ALSA: oxygen: modify adjust_dg_dac_routing function
[deliverable/linux.git] / sound / pci / oxygen / xonar_dg.c
1 /*
2 * card driver for the Xonar DG/DGX
3 *
4 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
5 * Copyright (c) Roman Volkov <v1ron@mail.ru>
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License, version 2.
9 *
10 * This driver is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this driver; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 /*
20 * Xonar DG/DGX
21 * ------------
22 *
23 * CS4245 and CS4361 both will mute all outputs if any clock ratio
24 * is invalid.
25 *
26 * CMI8788:
27 *
28 * SPI 0 -> CS4245
29 *
30 * Playback:
31 * I²S 1 -> CS4245
32 * I²S 2 -> CS4361 (center/LFE)
33 * I²S 3 -> CS4361 (surround)
34 * I²S 4 -> CS4361 (front)
35 * Capture:
36 * I²S ADC 1 <- CS4245
37 *
38 * GPIO 3 <- ?
39 * GPIO 4 <- headphone detect
40 * GPIO 5 -> enable ADC analog circuit for the left channel
41 * GPIO 6 -> enable ADC analog circuit for the right channel
42 * GPIO 7 -> switch green rear output jack between CS4245 and and the first
43 * channel of CS4361 (mechanical relay)
44 * GPIO 8 -> enable output to speakers
45 *
46 * CS4245:
47 *
48 * input 0 <- mic
49 * input 1 <- aux
50 * input 2 <- front mic
51 * input 4 <- line
52 * DAC out -> headphones
53 * aux out -> front panel headphones
54 */
55
56 #include <linux/pci.h>
57 #include <linux/delay.h>
58 #include <sound/control.h>
59 #include <sound/core.h>
60 #include <sound/info.h>
61 #include <sound/pcm.h>
62 #include <sound/tlv.h>
63 #include "oxygen.h"
64 #include "xonar_dg.h"
65 #include "cs4245.h"
66
67 int cs4245_write_spi(struct oxygen *chip, u8 reg)
68 {
69 struct dg *data = chip->model_data;
70 unsigned int packet;
71
72 packet = reg << 8;
73 packet |= (CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 16;
74 packet |= data->cs4245_shadow[reg];
75
76 return oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
77 OXYGEN_SPI_DATA_LENGTH_3 |
78 OXYGEN_SPI_CLOCK_1280 |
79 (0 << OXYGEN_SPI_CODEC_SHIFT) |
80 OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
81 packet);
82 }
83
84 int cs4245_read_spi(struct oxygen *chip, u8 addr)
85 {
86 struct dg *data = chip->model_data;
87 int ret;
88
89 ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
90 OXYGEN_SPI_DATA_LENGTH_2 |
91 OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
92 OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
93 ((CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 8) | addr);
94 if (ret < 0)
95 return ret;
96
97 ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
98 OXYGEN_SPI_DATA_LENGTH_2 |
99 OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
100 OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
101 (CS4245_SPI_ADDRESS | CS4245_SPI_READ) << 8);
102 if (ret < 0)
103 return ret;
104
105 data->cs4245_shadow[addr] = oxygen_read8(chip, OXYGEN_SPI_DATA1);
106
107 return 0;
108 }
109
110 int cs4245_shadow_control(struct oxygen *chip, enum cs4245_shadow_operation op)
111 {
112 struct dg *data = chip->model_data;
113 unsigned char addr;
114 int ret;
115
116 for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++) {
117 ret = (op == CS4245_SAVE_TO_SHADOW ?
