preset->id == (codec->vendor_id & mask))
401 return preset;
402 }
403 }
404 return NULL;
405 }
406
407 /*
408 * snd_hda_get_codec_name - store the codec name
409 */
410 void snd_hda_get_codec_name(struct hda_codec *codec,
411 char *name, int namelen)
412 {
413 const struct hda_vendor_id *c;
414 const char *vendor = NULL;
415 u16 vendor_id = codec->vendor_id >> 16;
416 char tmp[16];
417
418 for (c = hda_vendor_ids; c->id; c++) {
419 if (c->id == vendor_id) {
420 vendor = c->name;
421 break;
422 }
423 }
424 if (! vendor) {
425 sprintf(tmp, "Generic %04x", vendor_id);
426 vendor = tmp;
427 }
428 if (codec->preset && codec->preset->name)
429 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
430 else
431 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
432 }
433
434 /*
435 * look for an AFG node
436 *
437 * return 0 if not found
438 */
439 static int look_for_afg_node(struct hda_codec *codec)
440 {
441 int i, total_nodes;
442 hda_nid_t nid;
443
444 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
445 for (i = 0; i < total_nodes; i++, nid++) {
446 if ((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff) ==
447 AC_GRP_AUDIO_FUNCTION)
448 return nid;
449 }
450 return 0;
451 }
452
453 /*
454 * codec destructor
455 */
456 static void snd_hda_codec_free(struct hda_codec *codec)
457 {
458 if (! codec)
459 return;
460 list_del(&codec->list);
461 codec->bus->caddr_tbl[codec->addr] = NULL;
462 if (codec->patch_ops.free)
463 codec->patch_ops.free(codec);
464 kfree(codec);
465 }
466
467 static void init_amp_hash(struct hda_codec *codec);
468
469 /**
470 * snd_hda_codec_new - create a HDA codec
471 * @bus: the bus to assign
472 * @codec_addr: the codec address
473 * @codecp: the pointer to store the generated codec
474 *
475 * Returns 0 if successful, or a negative error code.
476 */
477 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
478 struct hda_codec **codecp)
479 {
480 struct hda_codec *codec;
481 char component[13];
482 int err;
483
484 snd_assert(bus, return -EINVAL);
485 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
486
487 if (bus->caddr_tbl[codec_addr]) {
488 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
489 return -EBUSY;
490 }
491
492 codec = kcalloc(1, sizeof(*codec), GFP_KERNEL);
493 if (codec == NULL) {
494 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
495 return -ENOMEM;
496 }
497
498 codec->bus = bus;
499 codec->addr = codec_addr;
500 init_MUTEX(&codec->spdif_mutex);
501 init_amp_hash(codec);
502
503 list_add_tail(&codec->list, &bus->codec_list);
504 bus->caddr_tbl[codec_addr] = codec;
505
506 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
507 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
508 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
509
510 /* FIXME: support for multiple AFGs? */
511 codec->afg = look_for_afg_node(codec);
512 if (! codec->afg) {
513 snd_printdd("hda_codec: no AFG node found\n");
514 snd_hda_codec_free(codec);
515 return -ENODEV;
516 }
517
518 codec->preset = find_codec_preset(codec);
519 if (! *bus->card->mixername)
520 snd_hda_get_codec_name(codec, bus->card->mixername,
521 sizeof(bus->card->mixername));
522
523 if (codec->preset && codec->preset->patch)
524 err = codec->preset->patch(codec);
525 else
526 err = snd_hda_parse_generic_codec(codec);
527 if (err < 0) {
528 snd_hda_codec_free(codec);
529 return err;
530 }
531
532 snd_hda_codec_proc_new(codec);
533
534 sprintf(component, "HDA:%08x", codec->vendor_id);
535 snd_component_add(codec->bus->card, component);
536
537 if (codecp)
538 *codecp = codec;
539 return 0;
540 }
541
542 /**
543 * snd_hda_codec_setup_stream - set up the codec for streaming
544 * @codec: the CODEC to set up
545 * @nid: the NID to set up
546 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
547 * @channel_id: channel id to pass, zero based.
548 * @format: stream format.
