[ALSA] hda-codec - Fix LFE volume/switch
[deliverable/linux.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33
34
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38
39
40 /*
41 * vendor / preset table
42 */
43
44 struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47 };
48
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x11d4, "Analog Devices" },
53 { 0x13f6, "C-Media" },
54 { 0x434d, "C-Media" },
55 { 0x8384, "SigmaTel" },
56 {} /* terminator */
57 };
58
59 /* codec presets */
60 #include "hda_patch.h"
61
62
63 /**
64 * snd_hda_codec_read - send a command and get the response
65 * @codec: the HDA codec
66 * @nid: NID to send the command
67 * @direct: direct flag
68 * @verb: the verb to send
69 * @parm: the parameter for the verb
70 *
71 * Send a single command and read the corresponding response.
72 *
73 * Returns the obtained response value, or -1 for an error.
74 */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76 unsigned int verb, unsigned int parm)
77 {
78 unsigned int res;
79 down(&codec->bus->cmd_mutex);
80 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 up(&codec->bus->cmd_mutex);
85 return res;
86 }
87
88 /**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
95 *
96 * Send a single command without waiting for response.
97 *
98 * Returns 0 if successful, or a negative error code.
99 */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
102 {
103 int err;
104 down(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 up(&codec->bus->cmd_mutex);
107 return err;
108 }
109
110 /**
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
114 *
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
117 */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
129 *
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
132 */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135 unsigned int parm;
136
137 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138 *start_id = (parm >> 16) & 0x7fff;
139 return (int)(parm & 0x7fff);
140 }
141
142 /**
143 * snd_hda_get_connections - get connection list
144 * @codec: the HDA codec
145 * @nid: NID to parse
146 * @conn_list: connection list array
147 * @max_conns: max. number of connections to store
148 *
149 * Parses the connection list of the given widget and stores the list
150 * of NIDs.
151 *
152 * Returns the number of connections, or a negative error code.
153 */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155 hda_nid_t *conn_list, int max_conns)
156 {
157 unsigned int parm;
158 int i, j, conn_len, num_tupples, conns;
159 unsigned int shift, num_elems, mask;
160
161 snd_assert(conn_list && max_conns > 0, return -EINVAL);
162
163 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
164 if (parm & AC_CLIST_LONG) {
165 /* long form */
166 shift = 16;
167 num_elems = 2;
168 } else {
169 /* short form */
170 shift = 8;
171 num_elems = 4;
172 }
173 conn_len = parm & AC_CLIST_LENGTH;
174 num_tupples = num_elems / 2;
175 mask = (1 << (shift-1)) - 1;
176
177 if (! conn_len)
178 return 0; /* no connection */
179
180 if (conn_len == 1) {
181 /* single connection */
182 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183 conn_list[0] = parm & mask;
184 return 1;
185 }
186
187 /* multi connection */
188 conns = 0;
189 for (i = 0; i < conn_len; i += num_elems) {
190 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
191 for (j = 0; j < num_tupples; j++) {
192 int range_val;
193 hda_nid_t val1, val2, n;
194 range_val = parm & (1 << (shift-1)); /* ranges */
195 val1 = parm & mask;
196 parm >>= shift;
197 val2 = parm & mask;
198 parm >>= shift;
199 if (range_val) {
200 /* ranges between val1 and val2 */
201 if (val1 > val2) {
202 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
203 continue;
204 }
205 for (n = val1; n <= val2; n++) {
206 if (conns >= max_conns)
207 return -EINVAL;
208 conn_list[conns++] = n;
209 }
210 } else {
211 if (! val1)
212 break;
213 if (conns >= max_conns)
214 return -EINVAL;
215 conn_list[conns++] = val1;
216 if (! val2)
217 break;
218 if (conns >= max_conns)
219 return -EINVAL;
220 conn_list[conns++] = val2;
221 }
222 }
223 }
224 return conns;
225 }
226
227
228 /**
229 * snd_hda_queue_unsol_event - add an unsolicited event to queue
230 * @bus: the BUS
231 * @res: unsolicited event (lower 32bit of RIRB entry)
232 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
233 *
234 * Adds the given event to the queue. The events are processed in
235 * the workqueue asynchronously. Call this function in the interrupt
236 * hanlder when RIRB receives an unsolicited event.
237 *
238 * Returns 0 if successful, or a negative error code.
239 */
240 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
241 {
242 struct hda_bus_unsolicited *unsol;
243 unsigned int wp;
244
245 if ((unsol = bus->unsol) == NULL)
246 return 0;
247
248 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
249 unsol->wp = wp;
250
251 wp <<= 1;
252 unsol->queue[wp] = res;
253 unsol->queue[wp + 1] = res_ex;
254
255 queue_work(unsol->workq, &unsol->work);
256
257 return 0;
258 }
259
260 /*
261 * process queueud unsolicited events
262 */
263 static void process_unsol_events(void *data)
264 {
265 struct hda_bus *bus = data;
266 struct hda_bus_unsolicited *unsol = bus->unsol;
267 struct hda_codec *codec;
268 unsigned int rp, caddr, res;
269
270 while (unsol->rp != unsol->wp) {
271 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
272 unsol->rp = rp;
273 rp <<= 1;
274 res = unsol->queue[rp];
275 caddr = unsol->queue[rp + 1];
276 if (! (caddr & (1 << 4))) /* no unsolicited event? */
277 continue;
278 codec = bus->caddr_tbl[caddr & 0x0f];
279 if (codec && codec->patch_ops.unsol_event)
280 codec->patch_ops.unsol_event(codec, res);
281 }
282 }
283
284 /*
285 * initialize unsolicited queue
286 */
287 static int init_unsol_queue(struct hda_bus *bus)
288 {
289 struct hda_bus_unsolicited *unsol;
290
291 unsol = kcalloc(1, sizeof(*unsol), GFP_KERNEL);
292 if (! unsol) {
293 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
294 return -ENOMEM;
295 }
296 unsol->workq = create_workqueue("hda_codec");
297 if (! unsol->workq) {
298 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
299 kfree(unsol);
300 return -ENOMEM;
301 }
302 INIT_WORK(&unsol->work, process_unsol_events, bus);
303 bus->unsol = unsol;
304 return 0;
305 }
306
307 /*
308 * destructor
309 */
310 static void snd_hda_codec_free(struct hda_codec *codec);
311
312 static int snd_hda_bus_free(struct hda_bus *bus)
313 {
314 struct list_head *p, *n;
315
316 if (! bus)
317 return 0;
318 if (bus->unsol) {
319 destroy_workqueue(bus->unsol->workq);
320 kfree(bus->unsol);
321 }
322 list_for_each_safe(p, n, &bus->codec_list) {
323 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
324 snd_hda_codec_free(codec);
325 }
326 if (bus->ops.private_free)
327 bus->ops.private_free(bus);
328 kfree(bus);
329 return 0;
330 }
331
332 static int snd_hda_bus_dev_free(snd_device_t *device)
333 {
334 struct hda_bus *bus = device->device_data;
335 return snd_hda_bus_free(bus);
336 }
337
338 /**
339 * snd_hda_bus_new - create a HDA bus
340 * @card: the card entry
341 * @temp: the template for hda_bus information
342 * @busp: the pointer to store the created bus instance
343 *
344 * Returns 0 if successful, or a negative error code.
