ASoC: rt5651: Convert to params_width()
[deliverable/linux.git] / sound / soc / codecs / sgtl5000.c
1 /*
2 * sgtl5000.c -- SGTL5000 ALSA SoC Audio driver
3 *
4 * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_device.h>
24 #include <sound/core.h>
25 #include <sound/tlv.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/soc-dapm.h>
30 #include <sound/initval.h>
31
32 #include "sgtl5000.h"
33
34 #define SGTL5000_DAP_REG_OFFSET 0x0100
35 #define SGTL5000_MAX_REG_OFFSET 0x013A
36
37 /* default value of sgtl5000 registers */
38 static const struct reg_default sgtl5000_reg_defaults[] = {
39 { SGTL5000_CHIP_DIG_POWER, 0x0000 },
40 { SGTL5000_CHIP_CLK_CTRL, 0x0008 },
41 { SGTL5000_CHIP_I2S_CTRL, 0x0010 },
42 { SGTL5000_CHIP_SSS_CTRL, 0x0010 },
43 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c },
44 { SGTL5000_CHIP_DAC_VOL, 0x3c3c },
45 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f },
46 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 },
47 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 },
48 { SGTL5000_CHIP_ANA_CTRL, 0x0111 },
49 { SGTL5000_CHIP_LINREG_CTRL, 0x0000 },
50 { SGTL5000_CHIP_REF_CTRL, 0x0000 },
51 { SGTL5000_CHIP_MIC_CTRL, 0x0000 },
52 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 },
53 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 },
54 { SGTL5000_CHIP_ANA_POWER, 0x7060 },
55 { SGTL5000_CHIP_PLL_CTRL, 0x5000 },
56 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 },
57 { SGTL5000_CHIP_ANA_STATUS, 0x0000 },
58 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 },
59 { SGTL5000_CHIP_ANA_TEST2, 0x0000 },
60 { SGTL5000_DAP_CTRL, 0x0000 },
61 { SGTL5000_DAP_PEQ, 0x0000 },
62 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 },
63 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f },
64 { SGTL5000_DAP_AUDIO_EQ, 0x0000 },
65 { SGTL5000_DAP_SURROUND, 0x0040 },
66 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f },
67 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f },
68 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f },
69 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f },
70 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f },
71 { SGTL5000_DAP_MAIN_CHAN, 0x8000 },
72 { SGTL5000_DAP_MIX_CHAN, 0x0000 },
73 { SGTL5000_DAP_AVC_CTRL, 0x0510 },
74 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 },
75 { SGTL5000_DAP_AVC_ATTACK, 0x0028 },
76 { SGTL5000_DAP_AVC_DECAY, 0x0050 },
77 };
78
79 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
80 enum sgtl5000_regulator_supplies {
81 VDDA,
82 VDDIO,
83 VDDD,
84 SGTL5000_SUPPLY_NUM
85 };
86
87 /* vddd is optional supply */
88 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
89 "VDDA",
90 "VDDIO",
91 "VDDD"
92 };
93
94 #define LDO_CONSUMER_NAME "VDDD_LDO"
95 #define LDO_VOLTAGE 1200000
96
97 static struct regulator_consumer_supply ldo_consumer[] = {
98 REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL),
99 };
100
101 static struct regulator_init_data ldo_init_data = {
102 .constraints = {
103 .min_uV = 1200000,
104 .max_uV = 1200000,
105 .valid_modes_mask = REGULATOR_MODE_NORMAL,
106 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
107 },
108 .num_consumer_supplies = 1,
109 .consumer_supplies = &ldo_consumer[0],
110 };
111
112 /*
113 * sgtl5000 internal ldo regulator,
114 * enabled when VDDD not provided
115 */
116 struct ldo_regulator {
117 struct regulator_desc desc;
118 struct regulator_dev *dev;
119 int voltage;
120 void *codec_data;
121 bool enabled;
122 };
123
124 /* sgtl5000 private structure in codec */
125 struct sgtl5000_priv {
126 int sysclk; /* sysclk rate */
127 int master; /* i2s master or not */
128 int fmt; /* i2s data format */
129 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
130 struct ldo_regulator *ldo;
131 struct regmap *regmap;
132 struct clk *mclk;
133 int revision;
134 };
135
136 /*
137 * mic_bias power on/off share the same register bits with
138 * output impedance of mic bias, when power on mic bias, we
139 * need reclaim it to impedance value.