118 cs4245_read_spi(chip, addr) :
119 cs4245_write_spi(chip, addr));
120 if (ret < 0)
121 return ret;
122 }
123 return 0;
124 }
125
126 static void cs4245_write(struct oxygen *chip, unsigned int reg, u8 value)
127 {
128 struct dg *data = chip->model_data;
129
130 oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
131 OXYGEN_SPI_DATA_LENGTH_3 |
132 OXYGEN_SPI_CLOCK_1280 |
133 (0 << OXYGEN_SPI_CODEC_SHIFT) |
134 OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
135 CS4245_SPI_ADDRESS_S |
136 CS4245_SPI_WRITE_S |
137 (reg << 8) | value);
138 data->cs4245_shadow[reg] = value;
139 }
140
141 static void cs4245_write_cached(struct oxygen *chip, unsigned int reg, u8 value)
142 {
143 struct dg *data = chip->model_data;
144
145 if (value != data->cs4245_shadow[reg])
146 cs4245_write(chip, reg, value);
147 }
148
149 static void cs4245_init(struct oxygen *chip)
150 {
151 struct dg *data = chip->model_data;
152
153 /* save the initial state: codec version, registers */
154 cs4245_shadow_control(chip, CS4245_SAVE_TO_SHADOW);
155
156 /*
157 * Power up the CODEC internals, enable soft ramp & zero cross, work in
158 * async. mode, enable aux output from DAC. Invert DAC output as in the
159 * Windows driver.
160 */
161 data->cs4245_shadow[CS4245_POWER_CTRL] = 0;
162 data->cs4245_shadow[CS4245_SIGNAL_SEL] =
163 CS4245_A_OUT_SEL_DAC | CS4245_ASYNCH;
164 data->cs4245_shadow[CS4245_DAC_CTRL_1] =
165 CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST;
166 data->cs4245_shadow[CS4245_DAC_CTRL_2] =
167 CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC;
168 data->cs4245_shadow[CS4245_ADC_CTRL] =
169 CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST;
170 data->cs4245_shadow[CS4245_ANALOG_IN] =
171 CS4245_PGA_SOFT | CS4245_PGA_ZERO;
172 data->cs4245_shadow[CS4245_PGA_B_CTRL] = 0;
173 data->cs4245_shadow[CS4245_PGA_A_CTRL] = 0;
174 data->cs4245_shadow[CS4245_DAC_A_CTRL] = 4;
175 data->cs4245_shadow[CS4245_DAC_B_CTRL] = 4;
176
177 cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
178 snd_component_add(chip->card, "CS4245");
179 }
180
181 static void dg_init(struct oxygen *chip)
182 {
183 struct dg *data = chip->model_data;
184
185 data->output_sel = 0;
186 data->input_sel = 3;
187 data->hp_vol_att = 2 * 16;
188
189 cs4245_init(chip);
190 oxygen_write16(chip, OXYGEN_GPIO_CONTROL,
191 GPIO_OUTPUT_ENABLE | GPIO_HP_REAR | GPIO_INPUT_ROUTE);
192 oxygen_write16(chip, OXYGEN_GPIO_DATA, GPIO_INPUT_ROUTE);
193 msleep(2500); /* anti-pop delay */
194 oxygen_write16(chip, OXYGEN_GPIO_DATA,
195 GPIO_OUTPUT_ENABLE | GPIO_INPUT_ROUTE);
196 }
197
198 static void dg_cleanup(struct oxygen *chip)
199 {
200 oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
201 }
202
203 static void dg_suspend(struct oxygen *chip)
204 {
205 dg_cleanup(chip);
206 }
207
208 static void dg_resume(struct oxygen *chip)
209 {
210 cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
211 msleep(2500);
212 oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
213 }
214
215 static void set_cs4245_dac_params(struct oxygen *chip,
216 struct snd_pcm_hw_params *params)
217 {
218 struct dg *data = chip->model_data;
219 unsigned char dac_ctrl;
220 unsigned char mclk_freq;
221
222 dac_ctrl = data->cs4245_shadow[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
223 mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK1_MASK;
224 if (params_rate(params) <= 50000) {
225 dac_ctrl |= CS4245_DAC_FM_SINGLE;
226 mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