345 */
346 int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
347 struct hda_bus **busp)
348 {
349 struct hda_bus *bus;
350 int err;
351 static snd_device_ops_t dev_ops = {
352 .dev_free = snd_hda_bus_dev_free,
353 };
354
355 snd_assert(temp, return -EINVAL);
356 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
357
358 if (busp)
359 *busp = NULL;
360
361 bus = kcalloc(1, sizeof(*bus), GFP_KERNEL);
362 if (bus == NULL) {
363 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
364 return -ENOMEM;
365 }
366
367 bus->card = card;
368 bus->private_data = temp->private_data;
369 bus->pci = temp->pci;
370 bus->modelname = temp->modelname;
371 bus->ops = temp->ops;
372
373 init_MUTEX(&bus->cmd_mutex);
374 INIT_LIST_HEAD(&bus->codec_list);
375
376 init_unsol_queue(bus);
377
378 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
379 snd_hda_bus_free(bus);
380 return err;
381 }
382 if (busp)
383 *busp = bus;
384 return 0;
385 }
386
387
388 /*
389 * find a matching codec preset
390 */
391 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
392 {
393 const struct hda_codec_preset **tbl, *preset;
394
395 for (tbl = hda_preset_tables; *tbl; tbl++) {
396 for (preset = *tbl; preset->id; preset++) {
397 u32 mask = preset->mask;
398 if (! mask)
399 mask = ~0;
400 if (preset->id == (codec->vendor_id & mask))
401 return preset;
402 }
403 }
404 return NULL;
405 }
406
407 /*
408 * snd_hda_get_codec_name - store the codec name
409 */
410 void snd_hda_get_codec_name(struct hda_codec *codec,
411 char *name, int namelen)
412 {
413 const struct hda_vendor_id *c;
414 const char *vendor = NULL;
415 u16 vendor_id = codec->vendor_id >> 16;
416 char tmp[16];
417
418 for (c = hda_vendor_ids; c->id; c++) {
419 if (c->id == vendor_id) {
420 vendor = c->name;
421 break;
422 }
423 }
424 if (! vendor) {
425 sprintf(tmp, "Generic %04x", vendor_id);
426 vendor = tmp;
427 }
428 if (codec->preset && codec->preset->name)
429 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
430 else
431 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
432 }
433
434 /*
435 * look for an AFG node
436 *
437 * return 0 if not found
438 */
439 static int look_for_afg_node(struct hda_codec *codec)
440 {
441 int i, total_nodes;
442 hda_nid_t nid;
443
444 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
445 for (i = 0; i < total_nodes; i++, nid++) {
446 if ((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff) ==
447 AC_GRP_AUDIO_FUNCTION)
448 return nid;
449 }
450 return 0;
451 }
452
453 /*
454 * codec destructor
455 */
456 static void snd_hda_codec_free(struct hda_codec *codec)
457 {
458 if (! codec)
459 return;
460 list_del(&codec->list);
461 codec->bus->caddr_tbl[codec->addr] = NULL;
462 if (codec->patch_ops.free)
463 codec->patch_ops.free(codec);
464 kfree(codec);
465 }
466
467 static void init_amp_hash(struct hda_codec *codec);
468
469 /**
470 * snd_hda_codec_new - create a HDA codec
471 * @bus: the bus to assign
472 * @codec_addr: the codec address
473 * @codecp: the pointer to store the generated codec
474 *
475 * Returns 0 if successful, or a negative error code.
476 */
477 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
478 struct hda_codec **codecp)
479 {
480 struct hda_codec *codec;
481 char component[13];
482 int err;
483
484 snd_assert(bus, return -EINVAL);
485 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
486
487 if (bus->caddr_tbl[codec_addr]) {
488 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
489 return -EBUSY;
490 }
491
492 codec = kcalloc(1, sizeof(*codec), GFP_KERNEL);
493 if (codec == NULL) {
494 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
495 return -ENOMEM;
496 }
497
498 codec->bus = bus;
499 codec->addr = codec_addr;
500 init_MUTEX(&codec->spdif_mutex);
501 init_amp_hash(codec);
502
503 list_add_tail(&codec->list, &bus->codec_list);
504 bus->caddr_tbl[codec_addr] = codec;
505
506 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
507 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
508 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
509
510 /* FIXME: support for multiple AFGs? */
511 codec->afg = look_for_afg_node(codec);
512 if (! codec->afg) {
513 snd_printdd("hda_codec: no AFG node found\n");
514 snd_hda_codec_free(codec);
515 return -ENODEV;
516 }
517
518 codec->preset = find_codec_preset(codec);
519 if (! *bus->card->mixername)
520 snd_hda_get_codec_name(codec, bus->card->mixername,
521 sizeof(bus->card->mixername));
522
523 if (codec->preset && codec->preset->patch)
524 err = codec->preset->patch(codec);
525 else
526 err = snd_hda_parse_generic_codec(codec);
527 if (err < 0) {
528 snd_hda_codec_free(codec);
529 return err;
530 }
531
532 snd_hda_codec_proc_new(codec);
533
534 sprintf(component, "HDA:%08x", codec->vendor_id);
535 snd_component_add(codec->bus->card, component);
536
537 if (codecp)
538 *codecp = codec;
539 return 0;
540 }
541
542 /**
543 * snd_hda_codec_setup_stream - set up the codec for streaming
544 * @codec: the CODEC to set up
545 * @nid: the NID to set up
546 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
547 * @channel_id: channel id to pass, zero based.
548 * @format: stream format.
