9a7c880eddbd6b122187da853096a97f31d2915c
[deliverable/linux.git] / sound / pci / oxygen / oxygen_mixer.c
1 /*
2 * C-Media CMI8788 driver - mixer code
3 *
4 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License, version 2.
9 *
10 * This driver is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this driver; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/mutex.h>
21 #include <sound/ac97_codec.h>
22 #include <sound/asoundef.h>
23 #include <sound/control.h>
24 #include <sound/tlv.h>
25 #include "oxygen.h"
26 #include "cm9780.h"
27
28 static int dac_volume_info(struct snd_kcontrol *ctl,
29 struct snd_ctl_elem_info *info)
30 {
31 struct oxygen *chip = ctl->private_data;
32
33 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
34 info->count = chip->model->dac_channels;
35 info->value.integer.min = 0;
36 info->value.integer.max = 0xff;
37 return 0;
38 }
39
40 static int dac_volume_get(struct snd_kcontrol *ctl,
41 struct snd_ctl_elem_value *value)
42 {
43 struct oxygen *chip = ctl->private_data;
44 unsigned int i;
45
46 mutex_lock(&chip->mutex);
47 for (i = 0; i < chip->model->dac_channels; ++i)
48 value->value.integer.value[i] = chip->dac_volume[i];
49 mutex_unlock(&chip->mutex);
50 return 0;
51 }
52
53 static int dac_volume_put(struct snd_kcontrol *ctl,
54 struct snd_ctl_elem_value *value)
55 {
56 struct oxygen *chip = ctl->private_data;
57 unsigned int i;
58 int changed;
59
60 changed = 0;
61 mutex_lock(&chip->mutex);
62 for (i = 0; i < chip->model->dac_channels; ++i)
63 if (value->value.integer.value[i] != chip->dac_volume[i]) {
64 chip->dac_volume[i] = value->value.integer.value[i];
65 changed = 1;
66 }
67 if (changed)
68 chip->model->update_dac_volume(chip);
69 mutex_unlock(&chip->mutex);
70 return changed;
71 }
72
73 static int dac_mute_get(struct snd_kcontrol *ctl,
74 struct snd_ctl_elem_value *value)
75 {
76 struct oxygen *chip = ctl->private_data;
77
78 mutex_lock(&chip->mutex);
79 value->value.integer.value[0] = !chip->dac_mute;
80 mutex_unlock(&chip->mutex);
81 return 0;
82 }
83
84 static int dac_mute_put(struct snd_kcontrol *ctl,
85 struct snd_ctl_elem_value *value)
86 {
87 struct oxygen *chip = ctl->private_data;
88 int changed;
89
90 mutex_lock(&chip->mutex);
91 changed = !value->value.integer.value[0] != chip->dac_mute;
92 if (changed) {
93 chip->dac_mute = !value->value.integer.value[0];
94 chip->model->update_dac_mute(chip);
95 }
96 mutex_unlock(&chip->mutex);
97 return changed;
98 }
99
100 static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
101 {
102 static const char *const names[3] = {
103 "Front", "Front+Surround", "Front+Surround+Back"
104 };
105 struct oxygen *chip = ctl->private_data;
106 unsigned int count = 2 + (chip->model->dac_channels == 8);
107
108 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
109 info->count = 1;
110 info->value.enumerated.items = count;
111 if (info->value.enumerated.item >= count)
112 info->value.enumerated.item = count - 1;
113 strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
114 return 0;
115 }
116
117 static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
118 {
119 struct oxygen *chip = ctl->private_data;
120
121 mutex_lock(&chip->mutex);
122 value->value.enumerated.item[0] = chip->dac_routing;
123 mutex_unlock(&chip->mutex);
124 return 0;
125 }
126
127 void oxygen_update_dac_routing(struct oxygen *chip)
128 {
129 /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
130 static const unsigned int reg_values[3] = {
131 /* stereo -> front */
132 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
133 (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
134 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
135 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
136 /* stereo -> front+surround */
137 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
138 (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
139 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
140 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
141 /* stereo -> front+surround+back */
142 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
143 (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
144 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
145 (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
146 };
147 u8 channels;