140 * 0x0 = Powered off
141 * 0x1 = 2Kohm
142 * 0x2 = 4Kohm
143 * 0x3 = 8Kohm
144 */
145 static int mic_bias_event(struct snd_soc_dapm_widget *w,
146 struct snd_kcontrol *kcontrol, int event)
147 {
148 switch (event) {
149 case SND_SOC_DAPM_POST_PMU:
150 /* change mic bias resistor to 4Kohm */
151 snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
152 SGTL5000_BIAS_R_MASK,
153 SGTL5000_BIAS_R_4k << SGTL5000_BIAS_R_SHIFT);
154 break;
155
156 case SND_SOC_DAPM_PRE_PMD:
157 snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
158 SGTL5000_BIAS_R_MASK, 0);
159 break;
160 }
161 return 0;
162 }
163
164 /*
165 * As manual described, ADC/DAC only works when VAG powerup,
166 * So enabled VAG before ADC/DAC up.
167 * In power down case, we need wait 400ms when vag fully ramped down.
168 */
169 static int power_vag_event(struct snd_soc_dapm_widget *w,
170 struct snd_kcontrol *kcontrol, int event)
171 {
172 const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
173
174 switch (event) {
175 case SND_SOC_DAPM_POST_PMU:
176 snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
177 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
178 break;
179
180 case SND_SOC_DAPM_PRE_PMD:
181 /*
182 * Don't clear VAG_POWERUP, when both DAC and ADC are
183 * operational to prevent inadvertently starving the
184 * other one of them.
185 */
186 if ((snd_soc_read(w->codec, SGTL5000_CHIP_ANA_POWER) &
187 mask) != mask) {
188 snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
189 SGTL5000_VAG_POWERUP, 0);
190 msleep(400);
191 }
192 break;
193 default:
194 break;
195 }
196
197 return 0;
198 }
199
200 /* input sources for ADC */
201 static const char *adc_mux_text[] = {
202 "MIC_IN", "LINE_IN"
203 };
204
205 static SOC_ENUM_SINGLE_DECL(adc_enum,
206 SGTL5000_CHIP_ANA_CTRL, 2,
207 adc_mux_text);
208
209 static const struct snd_kcontrol_new adc_mux =
210 SOC_DAPM_ENUM("Capture Mux", adc_enum);
211
212 /* input sources for DAC */
213 static const char *dac_mux_text[] = {
214 "DAC", "LINE_IN"
215 };
216
217 static SOC_ENUM_SINGLE_DECL(dac_enum,
218 SGTL5000_CHIP_ANA_CTRL, 6,
219 dac_mux_text);
220
221 static const struct snd_kcontrol_new dac_mux =
222 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
223
224 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
225 SND_SOC_DAPM_INPUT("LINE_IN"),
226 SND_SOC_DAPM_INPUT("MIC_IN"),
227
228 SND_SOC_DAPM_OUTPUT("HP_OUT"),
229 SND_SOC_DAPM_OUTPUT("LINE_OUT"),
230
231 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
232 mic_bias_event,
233 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
234
235 SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
236 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
237
238 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
239 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
240
241 /* aif for i2s input */
242 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
243 0, SGTL5000_CHIP_DIG_POWER,
244 0, 0),
245
246 /* aif for i2s output */
247 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
248 0, SGTL5000_CHIP_DIG_POWER,
249 1, 0),
250
251 SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
252 SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
253
254 SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
255 SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
256 };
257
258 /* routes for sgtl5000 */
259 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
260 {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */
261 {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */
262
263 {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */
264 {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */
265
266 {"DAC", NULL, "AIFIN"}, /* i2s-->dac,skip audio mux */
267 {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */
268 {"LO", NULL, "DAC"}, /* dac --> line_out */
269
270 {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
271 {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */
272
273 {"LINE_OUT", NULL, "LO"},
274 {"HP_OUT", NULL, "HP"},
275 };
276
277 /* custom function to fetch info of PCM playback volume */
278 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
279 struct snd_ctl_elem_info *uinfo)
280 {
281 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
282 uinfo->count = 2;
283 uinfo->value.integer.min = 0;
284 uinfo->value.integer.max = 0xfc - 0x3c;
285 return 0;
286 }
287
288 /*
289 * custom function to get of PCM playback volume
290 *
291 * dac volume register
292 * 15-------------8-7--------------0
293 * | R channel vol | L channel vol |