227 } else if (params_rate(params) <= 100000) {
228 dac_ctrl |= CS4245_DAC_FM_DOUBLE;
229 mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
230 } else {
231 dac_ctrl |= CS4245_DAC_FM_QUAD;
232 mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK1_SHIFT;
233 }
234 data->cs4245_shadow[CS4245_DAC_CTRL_1] = dac_ctrl;
235 data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
236 cs4245_write_spi(chip, CS4245_DAC_CTRL_1);
237 cs4245_write_spi(chip, CS4245_MCLK_FREQ);
238 }
239
240 static void set_cs4245_adc_params(struct oxygen *chip,
241 struct snd_pcm_hw_params *params)
242 {
243 struct dg *data = chip->model_data;
244 unsigned char adc_ctrl;
245 unsigned char mclk_freq;
246
247 adc_ctrl = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
248 mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK2_MASK;
249 if (params_rate(params) <= 50000) {
250 adc_ctrl |= CS4245_ADC_FM_SINGLE;
251 mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
252 } else if (params_rate(params) <= 100000) {
253 adc_ctrl |= CS4245_ADC_FM_DOUBLE;
254 mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
255 } else {
256 adc_ctrl |= CS4245_ADC_FM_QUAD;
257 mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK2_SHIFT;
258 }
259 data->cs4245_shadow[CS4245_ADC_CTRL] = adc_ctrl;
260 data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
261 cs4245_write_spi(chip, CS4245_ADC_CTRL);
262 cs4245_write_spi(chip, CS4245_MCLK_FREQ);
263 }
264
265 static unsigned int adjust_dg_dac_routing(struct oxygen *chip,
266 unsigned int play_routing)
267 {
268 struct dg *data = chip->model_data;
269 unsigned int routing = 0;
270
271 switch (data->pcm_output) {
272 case PLAYBACK_DST_HP:
273 case PLAYBACK_DST_HP_FP:
274 oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
275 OXYGEN_PLAY_MUTE23 | OXYGEN_PLAY_MUTE45 |
276 OXYGEN_PLAY_MUTE67, OXYGEN_PLAY_MUTE_MASK);
277 break;
278 case PLAYBACK_DST_MULTICH:
279 routing = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
280 (2 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
281 (1 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
282 (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
283 oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
284 OXYGEN_PLAY_MUTE01, OXYGEN_PLAY_MUTE_MASK);
285 break;
286 }
287 return routing;
288 }
289
290 static int output_switch_info(struct snd_kcontrol *ctl,
291 struct snd_ctl_elem_info *info)
292 {
293 static const char *const names[3] = {
294 "Speakers", "Headphones", "FP Headphones"
295 };
296
297 return snd_ctl_enum_info(info, 1, 3, names);
298 }
299
300 static int output_switch_get(struct snd_kcontrol *ctl,
301 struct snd_ctl_elem_value *value)
302 {
303 struct oxygen *chip = ctl->private_data;
304 struct dg *data = chip->model_data;
305
306 mutex_lock(&chip->mutex);
307 value->value.enumerated.item[0] = data->output_sel;
308 mutex_unlock(&chip->mutex);
309 return 0;
310 }
311
312 static int output_switch_put(struct snd_kcontrol *ctl,
313 struct snd_ctl_elem_value *value)
314 {
315 struct oxygen *chip = ctl->private_data;
316 struct dg *data = chip->model_data;
317 u8 reg;
318 int changed;
319
320 if (value->value.enumerated.item[0] > 2)
321 return -EINVAL;
322
323 mutex_lock(&chip->mutex);
324 changed = value->value.enumerated.item[0] != data->output_sel;
325 if (changed) {
326 data->output_sel = value->value.enumerated.item[0];
327
328 reg = data->cs4245_shadow[CS4245_SIGNAL_SEL] &
329 ~CS4245_A_OUT_SEL_MASK;
330 reg |= data->output_sel == 2 ?