148 unsigned int reg_value;
149
150 channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
151 OXYGEN_PLAY_CHANNELS_MASK;
152 if (channels == OXYGEN_PLAY_CHANNELS_2)
153 reg_value = reg_values[chip->dac_routing];
154 else if (channels == OXYGEN_PLAY_CHANNELS_8)
155 /* in 7.1 mode, "rear" channels go to the "back" jack */
156 reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
157 (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
158 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
159 (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
160 else
161 reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
162 (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
163 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
164 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
165 oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
166 OXYGEN_PLAY_DAC0_SOURCE_MASK |
167 OXYGEN_PLAY_DAC1_SOURCE_MASK |
168 OXYGEN_PLAY_DAC2_SOURCE_MASK |
169 OXYGEN_PLAY_DAC3_SOURCE_MASK);
170 }
171
172 static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
173 {
174 struct oxygen *chip = ctl->private_data;
175 unsigned int count = 2 + (chip->model->dac_channels == 8);
176 int changed;
177
178 mutex_lock(&chip->mutex);
179 changed = value->value.enumerated.item[0] != chip->dac_routing;
180 if (changed) {
181 chip->dac_routing = min(value->value.enumerated.item[0],
182 count - 1);
183 spin_lock_irq(&chip->reg_lock);
184 oxygen_update_dac_routing(chip);
185 spin_unlock_irq(&chip->reg_lock);
186 }
187 mutex_unlock(&chip->mutex);
188 return changed;
189 }
190
191 static int spdif_switch_get(struct snd_kcontrol *ctl,
192 struct snd_ctl_elem_value *value)
193 {
194 struct oxygen *chip = ctl->private_data;
195
196 mutex_lock(&chip->mutex);
197 value->value.integer.value[0] = chip->spdif_playback_enable;
198 mutex_unlock(&chip->mutex);
199 return 0;
200 }
201
202 static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
203 {
204 switch (oxygen_rate) {
205 case OXYGEN_RATE_32000:
206 return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
207 case OXYGEN_RATE_44100:
208 return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
209 default: /* OXYGEN_RATE_48000 */
210 return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
211 case OXYGEN_RATE_64000:
212 return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
213 case OXYGEN_RATE_88200:
214 return 0x8 << OXYGEN_SPDIF_CS_RATE_SHIFT;
215 case OXYGEN_RATE_96000:
216 return 0xa << OXYGEN_SPDIF_CS_RATE_SHIFT;
217 case OXYGEN_RATE_176400:
218 return 0xc << OXYGEN_SPDIF_CS_RATE_SHIFT;
219 case OXYGEN_RATE_192000:
220 return 0xe << OXYGEN_SPDIF_CS_RATE_SHIFT;
221 }
222 }
223
224 void oxygen_update_spdif_source(struct oxygen *chip)
225 {
226 u32 old_control, new_control;
227 u16 old_routing, new_routing;
228 unsigned int oxygen_rate;
229
230 old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
231 old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
232 if (chip->pcm_active & (1 << PCM_SPDIF)) {
233 new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
234 new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
235 | OXYGEN_PLAY_SPDIF_SPDIF;
236 oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
237 & OXYGEN_I2S_RATE_MASK;
238 /* S/PDIF rate was already set by the caller */
239 } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
240 chip->spdif_playback_enable) {
241 new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
242 | OXYGEN_PLAY_SPDIF_MULTICH_01;
243 oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
244 & OXYGEN_I2S_RATE_MASK;
245 new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
246 (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
247 OXYGEN_SPDIF_OUT_ENABLE;
248 } else {
249 new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
250 new_routing = old_routing;
251 oxygen_rate = OXYGEN_RATE_44100;
252 }
253 if (old_routing != new_routing) {
254 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
255 new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
256 oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
257 }
258 if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
259 oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
260 oxygen_spdif_rate(oxygen_rate) |
261 ((chip->pcm_active & (1 << PCM_SPDIF)) ?