549 */
550 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
551 int channel_id, int format)
552 {
553 if (! nid)
554 return;
555
556 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
557 nid, stream_tag, channel_id, format);
558 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
559 (stream_tag << 4) | channel_id);
560 msleep(1);
561 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
562 }
563
564
565 /*
566 * amp access functions
567 */
568
569 /* FIXME: more better hash key? */
570 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
571 #define INFO_AMP_CAPS (1<<0)
572 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
573
574 /* initialize the hash table */
575 static void init_amp_hash(struct hda_codec *codec)
576 {
577 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
578 codec->num_amp_entries = 0;
579 }
580
581 /* query the hash. allocate an entry if not found. */
582 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
583 {
584 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
585 u16 cur = codec->amp_hash[idx];
586 struct hda_amp_info *info;
587
588 while (cur != 0xffff) {
589 info = &codec->amp_info[cur];
590 if (info->key == key)
591 return info;
592 cur = info->next;
593 }
594
595 /* add a new hash entry */
596 if (codec->num_amp_entries >= ARRAY_SIZE(codec->amp_info)) {
597 snd_printk(KERN_ERR "hda_codec: Tooooo many amps!\n");
598 return NULL;
599 }
600 cur = codec->num_amp_entries++;
601 info = &codec->amp_info[cur];
602 info->key = key;
603 info->status = 0; /* not initialized yet */
604 info->next = codec->amp_hash[idx];
605 codec->amp_hash[idx] = cur;
606
607 return info;
608 }
609
610 /*
611 * query AMP capabilities for the given widget and direction
612 */
613 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
614 {
615 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
616
617 if (! info)
618 return 0;
619 if (! (info->status & INFO_AMP_CAPS)) {
620 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
621 nid = codec->afg;
622 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
623 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
624 info->status |= INFO_AMP_CAPS;
625 }
626 return info->amp_caps;
627 }
628
629 /*
630 * read the current volume to info
631 * if the cache exists, read the cache value.
632 */
633 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
634 hda_nid_t nid, int ch, int direction, int index)
635 {
636 u32 val, parm;
637
638 if (info->status & INFO_AMP_VOL(ch))
639 return info->vol[ch];
640
641 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
642 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
643 parm |= index;
644 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
645 info->vol[ch] = val & 0xff;
646 info->status |= INFO_AMP_VOL(ch);
647 return info->vol[ch];
648 }
649
650 /*
651 * write the current volume in info to the h/w and update the cache
652 */
653 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
654 hda_nid_t nid, int ch, int direction, int index, int val)
655 {
656 u32 parm;
657
658 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
659 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
660 parm |= index << AC_AMP_SET_INDEX_SHIFT;
661 parm |= val;
662 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
663 info->vol[ch] = val;
664 }
665
666 /*
667 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
668 */
669 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
670 {
671 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
672 if (! info)
673 return 0;
674 return get_vol_mute(codec, info, nid, ch, direction, index);
675 }
676
677 /*
678 * update the AMP value, mask = bit mask to set, val = the value
679 */
680 static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
681 {
682 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
683
684 if (! info)
685 return 0;
686 val &= mask;
687 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
688 if (info->vol[ch] == val && ! codec->in_resume)
689 return 0;
690 put_vol_mute(codec, info, nid, ch, direction, idx, val);
691 return 1;
692 }
693
694
695 /*
696 * AMP control callbacks
697 */
698 /* retrieve parameters from private_value */
699 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
700 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
701 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
702 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
703
704 /* volume */
705 int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
706 {
707 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
708 u16 nid = get_amp_nid(kcontrol);
709 u8 chs = get_amp_channels(kcontrol);
710 int dir = get_amp_direction(kcontrol);
711 u32 caps;
712
713 caps = query_amp_caps(codec, nid, dir);
714 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
715 if (! caps) {
716 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
717 return -EINVAL;
718 }
719 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
720 uinfo->count = chs == 3 ? 2 : 1;
721 uinfo->value.integer.min = 0;
722 uinfo->value.integer.max = caps;
723 return 0;
724 }
725
726 int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
727 {
728 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
729 hda_nid_t nid = get_amp_nid(kcontrol);
730 int chs = get_amp_channels(kcontrol);
731 int dir = get_amp_direction(kcontrol);
732 int idx = get_amp_index(kcontrol);
733 long *valp = ucontrol->value.integer.value;
734
735 if (chs & 1)
736 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
737 if (chs & 2)
738 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
739 return 0;
740 }
741
742 int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
743 {
744 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
745 hda_nid_t nid = get_amp_nid(kcontrol);
746 int chs = get_amp_channels(kcontrol);
747 int dir = get_amp_direction(kcontrol);
748 int idx = get_amp_index(kcontrol);
749 long *valp = ucontrol->value.integer.value;
750 int change = 0;
751
752 if (chs & 1) {
753 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
754 0x7f, *valp);
755 valp++;
756 }
757 if (chs & 2)
758 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
759 0x7f, *valp);
760 return change;
761 }
762
763 /* switch */
764 int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
765 {
766 int chs = get_amp_channels(kcontrol);
767
768 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
769 uinfo->count = chs == 3 ? 2 : 1;
770 uinfo->value.integer.min = 0;
771 uinfo->value.integer.max = 1;
772 return 0;
773 }
774
775 int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
776 {
777 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
778 hda_nid_t nid = get_amp_nid(kcontrol);
779 int chs = get_amp_channels(kcontrol);
780 int dir = get_amp_direction(kcontrol);
781 int idx = get_amp_index(kcontrol);
782 long *valp = ucontrol->value.integer.value;
783
784 if (chs & 1)
785 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
786 if (chs & 2)
787 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
788 return 0;
789 }
790
791 int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
792 {
793 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
794 hda_nid_t nid = get_amp_nid(kcontrol);
795 int chs = get_amp_channels(kcontrol);
796 int dir = get_amp_direction(kcontrol);
797 int idx = get_amp_index(kcontrol);
798 long *valp = ucontrol->value.integer.value;
799 int change = 0;
800
801 if (chs & 1) {
802 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
803 0x80, *valp ? 0 : 0x80);
804 valp++;
805 }
806 if (chs & 2)
807 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
808 0x80, *valp ? 0 : 0x80);
809
810 return change;
811 }
812
813 /*
814 * SPDIF out controls
815 */
816
817 static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
818 {
819 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
820 uinfo->count = 1;
821 return 0;
822 }
823
824 static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
825 {
826 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
827 IEC958_AES0_NONAUDIO |
828 IEC958_AES0_CON_EMPHASIS_5015 |
829 IEC958_AES0_CON_NOT_COPYRIGHT;
830 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
831 IEC958_AES1_CON_ORIGINAL;
832 return 0;
833 }
834
835 static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
