ASoC: sgtl5000: Initialize CHIP_ANA_POWER to power-on defaults
[deliverable/linux.git] / sound / soc / codecs / sgtl5000.c
1 /*
2 * sgtl5000.c -- SGTL5000 ALSA SoC Audio driver
3 *
4 * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/log2.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/driver.h>
22 #include <linux/regulator/machine.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/of_device.h>
25 #include <sound/core.h>
26 #include <sound/tlv.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 #include <sound/soc-dapm.h>
31 #include <sound/initval.h>
32
33 #include "sgtl5000.h"
34
35 #define SGTL5000_DAP_REG_OFFSET 0x0100
36 #define SGTL5000_MAX_REG_OFFSET 0x013A
37
38 /* default value of sgtl5000 registers */
39 static const struct reg_default sgtl5000_reg_defaults[] = {
40 { SGTL5000_CHIP_DIG_POWER, 0x0000 },
41 { SGTL5000_CHIP_CLK_CTRL, 0x0008 },
42 { SGTL5000_CHIP_I2S_CTRL, 0x0010 },
43 { SGTL5000_CHIP_SSS_CTRL, 0x0010 },
44 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c },
45 { SGTL5000_CHIP_DAC_VOL, 0x3c3c },
46 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f },
47 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 },
48 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 },
49 { SGTL5000_CHIP_ANA_CTRL, 0x0111 },
50 { SGTL5000_CHIP_REF_CTRL, 0x0000 },
51 { SGTL5000_CHIP_MIC_CTRL, 0x0000 },
52 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 },
53 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 },
54 { SGTL5000_CHIP_PLL_CTRL, 0x5000 },
55 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 },
56 { SGTL5000_CHIP_ANA_STATUS, 0x0000 },
57 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 },
58 { SGTL5000_CHIP_ANA_TEST2, 0x0000 },
59 { SGTL5000_DAP_CTRL, 0x0000 },
60 { SGTL5000_DAP_PEQ, 0x0000 },
61 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 },
62 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f },
63 { SGTL5000_DAP_AUDIO_EQ, 0x0000 },
64 { SGTL5000_DAP_SURROUND, 0x0040 },
65 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f },
66 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f },
67 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f },
68 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f },
69 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f },
70 { SGTL5000_DAP_MAIN_CHAN, 0x8000 },
71 { SGTL5000_DAP_MIX_CHAN, 0x0000 },
72 { SGTL5000_DAP_AVC_CTRL, 0x0510 },
73 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 },
74 { SGTL5000_DAP_AVC_ATTACK, 0x0028 },
75 { SGTL5000_DAP_AVC_DECAY, 0x0050 },
76 };
77
78 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
79 enum sgtl5000_regulator_supplies {
80 VDDA,
81 VDDIO,
82 VDDD,
83 SGTL5000_SUPPLY_NUM
84 };
85
86 /* vddd is optional supply */
87 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
88 "VDDA",
89 "VDDIO",
90 "VDDD"
91 };
92
93 #define LDO_VOLTAGE 1200000
94 #define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50)
95
96 enum sgtl5000_micbias_resistor {
97 SGTL5000_MICBIAS_OFF = 0,
98 SGTL5000_MICBIAS_2K = 2,
99 SGTL5000_MICBIAS_4K = 4,
100 SGTL5000_MICBIAS_8K = 8,
101 };
102
103 /* sgtl5000 private structure in codec */
104 struct sgtl5000_priv {
105 int sysclk; /* sysclk rate */
106 int master; /* i2s master or not */
107 int fmt; /* i2s data format */
108 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
109 int num_supplies;
110 struct regmap *regmap;
111 struct clk *mclk;
112 int revision;
113 u8 micbias_resistor;
114 u8 micbias_voltage;
115 };
116
117 /*
118 * mic_bias power on/off share the same register bits with
119 * output impedance of mic bias, when power on mic bias, we
120 * need reclaim it to impedance value.
121 * 0x0 = Powered off
122 * 0x1 = 2Kohm
123 * 0x2 = 4Kohm
124 * 0x3 = 8Kohm
125 */
126 static int mic_bias_event(struct snd_soc_dapm_widget *w,
127 struct snd_kcontrol *kcontrol, int event)
128 {
129 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
130 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
131
132 switch (event) {
133 case SND_SOC_DAPM_POST_PMU:
134 /* change mic bias resistor */
135 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
136 SGTL5000_BIAS_R_MASK,
137 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
138 break;
139
140 case SND_SOC_DAPM_PRE_PMD:
141 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
142 SGTL5000_BIAS_R_MASK, 0);
143 break;
144 }
145 return 0;
146 }
147
148 /*
149 * As manual described, ADC/DAC only works when VAG powerup,
150 * So enabled VAG before ADC/DAC up.
151 * In power down case, we need wait 400ms when vag fully ramped down.
152 */
153 static int power_vag_event(struct snd_soc_dapm_widget *w,
154 struct snd_kcontrol *kcontrol, int event)
155 {
156 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
157 const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
158
159 switch (event) {
160 case SND_SOC_DAPM_POST_PMU:
161 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
162 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
163 msleep(400);
164 break;
165
166 case SND_SOC_DAPM_PRE_PMD:
167 /*
168 * Don't clear VAG_POWERUP, when both DAC and ADC are
169 * operational to prevent inadvertently starving the
170 * other one of them.