549 */
550 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
551 int channel_id, int format)
552 {
553 if (! nid)
554 return;
555
556 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
557 nid, stream_tag, channel_id, format);
558 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
559 (stream_tag << 4) | channel_id);
560 msleep(1);
561 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
562 }
563
564
565 /*
566 * amp access functions
567 */
568
569 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + (idx) * 32 + (dir) * 64)
570 #define INFO_AMP_CAPS (1<<0)
571 #define INFO_AMP_VOL (1<<1)
572
573 /* initialize the hash table */
574 static void init_amp_hash(struct hda_codec *codec)
575 {
576 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
577 codec->num_amp_entries = 0;
578 }
579
580 /* query the hash. allocate an entry if not found. */
581 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
582 {
583 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
584 u16 cur = codec->amp_hash[idx];
585 struct hda_amp_info *info;
586
587 while (cur != 0xffff) {
588 info = &codec->amp_info[cur];
589 if (info->key == key)
590 return info;
591 cur = info->next;
592 }
593
594 /* add a new hash entry */
595 if (codec->num_amp_entries >= ARRAY_SIZE(codec->amp_info)) {
596 snd_printk(KERN_ERR "hda_codec: Tooooo many amps!\n");
597 return NULL;
598 }
599 cur = codec->num_amp_entries++;
600 info = &codec->amp_info[cur];
601 info->key = key;
602 info->status = 0; /* not initialized yet */
603 info->next = codec->amp_hash[idx];
604 codec->amp_hash[idx] = cur;
605
606 return info;
607 }
608
609 /*
610 * query AMP capabilities for the given widget and direction
611 */
612 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
613 {
614 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
615
616 if (! info)
617 return 0;
618 if (! (info->status & INFO_AMP_CAPS)) {
619 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
620 nid = codec->afg;
621 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
622 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
623 info->status |= INFO_AMP_CAPS;
624 }
625 return info->amp_caps;
626 }
627
628 /*
629 * read the current volume to info
630 * if the cache exists, read from the cache.
631 */
632 static void get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
633 hda_nid_t nid, int ch, int direction, int index)
634 {
635 u32 val, parm;
636
637 if (info->status & (INFO_AMP_VOL << ch))
638 return;
639
640 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
641 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
642 parm |= index;
643 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
644 info->vol[ch] = val & 0xff;
645 info->status |= INFO_AMP_VOL << ch;
646 }
647
648 /*
649 * write the current volume in info to the h/w
650 */
651 static void put_vol_mute(struct hda_codec *codec,
652 hda_nid_t nid, int ch, int direction, int index, int val)
653 {
654 u32 parm;
655
656 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
657 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
658 parm |= index << AC_AMP_SET_INDEX_SHIFT;
659 parm |= val;
660 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
661 }
662
663 /*
664 * read/write AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
665 */
666 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
667 {
668 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
669 if (! info)
670 return 0;
671 get_vol_mute(codec, info, nid, ch, direction, index);
672 return info->vol[ch];
673 }
674
675 static int snd_hda_codec_amp_write(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int val)
676 {
677 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
678 if (! info)
679 return 0;
680 get_vol_mute(codec, info, nid, ch, direction, idx);
681 if (info->vol[ch] == val && ! codec->in_resume)
682 return 0;
683 put_vol_mute(codec, nid, ch, direction, idx, val);
684 info->vol[ch] = val;
685 return 1;
686 }
687
688
689 /*
690 * AMP control callbacks
691 */
692 /* retrieve parameters from private_value */
693 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
694 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
695 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
696 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
697
698 /* volume */
699 int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
700 {
701 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
702 u16 nid = get_amp_nid(kcontrol);
703 u8 chs = get_amp_channels(kcontrol);
704 int dir = get_amp_direction(kcontrol);
705 u32 caps;
706
707 caps = query_amp_caps(codec, nid, dir);
708 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
709 if (! caps) {
710 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
711 return -EINVAL;
712 }
713 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
714 uinfo->count = chs == 3 ? 2 : 1;
715 uinfo->value.integer.min = 0;
716 uinfo->value.integer.max = caps;
717 return 0;
718 }
719
720 int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
721 {
722 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
723 hda_nid_t nid = get_amp_nid(kcontrol);
724 int chs = get_amp_channels(kcontrol);
725 int dir = get_amp_direction(kcontrol);
726 int idx = get_amp_index(kcontrol);
727 long *valp = ucontrol->value.integer.value;
728
729 if (chs & 1)
730 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
731 if (chs & 2)
732 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
733 return 0;
734 }
735
736 int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
737 {
738 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
739 hda_nid_t nid = get_amp_nid(kcontrol);
740 int chs = get_amp_channels(kcontrol);
741 int dir = get_amp_direction(kcontrol);
742 int idx = get_amp_index(kcontrol);
743 int val;
744 long *valp = ucontrol->value.integer.value;
745 int change = 0;
746
747 if (chs & 1) {
748 val = *valp & 0x7f;
749 val |= snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80;
750 change = snd_hda_codec_amp_write(codec, nid, 0, dir, idx, val);
751 valp++;
752 }
753 if (chs & 2) {
754 val = *valp & 0x7f;
755 val |= snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80;
756 change |= snd_hda_codec_amp_write(codec, nid, 1, dir, idx, val);
757 }
758 return change;
759 }
760
761 /* switch */
762 int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
763 {
764 int chs = get_amp_channels(kcontrol);
765
766 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
767 uinfo->count = chs == 3 ? 2 : 1;
768 uinfo->value.integer.min = 0;
769 uinfo->value.integer.max = 1;
770 return 0;
771 }
772
773 int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
774 {
775 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
776 hda_nid_t nid = get_amp_nid(kcontrol);
777 int chs = get_amp_channels(kcontrol);
778 int dir = get_amp_direction(kcontrol);
779 int idx = get_amp_index(kcontrol);
780 long *valp = ucontrol->value.integer.value;
781
782 if (chs & 1)