836 {
837 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
838 IEC958_AES0_NONAUDIO |
839 IEC958_AES0_PRO_EMPHASIS_5015;
840 return 0;
841 }
842
843 static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
844 {
845 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
846
847 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
848 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
849 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
850 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
851
852 return 0;
853 }
854
855 /* convert from SPDIF status bits to HDA SPDIF bits
856 * bit 0 (DigEn) is always set zero (to be filled later)
857 */
858 static unsigned short convert_from_spdif_status(unsigned int sbits)
859 {
860 unsigned short val = 0;
861
862 if (sbits & IEC958_AES0_PROFESSIONAL)
863 val |= 1 << 6;
864 if (sbits & IEC958_AES0_NONAUDIO)
865 val |= 1 << 5;
866 if (sbits & IEC958_AES0_PROFESSIONAL) {
867 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
868 val |= 1 << 3;
869 } else {
870 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
871 val |= 1 << 3;
872 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
873 val |= 1 << 4;
874 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
875 val |= 1 << 7;
876 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
877 }
878 return val;
879 }
880
881 /* convert to SPDIF status bits from HDA SPDIF bits
882 */
883 static unsigned int convert_to_spdif_status(unsigned short val)
884 {
885 unsigned int sbits = 0;
886
887 if (val & (1 << 5))
888 sbits |= IEC958_AES0_NONAUDIO;
889 if (val & (1 << 6))
890 sbits |= IEC958_AES0_PROFESSIONAL;
891 if (sbits & IEC958_AES0_PROFESSIONAL) {
892 if (sbits & (1 << 3))
893 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
894 } else {
895 if (val & (1 << 3))
896 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
897 if (! (val & (1 << 4)))
898 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
899 if (val & (1 << 7))
900 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
901 sbits |= val & (0x7f << 8);
902 }
903 return sbits;
904 }
905
906 static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
907 {
908 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
909 hda_nid_t nid = kcontrol->private_value;
910 unsigned short val;
911 int change;
912
913 down(&codec->spdif_mutex);
914 codec->spdif_status = ucontrol->value.iec958.status[0] |
915 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
916 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
917 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
918 val = convert_from_spdif_status(codec->spdif_status);
919 val |= codec->spdif_ctls & 1;
920 change = codec->spdif_ctls != val;
921 codec->spdif_ctls = val;
922
923 if (change || codec->in_resume) {
924 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
925 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
926 }
927
928 up(&codec->spdif_mutex);
929 return change;
930 }
931
932 static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
933 {
934 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
935 uinfo->count = 1;
936 uinfo->value.integer.min = 0;
937 uinfo->value.integer.max = 1;
938 return 0;
939 }
940
941 static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
942 {
943 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
944
945 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
946 return 0;
947 }
948
949 static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
950 {
951 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
952 hda_nid_t nid = kcontrol->private_value;
953 unsigned short val;
954 int change;
955
956 down(&codec->spdif_mutex);
957 val = codec->spdif_ctls & ~1;
958 if (ucontrol->value.integer.value[0])
959 val |= 1;
960 change = codec->spdif_ctls != val;
961 if (change || codec->in_resume) {
962 codec->spdif_ctls = val;
963 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
964 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
965 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
966 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
967 }
968 up(&codec->spdif_mutex);
969 return change;
970 }
971
972 static snd_kcontrol_new_t dig_mixes[] = {
973 {
974 .access = SNDRV_CTL_ELEM_ACCESS_READ,
975 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
976 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
977 .info = snd_hda_spdif_mask_info,
978 .get = snd_hda_spdif_cmask_get,
979 },
980 {
981 .access = SNDRV_CTL_ELEM_ACCESS_READ,
982 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
983 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
984 .info = snd_hda_spdif_mask_info,
985 .get = snd_hda_spdif_pmask_get,
986 },
987 {
988 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
989 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
990 .info = snd_hda_spdif_mask_info,
991 .get = snd_hda_spdif_default_get,
992 .put = snd_hda_spdif_default_put,
993 },
994 {
995 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
996 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
997 .info = snd_hda_spdif_out_switch_info,
998 .get = snd_hda_spdif_out_switch_get,
999 .put = snd_hda_spdif_out_switch_put,
1000 },
1001 { } /* end */
1002 };
1003
1004 /**
1005 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1006 * @codec: the HDA codec
1007 * @nid: audio out widget NID
1008 *
1009 * Creates controls related with the SPDIF output.
1010 * Called from each patch supporting the SPDIF out.
1011 *
1012 * Returns 0 if successful, or a negative error code.
1013 */
1014 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1015 {
1016 int err;
1017 snd_kcontrol_t *kctl;
1018 snd_kcontrol_new_t *dig_mix;
1019
1020 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1021 kctl = snd_ctl_new1(dig_mix, codec);
1022 kctl->private_value = nid;
1023 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1024 return err;
1025 }
1026 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1027 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1028 return 0;
1029 }
1030
1031 /*
1032 * SPDIF input
1033 */
1034
1035 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1036
1037 static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1038 {
1039 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1040
1041 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1042 return 0;
1043 }
1044
1045 static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1046 {
1047 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1048 hda_nid_t nid = kcontrol->private_value;
1049 unsigned int val = !!ucontrol->value.integer.value[0];
1050 int change;
1051
1052 down(&codec->spdif_mutex);
1053 change = codec->spdif_in_enable != val;
1054 if (change || codec->in_resume) {
1055 codec->spdif_in_enable = val;
1056 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1057 }
1058 up(&codec->spdif_mutex);
1059 return change;
1060 }
1061
1062 static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1063 {
1064 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1065 hda_nid_t nid = kcontrol->private_value;
1066 unsigned short val;
1067 unsigned int sbits;
1068
1069 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1070 sbits = convert_to_spdif_status(val);
1071 ucontrol->value.iec958.status[0] = sbits;
1072 ucontrol->value.iec958.status[1] = sbits >> 8;
1073 ucontrol->value.iec958.status[2] = sbits >> 16;
1074 ucontrol->value.iec958.status[3] = sbits >> 24;
1075 return 0;
1076 }
1077
1078 static snd_kcontrol_new_t dig_in_ctls[] = {
1079 {
1080 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1081 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1082 .info = snd_hda_spdif_in_switch_info,
1083 .get = snd_hda_spdif_in_switch_get,
1084 .put = snd_hda_spdif_in_switch_put,
1085 },
1086 {
1087 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1088 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1089 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1090 .info = snd_hda_spdif_mask_info,
1091 .get = snd_hda_spdif_in_status_get,
1092 },
1093 { } /* end */
1094 };
1095
1096 /**
1097 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1098 * @codec: the HDA codec
1099 * @nid: audio in widget NID
1100 *
1101 * Creates controls related with the SPDIF input.