331 CS4245_A_OUT_SEL_DAC : CS4245_A_OUT_SEL_HIZ;
332 cs4245_write_cached(chip, CS4245_SIGNAL_SEL, reg);
333
334 cs4245_write_cached(chip, CS4245_DAC_A_CTRL,
335 data->output_sel ? data->hp_vol_att : 0);
336 cs4245_write_cached(chip, CS4245_DAC_B_CTRL,
337 data->output_sel ? data->hp_vol_att : 0);
338
339 oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
340 data->output_sel == 1 ? GPIO_HP_REAR : 0,
341 GPIO_HP_REAR);
342 }
343 mutex_unlock(&chip->mutex);
344 return changed;
345 }
346
347 static int hp_volume_offset_info(struct snd_kcontrol *ctl,
348 struct snd_ctl_elem_info *info)
349 {
350 static const char *const names[3] = {
351 "< 64 ohms", "64-150 ohms", "150-300 ohms"
352 };
353
354 return snd_ctl_enum_info(info, 1, 3, names);
355 }
356
357 static int hp_volume_offset_get(struct snd_kcontrol *ctl,
358 struct snd_ctl_elem_value *value)
359 {
360 struct oxygen *chip = ctl->private_data;
361 struct dg *data = chip->model_data;
362
363 mutex_lock(&chip->mutex);
364 if (data->hp_vol_att > 2 * 7)
365 value->value.enumerated.item[0] = 0;
366 else if (data->hp_vol_att > 0)
367 value->value.enumerated.item[0] = 1;
368 else
369 value->value.enumerated.item[0] = 2;
370 mutex_unlock(&chip->mutex);
371 return 0;
372 }
373
374 static int hp_volume_offset_put(struct snd_kcontrol *ctl,
375 struct snd_ctl_elem_value *value)
376 {
377 static const s8 atts[3] = { 2 * 16, 2 * 7, 0 };
378 struct oxygen *chip = ctl->private_data;
379 struct dg *data = chip->model_data;
380 s8 att;
381 int changed;
382
383 if (value->value.enumerated.item[0] > 2)
384 return -EINVAL;
385 att = atts[value->value.enumerated.item[0]];
386 mutex_lock(&chip->mutex);
387 changed = att != data->hp_vol_att;
388 if (changed) {
389 data->hp_vol_att = att;
390 if (data->output_sel) {
391 cs4245_write_cached(chip, CS4245_DAC_A_CTRL, att);
392 cs4245_write_cached(chip, CS4245_DAC_B_CTRL, att);
393 }
394 }
395 mutex_unlock(&chip->mutex);
396 return changed;
397 }
398
399 static int input_vol_info(struct snd_kcontrol *ctl,
400 struct snd_ctl_elem_info *info)
401 {
402 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
403 info->count = 2;
404 info->value.integer.min = 2 * -12;
405 info->value.integer.max = 2 * 12;
406 return 0;
407 }
408
409 static int input_vol_get(struct snd_kcontrol *ctl,
410 struct snd_ctl_elem_value *value)
411 {
412 struct oxygen *chip = ctl->private_data;
413 struct dg *data = chip->model_data;
414 unsigned int idx = ctl->private_value;
415
416 mutex_lock(&chip->mutex);
417 value->value.integer.value[0] = data->input_vol[idx][0];
418 value->value.integer.value[1] = data->input_vol[idx][1];
419 mutex_unlock(&chip->mutex);
420 return 0;
421 }
422
423 static int input_vol_put(struct snd_kcontrol *ctl,
424 struct snd_ctl_elem_value *value)
425 {
426 struct oxygen *chip = ctl->private_data;
427 struct dg *data = chip->model_data;
428 unsigned int idx = ctl->private_value;
429 int changed = 0;
430
431 if (value->value.integer.value[0] < 2 * -12 ||
432 value->value.integer.value[0] > 2 * 12 ||
433 value->value.integer.value[1] < 2 * -12 ||
434 value->value.integer.value[1] > 2 * 12)
435 return -EINVAL;
436 mutex_lock(&chip->mutex);
437 changed = data->input_vol[idx][0] != value->value.integer.value[0] ||