783 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
784 if (chs & 2)
785 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
786 return 0;
787 }
788
789 int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
790 {
791 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
792 hda_nid_t nid = get_amp_nid(kcontrol);
793 int chs = get_amp_channels(kcontrol);
794 int dir = get_amp_direction(kcontrol);
795 int idx = get_amp_index(kcontrol);
796 int val;
797 long *valp = ucontrol->value.integer.value;
798 int change = 0;
799
800 if (chs & 1) {
801 val = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
802 val |= *valp ? 0 : 0x80;
803 change = snd_hda_codec_amp_write(codec, nid, 0, dir, idx, val);
804 valp++;
805 }
806 if (chs & 2) {
807 val = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
808 val |= *valp ? 0 : 0x80;
809 change = snd_hda_codec_amp_write(codec, nid, 1, dir, idx, val);
810 }
811 return change;
812 }
813
814 /*
815 * SPDIF out controls
816 */
817
818 static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
819 {
820 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
821 uinfo->count = 1;
822 return 0;
823 }
824
825 static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
826 {
827 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
828 IEC958_AES0_NONAUDIO |
829 IEC958_AES0_CON_EMPHASIS_5015 |
830 IEC958_AES0_CON_NOT_COPYRIGHT;
831 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
832 IEC958_AES1_CON_ORIGINAL;
833 return 0;
834 }
835
836 static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
837 {
838 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
839 IEC958_AES0_NONAUDIO |
840 IEC958_AES0_PRO_EMPHASIS_5015;
841 return 0;
842 }
843
844 static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
845 {
846 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
847
848 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
849 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
850 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
851 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
852
853 return 0;
854 }
855
856 /* convert from SPDIF status bits to HDA SPDIF bits
857 * bit 0 (DigEn) is always set zero (to be filled later)
858 */
859 static unsigned short convert_from_spdif_status(unsigned int sbits)
860 {
861 unsigned short val = 0;
862
863 if (sbits & IEC958_AES0_PROFESSIONAL)
864 val |= 1 << 6;
865 if (sbits & IEC958_AES0_NONAUDIO)
866 val |= 1 << 5;
867 if (sbits & IEC958_AES0_PROFESSIONAL) {
868 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
869 val |= 1 << 3;
870 } else {
871 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
872 val |= 1 << 3;
873 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
874 val |= 1 << 4;
875 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
876 val |= 1 << 7;
877 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
878 }
879 return val;
880 }
881
882 /* convert to SPDIF status bits from HDA SPDIF bits
883 */
884 static unsigned int convert_to_spdif_status(unsigned short val)
885 {
886 unsigned int sbits = 0;
887
888 if (val & (1 << 5))
889 sbits |= IEC958_AES0_NONAUDIO;
890 if (val & (1 << 6))
891 sbits |= IEC958_AES0_PROFESSIONAL;
892 if (sbits & IEC958_AES0_PROFESSIONAL) {
893 if (sbits & (1 << 3))
894 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
895 } else {
896 if (val & (1 << 3))
897 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
898 if (! (val & (1 << 4)))
899 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
900 if (val & (1 << 7))
901 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
902 sbits |= val & (0x7f << 8);
903 }
904 return sbits;
905 }
906
907 static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
908 {
909 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
910 hda_nid_t nid = kcontrol->private_value;
911 unsigned short val;
912 int change;
913
914 down(&codec->spdif_mutex);
915 codec->spdif_status = ucontrol->value.iec958.status[0] |
916 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
917 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
918 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
919 val = convert_from_spdif_status(codec->spdif_status);
920 val |= codec->spdif_ctls & 1;
921 change = codec->spdif_ctls != val;
922 codec->spdif_ctls = val;
923
924 if (change || codec->in_resume) {
925 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
926 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
927 }
928
929 up(&codec->spdif_mutex);
930 return change;
931 }
932
933 static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
934 {
935 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
936 uinfo->count = 1;
937 uinfo->value.integer.min = 0;
938 uinfo->value.integer.max = 1;
939 return 0;
940 }
941
942 static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
943 {
944 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
945
946 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
947 return 0;
948 }
949
950 static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
951 {
952 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
953 hda_nid_t nid = kcontrol->private_value;
954 unsigned short val;
955 int change;
956
957 down(&codec->spdif_mutex);
958 val = codec->spdif_ctls & ~1;
959 if (ucontrol->value.integer.value[0])
960 val |= 1;
961 change = codec->spdif_ctls != val;
962 if (change || codec->in_resume) {
963 codec->spdif_ctls = val;
964 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
965 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
966 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
967 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
968 }
969 up(&codec->spdif_mutex);
970 return change;
971 }
972
973 static snd_kcontrol_new_t dig_mixes[] = {
974 {
975 .access = SNDRV_CTL_ELEM_ACCESS_READ,
976 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
977 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
978 .info = snd_hda_spdif_mask_info,
979 .get = snd_hda_spdif_cmask_get,
980 },
981 {
982 .access = SNDRV_CTL_ELEM_ACCESS_READ,
983 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
984 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
985 .info = snd_hda_spdif_mask_info,
986 .get = snd_hda_spdif_pmask_get,
987 },
988 {
989 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
990 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
991 .info = snd_hda_spdif_mask_info,
992 .get = snd_hda_spdif_default_get,
993 .put = snd_hda_spdif_default_put,
994 },
995 {
996 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
997 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
998 .info = snd_hda_spdif_out_switch_info,
999 .get = snd_hda_spdif_out_switch_get,
1000 .put = snd_hda_spdif_out_switch_put,
1001 },
1002 { } /* end */
1003 };
1004
1005 /**
1006 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1007 * @codec: the HDA codec
1008 * @nid: audio out widget NID
1009 *
1010 * Creates controls related with the SPDIF output.