171 */
172 if ((snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER) &
173 mask) != mask) {
174 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
175 SGTL5000_VAG_POWERUP, 0);
176 msleep(400);
177 }
178 break;
179 default:
180 break;
181 }
182
183 return 0;
184 }
185
186 /* input sources for ADC */
187 static const char *adc_mux_text[] = {
188 "MIC_IN", "LINE_IN"
189 };
190
191 static SOC_ENUM_SINGLE_DECL(adc_enum,
192 SGTL5000_CHIP_ANA_CTRL, 2,
193 adc_mux_text);
194
195 static const struct snd_kcontrol_new adc_mux =
196 SOC_DAPM_ENUM("Capture Mux", adc_enum);
197
198 /* input sources for DAC */
199 static const char *dac_mux_text[] = {
200 "DAC", "LINE_IN"
201 };
202
203 static SOC_ENUM_SINGLE_DECL(dac_enum,
204 SGTL5000_CHIP_ANA_CTRL, 6,
205 dac_mux_text);
206
207 static const struct snd_kcontrol_new dac_mux =
208 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
209
210 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
211 SND_SOC_DAPM_INPUT("LINE_IN"),
212 SND_SOC_DAPM_INPUT("MIC_IN"),
213
214 SND_SOC_DAPM_OUTPUT("HP_OUT"),
215 SND_SOC_DAPM_OUTPUT("LINE_OUT"),
216
217 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
218 mic_bias_event,
219 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
220
221 SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
222 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
223
224 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
225 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
226
227 /* aif for i2s input */
228 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
229 0, SGTL5000_CHIP_DIG_POWER,
230 0, 0),
231
232 /* aif for i2s output */
233 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
234 0, SGTL5000_CHIP_DIG_POWER,
235 1, 0),
236
237 SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
238 SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
239
240 SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
241 SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
242 };
243
244 /* routes for sgtl5000 */
245 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
246 {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */
247 {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */
248
249 {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */
250 {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */
251
252 {"DAC", NULL, "AIFIN"}, /* i2s-->dac,skip audio mux */
253 {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */
254 {"LO", NULL, "DAC"}, /* dac --> line_out */
255
256 {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
257 {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */
258
259 {"LINE_OUT", NULL, "LO"},
260 {"HP_OUT", NULL, "HP"},
261 };
262
263 /* custom function to fetch info of PCM playback volume */
264 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
265 struct snd_ctl_elem_info *uinfo)
266 {
267 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
268 uinfo->count = 2;
269 uinfo->value.integer.min = 0;
270 uinfo->value.integer.max = 0xfc - 0x3c;
271 return 0;
272 }
273
274 /*
275 * custom function to get of PCM playback volume
276 *
277 * dac volume register
278 * 15-------------8-7--------------0
279 * | R channel vol | L channel vol |
280 * -------------------------------
281 *
282 * PCM volume with 0.5017 dB steps from 0 to -90 dB
283 *
284 * register values map to dB
285 * 0x3B and less = Reserved
286 * 0x3C = 0 dB
287 * 0x3D = -0.5 dB
288 * 0xF0 = -90 dB
289 * 0xFC and greater = Muted
290 *
291 * register value map to userspace value
292 *
293 * register value 0x3c(0dB) 0xf0(-90dB)0xfc
294 * ------------------------------
295 * userspace value 0xc0 0
296 */
297 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
298 struct snd_ctl_elem_value *ucontrol)
299 {
300 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
301 int reg;
302 int l;
303 int r;
304
305 reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
306
307 /* get left channel volume */
308 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
309
310 /* get right channel volume */
311 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
312
313 /* make sure value fall in (0x3c,0xfc) */
314 l = clamp(l, 0x3c, 0xfc);
315 r = clamp(r, 0x3c, 0xfc);
316
317 /* invert it and map to userspace value */
318 l = 0xfc - l;
319 r = 0xfc - r;
320
321 ucontrol->value.integer.value[0] = l;
322 ucontrol->value.integer.value[1] = r;
323
324 return 0;
325 }
326
327 /*
328 * custom function to put of PCM playback volume
329 *
330 * dac volume register
331 * 15-------------8-7--------------0
332 * | R channel vol | L channel vol |
333 * -------------------------------
334 *
335 * PCM volume with 0.5017 dB steps from 0 to -90 dB
336 *
337 * register values map to dB
338 * 0x3B and less = Reserved
339 * 0x3C = 0 dB
340 * 0x3D = -0.5 dB
341 * 0xF0 = -90 dB
342 * 0xFC and greater = Muted
343 *
344 * userspace value map to register value
345 *
346 * userspace value 0xc0 0
347 * ------------------------------
348 * register value 0x3c(0dB) 0xf0(-90dB)0xfc
349 */
350 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
351 struct snd_ctl_elem_value *ucontrol)
352 {
353 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
354 int reg;
355 int l;
356 int r;
357