294 * -------------------------------
295 *
296 * PCM volume with 0.5017 dB steps from 0 to -90 dB
297 *
298 * register values map to dB
299 * 0x3B and less = Reserved
300 * 0x3C = 0 dB
301 * 0x3D = -0.5 dB
302 * 0xF0 = -90 dB
303 * 0xFC and greater = Muted
304 *
305 * register value map to userspace value
306 *
307 * register value 0x3c(0dB) 0xf0(-90dB)0xfc
308 * ------------------------------
309 * userspace value 0xc0 0
310 */
311 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
312 struct snd_ctl_elem_value *ucontrol)
313 {
314 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
315 int reg;
316 int l;
317 int r;
318
319 reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
320
321 /* get left channel volume */
322 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
323
324 /* get right channel volume */
325 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
326
327 /* make sure value fall in (0x3c,0xfc) */
328 l = clamp(l, 0x3c, 0xfc);
329 r = clamp(r, 0x3c, 0xfc);
330
331 /* invert it and map to userspace value */
332 l = 0xfc - l;
333 r = 0xfc - r;
334
335 ucontrol->value.integer.value[0] = l;
336 ucontrol->value.integer.value[1] = r;
337
338 return 0;
339 }
340
341 /*
342 * custom function to put of PCM playback volume
343 *
344 * dac volume register
345 * 15-------------8-7--------------0
346 * | R channel vol | L channel vol |
347 * -------------------------------
348 *
349 * PCM volume with 0.5017 dB steps from 0 to -90 dB
350 *
351 * register values map to dB
352 * 0x3B and less = Reserved
353 * 0x3C = 0 dB
354 * 0x3D = -0.5 dB
355 * 0xF0 = -90 dB
356 * 0xFC and greater = Muted
357 *
358 * userspace value map to register value
359 *
360 * userspace value 0xc0 0
361 * ------------------------------
362 * register value 0x3c(0dB) 0xf0(-90dB)0xfc
363 */
364 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
365 struct snd_ctl_elem_value *ucontrol)
366 {
367 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
368 int reg;
369 int l;
370 int r;
371
372 l = ucontrol->value.integer.value[0];
373 r = ucontrol->value.integer.value[1];
374
375 /* make sure userspace volume fall in (0, 0xfc-0x3c) */
376 l = clamp(l, 0, 0xfc - 0x3c);
377 r = clamp(r, 0, 0xfc - 0x3c);
378
379 /* invert it, get the value can be set to register */
380 l = 0xfc - l;
381 r = 0xfc - r;
382
383 /* shift to get the register value */
384 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
385 r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
386
387 snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
388
389 return 0;
390 }
391
392 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
393
394 /* tlv for mic gain, 0db 20db 30db 40db */
395 static const unsigned int mic_gain_tlv[] = {
396 TLV_DB_RANGE_HEAD(2),
397 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
398 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0),
399 };
400
401 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
402 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
403
404 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
405 /* SOC_DOUBLE_S8_TLV with invert */
406 {
407 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
408 .name = "PCM Playback Volume",
409 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
410 SNDRV_CTL_ELEM_ACCESS_READWRITE,
411 .info = dac_info_volsw,
412 .get = dac_get_volsw,
413 .put = dac_put_volsw,
414 },
415
416 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
417 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
418 SGTL5000_CHIP_ANA_ADC_CTRL,
419 8, 1, 0, capture_6db_attenuate),
420 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
421
422 SOC_DOUBLE_TLV("Headphone Playback Volume",
423 SGTL5000_CHIP_ANA_HP_CTRL,
424 0, 8,
425 0x7f, 1,
426 headphone_volume),
427 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
428 5, 1, 0),
429
430 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
431 0, 3, 0, mic_gain_tlv),
432 };
433
434 /* mute the codec used by alsa core */
435 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
436 {
437 struct snd_soc_codec *codec = codec_dai->codec;
438 u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
439
440 snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
441 adcdac_ctrl, mute ? adcdac_ctrl : 0);
442
443 return 0;
444 }
445
446 /* set codec format */
447 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
448 {
449 struct snd_soc_codec *codec = codec_dai->codec;
450 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
451 u16 i2sctl = 0;
452
453 sgtl5000->master = 0;
454 /*
455 * i2s clock and frame master setting.