1011 * Called from each patch supporting the SPDIF out.
1012 *
1013 * Returns 0 if successful, or a negative error code.
1014 */
1015 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1016 {
1017 int err;
1018 snd_kcontrol_t *kctl;
1019 snd_kcontrol_new_t *dig_mix;
1020
1021 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1022 kctl = snd_ctl_new1(dig_mix, codec);
1023 kctl->private_value = nid;
1024 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1025 return err;
1026 }
1027 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1028 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1029 return 0;
1030 }
1031
1032 /*
1033 * SPDIF input
1034 */
1035
1036 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1037
1038 static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1039 {
1040 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1041
1042 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1043 return 0;
1044 }
1045
1046 static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1047 {
1048 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1049 hda_nid_t nid = kcontrol->private_value;
1050 unsigned int val = !!ucontrol->value.integer.value[0];
1051 int change;
1052
1053 down(&codec->spdif_mutex);
1054 change = codec->spdif_in_enable != val;
1055 if (change || codec->in_resume) {
1056 codec->spdif_in_enable = val;
1057 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1058 }
1059 up(&codec->spdif_mutex);
1060 return change;
1061 }
1062
1063 static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1064 {
1065 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1066 hda_nid_t nid = kcontrol->private_value;
1067 unsigned short val;
1068 unsigned int sbits;
1069
1070 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1071 sbits = convert_to_spdif_status(val);
1072 ucontrol->value.iec958.status[0] = sbits;
1073 ucontrol->value.iec958.status[1] = sbits >> 8;
1074 ucontrol->value.iec958.status[2] = sbits >> 16;
1075 ucontrol->value.iec958.status[3] = sbits >> 24;
1076 return 0;
1077 }
1078
1079 static snd_kcontrol_new_t dig_in_ctls[] = {
1080 {
1081 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1082 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1083 .info = snd_hda_spdif_in_switch_info,
1084 .get = snd_hda_spdif_in_switch_get,
1085 .put = snd_hda_spdif_in_switch_put,
1086 },
1087 {
1088 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1089 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1090 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1091 .info = snd_hda_spdif_mask_info,
1092 .get = snd_hda_spdif_in_status_get,
1093 },
1094 { } /* end */
1095 };
1096
1097 /**
1098 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1099 * @codec: the HDA codec
1100 * @nid: audio in widget NID
1101 *
1102 * Creates controls related with the SPDIF input.
1103 * Called from each patch supporting the SPDIF in.
1104 *
1105 * Returns 0 if successful, or a negative error code.
1106 */
1107 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1108 {
1109 int err;
1110 snd_kcontrol_t *kctl;
1111 snd_kcontrol_new_t *dig_mix;
1112
1113 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1114 kctl = snd_ctl_new1(dig_mix, codec);
1115 kctl->private_value = nid;
1116 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1117 return err;
1118 }
1119 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1120 return 0;
1121 }
1122
1123
1124 /**
1125 * snd_hda_build_controls - build mixer controls
1126 * @bus: the BUS
1127 *
1128 * Creates mixer controls for each codec included in the bus.
1129 *
1130 * Returns 0 if successful, otherwise a negative error code.
1131 */
1132 int snd_hda_build_controls(struct hda_bus *bus)
1133 {
1134 struct list_head *p;
1135
1136 /* build controls */
1137 list_for_each(p, &bus->codec_list) {
1138 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1139 int err;
1140 if (! codec->patch_ops.build_controls)
1141 continue;
1142 err = codec->patch_ops.build_controls(codec);
1143 if (err < 0)
1144 return err;
1145 }
1146
1147 /* initialize */
1148 list_for_each(p, &bus->codec_list) {
1149 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1150 int err;
1151 if (! codec->patch_ops.init)
1152 continue;
1153 err = codec->patch_ops.init(codec);
1154 if (err < 0)
1155 return err;
1156 }
1157 return 0;
1158 }
1159
1160
1161 /*
1162 * stream formats
1163 */
1164 static unsigned int rate_bits[][3] = {
1165 /* rate in Hz, ALSA rate bitmask, HDA format value */
1166 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1167 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1168 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1169 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1170 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1171 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1172 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1173 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1174 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1175 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1176 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1177 { 0 }
1178 };
1179
1180 /**
1181 * snd_hda_calc_stream_format - calculate format bitset
1182 * @rate: the sample rate
1183 * @channels: the number of channels
1184 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1185 * @maxbps: the max. bps
1186 *
1187 * Calculate the format bitset from the given rate, channels and th PCM format.