1102 * Called from each patch supporting the SPDIF in.
1103 *
1104 * Returns 0 if successful, or a negative error code.
1105 */
1106 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1107 {
1108 int err;
1109 snd_kcontrol_t *kctl;
1110 snd_kcontrol_new_t *dig_mix;
1111
1112 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1113 kctl = snd_ctl_new1(dig_mix, codec);
1114 kctl->private_value = nid;
1115 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1116 return err;
1117 }
1118 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1119 return 0;
1120 }
1121
1122
1123 /**
1124 * snd_hda_build_controls - build mixer controls
1125 * @bus: the BUS
1126 *
1127 * Creates mixer controls for each codec included in the bus.
1128 *
1129 * Returns 0 if successful, otherwise a negative error code.
1130 */
1131 int snd_hda_build_controls(struct hda_bus *bus)
1132 {
1133 struct list_head *p;
1134
1135 /* build controls */
1136 list_for_each(p, &bus->codec_list) {
1137 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1138 int err;
1139 if (! codec->patch_ops.build_controls)
1140 continue;
1141 err = codec->patch_ops.build_controls(codec);
1142 if (err < 0)
1143 return err;
1144 }
1145
1146 /* initialize */
1147 list_for_each(p, &bus->codec_list) {
1148 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1149 int err;
1150 if (! codec->patch_ops.init)
1151 continue;
1152 err = codec->patch_ops.init(codec);
1153 if (err < 0)
1154 return err;
1155 }
1156 return 0;
1157 }
1158
1159
1160 /*
1161 * stream formats
1162 */
1163 static unsigned int rate_bits[][3] = {
1164 /* rate in Hz, ALSA rate bitmask, HDA format value */
1165 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1166 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1167 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1168 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1169 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1170 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1171 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1172 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1173 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1174 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1175 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1176 { 0 }
1177 };
1178
1179 /**
1180 * snd_hda_calc_stream_format - calculate format bitset
1181 * @rate: the sample rate
1182 * @channels: the number of channels
1183 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1184 * @maxbps: the max. bps
1185 *
1186 * Calculate the format bitset from the given rate, channels and th PCM format.
1187 *
1188 * Return zero if invalid.
1189 */
1190 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1191 unsigned int channels,
1192 unsigned int format,
1193 unsigned int maxbps)
1194 {
1195 int i;
1196 unsigned int val = 0;
1197
1198 for (i = 0; rate_bits[i][0]; i++)
1199 if (rate_bits[i][0] == rate) {
1200 val = rate_bits[i][2];
1201 break;
1202 }
1203 if (! rate_bits[i][0]) {
1204 snd_printdd("invalid rate %d\n", rate);
1205 return 0;
1206 }
1207
1208 if (channels == 0 || channels > 8) {
1209 snd_printdd("invalid channels %d\n", channels);
1210 return 0;
1211 }
1212 val |= channels - 1;
1213
1214 switch (snd_pcm_format_width(format)) {
1215 case 8: val |= 0x00; break;
1216 case 16: val |= 0x10; break;
1217 case 20:
1218 case 24:
1219 case 32:
1220 if (maxbps >= 32)
1221 val |= 0x40;
1222 else if (maxbps >= 24)
1223 val |= 0x30;
1224 else
1225 val |= 0x20;
1226 break;
1227 default:
1228 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1229 return 0;
1230 }
1231
1232 return val;
1233 }
1234
1235 /**
1236 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1237 * @codec: the HDA codec
1238 * @nid: NID to query
1239 * @ratesp: the pointer to store the detected rate bitflags
1240 * @formatsp: the pointer to store the detected formats
1241 * @bpsp: the pointer to store the detected format widths
1242 *
1243 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1244 * or @bsps argument is ignored.
1245 *
1246 * Returns 0 if successful, otherwise a negative error code.
1247 */
1248 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1249 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1250 {
1251 int i;
1252 unsigned int val, streams;
1253
1254 val = 0;
1255 if (nid != codec->afg &&
1256 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1257 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1258 if (val == -1)
1259 return -EIO;
1260 }
1261 if (! val)
1262 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1263
1264 if (ratesp) {
1265 u32 rates = 0;
1266 for (i = 0; rate_bits[i][0]; i++) {
1267 if (val & (1 << i))
1268 rates |= rate_bits[i][1];
1269 }
1270 *ratesp = rates;
1271 }
1272
1273 if (formatsp || bpsp) {
1274 u64 formats = 0;
1275 unsigned int bps;
1276 unsigned int wcaps;
1277
1278 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1279 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1280 if (streams == -1)
1281 return -EIO;
1282 if (! streams) {
1283 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1284 if (streams == -1)
1285 return -EIO;
1286 }
1287
1288 bps = 0;
1289 if (streams & AC_SUPFMT_PCM) {
1290 if (val & AC_SUPPCM_BITS_8) {
1291 formats |= SNDRV_PCM_FMTBIT_U8;
1292 bps = 8;
1293 }
1294 if (val & AC_SUPPCM_BITS_16) {
1295 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1296 bps = 16;
1297 }
1298 if (wcaps & AC_WCAP_DIGITAL) {
1299 if (val & AC_SUPPCM_BITS_32)
1300 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1301 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1302 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1303 if (val & AC_SUPPCM_BITS_24)
1304 bps = 24;
1305 else if (val & AC_SUPPCM_BITS_20)
1306 bps = 20;
1307 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1308 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1309 if (val & AC_SUPPCM_BITS_32)
1310 bps = 32;
1311 else if (val & AC_SUPPCM_BITS_20)
1312 bps = 20;
1313 else if (val & AC_SUPPCM_BITS_24)
1314 bps = 24;
1315 }
1316 }
1317 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1318 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1319 bps = 32;
1320 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1321 /* temporary hack: we have still no proper support
1322 * for the direct AC3 stream...