456 * ONLY support:
457 * - clock and frame slave,
458 * - clock and frame master
459 */
460 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
461 case SND_SOC_DAIFMT_CBS_CFS:
462 break;
463 case SND_SOC_DAIFMT_CBM_CFM:
464 i2sctl |= SGTL5000_I2S_MASTER;
465 sgtl5000->master = 1;
466 break;
467 default:
468 return -EINVAL;
469 }
470
471 /* setting i2s data format */
472 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
473 case SND_SOC_DAIFMT_DSP_A:
474 i2sctl |= SGTL5000_I2S_MODE_PCM;
475 break;
476 case SND_SOC_DAIFMT_DSP_B:
477 i2sctl |= SGTL5000_I2S_MODE_PCM;
478 i2sctl |= SGTL5000_I2S_LRALIGN;
479 break;
480 case SND_SOC_DAIFMT_I2S:
481 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
482 break;
483 case SND_SOC_DAIFMT_RIGHT_J:
484 i2sctl |= SGTL5000_I2S_MODE_RJ;
485 i2sctl |= SGTL5000_I2S_LRPOL;
486 break;
487 case SND_SOC_DAIFMT_LEFT_J:
488 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
489 i2sctl |= SGTL5000_I2S_LRALIGN;
490 break;
491 default:
492 return -EINVAL;
493 }
494
495 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
496
497 /* Clock inversion */
498 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
499 case SND_SOC_DAIFMT_NB_NF:
500 break;
501 case SND_SOC_DAIFMT_IB_NF:
502 i2sctl |= SGTL5000_I2S_SCLK_INV;
503 break;
504 default:
505 return -EINVAL;
506 }
507
508 snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
509
510 return 0;
511 }
512
513 /* set codec sysclk */
514 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
515 int clk_id, unsigned int freq, int dir)
516 {
517 struct snd_soc_codec *codec = codec_dai->codec;
518 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
519
520 switch (clk_id) {
521 case SGTL5000_SYSCLK:
522 sgtl5000->sysclk = freq;
523 break;
524 default:
525 return -EINVAL;
526 }
527
528 return 0;
529 }
530
531 /*
532 * set clock according to i2s frame clock,
533 * sgtl5000 provide 2 clock sources.
534 * 1. sys_mclk. sample freq can only configure to
535 * 1/256, 1/384, 1/512 of sys_mclk.
536 * 2. pll. can derive any audio clocks.
537 *
538 * clock setting rules:
539 * 1. in slave mode, only sys_mclk can use.
540 * 2. as constraint by sys_mclk, sample freq should
541 * set to 32k, 44.1k and above.
542 * 3. using sys_mclk prefer to pll to save power.
543 */
544 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
545 {
546 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
547 int clk_ctl = 0;
548 int sys_fs; /* sample freq */
549
550 /*
551 * sample freq should be divided by frame clock,
552 * if frame clock lower than 44.1khz, sample feq should set to
553 * 32khz or 44.1khz.