1188 *
1189 * Return zero if invalid.
1190 */
1191 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1192 unsigned int channels,
1193 unsigned int format,
1194 unsigned int maxbps)
1195 {
1196 int i;
1197 unsigned int val = 0;
1198
1199 for (i = 0; rate_bits[i][0]; i++)
1200 if (rate_bits[i][0] == rate) {
1201 val = rate_bits[i][2];
1202 break;
1203 }
1204 if (! rate_bits[i][0]) {
1205 snd_printdd("invalid rate %d\n", rate);
1206 return 0;
1207 }
1208
1209 if (channels == 0 || channels > 8) {
1210 snd_printdd("invalid channels %d\n", channels);
1211 return 0;
1212 }
1213 val |= channels - 1;
1214
1215 switch (snd_pcm_format_width(format)) {
1216 case 8: val |= 0x00; break;
1217 case 16: val |= 0x10; break;
1218 case 20:
1219 case 24:
1220 case 32:
1221 if (maxbps >= 32)
1222 val |= 0x40;
1223 else if (maxbps >= 24)
1224 val |= 0x30;
1225 else
1226 val |= 0x20;
1227 break;
1228 default:
1229 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1230 return 0;
1231 }
1232
1233 return val;
1234 }
1235
1236 /**
1237 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1238 * @codec: the HDA codec
1239 * @nid: NID to query
1240 * @ratesp: the pointer to store the detected rate bitflags
1241 * @formatsp: the pointer to store the detected formats
1242 * @bpsp: the pointer to store the detected format widths
1243 *
1244 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1245 * or @bsps argument is ignored.
1246 *
1247 * Returns 0 if successful, otherwise a negative error code.
1248 */
1249 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1250 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1251 {
1252 int i;
1253 unsigned int val, streams;
1254
1255 val = 0;
1256 if (nid != codec->afg &&
1257 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1258 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1259 if (val == -1)
1260 return -EIO;
1261 }
1262 if (! val)
1263 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1264
1265 if (ratesp) {
1266 u32 rates = 0;
1267 for (i = 0; rate_bits[i][0]; i++) {
1268 if (val & (1 << i))
1269 rates |= rate_bits[i][1];
1270 }
1271 *ratesp = rates;
1272 }
1273
1274 if (formatsp || bpsp) {
1275 u64 formats = 0;
1276 unsigned int bps;
1277 unsigned int wcaps;
1278
1279 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1280 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1281 if (streams == -1)
1282 return -EIO;
1283 if (! streams) {
1284 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1285 if (streams == -1)
1286 return -EIO;
1287 }
1288
1289 bps = 0;
1290 if (streams & AC_SUPFMT_PCM) {
1291 if (val & AC_SUPPCM_BITS_8) {
1292 formats |= SNDRV_PCM_FMTBIT_U8;
1293 bps = 8;
1294 }
1295 if (val & AC_SUPPCM_BITS_16) {
1296 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1297 bps = 16;
1298 }
1299 if (wcaps & AC_WCAP_DIGITAL) {
1300 if (val & AC_SUPPCM_BITS_32)
1301 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1302 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1303 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1304 if (val & AC_SUPPCM_BITS_24)
1305 bps = 24;
1306 else if (val & AC_SUPPCM_BITS_20)
1307 bps = 20;
1308 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1309 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1310 if (val & AC_SUPPCM_BITS_32)
1311 bps = 32;
1312 else if (val & AC_SUPPCM_BITS_20)
1313 bps = 20;
1314 else if (val & AC_SUPPCM_BITS_24)
1315 bps = 24;
1316 }
1317 }
1318 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1319 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1320 bps = 32;
1321 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1322 /* temporary hack: we have still no proper support
1323 * for the direct AC3 stream...
1324 */
1325 formats |= SNDRV_PCM_FMTBIT_U8;
1326 bps = 8;
1327 }
1328 if (formatsp)
1329 *formatsp = formats;
1330 if (bpsp)
1331 *bpsp = bps;
1332 }
1333
1334 return 0;
1335 }
1336
1337 /**
1338 * snd_hda_is_supported_format - check whether the given node supports the format val
1339 *
1340 * Returns 1 if supported, 0 if not.