262 chip->spdif_pcm_bits : chip->spdif_bits));
263 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
264 }
265
266 static int spdif_switch_put(struct snd_kcontrol *ctl,
267 struct snd_ctl_elem_value *value)
268 {
269 struct oxygen *chip = ctl->private_data;
270 int changed;
271
272 mutex_lock(&chip->mutex);
273 changed = value->value.integer.value[0] != chip->spdif_playback_enable;
274 if (changed) {
275 chip->spdif_playback_enable = !!value->value.integer.value[0];
276 spin_lock_irq(&chip->reg_lock);
277 oxygen_update_spdif_source(chip);
278 spin_unlock_irq(&chip->reg_lock);
279 }
280 mutex_unlock(&chip->mutex);
281 return changed;
282 }
283
284 static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
285 {
286 info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
287 info->count = 1;
288 return 0;
289 }
290
291 static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
292 {
293 value->value.iec958.status[0] =
294 bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
295 OXYGEN_SPDIF_PREEMPHASIS);
296 value->value.iec958.status[1] = /* category and original */
297 bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
298 }
299
300 static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
301 {
302 u32 bits;
303
304 bits = value->value.iec958.status[0] &
305 (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
306 OXYGEN_SPDIF_PREEMPHASIS);
307 bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
308 if (bits & OXYGEN_SPDIF_NONAUDIO)
309 bits |= OXYGEN_SPDIF_V;
310 return bits;
311 }
312
313 static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
314 {
315 oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
316 OXYGEN_SPDIF_NONAUDIO |
317 OXYGEN_SPDIF_C |
318 OXYGEN_SPDIF_PREEMPHASIS |
319 OXYGEN_SPDIF_CATEGORY_MASK |
320 OXYGEN_SPDIF_ORIGINAL |
321 OXYGEN_SPDIF_V);
322 }
323
324 static int spdif_default_get(struct snd_kcontrol *ctl,
325 struct snd_ctl_elem_value *value)
326 {
327 struct oxygen *chip = ctl->private_data;
328
329 mutex_lock(&chip->mutex);
330 oxygen_to_iec958(chip->spdif_bits, value);
331 mutex_unlock(&chip->mutex);
332 return 0;
333 }
334
335 static int spdif_default_put(struct snd_kcontrol *ctl,
336 struct snd_ctl_elem_value *value)
337 {
338 struct oxygen *chip = ctl->private_data;
339 u32 new_bits;
340 int changed;
341
342 new_bits = iec958_to_oxygen(value);
343 mutex_lock(&chip->mutex);
344 changed = new_bits != chip->spdif_bits;
345 if (changed) {
346 chip->spdif_bits = new_bits;
347 if (!(chip->pcm_active & (1 << PCM_SPDIF)))
348 write_spdif_bits(chip, new_bits);
349 }
350 mutex_unlock(&chip->mutex);
351 return changed;
352 }
353
354 static int spdif_mask_get(struct snd_kcontrol *ctl,
355 struct snd_ctl_elem_value *value)
356 {
357 value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
358 IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
359 value->value.iec958.status[1] =
360 IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
361 return 0;
362 }
363
364 static int spdif_pcm_get(struct snd_kcontrol *ctl,
365 struct snd_ctl_elem_value *value)
366 {
367 struct oxygen *chip = ctl->private_data;
368
369 mutex_lock(&chip->mutex);
370 oxygen_to_iec958(chip->spdif_pcm_bits, value);
371 mutex_unlock(&chip->mutex);
372 return 0;
373 }
374
375 static int spdif_pcm_put(struct snd_kcontrol *ctl,
376 struct snd_ctl_elem_value *value)
377 {
378 struct oxygen *chip = ctl->private_data;
379 u32 new_bits;
380 int changed;
381
382 new_bits = iec958_to_oxygen(value);
383 mutex_lock(&chip->mutex);
384 changed = new_bits != chip->spdif_pcm_bits;
385 if (changed) {
386 chip->spdif_pcm_bits = new_bits;
387 if (chip->pcm_active & (1 << PCM_SPDIF))
388 write_spdif_bits(chip, new_bits);
389 }
390 mutex_unlock(&chip->mutex);
391 return changed;
392 }
393
394 static int spdif_input_mask_get(struct snd_kcontrol *ctl,
395 struct snd_ctl_elem_value *value)
396 {
397 value->value.iec958.status[0] = 0xff;
398 value->value.iec958.status[1] = 0xff;
399 value->value.iec958.status[2] = 0xff;
400 value->value.iec958.status[3] = 0xff;
401 return 0;
402 }
403
404 static int spdif_input_default_get(struct snd_kcontrol *ctl,
405 struct snd_ctl_elem_value *value)
406 {
407 struct oxygen *chip = ctl->private_data;
408 u32 bits;
409
410 bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