554 */
555 switch (frame_rate) {
556 case 8000:
557 case 16000:
558 sys_fs = 32000;
559 break;
560 case 11025:
561 case 22050:
562 sys_fs = 44100;
563 break;
564 default:
565 sys_fs = frame_rate;
566 break;
567 }
568
569 /* set divided factor of frame clock */
570 switch (sys_fs / frame_rate) {
571 case 4:
572 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
573 break;
574 case 2:
575 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
576 break;
577 case 1:
578 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
579 break;
580 default:
581 return -EINVAL;
582 }
583
584 /* set the sys_fs according to frame rate */
585 switch (sys_fs) {
586 case 32000:
587 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
588 break;
589 case 44100:
590 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
591 break;
592 case 48000:
593 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
594 break;
595 case 96000:
596 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
597 break;
598 default:
599 dev_err(codec->dev, "frame rate %d not supported\n",
600 frame_rate);
601 return -EINVAL;
602 }
603
604 /*
605 * calculate the divider of mclk/sample_freq,
606 * factor of freq =96k can only be 256, since mclk in range (12m,27m)
607 */
608 switch (sgtl5000->sysclk / sys_fs) {
609 case 256:
610 clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
611 SGTL5000_MCLK_FREQ_SHIFT;
612 break;
613 case 384:
614 clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
615 SGTL5000_MCLK_FREQ_SHIFT;
616 break;
617 case 512:
618 clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
619 SGTL5000_MCLK_FREQ_SHIFT;
620 break;
621 default:
622 /* if mclk not satisify the divider, use pll */
623 if (sgtl5000->master) {
624 clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
625 SGTL5000_MCLK_FREQ_SHIFT;
626 } else {
627 dev_err(codec->dev,
628 "PLL not supported in slave mode\n");
629 return -EINVAL;
630 }
631 }
632
633 /* if using pll, please check manual 6.4.2 for detail */
634 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
635 u64 out, t;
636 int div2;
637 int pll_ctl;
638 unsigned int in, int_div, frac_div;
639
640 if (sgtl5000->sysclk > 17000000) {
641 div2 = 1;
642 in = sgtl5000->sysclk / 2;
643 } else {
644 div2 = 0;
645 in = sgtl5000->sysclk;
646 }
647 if (sys_fs == 44100)
648 out = 180633600;
649 else
650 out = 196608000;
651 t = do_div(out, in);
652 int_div = out;
653 t *= 2048;
654 do_div(t, in);
655 frac_div = t;
656 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
657 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
658
659 snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
660 if (div2)
661 snd_soc_update_bits(codec,
662 SGTL5000_CHIP_CLK_TOP_CTRL,
663 SGTL5000_INPUT_FREQ_DIV2,
664 SGTL5000_INPUT_FREQ_DIV2);
665 else
666 snd_soc_update_bits(codec,
667 SGTL5000_CHIP_CLK_TOP_CTRL,
668 SGTL5000_INPUT_FREQ_DIV2,
669 0);
670
671 /* power up pll */
672 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
673 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
674 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
675
676 /* if using pll, clk_ctrl must be set after pll power up */
677 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
678 } else {
679 /* otherwise, clk_ctrl must be set before pll power down */
680 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
681
682 /* power down pll */
683 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
684 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
685 0);
686 }
687
688 return 0;
689 }
690
691 /*
692 * Set PCM DAI bit size and sample rate.
693 * input: params_rate, params_fmt
694 */
695 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
696 struct snd_pcm_hw_params *params,
697 struct snd_soc_dai *dai)
698 {
699 struct snd_soc_codec *codec = dai->codec;
700 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
701 int channels = params_channels(params);
702 int i2s_ctl = 0;
703 int stereo;