1341 */
1342 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1343 unsigned int format)
1344 {
1345 int i;
1346 unsigned int val = 0, rate, stream;
1347
1348 if (nid != codec->afg &&
1349 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1350 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1351 if (val == -1)
1352 return 0;
1353 }
1354 if (! val) {
1355 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1356 if (val == -1)
1357 return 0;
1358 }
1359
1360 rate = format & 0xff00;
1361 for (i = 0; rate_bits[i][0]; i++)
1362 if (rate_bits[i][2] == rate) {
1363 if (val & (1 << i))
1364 break;
1365 return 0;
1366 }
1367 if (! rate_bits[i][0])
1368 return 0;
1369
1370 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1371 if (stream == -1)
1372 return 0;
1373 if (! stream && nid != codec->afg)
1374 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1375 if (! stream || stream == -1)
1376 return 0;
1377
1378 if (stream & AC_SUPFMT_PCM) {
1379 switch (format & 0xf0) {
1380 case 0x00:
1381 if (! (val & AC_SUPPCM_BITS_8))
1382 return 0;
1383 break;
1384 case 0x10:
1385 if (! (val & AC_SUPPCM_BITS_16))
1386 return 0;
1387 break;
1388 case 0x20:
1389 if (! (val & AC_SUPPCM_BITS_20))
1390 return 0;
1391 break;
1392 case 0x30:
1393 if (! (val & AC_SUPPCM_BITS_24))
1394 return 0;
1395 break;
1396 case 0x40:
1397 if (! (val & AC_SUPPCM_BITS_32))
1398 return 0;
1399 break;
1400 default:
1401 return 0;
1402 }
1403 } else {
1404 /* FIXME: check for float32 and AC3? */
1405 }
1406
1407 return 1;
1408 }
1409
1410 /*
1411 * PCM stuff
1412 */
1413 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1414 struct hda_codec *codec,
1415 snd_pcm_substream_t *substream)
1416 {
1417 return 0;
1418 }
1419
1420 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1421 struct hda_codec *codec,
1422 unsigned int stream_tag,
1423 unsigned int format,
1424 snd_pcm_substream_t *substream)
1425 {
1426 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1427 return 0;
1428 }
1429
1430 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1431 struct hda_codec *codec,
1432 snd_pcm_substream_t *substream)
1433 {
1434 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1435 return 0;
1436 }
1437
1438 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1439 {
1440 if (info->nid) {
1441 /* query support PCM information from the given NID */
1442 if (! info->rates || ! info->formats)
1443 snd_hda_query_supported_pcm(codec, info->nid,
1444 info->rates ? NULL : &info->rates,
1445 info->formats ? NULL : &info->formats,
1446 info->maxbps ? NULL : &info->maxbps);
1447 }
1448 if (info->ops.open == NULL)
1449 info->ops.open = hda_pcm_default_open_close;
1450 if (info->ops.close == NULL)
1451 info->ops.close = hda_pcm_default_open_close;
1452 if (info->ops.prepare == NULL) {
1453 snd_assert(info->nid, return -EINVAL);
1454 info->ops.prepare = hda_pcm_default_prepare;
1455 }
1456 if (info->ops.cleanup == NULL) {
1457 snd_assert(info->nid, return -EINVAL);
1458 info->ops.cleanup = hda_pcm_default_cleanup;
1459 }
1460 return 0;
1461 }
1462
1463 /**
1464 * snd_hda_build_pcms - build PCM information
1465 * @bus: the BUS
1466 *
1467 * Create PCM information for each codec included in the bus.
1468 *
1469 * The build_pcms codec patch is requested to set up codec->num_pcms and
1470 * codec->pcm_info properly. The array is referred by the top-level driver
1471 * to create its PCM instances.
1472 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1473 * callback.
1474 *
1475 * At least, substreams, channels_min and channels_max must be filled for
1476 * each stream. substreams = 0 indicates that the stream doesn't exist.
1477 * When rates and/or formats are zero, the supported values are queried
1478 * from the given nid. The nid is used also by the default ops.prepare
1479 * and ops.cleanup callbacks.
1480 *
1481 * The driver needs to call ops.open in its open callback. Similarly,
1482 * ops.close is supposed to be called in the close callback.
1483 * ops.prepare should be called in the prepare or hw_params callback
1484 * with the proper parameters for set up.
1485 * ops.cleanup should be called in hw_free for clean up of streams.
1486 *
1487 * This function returns 0 if successfull, or a negative error code.
1488 */
1489 int snd_hda_build_pcms(struct hda_bus *bus)
1490 {
1491 struct list_head *p;
1492
1493 list_for_each(p, &bus->codec_list) {
1494 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1495 unsigned int pcm, s;
1496 int err;
1497 if (! codec->patch_ops.build_pcms)
1498 continue;
1499 err = codec->patch_ops.build_pcms(codec);
1500 if (err < 0)
1501 return err;
1502 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1503 for (s = 0; s < 2; s++) {
1504 struct hda_pcm_stream *info;
1505 info = &codec->pcm_info[pcm].stream[s];
1506 if (! info->substreams)
1507 continue;
1508 err = set_pcm_default_values(codec, info);
1509 if (err < 0)
1510 return err;
1511 }
1512 }
1513 }
1514 return 0;
1515 }
1516
1517
1518 /**
1519 * snd_hda_check_board_config - compare the current codec with the config table
1520 * @codec: the HDA codec
1521 * @tbl: configuration table, terminated by null entries
1522 *
1523 * Compares the modelname or PCI subsystem id of the current codec with the
1524 * given configuration table. If a matching entry is found, returns its
1525 * config value (supposed to be 0 or positive).