358 l = ucontrol->value.integer.value[0];
359 r = ucontrol->value.integer.value[1];
360
361 /* make sure userspace volume fall in (0, 0xfc-0x3c) */
362 l = clamp(l, 0, 0xfc - 0x3c);
363 r = clamp(r, 0, 0xfc - 0x3c);
364
365 /* invert it, get the value can be set to register */
366 l = 0xfc - l;
367 r = 0xfc - r;
368
369 /* shift to get the register value */
370 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
371 r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
372
373 snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
374
375 return 0;
376 }
377
378 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
379
380 /* tlv for mic gain, 0db 20db 30db 40db */
381 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
382 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
383 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
384 );
385
386 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
387 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
388
389 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
390 /* SOC_DOUBLE_S8_TLV with invert */
391 {
392 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
393 .name = "PCM Playback Volume",
394 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
395 SNDRV_CTL_ELEM_ACCESS_READWRITE,
396 .info = dac_info_volsw,
397 .get = dac_get_volsw,
398 .put = dac_put_volsw,
399 },
400
401 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
402 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
403 SGTL5000_CHIP_ANA_ADC_CTRL,
404 8, 1, 0, capture_6db_attenuate),
405 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
406
407 SOC_DOUBLE_TLV("Headphone Playback Volume",
408 SGTL5000_CHIP_ANA_HP_CTRL,
409 0, 8,
410 0x7f, 1,
411 headphone_volume),
412 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
413 5, 1, 0),
414
415 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
416 0, 3, 0, mic_gain_tlv),
417 };
418
419 /* mute the codec used by alsa core */
420 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
421 {
422 struct snd_soc_codec *codec = codec_dai->codec;
423 u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
424
425 snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
426 adcdac_ctrl, mute ? adcdac_ctrl : 0);
427
428 return 0;
429 }
430
431 /* set codec format */
432 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
433 {
434 struct snd_soc_codec *codec = codec_dai->codec;
435 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
436 u16 i2sctl = 0;
437
438 sgtl5000->master = 0;
439 /*
440 * i2s clock and frame master setting.
441 * ONLY support:
442 * - clock and frame slave,
443 * - clock and frame master
444 */
445 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
446 case SND_SOC_DAIFMT_CBS_CFS:
447 break;
448 case SND_SOC_DAIFMT_CBM_CFM:
449 i2sctl |= SGTL5000_I2S_MASTER;
450 sgtl5000->master = 1;
451 break;
452 default:
453 return -EINVAL;
454 }
455
456 /* setting i2s data format */
457 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
458 case SND_SOC_DAIFMT_DSP_A:
459 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
460 break;
461 case SND_SOC_DAIFMT_DSP_B:
462 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
463 i2sctl |= SGTL5000_I2S_LRALIGN;
464 break;
465 case SND_SOC_DAIFMT_I2S:
466 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
467 break;
468 case SND_SOC_DAIFMT_RIGHT_J:
469 i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
470 i2sctl |= SGTL5000_I2S_LRPOL;
471 break;
472 case SND_SOC_DAIFMT_LEFT_J:
473 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
474 i2sctl |= SGTL5000_I2S_LRALIGN;
475 break;
476 default:
477 return -EINVAL;
478 }
479
480 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
481
482 /* Clock inversion */
483 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
484 case SND_SOC_DAIFMT_NB_NF:
485 break;
486 case SND_SOC_DAIFMT_IB_NF:
487 i2sctl |= SGTL5000_I2S_SCLK_INV;
488 break;
489 default:
490 return -EINVAL;
491 }
492
493 snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
494
495 return 0;
496 }
497
498 /* set codec sysclk */
499 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
500 int clk_id, unsigned int freq, int dir)
501 {
502 struct snd_soc_codec *codec = codec_dai->codec;
503 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
504
505 switch (clk_id) {
506 case SGTL5000_SYSCLK:
507 sgtl5000->sysclk = freq;
508 break;
509 default:
510 return -EINVAL;
511 }
512
513 return 0;
514 }
515
516 /*
517 * set clock according to i2s frame clock,
518 * sgtl5000 provides 2 clock sources:
519 * 1. sys_mclk: sample freq can only be configured to
520 * 1/256, 1/384, 1/512 of sys_mclk.
521 * 2. pll: can derive any audio clocks.
522 *
523 * clock setting rules:
524 * 1. in slave mode, only sys_mclk can be used
525 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
526 * and above.
527 * 3. usage of sys_mclk is preferred over pll to save power.
528 */
529 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
530 {
531 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
532 int clk_ctl = 0;
533 int sys_fs; /* sample freq */
534
535 /*
536 * sample freq should be divided by frame clock,
537 * if frame clock is lower than 44.1 kHz, sample freq should be set to
538 * 32 kHz or 44.1 kHz.