411 value->value.iec958.status[0] = bits;
412 value->value.iec958.status[1] = bits >> 8;
413 value->value.iec958.status[2] = bits >> 16;
414 value->value.iec958.status[3] = bits >> 24;
415 return 0;
416 }
417
418 static int spdif_loopback_get(struct snd_kcontrol *ctl,
419 struct snd_ctl_elem_value *value)
420 {
421 struct oxygen *chip = ctl->private_data;
422
423 value->value.integer.value[0] =
424 !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
425 & OXYGEN_SPDIF_LOOPBACK);
426 return 0;
427 }
428
429 static int spdif_loopback_put(struct snd_kcontrol *ctl,
430 struct snd_ctl_elem_value *value)
431 {
432 struct oxygen *chip = ctl->private_data;
433 u32 oldreg, newreg;
434 int changed;
435
436 spin_lock_irq(&chip->reg_lock);
437 oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
438 if (value->value.integer.value[0])
439 newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
440 else
441 newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
442 changed = newreg != oldreg;
443 if (changed)
444 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
445 spin_unlock_irq(&chip->reg_lock);
446 return changed;
447 }
448
449 static int monitor_volume_info(struct snd_kcontrol *ctl,
450 struct snd_ctl_elem_info *info)
451 {
452 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
453 info->count = 1;
454 info->value.integer.min = 0;
455 info->value.integer.max = 1;
456 return 0;
457 }
458
459 static int monitor_get(struct snd_kcontrol *ctl,
460 struct snd_ctl_elem_value *value)
461 {
462 struct oxygen *chip = ctl->private_data;
463 u8 bit = ctl->private_value;
464 int invert = ctl->private_value & (1 << 8);
465
466 value->value.integer.value[0] =
467 !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
468 return 0;
469 }
470
471 static int monitor_put(struct snd_kcontrol *ctl,
472 struct snd_ctl_elem_value *value)
473 {
474 struct oxygen *chip = ctl->private_data;
475 u8 bit = ctl->private_value;
476 int invert = ctl->private_value & (1 << 8);
477 u8 oldreg, newreg;
478 int changed;
479
480 spin_lock_irq(&chip->reg_lock);
481 oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
482 if ((!!value->value.integer.value[0] ^ !!invert) != 0)
483 newreg = oldreg | bit;
484 else
485 newreg = oldreg & ~bit;
486 changed = newreg != oldreg;
487 if (changed)
488 oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
489 spin_unlock_irq(&chip->reg_lock);
490 return changed;
491 }
492
493 static int ac97_switch_get(struct snd_kcontrol *ctl,
494 struct snd_ctl_elem_value *value)
495 {
496 struct oxygen *chip = ctl->private_data;
497 unsigned int codec = (ctl->private_value >> 24) & 1;
498 unsigned int index = ctl->private_value & 0xff;
499 unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
500 int invert = ctl->private_value & (1 << 16);
501 u16 reg;
502
503 mutex_lock(&chip->mutex);
504 reg = oxygen_read_ac97(chip, codec, index);
505 mutex_unlock(&chip->mutex);
506 if (!(reg & (1 << bitnr)) ^ !invert)
507 value->value.integer.value[0] = 1;
508 else
509 value->value.integer.value[0] = 0;
510 return 0;
511 }
512
513 static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
514 {
515 unsigned int priv_idx = chip->controls[control]->private_value & 0xff;
516 u16 value;
517
518 value = oxygen_read_ac97(chip, 0, priv_idx);
519 if (!(value & 0x8000)) {
520 oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
521 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
522 &chip->controls[control]->id);
523 }
524 }
525
526 static int ac97_switch_put(struct snd_kcontrol *ctl,
527 struct snd_ctl_elem_value *value)
528 {
529 struct oxygen *chip = ctl->private_data;
530 unsigned int codec = (ctl->private_value >> 24) & 1;
531 unsigned int index = ctl->private_value & 0xff;
532 unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
533 int invert = ctl->private_value & (1 << 16);
534 u16 oldreg, newreg;
535 int change;
536
537 mutex_lock(&chip->mutex);
538 oldreg = oxygen_read_ac97(chip, codec, index);
539 newreg = oldreg;
540 if (!value->value.integer.value[0] ^ !invert)
541 newreg |= 1 << bitnr;
542 else
543 newreg &= ~(1 << bitnr);
544 change = newreg != oldreg;
545 if (change) {
546 oxygen_write_ac97(chip, codec, index, newreg);
547 if (index == AC97_LINE) {
548 oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
549 newreg & 0x8000 ?