1526 *
1527 * If no entries are matching, the function returns a negative value.
1528 */
1529 int snd_hda_check_board_config(struct hda_codec *codec, struct hda_board_config *tbl)
1530 {
1531 struct hda_board_config *c;
1532
1533 if (codec->bus->modelname) {
1534 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1535 if (c->modelname &&
1536 ! strcmp(codec->bus->modelname, c->modelname)) {
1537 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1538 return c->config;
1539 }
1540 }
1541 }
1542
1543 if (codec->bus->pci) {
1544 u16 subsystem_vendor, subsystem_device;
1545 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1546 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1547 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1548 if (c->pci_subvendor == subsystem_vendor &&
1549 c->pci_subdevice == subsystem_device)
1550 return c->config;
1551 }
1552 }
1553 return -1;
1554 }
1555
1556 /**
1557 * snd_hda_add_new_ctls - create controls from the array
1558 * @codec: the HDA codec
1559 * @knew: the array of snd_kcontrol_new_t
1560 *
1561 * This helper function creates and add new controls in the given array.
1562 * The array must be terminated with an empty entry as terminator.
1563 *
1564 * Returns 0 if successful, or a negative error code.
1565 */
1566 int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1567 {
1568 int err;
1569
1570 for (; knew->name; knew++) {
1571 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1572 if (err < 0)
1573 return err;
1574 }
1575 return 0;
1576 }
1577
1578
1579 /*
1580 * input MUX helper
1581 */
1582 int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1583 {
1584 unsigned int index;
1585
1586 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1587 uinfo->count = 1;
1588 uinfo->value.enumerated.items = imux->num_items;
1589 index = uinfo->value.enumerated.item;
1590 if (index >= imux->num_items)
1591 index = imux->num_items - 1;
1592 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1593 return 0;
1594 }
1595
1596 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1597 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1598 unsigned int *cur_val)
1599 {
1600 unsigned int idx;
1601
1602 idx = ucontrol->value.enumerated.item[0];
1603 if (idx >= imux->num_items)
1604 idx = imux->num_items - 1;
1605 if (*cur_val == idx && ! codec->in_resume)
1606 return 0;
1607 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1608 imux->items[idx].index);
1609 *cur_val = idx;
1610 return 1;
1611 }
1612
1613
1614 /*
1615 * Multi-channel / digital-out PCM helper functions
1616 */
1617
1618 /*
1619 * open the digital out in the exclusive mode
1620 */
1621 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1622 {
1623 down(&codec->spdif_mutex);
1624 if (mout->dig_out_used) {
1625 up(&codec->spdif_mutex);
1626 return -EBUSY; /* already being used */
1627 }
1628 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1629 up(&codec->spdif_mutex);
1630 return 0;
1631 }
1632
1633 /*
1634 * release the digital out
1635 */
1636 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1637 {
1638 down(&codec->spdif_mutex);
1639 mout->dig_out_used = 0;
1640 up(&codec->spdif_mutex);
1641 return 0;
1642 }
1643
1644 /*
1645 * set up more restrictions for analog out
1646 */
1647 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1648 snd_pcm_substream_t *substream)
1649 {
1650 substream->runtime->hw.channels_max = mout->max_channels;
1651 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1652 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1653 }
1654
1655 /*
1656 * set up the i/o for analog out
1657 * when the digital out is available, copy the front out to digital out, too.
1658 */
1659 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1660 unsigned int stream_tag,
1661 unsigned int format,
1662 snd_pcm_substream_t *substream)
1663 {
1664 hda_nid_t *nids = mout->dac_nids;
1665 int chs = substream->runtime->channels;
1666 int i;
1667
1668 down(&codec->spdif_mutex);
1669 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1670 if (chs == 2 &&
1671 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1672 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1673 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1674 /* setup digital receiver */
1675 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1676 stream_tag, 0, format);
1677 } else {
1678 mout->dig_out_used = 0;
1679 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1680 }
1681 }
1682 up(&codec->spdif_mutex);
1683
1684 /* front */
1685 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1686 if (mout->hp_nid)
1687 /* headphone out will just decode front left/right (stereo) */
1688 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1689 /* surrounds */
1690 for (i = 1; i < mout->num_dacs; i++) {
1691 if (i == HDA_REAR && chs == 2) /* copy front to rear */
1692 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0, format);
1693 else if (chs >= (i + 1) * 2) /* independent out */
1694 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1695 format);
1696 }
1697 return 0;
1698 }
1699
1700 /*
1701 * clean up the setting for analog out
1702 */
1703 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1704 {
1705 hda_nid_t *nids = mout->dac_nids;
1706 int i;
1707
1708 for (i = 0; i < mout->num_dacs; i++)
1709 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1710 if (mout->hp_nid)
1711 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1712 down(&codec->spdif_mutex);
1713 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1714 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1715 mout->dig_out_used = 0;
1716 }
1717 up(&codec->spdif_mutex);
1718 return 0;
1719 }
1720
1721 #ifdef CONFIG_PM
1722 /*
1723 * power management
1724 */
1725
1726 /**
1727 * snd_hda_suspend - suspend the codecs
1728 * @bus: the HDA bus
1729 * @state: suspsend state
1730 *
1731 * Returns 0 if successful.