539 */
540 switch (frame_rate) {
541 case 8000:
542 case 16000:
543 sys_fs = 32000;
544 break;
545 case 11025:
546 case 22050:
547 sys_fs = 44100;
548 break;
549 default:
550 sys_fs = frame_rate;
551 break;
552 }
553
554 /* set divided factor of frame clock */
555 switch (sys_fs / frame_rate) {
556 case 4:
557 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
558 break;
559 case 2:
560 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
561 break;
562 case 1:
563 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
564 break;
565 default:
566 return -EINVAL;
567 }
568
569 /* set the sys_fs according to frame rate */
570 switch (sys_fs) {
571 case 32000:
572 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
573 break;
574 case 44100:
575 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
576 break;
577 case 48000:
578 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
579 break;
580 case 96000:
581 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
582 break;
583 default:
584 dev_err(codec->dev, "frame rate %d not supported\n",
585 frame_rate);
586 return -EINVAL;
587 }
588
589 /*
590 * calculate the divider of mclk/sample_freq,
591 * factor of freq = 96 kHz can only be 256, since mclk is in the range
592 * of 8 MHz - 27 MHz
593 */
594 switch (sgtl5000->sysclk / frame_rate) {
595 case 256:
596 clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
597 SGTL5000_MCLK_FREQ_SHIFT;
598 break;
599 case 384:
600 clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
601 SGTL5000_MCLK_FREQ_SHIFT;
602 break;
603 case 512:
604 clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
605 SGTL5000_MCLK_FREQ_SHIFT;
606 break;
607 default:
608 /* if mclk does not satisfy the divider, use pll */
609 if (sgtl5000->master) {
610 clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
611 SGTL5000_MCLK_FREQ_SHIFT;
612 } else {
613 dev_err(codec->dev,
614 "PLL not supported in slave mode\n");
615 dev_err(codec->dev, "%d ratio is not supported. "
616 "SYS_MCLK needs to be 256, 384 or 512 * fs\n",
617 sgtl5000->sysclk / frame_rate);
618 return -EINVAL;
619 }
620 }
621
622 /* if using pll, please check manual 6.4.2 for detail */
623 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
624 u64 out, t;
625 int div2;
626 int pll_ctl;
627 unsigned int in, int_div, frac_div;
628
629 if (sgtl5000->sysclk > 17000000) {
630 div2 = 1;
631 in = sgtl5000->sysclk / 2;
632 } else {
633 div2 = 0;
634 in = sgtl5000->sysclk;
635 }
636 if (sys_fs == 44100)
637 out = 180633600;
638 else
639 out = 196608000;
640 t = do_div(out, in);
641 int_div = out;
642 t *= 2048;
643 do_div(t, in);
644 frac_div = t;
645 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
646 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
647
648 snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
649 if (div2)
650 snd_soc_update_bits(codec,
651 SGTL5000_CHIP_CLK_TOP_CTRL,
652 SGTL5000_INPUT_FREQ_DIV2,
653 SGTL5000_INPUT_FREQ_DIV2);
654 else
655 snd_soc_update_bits(codec,
656 SGTL5000_CHIP_CLK_TOP_CTRL,
657 SGTL5000_INPUT_FREQ_DIV2,
658 0);
659
660 /* power up pll */
661 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
662 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
663 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
664
665 /* if using pll, clk_ctrl must be set after pll power up */
666 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
667 } else {
668 /* otherwise, clk_ctrl must be set before pll power down */
669 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
670
671 /* power down pll */
672 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
673 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
674 0);
675 }
676
677 return 0;
678 }
679
680 /*
681 * Set PCM DAI bit size and sample rate.
682 * input: params_rate, params_fmt
683 */
684 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
685 struct snd_pcm_hw_params *params,
686 struct snd_soc_dai *dai)
687 {
688 struct snd_soc_codec *codec = dai->codec;
689 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
690 int channels = params_channels(params);
691 int i2s_ctl = 0;
692 int stereo;
693 int ret;
694
695 /* sysclk should already set */
696 if (!sgtl5000->sysclk) {
697 dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
698 return -EFAULT;
699 }
700
701 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
702 stereo = SGTL5000_DAC_STEREO;
703 else
704 stereo = SGTL5000_ADC_STEREO;
705
706 /* set mono to save power */
707 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
708 channels == 1 ? 0 : stereo);
709
710 /* set codec clock base on lrclk */
711 ret = sgtl5000_set_clock(codec, params_rate(params));
712 if (ret)
713 return ret;
714
715 /* set i2s data format */
716 switch (params_width(params)) {
717 case 16:
718 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
719 return -EINVAL;
720 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
721 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
722 SGTL5000_I2S_SCLKFREQ_SHIFT;
723 break;
724 case 20:
725 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
726 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
727 SGTL5000_I2S_SCLKFREQ_SHIFT;
728 break;
729 case 24:
730 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
731 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
732 SGTL5000_I2S_SCLKFREQ_SHIFT;
733 break;
734 case 32:
735 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
736 return -EINVAL;
737 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
738 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
739 SGTL5000_I2S_SCLKFREQ_SHIFT;