704 int ret;
705
706 /* sysclk should already set */
707 if (!sgtl5000->sysclk) {
708 dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
709 return -EFAULT;
710 }
711
712 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
713 stereo = SGTL5000_DAC_STEREO;
714 else
715 stereo = SGTL5000_ADC_STEREO;
716
717 /* set mono to save power */
718 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
719 channels == 1 ? 0 : stereo);
720
721 /* set codec clock base on lrclk */
722 ret = sgtl5000_set_clock(codec, params_rate(params));
723 if (ret)
724 return ret;
725
726 /* set i2s data format */
727 switch (params_format(params)) {
728 case SNDRV_PCM_FORMAT_S16_LE:
729 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
730 return -EINVAL;
731 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
732 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
733 SGTL5000_I2S_SCLKFREQ_SHIFT;
734 break;
735 case SNDRV_PCM_FORMAT_S20_3LE:
736 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
737 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
738 SGTL5000_I2S_SCLKFREQ_SHIFT;
739 break;
740 case SNDRV_PCM_FORMAT_S24_LE:
741 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
742 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
743 SGTL5000_I2S_SCLKFREQ_SHIFT;
744 break;
745 case SNDRV_PCM_FORMAT_S32_LE:
746 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
747 return -EINVAL;
748 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
749 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
750 SGTL5000_I2S_SCLKFREQ_SHIFT;
751 break;
752 default:
753 return -EINVAL;
754 }
755
756 snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
757 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
758 i2s_ctl);
759
760 return 0;
761 }
762
763 #ifdef CONFIG_REGULATOR
764 static int ldo_regulator_is_enabled(struct regulator_dev *dev)
765 {
766 struct ldo_regulator *ldo = rdev_get_drvdata(dev);
767
768 return ldo->enabled;
769 }
770
771 static int ldo_regulator_enable(struct regulator_dev *dev)
772 {
773 struct ldo_regulator *ldo = rdev_get_drvdata(dev);
774 struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
775 int reg;
776
777 if (ldo_regulator_is_enabled(dev))
778 return 0;
779
780 /* set regulator value firstly */
781 reg = (1600 - ldo->voltage / 1000) / 50;
782 reg = clamp(reg, 0x0, 0xf);
783
784 /* amend the voltage value, unit: uV */
785 ldo->voltage = (1600 - reg * 50) * 1000;
786
787 /* set voltage to register */
788 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
789 SGTL5000_LINREG_VDDD_MASK, reg);
790
791 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
792 SGTL5000_LINEREG_D_POWERUP,
793 SGTL5000_LINEREG_D_POWERUP);
794
795 /* when internal ldo enabled, simple digital power can be disabled */
796 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
797 SGTL5000_LINREG_SIMPLE_POWERUP,
798 0);
799
800 ldo->enabled = 1;
801 return 0;
802 }
803
804 static int ldo_regulator_disable(struct regulator_dev *dev)
805 {
806 struct ldo_regulator *ldo = rdev_get_drvdata(dev);
807 struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
808
809 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
810 SGTL5000_LINEREG_D_POWERUP,
811 0);
812
813 /* clear voltage info */
814 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
815 SGTL5000_LINREG_VDDD_MASK, 0);
816
817 ldo->enabled = 0;
818
819 return 0;
820 }
821
822 static int ldo_regulator_get_voltage(struct regulator_dev *dev)
823 {
824 struct ldo_regulator *ldo = rdev_get_drvdata(dev);
825
826 return ldo->voltage;
827 }
828
829 static struct regulator_ops ldo_regulator_ops = {
830 .is_enabled = ldo_regulator_is_enabled,
831 .enable = ldo_regulator_enable,
832 .disable = ldo_regulator_disable,
833 .get_voltage = ldo_regulator_get_voltage,
834 };
835
836 static int ldo_regulator_register(struct snd_soc_codec *codec,
837 struct regulator_init_data *init_data,
838 int voltage)
839 {