438 data->input_vol[idx][1] != value->value.integer.value[1];
439 if (changed) {
440 data->input_vol[idx][0] = value->value.integer.value[0];
441 data->input_vol[idx][1] = value->value.integer.value[1];
442 if (idx == data->input_sel) {
443 cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
444 data->input_vol[idx][0]);
445 cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
446 data->input_vol[idx][1]);
447 }
448 }
449 mutex_unlock(&chip->mutex);
450 return changed;
451 }
452
453 static DECLARE_TLV_DB_SCALE(cs4245_pga_db_scale, -1200, 50, 0);
454
455 static int input_sel_info(struct snd_kcontrol *ctl,
456 struct snd_ctl_elem_info *info)
457 {
458 static const char *const names[4] = {
459 "Mic", "Aux", "Front Mic", "Line"
460 };
461
462 return snd_ctl_enum_info(info, 1, 4, names);
463 }
464
465 static int input_sel_get(struct snd_kcontrol *ctl,
466 struct snd_ctl_elem_value *value)
467 {
468 struct oxygen *chip = ctl->private_data;
469 struct dg *data = chip->model_data;
470
471 mutex_lock(&chip->mutex);
472 value->value.enumerated.item[0] = data->input_sel;
473 mutex_unlock(&chip->mutex);
474 return 0;
475 }
476
477 static int input_sel_put(struct snd_kcontrol *ctl,
478 struct snd_ctl_elem_value *value)
479 {
480 static const u8 sel_values[4] = {
481 CS4245_SEL_MIC,
482 CS4245_SEL_INPUT_1,
483 CS4245_SEL_INPUT_2,
484 CS4245_SEL_INPUT_4
485 };
486 struct oxygen *chip = ctl->private_data;
487 struct dg *data = chip->model_data;
488 int changed;
489
490 if (value->value.enumerated.item[0] > 3)
491 return -EINVAL;
492
493 mutex_lock(&chip->mutex);
494 changed = value->value.enumerated.item[0] != data->input_sel;
495 if (changed) {
496 data->input_sel = value->value.enumerated.item[0];
497
498 cs4245_write(chip, CS4245_ANALOG_IN,
499 (data->cs4245_shadow[CS4245_ANALOG_IN] &
500 ~CS4245_SEL_MASK) |
501 sel_values[data->input_sel]);
502
503 cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
504 data->input_vol[data->input_sel][0]);
505 cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
506 data->input_vol[data->input_sel][1]);
507
508 oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
509 data->input_sel ? 0 : GPIO_INPUT_ROUTE,
510 GPIO_INPUT_ROUTE);
511 }
512 mutex_unlock(&chip->mutex);
513 return changed;
514 }
515
516 static int hpf_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
517 {
518 static const char *const names[2] = { "Active", "Frozen" };
519
520 return snd_ctl_enum_info(info, 1, 2, names);
521 }
522
523 static int hpf_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
524 {
525 struct oxygen *chip = ctl->private_data;
526 struct dg *data = chip->model_data;
527
528 value->value.enumerated.item[0] =
529 !!(data->cs4245_shadow[CS4245_ADC_CTRL] & CS4245_HPF_FREEZE);
530 return 0;
531 }
532
533 static int hpf_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
534 {
535 struct oxygen *chip = ctl->private_data;
536 struct dg *data = chip->model_data;
537 u8 reg;
538 int changed;
539
540 mutex_lock(&chip->mutex);
541 reg = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_HPF_FREEZE;
542 if (value->value.enumerated.item[0])
543 reg |= CS4245_HPF_FREEZE;
544 changed = reg != data->cs4245_shadow[CS4245_ADC_CTRL];
545 if (changed)