740 break;
741 default:
742 return -EINVAL;
743 }
744
745 snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
746 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
747 i2s_ctl);
748
749 return 0;
750 }
751
752 /*
753 * set dac bias
754 * common state changes:
755 * startup:
756 * off --> standby --> prepare --> on
757 * standby --> prepare --> on
758 *
759 * stop:
760 * on --> prepare --> standby
761 */
762 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
763 enum snd_soc_bias_level level)
764 {
765 int ret;
766 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
767
768 switch (level) {
769 case SND_SOC_BIAS_ON:
770 case SND_SOC_BIAS_PREPARE:
771 break;
772 case SND_SOC_BIAS_STANDBY:
773 if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
774 ret = regulator_bulk_enable(
775 sgtl5000->num_supplies,
776 sgtl5000->supplies);
777 if (ret)
778 return ret;
779 udelay(10);
780
781 regcache_cache_only(sgtl5000->regmap, false);
782
783 ret = regcache_sync(sgtl5000->regmap);
784 if (ret != 0) {
785 dev_err(codec->dev,
786 "Failed to restore cache: %d\n", ret);
787
788 regcache_cache_only(sgtl5000->regmap, true);
789 regulator_bulk_disable(sgtl5000->num_supplies,
790 sgtl5000->supplies);
791
792 return ret;
793 }
794 }
795
796 break;
797 case SND_SOC_BIAS_OFF:
798 regcache_cache_only(sgtl5000->regmap, true);
799 regulator_bulk_disable(sgtl5000->num_supplies,
800 sgtl5000->supplies);
801 break;
802 }
803
804 return 0;
805 }
806
807 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
808 SNDRV_PCM_FMTBIT_S20_3LE |\
809 SNDRV_PCM_FMTBIT_S24_LE |\
810 SNDRV_PCM_FMTBIT_S32_LE)
811
812 static const struct snd_soc_dai_ops sgtl5000_ops = {
813 .hw_params = sgtl5000_pcm_hw_params,
814 .digital_mute = sgtl5000_digital_mute,
815 .set_fmt = sgtl5000_set_dai_fmt,
816 .set_sysclk = sgtl5000_set_dai_sysclk,
817 };
818
819 static struct snd_soc_dai_driver sgtl5000_dai = {
820 .name = "sgtl5000",
821 .playback = {
822 .stream_name = "Playback",
823 .channels_min = 1,
824 .channels_max = 2,
825 /*
826 * only support 8~48K + 96K,
827 * TODO modify hw_param to support more
828 */
829 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
830 .formats = SGTL5000_FORMATS,
831 },
832 .capture = {
833 .stream_name = "Capture",
834 .channels_min = 1,
835 .channels_max = 2,
836 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
837 .formats = SGTL5000_FORMATS,
838 },
839 .ops = &sgtl5000_ops,
840 .symmetric_rates = 1,
841 };
842
843 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
844 {
845 switch (reg) {
846 case SGTL5000_CHIP_ID:
847 case SGTL5000_CHIP_ADCDAC_CTRL:
848 case SGTL5000_CHIP_ANA_STATUS:
849 return true;
850 }
851
852 return false;
853 }
854
855 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
856 {
857 switch (reg) {
858 case SGTL5000_CHIP_ID:
859 case SGTL5000_CHIP_DIG_POWER:
860 case SGTL5000_CHIP_CLK_CTRL:
861 case SGTL5000_CHIP_I2S_CTRL:
862 case SGTL5000_CHIP_SSS_CTRL:
863 case SGTL5000_CHIP_ADCDAC_CTRL:
864 case SGTL5000_CHIP_DAC_VOL:
865 case SGTL5000_CHIP_PAD_STRENGTH:
866 case SGTL5000_CHIP_ANA_ADC_CTRL:
867 case SGTL5000_CHIP_ANA_HP_CTRL:
868 case SGTL5000_CHIP_ANA_CTRL:
869 case SGTL5000_CHIP_LINREG_CTRL:
870 case SGTL5000_CHIP_REF_CTRL:
871 case SGTL5000_CHIP_MIC_CTRL:
872 case SGTL5000_CHIP_LINE_OUT_CTRL:
873 case SGTL5000_CHIP_LINE_OUT_VOL:
874 case SGTL5000_CHIP_ANA_POWER:
875 case SGTL5000_CHIP_PLL_CTRL:
876 case SGTL5000_CHIP_CLK_TOP_CTRL:
877 case SGTL5000_CHIP_ANA_STATUS:
878 case SGTL5000_CHIP_SHORT_CTRL:
879 case SGTL5000_CHIP_ANA_TEST2:
880 case SGTL5000_DAP_CTRL:
881 case SGTL5000_DAP_PEQ:
882 case SGTL5000_DAP_BASS_ENHANCE:
883 case SGTL5000_DAP_BASS_ENHANCE_CTRL:
884 case SGTL5000_DAP_AUDIO_EQ:
885 case SGTL5000_DAP_SURROUND:
886 case SGTL5000_DAP_FLT_COEF_ACCESS:
887 case SGTL5000_DAP_COEF_WR_B0_MSB:
888 case SGTL5000_DAP_COEF_WR_B0_LSB:
889 case SGTL5000_DAP_EQ_BASS_BAND0:
890 case SGTL5000_DAP_EQ_BASS_BAND1:
891 case SGTL5000_DAP_EQ_BASS_BAND2:
892 case SGTL5000_DAP_EQ_BASS_BAND3:
893 case SGTL5000_DAP_EQ_BASS_BAND4:
894 case SGTL5000_DAP_MAIN_CHAN:
895 case SGTL5000_DAP_MIX_CHAN:
896 case SGTL5000_DAP_AVC_CTRL:
897 case SGTL5000_DAP_AVC_THRESHOLD:
898 case SGTL5000_DAP_AVC_ATTACK:
899 case SGTL5000_DAP_AVC_DECAY:
900 case SGTL5000_DAP_COEF_WR_B1_MSB:
901 case SGTL5000_DAP_COEF_WR_B1_LSB:
902 case SGTL5000_DAP_COEF_WR_B2_MSB:
903 case SGTL5000_DAP_COEF_WR_B2_LSB:
904 case SGTL5000_DAP_COEF_WR_A1_MSB:
905 case SGTL5000_DAP_COEF_WR_A1_LSB:
906 case SGTL5000_DAP_COEF_WR_A2_MSB:
907 case SGTL5000_DAP_COEF_WR_A2_LSB:
908 return true;
909
910 default:
911 return false;
912 }
913 }
914
915 /*
916 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
917 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
918 * The calculatation was done for all possible register values which
919 * is the array index and the following formula: 10^((idx−15)/40) * 100
920 */
921 static const u8 vol_quot_table[] = {
922 42, 45, 47, 50, 53, 56, 60, 63,
923 67, 71, 75, 79, 84, 89, 94, 100,
924 106, 112, 119, 126, 133, 141, 150, 158,
925 168, 178, 188, 200, 211, 224, 237, 251
926 };
927
928 /*
929 * sgtl5000 has 3 internal power supplies:
930 * 1. VAG, normally set to vdda/2
931 * 2. charge pump, set to different value
932 * according to voltage of vdda and vddio
933 * 3. line out VAG, normally set to vddio/2
934 *
935 * and should be set according to:
936 * 1. vddd provided by external or not
937 * 2. vdda and vddio voltage value. > 3.1v or not
938 */
939 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
940 {
941 int vddd;
942 int vdda;
943 int vddio;