550 CM9780_GPO0 : 0, CM9780_GPO0);
551 if (!(newreg & 0x8000)) {
552 mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
553 mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
554 mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
555 }
556 } else if ((index == AC97_MIC || index == AC97_CD ||
557 index == AC97_VIDEO || index == AC97_AUX) &&
558 bitnr == 15 && !(newreg & 0x8000)) {
559 mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
560 oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
561 CM9780_GPO0, CM9780_GPO0);
562 }
563 }
564 mutex_unlock(&chip->mutex);
565 return change;
566 }
567
568 static int ac97_volume_info(struct snd_kcontrol *ctl,
569 struct snd_ctl_elem_info *info)
570 {
571 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
572 info->count = 2;
573 info->value.integer.min = 0;
574 info->value.integer.max = 0x1f;
575 return 0;
576 }
577
578 static int ac97_volume_get(struct snd_kcontrol *ctl,
579 struct snd_ctl_elem_value *value)
580 {
581 struct oxygen *chip = ctl->private_data;
582 unsigned int codec = (ctl->private_value >> 24) & 1;
583 unsigned int index = ctl->private_value & 0xff;
584 u16 reg;
585
586 mutex_lock(&chip->mutex);
587 reg = oxygen_read_ac97(chip, codec, index);
588 mutex_unlock(&chip->mutex);
589 value->value.integer.value[0] = 31 - (reg & 0x1f);
590 value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
591 return 0;
592 }
593
594 static int ac97_volume_put(struct snd_kcontrol *ctl,
595 struct snd_ctl_elem_value *value)
596 {
597 struct oxygen *chip = ctl->private_data;
598 unsigned int codec = (ctl->private_value >> 24) & 1;
599 unsigned int index = ctl->private_value & 0xff;
600 u16 oldreg, newreg;
601 int change;
602
603 mutex_lock(&chip->mutex);
604 oldreg = oxygen_read_ac97(chip, codec, index);
605 newreg = oldreg;
606 newreg = (newreg & ~0x1f) |
607 (31 - (value->value.integer.value[0] & 0x1f));
608 newreg = (newreg & ~0x1f00) |
609 ((31 - (value->value.integer.value[0] & 0x1f)) << 8);
610 change = newreg != oldreg;
611 if (change)
612 oxygen_write_ac97(chip, codec, index, newreg);
613 mutex_unlock(&chip->mutex);
614 return change;
615 }
616
617 static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
618 struct snd_ctl_elem_info *info)
619 {
620 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
621 info->count = 2;
622 info->value.integer.min = 0;
623 info->value.integer.max = 7;
624 return 0;
625 }
626
627 static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
628 struct snd_ctl_elem_value *value)
629 {
630 struct oxygen *chip = ctl->private_data;
631 u16 reg;
632
633 mutex_lock(&chip->mutex);
634 reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
635 mutex_unlock(&chip->mutex);
636 value->value.integer.value[0] = reg & 7;
637 value->value.integer.value[1] = (reg >> 8) & 7;
638 return 0;
639 }
640
641 static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
642 struct snd_ctl_elem_value *value)
643 {
644 struct oxygen *chip = ctl->private_data;
645 u16 oldreg, newreg;
646 int change;
647
648 mutex_lock(&chip->mutex);
649 oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
650 newreg = oldreg & ~0x0707;
651 newreg = newreg | (value->value.integer.value[0] & 7);
652 newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
653 change = newreg != oldreg;
654 if (change)
655 oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
656 mutex_unlock(&chip->mutex);
657 return change;
658 }
659
660 #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
661 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
662 .name = xname, \
663 .info = snd_ctl_boolean_mono_info, \
664 .get = ac97_switch_get, \
665 .put = ac97_switch_put, \
666 .private_value = ((codec) << 24) | ((invert) << 16) | \
667 ((bitnr) << 8) | (index), \
668 }
669 #define AC97_VOLUME(xname, codec, index) { \
670 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
671 .name = xname, \
672 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
673 SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
674 .info = ac97_volume_info, \
675 .get = ac97_volume_get, \
676 .put = ac97_volume_put, \
677 .tlv = { .p = ac97_db_scale, }, \
678 .private_value = ((codec) << 24) | (index), \
679 }
680
681 static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0);
682 static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
683 static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
684
685 static const struct snd_kcontrol_new controls[] = {
686 {
687 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