1732 */
1733 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1734 {
1735 struct list_head *p;
1736
1737 /* FIXME: should handle power widget capabilities */
1738 list_for_each(p, &bus->codec_list) {
1739 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1740 if (codec->patch_ops.suspend)
1741 codec->patch_ops.suspend(codec, state);
1742 }
1743 return 0;
1744 }
1745
1746 /**
1747 * snd_hda_resume - resume the codecs
1748 * @bus: the HDA bus
1749 * @state: resume state
1750 *
1751 * Returns 0 if successful.
1752 */
1753 int snd_hda_resume(struct hda_bus *bus)
1754 {
1755 struct list_head *p;
1756
1757 list_for_each(p, &bus->codec_list) {
1758 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1759 if (codec->patch_ops.resume)
1760 codec->patch_ops.resume(codec);
1761 }
1762 return 0;
1763 }
1764
1765 /**
1766 * snd_hda_resume_ctls - resume controls in the new control list
1767 * @codec: the HDA codec
1768 * @knew: the array of snd_kcontrol_new_t
1769 *
1770 * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1771 * originally for snd_hda_add_new_ctls().
1772 * The array must be terminated with an empty entry as terminator.
1773 */
1774 int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1775 {
1776 snd_ctl_elem_value_t *val;
1777
1778 val = kmalloc(sizeof(*val), GFP_KERNEL);
1779 if (! val)
1780 return -ENOMEM;
1781 codec->in_resume = 1;
1782 for (; knew->name; knew++) {
1783 int i, count;
1784 count = knew->count ? knew->count : 1;
1785 for (i = 0; i < count; i++) {
1786 memset(val, 0, sizeof(*val));
1787 val->id.iface = knew->iface;
1788 val->id.device = knew->device;
1789 val->id.subdevice = knew->subdevice;
1790 strcpy(val->id.name, knew->name);
1791 val->id.index = knew->index ? knew->index : i;
1792 /* Assume that get callback reads only from cache,
1793 * not accessing to the real hardware
1794 */
1795 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1796 continue;
1797 snd_ctl_elem_write(codec->bus->card, NULL, val);
1798 }
1799 }
1800 codec->in_resume = 0;
1801 kfree(val);
1802 return 0;
1803 }
1804
1805 /**
1806 * snd_hda_resume_spdif_out - resume the digital out
1807 * @codec: the HDA codec
1808 */
1809 int snd_hda_resume_spdif_out(struct hda_codec *codec)
1810 {
1811 return snd_hda_resume_ctls(codec, dig_mixes);
1812 }
1813
1814 /**
1815 * snd_hda_resume_spdif_in - resume the digital in
1816 * @codec: the HDA codec
1817 */
1818 int snd_hda_resume_spdif_in(struct hda_codec *codec)
1819 {
1820 return snd_hda_resume_ctls(codec, dig_in_ctls);
1821 }
1822 #endif
1823
1824 /*
1825 * symbols exported for controller modules
1826 */
1827 EXPORT_SYMBOL(snd_hda_codec_read);
1828 EXPORT_SYMBOL(snd_hda_codec_write);
1829 EXPORT_SYMBOL(snd_hda_sequence_write);
1830 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
1831 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
1832 EXPORT_SYMBOL(snd_hda_bus_new);
1833 EXPORT_SYMBOL(snd_hda_codec_new);
1834 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
1835 EXPORT_SYMBOL(snd_hda_calc_stream_format);
1836 EXPORT_SYMBOL(snd_hda_build_pcms);
1837 EXPORT_SYMBOL(snd_hda_build_controls);
1838 #ifdef CONFIG_PM
1839 EXPORT_SYMBOL(snd_hda_suspend);
1840 EXPORT_SYMBOL(snd_hda_resume);
1841 #endif
1842
1843 /*
1844 * INIT part
1845 */
1846
1847 static int __init alsa_hda_init(void)
1848 {
1849 return 0;
1850 }
1851
1852 static void __exit alsa_hda_exit(void)
1853 {
1854 }
1855
1856 module_init(alsa_hda_init)
1857 module_exit(alsa_hda_exit)
This page took 0.10043 seconds and 6 git commands to generate.