944 u16 ana_pwr;
945 u16 lreg_ctrl;
946 int vag;
947 int lo_vag;
948 int vol_quot;
949 int lo_vol;
950 size_t i;
951 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
952
953 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
954 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
955 vddd = (sgtl5000->num_supplies > VDDD)
956 ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
957 : LDO_VOLTAGE;
958
959 vdda = vdda / 1000;
960 vddio = vddio / 1000;
961 vddd = vddd / 1000;
962
963 if (vdda <= 0 || vddio <= 0 || vddd < 0) {
964 dev_err(codec->dev, "regulator voltage not set correctly\n");
965
966 return -EINVAL;
967 }
968
969 /* according to datasheet, maximum voltage of supplies */
970 if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
971 dev_err(codec->dev,
972 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
973 vdda, vddio, vddd);
974
975 return -EINVAL;
976 }
977
978 /* reset value */
979 ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
980 ana_pwr |= SGTL5000_DAC_STEREO |
981 SGTL5000_ADC_STEREO |
982 SGTL5000_REFTOP_POWERUP;
983 lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
984
985 if (vddio < 3100 && vdda < 3100) {
986 /* enable internal oscillator used for charge pump */
987 snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
988 SGTL5000_INT_OSC_EN,
989 SGTL5000_INT_OSC_EN);
990 /* Enable VDDC charge pump */
991 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
992 } else if (vddio >= 3100 && vdda >= 3100) {
993 ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
994 /* VDDC use VDDIO rail */
995 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
996 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
997 SGTL5000_VDDC_MAN_ASSN_SHIFT;
998 }
999
1000 snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1001
1002 snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1003
1004 /*
1005 * set ADC/DAC VAG to vdda / 2,
1006 * should stay in range (0.8v, 1.575v)
1007 */
1008 vag = vdda / 2;
1009 if (vag <= SGTL5000_ANA_GND_BASE)
1010 vag = 0;
1011 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1012 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1013 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1014 else
1015 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1016
1017 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1018 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1019
1020 /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1021 lo_vag = vddio / 2;
1022 if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1023 lo_vag = 0;
1024 else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1025 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1026 lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1027 else
1028 lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1029 SGTL5000_LINE_OUT_GND_STP;
1030
1031 snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1032 SGTL5000_LINE_OUT_CURRENT_MASK |
1033 SGTL5000_LINE_OUT_GND_MASK,
1034 lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1035 SGTL5000_LINE_OUT_CURRENT_360u <<
1036 SGTL5000_LINE_OUT_CURRENT_SHIFT);
1037
1038 /*
1039 * Set lineout output level in range (0..31)
1040 * the same value is used for right and left channel
1041 *
1042 * Searching for a suitable index solving this formula:
1043 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1044 */
1045 vol_quot = (vag * 100) / lo_vag;
1046 lo_vol = 0;
1047 for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1048 if (vol_quot >= vol_quot_table[i])
1049 lo_vol = i;
1050 else
1051 break;
1052 }
1053
1054 snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_VOL,
1055 SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1056 SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1057 lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1058 lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1059
1060 return 0;
1061 }
1062
1063 static int sgtl5000_enable_regulators(struct i2c_client *client)
1064 {
1065 int ret;
1066 int i;
1067 int external_vddd = 0;
1068 struct regulator *vddd;
1069 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1070
1071 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1072 sgtl5000->supplies[i].supply = supply_names[i];
1073
1074 vddd = regulator_get_optional(&client->dev, "VDDD");
1075 if (IS_ERR(vddd)) {
1076 /* See if it's just not registered yet */
1077 if (PTR_ERR(vddd) == -EPROBE_DEFER)
1078 return -EPROBE_DEFER;
1079 } else {
1080 external_vddd = 1;
1081 regulator_put(vddd);
1082 }
1083
1084 sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1085 - 1 + external_vddd;
1086 ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1087 sgtl5000->supplies);
1088 if (ret)
1089 return ret;
1090
1091 ret = regulator_bulk_enable(sgtl5000->num_supplies,
1092 sgtl5000->supplies);
1093 if (!ret)
1094 usleep_range(10, 20);
1095 else
1096 regulator_bulk_free(sgtl5000->num_supplies,
1097 sgtl5000->supplies);
1098
1099 return ret;
1100 }
1101
1102 static int sgtl5000_probe(struct snd_soc_codec *codec)
1103 {
1104 int ret;
1105 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1106
1107 /* power up sgtl5000 */
1108 ret = sgtl5000_set_power_regs(codec);
1109 if (ret)
1110 goto err;
1111
1112 /* enable small pop, introduce 400ms delay in turning off */
1113 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1114 SGTL5000_SMALL_POP, 1);
1115
1116 /* disable short cut detector */
1117 snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1118
1119 /*
1120 * set i2s as default input of sound switch
1121 * TODO: add sound switch to control and dapm widge.