1323 */
1324 formats |= SNDRV_PCM_FMTBIT_U8;
1325 bps = 8;
1326 }
1327 if (formatsp)
1328 *formatsp = formats;
1329 if (bpsp)
1330 *bpsp = bps;
1331 }
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * snd_hda_is_supported_format - check whether the given node supports the format val
1338 *
1339 * Returns 1 if supported, 0 if not.
1340 */
1341 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1342 unsigned int format)
1343 {
1344 int i;
1345 unsigned int val = 0, rate, stream;
1346
1347 if (nid != codec->afg &&
1348 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1349 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1350 if (val == -1)
1351 return 0;
1352 }
1353 if (! val) {
1354 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1355 if (val == -1)
1356 return 0;
1357 }
1358
1359 rate = format & 0xff00;
1360 for (i = 0; rate_bits[i][0]; i++)
1361 if (rate_bits[i][2] == rate) {
1362 if (val & (1 << i))
1363 break;
1364 return 0;
1365 }
1366 if (! rate_bits[i][0])
1367 return 0;
1368
1369 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1370 if (stream == -1)
1371 return 0;
1372 if (! stream && nid != codec->afg)
1373 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1374 if (! stream || stream == -1)
1375 return 0;
1376
1377 if (stream & AC_SUPFMT_PCM) {
1378 switch (format & 0xf0) {
1379 case 0x00:
1380 if (! (val & AC_SUPPCM_BITS_8))
1381 return 0;
1382 break;
1383 case 0x10:
1384 if (! (val & AC_SUPPCM_BITS_16))
1385 return 0;
1386 break;
1387 case 0x20:
1388 if (! (val & AC_SUPPCM_BITS_20))
1389 return 0;
1390 break;
1391 case 0x30:
1392 if (! (val & AC_SUPPCM_BITS_24))
1393 return 0;
1394 break;
1395 case 0x40:
1396 if (! (val & AC_SUPPCM_BITS_32))
1397 return 0;
1398 break;
1399 default:
1400 return 0;
1401 }
1402 } else {
1403 /* FIXME: check for float32 and AC3? */
1404 }
1405
1406 return 1;
1407 }
1408
1409 /*
1410 * PCM stuff
1411 */
1412 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1413 struct hda_codec *codec,
1414 snd_pcm_substream_t *substream)
1415 {
1416 return 0;
1417 }
1418
1419 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1420 struct hda_codec *codec,
1421 unsigned int stream_tag,
1422 unsigned int format,
1423 snd_pcm_substream_t *substream)
1424 {
1425 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1426 return 0;
1427 }
1428
1429 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1430 struct hda_codec *codec,
1431 snd_pcm_substream_t *substream)
1432 {
1433 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1434 return 0;
1435 }
1436
1437 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1438 {
1439 if (info->nid) {
1440 /* query support PCM information from the given NID */
1441 if (! info->rates || ! info->formats)
1442 snd_hda_query_supported_pcm(codec, info->nid,
1443 info->rates ? NULL : &info->rates,
1444 info->formats ? NULL : &info->formats,
1445 info->maxbps ? NULL : &info->maxbps);
1446 }
1447 if (info->ops.open == NULL)
1448 info->ops.open = hda_pcm_default_open_close;
1449 if (info->ops.close == NULL)
1450 info->ops.close = hda_pcm_default_open_close;
1451 if (info->ops.prepare == NULL) {
1452 snd_assert(info->nid, return -EINVAL);
1453 info->ops.prepare = hda_pcm_default_prepare;
1454 }
1455 if (info->ops.cleanup == NULL) {
1456 snd_assert(info->nid, return -EINVAL);
1457 info->ops.cleanup = hda_pcm_default_cleanup;
1458 }
1459 return 0;
1460 }
1461
1462 /**
1463 * snd_hda_build_pcms - build PCM information
1464 * @bus: the BUS
1465 *
1466 * Create PCM information for each codec included in the bus.
1467 *
1468 * The build_pcms codec patch is requested to set up codec->num_pcms and
1469 * codec->pcm_info properly. The array is referred by the top-level driver
1470 * to create its PCM instances.
1471 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1472 * callback.
1473 *
1474 * At least, substreams, channels_min and channels_max must be filled for
1475 * each stream. substreams = 0 indicates that the stream doesn't exist.
1476 * When rates and/or formats are zero, the supported values are queried
1477 * from the given nid. The nid is used also by the default ops.prepare
1478 * and ops.cleanup callbacks.
1479 *
1480 * The driver needs to call ops.open in its open callback. Similarly,
1481 * ops.close is supposed to be called in the close callback.
1482 * ops.prepare should be called in the prepare or hw_params callback
1483 * with the proper parameters for set up.
1484 * ops.cleanup should be called in hw_free for clean up of streams.
1485 *
1486 * This function returns 0 if successfull, or a negative error code.
1487 */
1488 int snd_hda_build_pcms(struct hda_bus *bus)
1489 {
1490 struct list_head *p;
1491
1492 list_for_each(p, &bus->codec_list) {
1493 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1494 unsigned int pcm, s;
1495 int err;
1496 if (! codec->patch_ops.build_pcms)
1497 continue;
1498 err = codec->patch_ops.build_pcms(codec);
1499 if (err < 0)
1500 return err;
1501 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1502 for (s = 0; s < 2; s++) {
1503 struct hda_pcm_stream *info;
1504 info = &codec->pcm_info[pcm].stream[s];
1505 if (! info->substreams)
1506 continue;
1507 err = set_pcm_default_values(codec, info);
1508 if (err < 0)
1509 return err;
1510 }
1511 }
1512 }
1513 return 0;
1514 }
1515
1516
1517 /**
1518 * snd_hda_check_board_config - compare the current codec with the config table
1519 * @codec: the HDA codec
1520 * @tbl: configuration table, terminated by null entries
1521 *
1522 * Compares the modelname or PCI subsystem id of the current codec with the
1523 * given configuration table. If a matching entry is found, returns its
1524 * config value (supposed to be 0 or positive).
1525 *
1526 * If no entries are matching, the function returns a negative value.