688 .name = "Master Playback Volume",
689 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
690 .info = dac_volume_info,
691 .get = dac_volume_get,
692 .put = dac_volume_put,
693 },
694 {
695 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
696 .name = "Master Playback Switch",
697 .info = snd_ctl_boolean_mono_info,
698 .get = dac_mute_get,
699 .put = dac_mute_put,
700 },
701 {
702 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
703 .name = "Stereo Upmixing",
704 .info = upmix_info,
705 .get = upmix_get,
706 .put = upmix_put,
707 },
708 {
709 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
710 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
711 .info = snd_ctl_boolean_mono_info,
712 .get = spdif_switch_get,
713 .put = spdif_switch_put,
714 },
715 {
716 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
717 .device = 1,
718 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
719 .info = spdif_info,
720 .get = spdif_default_get,
721 .put = spdif_default_put,
722 },
723 {
724 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
725 .device = 1,
726 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
727 .access = SNDRV_CTL_ELEM_ACCESS_READ,
728 .info = spdif_info,
729 .get = spdif_mask_get,
730 },
731 {
732 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
733 .device = 1,
734 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
735 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
736 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
737 .info = spdif_info,
738 .get = spdif_pcm_get,
739 .put = spdif_pcm_put,
740 },
741 {
742 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
743 .device = 1,
744 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
745 .access = SNDRV_CTL_ELEM_ACCESS_READ,
746 .info = spdif_info,
747 .get = spdif_input_mask_get,
748 },
749 {
750 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
751 .device = 1,
752 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
753 .access = SNDRV_CTL_ELEM_ACCESS_READ,
754 .info = spdif_info,
755 .get = spdif_input_default_get,
756 },
757 {
758 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
759 .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
760 .info = snd_ctl_boolean_mono_info,
761 .get = spdif_loopback_get,
762 .put = spdif_loopback_put,
763 },
764 };
765
766 static const struct {
767 unsigned int pcm_dev;
768 struct snd_kcontrol_new controls[2];
769 } monitor_controls[] = {
770 {
771 .pcm_dev = CAPTURE_0_FROM_I2S_1,
772 .controls = {
773 {
774 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
775 .name = "Analog Input Monitor Switch",
776 .info = snd_ctl_boolean_mono_info,
777 .get = monitor_get,
778 .put = monitor_put,
779 .private_value = OXYGEN_ADC_MONITOR_A,
780 },
781 {
782 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
783 .name = "Analog Input Monitor Volume",
784 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
785 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
786 .info = monitor_volume_info,
787 .get = monitor_get,
788 .put = monitor_put,
789 .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
790 | (1 << 8),
791 .tlv = { .p = monitor_db_scale, },
792 },
793 },
794 },
795 {
796 .pcm_dev = CAPTURE_0_FROM_I2S_2,
797 .controls = {
798 {
799 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
800 .name = "Analog Input Monitor Switch",
801 .info = snd_ctl_boolean_mono_info,
802 .get = monitor_get,
803 .put = monitor_put,
804 .private_value = OXYGEN_ADC_MONITOR_B,
805 },
806 {
807 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
808 .name = "Analog Input Monitor Volume",
809 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
810 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
811 .info = monitor_volume_info,
812 .get = monitor_get,
813 .put = monitor_put,
814 .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
815 | (1 << 8),
816 .tlv = { .p = monitor_db_scale, },
817 },
818 },
819 },
820 {
821 .pcm_dev = CAPTURE_2_FROM_I2S_2,
822 .controls = {
823 {
824 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
825 .name = "Analog Input Monitor Switch",
826 .index = 1,
827 .info = snd_ctl_boolean_mono_info,
828 .get = monitor_get,
829 .put = monitor_put,
830 .private_value = OXYGEN_ADC_MONITOR_B,
831 },
832 {
833 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
834 .name = "Analog Input Monitor Volume",
835 .index = 1,
836 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
837 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
838 .info = monitor_volume_info,
839 .get = monitor_get,