1122 */
1123 snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1124 SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1125 snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1126 SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1127
1128 /* enable dac volume ramp by default */
1129 snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1130 SGTL5000_DAC_VOL_RAMP_EN |
1131 SGTL5000_DAC_MUTE_RIGHT |
1132 SGTL5000_DAC_MUTE_LEFT);
1133
1134 snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);
1135
1136 snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1137 SGTL5000_HP_ZCD_EN |
1138 SGTL5000_ADC_ZCD_EN);
1139
1140 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1141 SGTL5000_BIAS_R_MASK,
1142 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1143
1144 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1145 SGTL5000_BIAS_VOLT_MASK,
1146 sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1147 /*
1148 * disable DAP
1149 * TODO:
1150 * Enable DAP in kcontrol and dapm.
1151 */
1152 snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1153
1154 return 0;
1155
1156 err:
1157 return ret;
1158 }
1159
1160 static int sgtl5000_remove(struct snd_soc_codec *codec)
1161 {
1162 return 0;
1163 }
1164
1165 static struct snd_soc_codec_driver sgtl5000_driver = {
1166 .probe = sgtl5000_probe,
1167 .remove = sgtl5000_remove,
1168 .set_bias_level = sgtl5000_set_bias_level,
1169 .suspend_bias_off = true,
1170 .controls = sgtl5000_snd_controls,
1171 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1172 .dapm_widgets = sgtl5000_dapm_widgets,
1173 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1174 .dapm_routes = sgtl5000_dapm_routes,
1175 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1176 };
1177
1178 static const struct regmap_config sgtl5000_regmap = {
1179 .reg_bits = 16,
1180 .val_bits = 16,
1181 .reg_stride = 2,
1182
1183 .max_register = SGTL5000_MAX_REG_OFFSET,
1184 .volatile_reg = sgtl5000_volatile,
1185 .readable_reg = sgtl5000_readable,
1186
1187 .cache_type = REGCACHE_RBTREE,
1188 .reg_defaults = sgtl5000_reg_defaults,
1189 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1190 };
1191
1192 /*
1193 * Write all the default values from sgtl5000_reg_defaults[] array into the
1194 * sgtl5000 registers, to make sure we always start with the sane registers
1195 * values as stated in the datasheet.
1196 *
1197 * Since sgtl5000 does not have a reset line, nor a reset command in software,
1198 * we follow this approach to guarantee we always start from the default values
1199 * and avoid problems like, not being able to probe after an audio playback
1200 * followed by a system reset or a 'reboot' command in Linux
1201 */
1202 static void sgtl5000_fill_defaults(struct i2c_client *client)
1203 {
1204 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1205 int i, ret, val, index;
1206
1207 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1208 val = sgtl5000_reg_defaults[i].def;
1209 index = sgtl5000_reg_defaults[i].reg;
1210 ret = regmap_write(sgtl5000->regmap, index, val);
1211 if (ret)
1212 dev_err(&client->dev,
1213 "%s: error %d setting reg 0x%02x to 0x%04x\n",
1214 __func__, ret, index, val);
1215 }
1216 }
1217
1218 static int sgtl5000_i2c_probe(struct i2c_client *client,
1219 const struct i2c_device_id *id)
1220 {
1221 struct sgtl5000_priv *sgtl5000;
1222 int ret, reg, rev;
1223 struct device_node *np = client->dev.of_node;
1224 u32 value;
1225 u16 ana_pwr;
1226
1227 sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1228 if (!sgtl5000)
1229 return -ENOMEM;
1230
1231 i2c_set_clientdata(client, sgtl5000);
1232
1233 ret = sgtl5000_enable_regulators(client);
1234 if (ret)
1235 return ret;
1236
1237 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1238 if (IS_ERR(sgtl5000->regmap)) {
1239 ret = PTR_ERR(sgtl5000->regmap);
1240 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1241 goto disable_regs;
1242 }
1243
1244 sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1245 if (IS_ERR(sgtl5000->mclk)) {
1246 ret = PTR_ERR(sgtl5000->mclk);
1247 dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1248 /* Defer the probe to see if the clk will be provided later */
1249 if (ret == -ENOENT)
1250 ret = -EPROBE_DEFER;
1251 goto disable_regs;
1252 }
1253
1254 ret = clk_prepare_enable(sgtl5000->mclk);
1255 if (ret) {
1256 dev_err(&client->dev, "Error enabling clock %d\n", ret);
1257 goto disable_regs;
1258 }
1259