1527 */
1528 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1529 {
1530 const struct hda_board_config *c;
1531
1532 if (codec->bus->modelname) {
1533 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1534 if (c->modelname &&
1535 ! strcmp(codec->bus->modelname, c->modelname)) {
1536 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1537 return c->config;
1538 }
1539 }
1540 }
1541
1542 if (codec->bus->pci) {
1543 u16 subsystem_vendor, subsystem_device;
1544 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1545 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1546 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1547 if (c->pci_subvendor == subsystem_vendor &&
1548 (! c->pci_subdevice /* all match */||
1549 (c->pci_subdevice == subsystem_device))) {
1550 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1551 subsystem_vendor, subsystem_device, c->config);
1552 return c->config;
1553 }
1554 }
1555 }
1556 return -1;
1557 }
1558
1559 /**
1560 * snd_hda_add_new_ctls - create controls from the array
1561 * @codec: the HDA codec
1562 * @knew: the array of snd_kcontrol_new_t
1563 *
1564 * This helper function creates and add new controls in the given array.
1565 * The array must be terminated with an empty entry as terminator.
1566 *
1567 * Returns 0 if successful, or a negative error code.
1568 */
1569 int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1570 {
1571 int err;
1572
1573 for (; knew->name; knew++) {
1574 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1575 if (err < 0)
1576 return err;
1577 }
1578 return 0;
1579 }
1580
1581
1582 /*
1583 * input MUX helper
1584 */
1585 int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1586 {
1587 unsigned int index;
1588
1589 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1590 uinfo->count = 1;
1591 uinfo->value.enumerated.items = imux->num_items;
1592 index = uinfo->value.enumerated.item;
1593 if (index >= imux->num_items)
1594 index = imux->num_items - 1;
1595 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1596 return 0;
1597 }
1598
1599 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1600 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1601 unsigned int *cur_val)
1602 {
1603 unsigned int idx;
1604
1605 idx = ucontrol->value.enumerated.item[0];
1606 if (idx >= imux->num_items)
1607 idx = imux->num_items - 1;
1608 if (*cur_val == idx && ! codec->in_resume)
1609 return 0;
1610 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1611 imux->items[idx].index);
1612 *cur_val = idx;
1613 return 1;
1614 }
1615
1616
1617 /*
1618 * Multi-channel / digital-out PCM helper functions
1619 */
1620
1621 /*
1622 * open the digital out in the exclusive mode
1623 */
1624 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1625 {
1626 down(&codec->spdif_mutex);
1627 if (mout->dig_out_used) {
1628 up(&codec->spdif_mutex);
1629 return -EBUSY; /* already being used */
1630 }
1631 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1632 up(&codec->spdif_mutex);
1633 return 0;
1634 }
1635
1636 /*
1637 * release the digital out
1638 */
1639 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1640 {
1641 down(&codec->spdif_mutex);
1642 mout->dig_out_used = 0;
1643 up(&codec->spdif_mutex);
1644 return 0;
1645 }
1646
1647 /*
1648 * set up more restrictions for analog out
1649 */
1650 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1651 snd_pcm_substream_t *substream)
1652 {
1653 substream->runtime->hw.channels_max = mout->max_channels;
1654 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1655 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1656 }
1657
1658 /*
1659 * set up the i/o for analog out
1660 * when the digital out is available, copy the front out to digital out, too.
1661 */
1662 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1663 unsigned int stream_tag,
1664 unsigned int format,
1665 snd_pcm_substream_t *substream)
1666 {
1667 hda_nid_t *nids = mout->dac_nids;
1668 int chs = substream->runtime->channels;
1669 int i;
1670
1671 down(&codec->spdif_mutex);
1672 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1673 if (chs == 2 &&
1674 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1675 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1676 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1677 /* setup digital receiver */
1678 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1679 stream_tag, 0, format);
1680 } else {
1681 mout->dig_out_used = 0;
1682 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1683 }
1684 }
1685 up(&codec->spdif_mutex);
1686
1687 /* front */
1688 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1689 if (mout->hp_nid)
1690 /* headphone out will just decode front left/right (stereo) */
1691 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1692 /* surrounds */
1693 for (i = 1; i < mout->num_dacs; i++) {
1694 if (chs >= (i + 1) * 2) /* independent out */
1695 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1696 format);
1697 else /* copy front */
1698 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1699 format);
1700 }
1701 return 0;
1702 }
1703
1704 /*
1705 * clean up the setting for analog out
1706 */
1707 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1708 {
1709 hda_nid_t *nids = mout->dac_nids;
1710 int i;
1711
1712 for (i = 0; i < mout->num_dacs; i++)
1713 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1714 if (mout->hp_nid)
1715 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1716 down(&codec->spdif_mutex);
1717 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1718 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1719 mout->dig_out_used = 0;
1720 }
1721 up(&codec->spdif_mutex);
1722 return 0;
1723 }
1724
1725 /*
1726 * Helper for automatic ping configuration
1727 */
1728 /* parse all pin widgets and store the useful pin nids to cfg */
1729 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg)
1730 {
1731 hda_nid_t nid, nid_start;
1732 int i, j, nodes;
1733 short seq, sequences[4], assoc_line_out;
1734
1735 memset(cfg, 0, sizeof(*cfg));
1736
1737 memset(sequences, 0, sizeof(sequences));
1738 assoc_line_out = 0;
1739
1740 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1741 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1742 unsigned int wid_caps = snd_hda_param_read(codec, nid,
1743 AC_PAR_AUDIO_WIDGET_CAP);