840 .put = monitor_put,
841 .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
842 | (1 << 8),
843 .tlv = { .p = monitor_db_scale, },
844 },
845 },
846 },
847 {
848 .pcm_dev = CAPTURE_1_FROM_SPDIF,
849 .controls = {
850 {
851 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
852 .name = "Digital Input Monitor Switch",
853 .info = snd_ctl_boolean_mono_info,
854 .get = monitor_get,
855 .put = monitor_put,
856 .private_value = OXYGEN_ADC_MONITOR_C,
857 },
858 {
859 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
860 .name = "Digital Input Monitor Volume",
861 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
862 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
863 .info = monitor_volume_info,
864 .get = monitor_get,
865 .put = monitor_put,
866 .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
867 | (1 << 8),
868 .tlv = { .p = monitor_db_scale, },
869 },
870 },
871 },
872 };
873
874 static const struct snd_kcontrol_new ac97_controls[] = {
875 AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC),
876 AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
877 AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
878 AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
879 AC97_VOLUME("CD Capture Volume", 0, AC97_CD),
880 AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
881 AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX),
882 AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
883 };
884
885 static const struct snd_kcontrol_new ac97_fp_controls[] = {
886 AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE),
887 AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
888 {
889 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
890 .name = "Front Panel Capture Volume",
891 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
892 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
893 .info = ac97_fp_rec_volume_info,
894 .get = ac97_fp_rec_volume_get,
895 .put = ac97_fp_rec_volume_put,
896 .tlv = { .p = ac97_rec_db_scale, },
897 },
898 AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
899 };
900
901 static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
902 {
903 struct oxygen *chip = ctl->private_data;
904 unsigned int i;
905
906 /* I'm too lazy to write a function for each control :-) */
907 for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
908 chip->controls[i] = NULL;
909 }
910
911 static int add_controls(struct oxygen *chip,
912 const struct snd_kcontrol_new controls[],
913 unsigned int count)
914 {
915 static const char *const known_ctl_names[CONTROL_COUNT] = {
916 [CONTROL_SPDIF_PCM] =
917 SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
918 [CONTROL_SPDIF_INPUT_BITS] =
919 SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
920 [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
921 [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
922 [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
923 [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
924 };
925 unsigned int i, j;
926 struct snd_kcontrol_new template;
927 struct snd_kcontrol *ctl;
928 int err;
929
930 for (i = 0; i < count; ++i) {
931 template = controls[i];
932 err = chip->model->control_filter(&template);
933 if (err < 0)
934 return err;
935 if (err == 1)
936 continue;
937 ctl = snd_ctl_new1(&template, chip);
938 if (!ctl)
939 return -ENOMEM;
940 err = snd_ctl_add(chip->card, ctl);
941 if (err < 0)
942 return err;
943 for (j = 0; j < CONTROL_COUNT; ++j)
944 if (!strcmp(ctl->id.name, known_ctl_names[j])) {
945 chip->controls[j] = ctl;
946 ctl->private_free = oxygen_any_ctl_free;
947 }
948 }
949 return 0;
950 }
951
952 int oxygen_mixer_init(struct oxygen *chip)
953 {
954 unsigned int i;
955 int err;
956
957 err = add_controls(chip, controls, ARRAY_SIZE(controls));
958 if (err < 0)
959 return err;
960 for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
961 if (!(chip->model->pcm_dev_cfg & monitor_controls[i].pcm_dev))
962 continue;
963 err = add_controls(chip, monitor_controls[i].controls,
964 ARRAY_SIZE(monitor_controls[i].controls));
965 if (err < 0)
966 return err;
967 }
968 if (chip->has_ac97_0) {
969 err = add_controls(chip, ac97_controls,
970 ARRAY_SIZE(ac97_controls));
971 if (err < 0)
972 return err;
973 }
974 if (chip->has_ac97_1) {
975 err = add_controls(chip, ac97_fp_controls,
976 ARRAY_SIZE(ac97_fp_controls));
977 if (err < 0)
978 return err;
979 }
980 return chip->model->mixer_init ? chip->model->mixer_init(chip) : 0;
981 }
This page took 0.049474 seconds and 4 git commands to generate.