1260 /* Need 8 clocks before I2C accesses */
1261 udelay(1);
1262
1263 /* read chip information */
1264 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1265 if (ret) {
1266 dev_err(&client->dev, "Error reading chip id %d\n", ret);
1267 goto disable_clk;
1268 }
1269
1270 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1271 SGTL5000_PARTID_PART_ID) {
1272 dev_err(&client->dev,
1273 "Device with ID register %x is not a sgtl5000\n", reg);
1274 ret = -ENODEV;
1275 goto disable_clk;
1276 }
1277
1278 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1279 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1280 sgtl5000->revision = rev;
1281
1282 /* Follow section 2.2.1.1 of AN3663 */
1283 ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1284 if (sgtl5000->num_supplies <= VDDD) {
1285 /* internal VDDD at 1.2V */
1286 ret = regmap_update_bits(sgtl5000->regmap,
1287 SGTL5000_CHIP_LINREG_CTRL,
1288 SGTL5000_LINREG_VDDD_MASK,
1289 LINREG_VDDD);
1290 if (ret)
1291 dev_err(&client->dev,
1292 "Error %d setting LINREG_VDDD\n", ret);
1293
1294 ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1295 dev_info(&client->dev,
1296 "Using internal LDO instead of VDDD: check ER1\n");
1297 } else {
1298 /* using external LDO for VDDD
1299 * Clear startup powerup and simple powerup
1300 * bits to save power
1301 */
1302 ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1303 | SGTL5000_LINREG_SIMPLE_POWERUP);
1304 dev_dbg(&client->dev, "Using external VDDD\n");
1305 }
1306 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1307 if (ret)
1308 dev_err(&client->dev,
1309 "Error %d setting CHIP_ANA_POWER to %04x\n",
1310 ret, ana_pwr);
1311
1312 if (np) {
1313 if (!of_property_read_u32(np,
1314 "micbias-resistor-k-ohms", &value)) {
1315 switch (value) {
1316 case SGTL5000_MICBIAS_OFF:
1317 sgtl5000->micbias_resistor = 0;
1318 break;
1319 case SGTL5000_MICBIAS_2K:
1320 sgtl5000->micbias_resistor = 1;
1321 break;
1322 case SGTL5000_MICBIAS_4K:
1323 sgtl5000->micbias_resistor = 2;
1324 break;
1325 case SGTL5000_MICBIAS_8K:
1326 sgtl5000->micbias_resistor = 3;
1327 break;
1328 default:
1329 sgtl5000->micbias_resistor = 2;
1330 dev_err(&client->dev,
1331 "Unsuitable MicBias resistor\n");
1332 }
1333 } else {
1334 /* default is 4Kohms */
1335 sgtl5000->micbias_resistor = 2;
1336 }
1337 if (!of_property_read_u32(np,
1338 "micbias-voltage-m-volts", &value)) {
1339 /* 1250mV => 0 */
1340 /* steps of 250mV */
1341 if ((value >= 1250) && (value <= 3000))
1342 sgtl5000->micbias_voltage = (value / 250) - 5;
1343 else {
1344 sgtl5000->micbias_voltage = 0;
1345 dev_err(&client->dev,
1346 "Unsuitable MicBias voltage\n");
1347 }
1348 } else {
1349 sgtl5000->micbias_voltage = 0;
1350 }
1351 }
1352
1353 /* Ensure sgtl5000 will start with sane register values */
1354 sgtl5000_fill_defaults(client);
1355
1356 ret = snd_soc_register_codec(&client->dev,
1357 &sgtl5000_driver, &sgtl5000_dai, 1);
1358 if (ret)
1359 goto disable_clk;
1360
1361 return 0;
1362
1363 disable_clk:
1364 clk_disable_unprepare(sgtl5000->mclk);
1365
1366 disable_regs:
1367 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1368 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1369
1370 return ret;
1371 }
1372
1373 static int sgtl5000_i2c_remove(struct i2c_client *client)
1374 {
1375 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1376
1377 snd_soc_unregister_codec(&client->dev);
1378 clk_disable_unprepare(sgtl5000->mclk);
1379 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1380 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1381
1382 return 0;
1383 }
1384
1385 static const struct i2c_device_id sgtl5000_id[] = {
1386 {"sgtl5000", 0},
1387 {},
1388 };
1389
1390 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1391
1392 static const struct of_device_id sgtl5000_dt_ids[] = {
1393 { .compatible = "fsl,sgtl5000", },
1394 { /* sentinel */ }
1395 };
1396 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1397
1398 static struct i2c_driver sgtl5000_i2c_driver = {
1399 .driver = {
1400 .name = "sgtl5000",
1401 .of_match_table = sgtl5000_dt_ids,
1402 },
1403 .probe = sgtl5000_i2c_probe,
1404 .remove = sgtl5000_i2c_remove,
1405 .id_table = sgtl5000_id,
1406 };
1407
1408 module_i2c_driver(sgtl5000_i2c_driver);
1409
1410 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1411 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1412 MODULE_LICENSE("GPL");
This page took 0.085679 seconds and 5 git commands to generate.