840 struct ldo_regulator *ldo;
841 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
842 struct regulator_config config = { };
843
844 ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL);
845
846 if (!ldo) {
847 dev_err(codec->dev, "failed to allocate ldo_regulator\n");
848 return -ENOMEM;
849 }
850
851 ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL);
852 if (!ldo->desc.name) {
853 kfree(ldo);
854 dev_err(codec->dev, "failed to allocate decs name memory\n");
855 return -ENOMEM;
856 }
857
858 ldo->desc.type = REGULATOR_VOLTAGE;
859 ldo->desc.owner = THIS_MODULE;
860 ldo->desc.ops = &ldo_regulator_ops;
861 ldo->desc.n_voltages = 1;
862
863 ldo->codec_data = codec;
864 ldo->voltage = voltage;
865
866 config.dev = codec->dev;
867 config.driver_data = ldo;
868 config.init_data = init_data;
869
870 ldo->dev = regulator_register(&ldo->desc, &config);
871 if (IS_ERR(ldo->dev)) {
872 int ret = PTR_ERR(ldo->dev);
873
874 dev_err(codec->dev, "failed to register regulator\n");
875 kfree(ldo->desc.name);
876 kfree(ldo);
877
878 return ret;
879 }
880 sgtl5000->ldo = ldo;
881
882 return 0;
883 }
884
885 static int ldo_regulator_remove(struct snd_soc_codec *codec)
886 {
887 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
888 struct ldo_regulator *ldo = sgtl5000->ldo;
889
890 if (!ldo)
891 return 0;
892
893 regulator_unregister(ldo->dev);
894 kfree(ldo->desc.name);
895 kfree(ldo);
896
897 return 0;
898 }
899 #else
900 static int ldo_regulator_register(struct snd_soc_codec *codec,
901 struct regulator_init_data *init_data,
902 int voltage)
903 {
904 dev_err(codec->dev, "this setup needs regulator support in the kernel\n");
905 return -EINVAL;
906 }
907
908 static int ldo_regulator_remove(struct snd_soc_codec *codec)
909 {
910 return 0;
911 }
912 #endif
913
914 /*
915 * set dac bias
916 * common state changes:
917 * startup:
918 * off --> standby --> prepare --> on
919 * standby --> prepare --> on
920 *
921 * stop:
922 * on --> prepare --> standby
923 */
924 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
925 enum snd_soc_bias_level level)
926 {
927 int ret;
928 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
929
930 switch (level) {
931 case SND_SOC_BIAS_ON:
932 case SND_SOC_BIAS_PREPARE:
933 break;
934 case SND_SOC_BIAS_STANDBY:
935 if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
936 ret = regulator_bulk_enable(
937 ARRAY_SIZE(sgtl5000->supplies),
938 sgtl5000->supplies);
939 if (ret)
940 return ret;
941 udelay(10);
942
943 regcache_cache_only(sgtl5000->regmap, false);
944
945 ret = regcache_sync(sgtl5000->regmap);
946 if (ret != 0) {
947 dev_err(codec->dev,
948 "Failed to restore cache: %d\n", ret);
949
950 regcache_cache_only(sgtl5000->regmap, true);
951 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
952 sgtl5000->supplies);
953
954 return ret;
955 }
956 }
957
958 break;
959 case SND_SOC_BIAS_OFF:
960 regcache_cache_only(sgtl5000->regmap, true);
961 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
962 sgtl5000->supplies);
963 break;
964 }
965
966 codec->dapm.bias_level = level;
967 return 0;
968 }
969
970 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
971 SNDRV_PCM_FMTBIT_S20_3LE |\
972 SNDRV_PCM_FMTBIT_S24_LE |\
973 SNDRV_PCM_FMTBIT_S32_LE)
974
975 static const struct snd_soc_dai_ops sgtl5000_ops = {
976 .hw_params = sgtl5000_pcm_hw_params,
977 .digital_mute = sgtl5000_digital_mute,
978 .set_fmt = sgtl5000_set_dai_fmt,
979 .set_sysclk = sgtl5000_set_dai_sysclk,
980 };
981
982 static struct snd_soc_dai_driver sgtl5000_dai = {
983 .name = "sgtl5000",
984 .playback = {
985 .stream_name = "Playback",
986 .channels_min = 1,
987 .channels_max = 2,
988 /*
989 * only support 8~48K + 96K,
990 * TODO modify hw_param to support more
991 */
992 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
993 .formats = SGTL5000_FORMATS,
994 },
995 .capture = {
996 .stream_name = "Capture",
997 .channels_min = 1,
998 .channels_max = 2,