546 cs4245_write(chip, CS4245_ADC_CTRL, reg);
547 mutex_unlock(&chip->mutex);
548 return changed;
549 }
550
551 #define INPUT_VOLUME(xname, index) { \
552 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
553 .name = xname, \
554 .info = input_vol_info, \
555 .get = input_vol_get, \
556 .put = input_vol_put, \
557 .tlv = { .p = cs4245_pga_db_scale }, \
558 .private_value = index, \
559 }
560 static const struct snd_kcontrol_new dg_controls[] = {
561 {
562 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
563 .name = "Analog Output Playback Enum",
564 .info = output_switch_info,
565 .get = output_switch_get,
566 .put = output_switch_put,
567 },
568 {
569 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
570 .name = "Headphones Impedance Playback Enum",
571 .info = hp_volume_offset_info,
572 .get = hp_volume_offset_get,
573 .put = hp_volume_offset_put,
574 },
575 INPUT_VOLUME("Mic Capture Volume", 0),
576 INPUT_VOLUME("Aux Capture Volume", 1),
577 INPUT_VOLUME("Front Mic Capture Volume", 2),
578 INPUT_VOLUME("Line Capture Volume", 3),
579 {
580 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
581 .name = "Capture Source",
582 .info = input_sel_info,
583 .get = input_sel_get,
584 .put = input_sel_put,
585 },
586 {
587 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
588 .name = "ADC High-pass Filter Capture Enum",
589 .info = hpf_info,
590 .get = hpf_get,
591 .put = hpf_put,
592 },
593 };
594
595 static int dg_control_filter(struct snd_kcontrol_new *template)
596 {
597 if (!strncmp(template->name, "Master Playback ", 16))
598 return 1;
599 return 0;
600 }
601
602 static int dg_mixer_init(struct oxygen *chip)
603 {
604 unsigned int i;
605 int err;
606
607 for (i = 0; i < ARRAY_SIZE(dg_controls); ++i) {
608 err = snd_ctl_add(chip->card,
609 snd_ctl_new1(&dg_controls[i], chip));
610 if (err < 0)
611 return err;
612 }
613 return 0;
614 }
615
616 static void dump_cs4245_registers(struct oxygen *chip,
617 struct snd_info_buffer *buffer)
618 {
619 struct dg *data = chip->model_data;
620 unsigned int i;
621
622 snd_iprintf(buffer, "\nCS4245:");
623 for (i = 1; i <= 0x10; ++i)
624 snd_iprintf(buffer, " %02x", data->cs4245_shadow[i]);
625 snd_iprintf(buffer, "\n");
626 }
627
628 struct oxygen_model model_xonar_dg = {
629 .longname = "C-Media Oxygen HD Audio",
630 .chip = "CMI8786",
631 .init = dg_init,
632 .control_filter = dg_control_filter,
633 .mixer_init = dg_mixer_init,
634 .cleanup = dg_cleanup,
635 .suspend = dg_suspend,
636 .resume = dg_resume,
637 .set_dac_params = set_cs4245_dac_params,
638 .set_adc_params = set_cs4245_adc_params,
639 .adjust_dac_routing = adjust_dg_dac_routing,
640 .dump_registers = dump_cs4245_registers,
641 .model_data_size = sizeof(struct dg),
642 .device_config = PLAYBACK_0_TO_I2S |
643 PLAYBACK_1_TO_SPDIF |
644 CAPTURE_0_FROM_I2S_2 |
645 CAPTURE_1_FROM_SPDIF,
646 .dac_channels_pcm = 6,
647 .dac_channels_mixer = 0,
648 .function_flags = OXYGEN_FUNCTION_SPI,
649 .dac_mclks = OXYGEN_MCLKS(256, 128, 128),
650 .adc_mclks = OXYGEN_MCLKS(256, 128, 128),
651 .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
652 .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
653 };
This page took 0.067675 seconds and 5 git commands to generate.