1744 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1745 unsigned int def_conf;
1746 short assoc, loc;
1747
1748 /* read all default configuration for pin complex */
1749 if (wid_type != AC_WID_PIN)
1750 continue;
1751 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1752 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1753 continue;
1754 loc = get_defcfg_location(def_conf);
1755 switch (get_defcfg_device(def_conf)) {
1756 case AC_JACK_LINE_OUT:
1757 case AC_JACK_SPEAKER:
1758 seq = get_defcfg_sequence(def_conf);
1759 assoc = get_defcfg_association(def_conf);
1760 if (! assoc)
1761 continue;
1762 if (! assoc_line_out)
1763 assoc_line_out = assoc;
1764 else if (assoc_line_out != assoc)
1765 continue;
1766 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1767 continue;
1768 cfg->line_out_pins[cfg->line_outs] = nid;
1769 sequences[cfg->line_outs] = seq;
1770 cfg->line_outs++;
1771 break;
1772 case AC_JACK_HP_OUT:
1773 cfg->hp_pin = nid;
1774 break;
1775 case AC_JACK_MIC_IN:
1776 if (loc == AC_JACK_LOC_FRONT)
1777 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1778 else
1779 cfg->input_pins[AUTO_PIN_MIC] = nid;
1780 break;
1781 case AC_JACK_LINE_IN:
1782 if (loc == AC_JACK_LOC_FRONT)
1783 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
1784 else
1785 cfg->input_pins[AUTO_PIN_LINE] = nid;
1786 break;
1787 case AC_JACK_CD:
1788 cfg->input_pins[AUTO_PIN_CD] = nid;
1789 break;
1790 case AC_JACK_AUX:
1791 cfg->input_pins[AUTO_PIN_AUX] = nid;
1792 break;
1793 case AC_JACK_SPDIF_OUT:
1794 cfg->dig_out_pin = nid;
1795 break;
1796 case AC_JACK_SPDIF_IN:
1797 cfg->dig_in_pin = nid;
1798 break;
1799 }
1800 }
1801
1802 /* sort by sequence */
1803 for (i = 0; i < cfg->line_outs; i++)
1804 for (j = i + 1; j < cfg->line_outs; j++)
1805 if (sequences[i] > sequences[j]) {
1806 seq = sequences[i];
1807 sequences[i] = sequences[j];
1808 sequences[j] = seq;
1809 nid = cfg->line_out_pins[i];
1810 cfg->line_out_pins[i] = cfg->line_out_pins[j];
1811 cfg->line_out_pins[j] = nid;
1812 }
1813
1814 /* Reorder the surround channels
1815 * ALSA sequence is front/surr/clfe/side
1816 * HDA sequence is:
1817 * 4-ch: front/surr => OK as it is
1818 * 6-ch: front/clfe/surr
1819 * 8-ch: front/clfe/side/surr
1820 */
1821 switch (cfg->line_outs) {
1822 case 3:
1823 nid = cfg->line_out_pins[1];
1824 cfg->line_out_pins[1] = cfg->line_out_pins[2];
1825 cfg->line_out_pins[2] = nid;
1826 break;
1827 case 4:
1828 nid = cfg->line_out_pins[1];
1829 cfg->line_out_pins[1] = cfg->line_out_pins[3];
1830 cfg->line_out_pins[3] = cfg->line_out_pins[2];
1831 cfg->line_out_pins[2] = nid;
1832 break;
1833 }
1834
1835 return 0;
1836 }
1837
1838 #ifdef CONFIG_PM
1839 /*
1840 * power management
1841 */
1842
1843 /**
1844 * snd_hda_suspend - suspend the codecs
1845 * @bus: the HDA bus
1846 * @state: suspsend state
1847 *
1848 * Returns 0 if successful.
1849 */
1850 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1851 {
1852 struct list_head *p;
1853
1854 /* FIXME: should handle power widget capabilities */
1855 list_for_each(p, &bus->codec_list) {
1856 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1857 if (codec->patch_ops.suspend)
1858 codec->patch_ops.suspend(codec, state);
1859 }
1860 return 0;
1861 }
1862
1863 /**
1864 * snd_hda_resume - resume the codecs
1865 * @bus: the HDA bus
1866 * @state: resume state
1867 *
1868 * Returns 0 if successful.
1869 */
1870 int snd_hda_resume(struct hda_bus *bus)
1871 {
1872 struct list_head *p;
1873
1874 list_for_each(p, &bus->codec_list) {
1875 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1876 if (codec->patch_ops.resume)
1877 codec->patch_ops.resume(codec);
1878 }
1879 return 0;
1880 }
1881
1882 /**
1883 * snd_hda_resume_ctls - resume controls in the new control list
1884 * @codec: the HDA codec
1885 * @knew: the array of snd_kcontrol_new_t
1886 *
1887 * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1888 * originally for snd_hda_add_new_ctls().
1889 * The array must be terminated with an empty entry as terminator.
1890 */
1891 int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1892 {
1893 snd_ctl_elem_value_t *val;
1894
1895 val = kmalloc(sizeof(*val), GFP_KERNEL);
1896 if (! val)
1897 return -ENOMEM;
1898 codec->in_resume = 1;
1899 for (; knew->name; knew++) {
1900 int i, count;
1901 count = knew->count ? knew->count : 1;
1902 for (i = 0; i < count; i++) {
1903 memset(val, 0, sizeof(*val));
1904 val->id.iface = knew->iface;
1905 val->id.device = knew->device;
1906 val->id.subdevice = knew->subdevice;
1907 strcpy(val->id.name, knew->name);
1908 val->id.index = knew->index ? knew->index : i;
1909 /* Assume that get callback reads only from cache,
1910 * not accessing to the real hardware
1911 */
1912 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1913 continue;
1914 snd_ctl_elem_write(codec->bus->card, NULL, val);
1915 }
1916 }
1917 codec->in_resume = 0;
1918 kfree(val);
1919 return 0;
1920 }
1921
1922 /**
1923 * snd_hda_resume_spdif_out - resume the digital out
1924 * @codec: the HDA codec
1925 */
1926 int snd_hda_resume_spdif_out(struct hda_codec *codec)
1927 {
1928 return snd_hda_resume_ctls(codec, dig_mixes);
1929 }
1930
1931 /**
1932 * snd_hda_resume_spdif_in - resume the digital in
1933 * @codec: the HDA codec
1934 */
1935 int snd_hda_resume_spdif_in(struct hda_codec *codec)
1936 {
1937 return snd_hda_resume_ctls(codec, dig_in_ctls);
1938 }
1939 #endif
1940
1941 /*
1942 * symbols exported for controller modules
1943 */
1944 EXPORT_SYMBOL(snd_hda_codec_read);
1945 EXPORT_SYMBOL(snd_hda_codec_write);
1946 EXPORT_SYMBOL(snd_hda_sequence_write);
1947 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
1948 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
1949 EXPORT_SYMBOL(snd_hda_bus_new);
1950 EXPORT_SYMBOL(snd_hda_codec_new);
1951 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
1952 EXPORT_SYMBOL(snd_hda_calc_stream_format);
1953 EXPORT_SYMBOL(snd_hda_build_pcms);
1954 EXPORT_SYMBOL(snd_hda_build_controls);
1955 #ifdef CONFIG_PM
1956 EXPORT_SYMBOL(snd_hda_suspend);
1957 EXPORT_SYMBOL(snd_hda_resume);
1958 #endif
1959
1960 /*
1961 * INIT part
1962 */
1963
1964 static int __init alsa_hda_init(void)
1965 {
1966 return 0;
1967 }
1968
1969 static void __exit alsa_hda_exit(void)
1970 {
1971 }
1972
1973 module_init(alsa_hda_init)
1974 module_exit(alsa_hda_exit)
This page took 0.070168 seconds and 6 git commands to generate.