999 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1000 .formats = SGTL5000_FORMATS,
1001 },
1002 .ops = &sgtl5000_ops,
1003 .symmetric_rates = 1,
1004 };
1005
1006 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1007 {
1008 switch (reg) {
1009 case SGTL5000_CHIP_ID:
1010 case SGTL5000_CHIP_ADCDAC_CTRL:
1011 case SGTL5000_CHIP_ANA_STATUS:
1012 return true;
1013 }
1014
1015 return false;
1016 }
1017
1018 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1019 {
1020 switch (reg) {
1021 case SGTL5000_CHIP_ID:
1022 case SGTL5000_CHIP_DIG_POWER:
1023 case SGTL5000_CHIP_CLK_CTRL:
1024 case SGTL5000_CHIP_I2S_CTRL:
1025 case SGTL5000_CHIP_SSS_CTRL:
1026 case SGTL5000_CHIP_ADCDAC_CTRL:
1027 case SGTL5000_CHIP_DAC_VOL:
1028 case SGTL5000_CHIP_PAD_STRENGTH:
1029 case SGTL5000_CHIP_ANA_ADC_CTRL:
1030 case SGTL5000_CHIP_ANA_HP_CTRL:
1031 case SGTL5000_CHIP_ANA_CTRL:
1032 case SGTL5000_CHIP_LINREG_CTRL:
1033 case SGTL5000_CHIP_REF_CTRL:
1034 case SGTL5000_CHIP_MIC_CTRL:
1035 case SGTL5000_CHIP_LINE_OUT_CTRL:
1036 case SGTL5000_CHIP_LINE_OUT_VOL:
1037 case SGTL5000_CHIP_ANA_POWER:
1038 case SGTL5000_CHIP_PLL_CTRL:
1039 case SGTL5000_CHIP_CLK_TOP_CTRL:
1040 case SGTL5000_CHIP_ANA_STATUS:
1041 case SGTL5000_CHIP_SHORT_CTRL:
1042 case SGTL5000_CHIP_ANA_TEST2:
1043 case SGTL5000_DAP_CTRL:
1044 case SGTL5000_DAP_PEQ:
1045 case SGTL5000_DAP_BASS_ENHANCE:
1046 case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1047 case SGTL5000_DAP_AUDIO_EQ:
1048 case SGTL5000_DAP_SURROUND:
1049 case SGTL5000_DAP_FLT_COEF_ACCESS:
1050 case SGTL5000_DAP_COEF_WR_B0_MSB:
1051 case SGTL5000_DAP_COEF_WR_B0_LSB:
1052 case SGTL5000_DAP_EQ_BASS_BAND0:
1053 case SGTL5000_DAP_EQ_BASS_BAND1:
1054 case SGTL5000_DAP_EQ_BASS_BAND2:
1055 case SGTL5000_DAP_EQ_BASS_BAND3:
1056 case SGTL5000_DAP_EQ_BASS_BAND4:
1057 case SGTL5000_DAP_MAIN_CHAN:
1058 case SGTL5000_DAP_MIX_CHAN:
1059 case SGTL5000_DAP_AVC_CTRL:
1060 case SGTL5000_DAP_AVC_THRESHOLD:
1061 case SGTL5000_DAP_AVC_ATTACK:
1062 case SGTL5000_DAP_AVC_DECAY:
1063 case SGTL5000_DAP_COEF_WR_B1_MSB:
1064 case SGTL5000_DAP_COEF_WR_B1_LSB:
1065 case SGTL5000_DAP_COEF_WR_B2_MSB:
1066 case SGTL5000_DAP_COEF_WR_B2_LSB:
1067 case SGTL5000_DAP_COEF_WR_A1_MSB:
1068 case SGTL5000_DAP_COEF_WR_A1_LSB:
1069 case SGTL5000_DAP_COEF_WR_A2_MSB:
1070 case SGTL5000_DAP_COEF_WR_A2_LSB:
1071 return true;
1072
1073 default:
1074 return false;
1075 }
1076 }
1077
1078 #ifdef CONFIG_SUSPEND
1079 static int sgtl5000_suspend(struct snd_soc_codec *codec)
1080 {
1081 sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);
1082
1083 return 0;
1084 }
1085
1086 static int sgtl5000_resume(struct snd_soc_codec *codec)
1087 {
1088 /* Bring the codec back up to standby to enable regulators */
1089 sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1090
1091 return 0;
1092 }
1093 #else
1094 #define sgtl5000_suspend NULL
1095 #define sgtl5000_resume NULL
1096 #endif /* CONFIG_SUSPEND */
1097
1098 /*
1099 * sgtl5000 has 3 internal power supplies:
1100 * 1. VAG, normally set to vdda/2
1101 * 2. chargepump, set to different value
1102 * according to voltage of vdda and vddio
1103 * 3. line out VAG, normally set to vddio/2
1104 *
1105 * and should be set according to:
1106 * 1. vddd provided by external or not
1107 * 2. vdda and vddio voltage value. > 3.1v or not
1108 * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd.
1109 */
1110 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1111 {
1112 int vddd;
1113 int vdda;
1114 int vddio;
1115 u16 ana_pwr;
1116 u16 lreg_ctrl;
1117 int vag;
1118 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1119
1120 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1121 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1122 vddd = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer);
1123
1124 vdda = vdda / 1000;
1125 vddio = vddio / 1000;
1126 vddd = vddd / 1000;
1127
1128 if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1129 dev_err(codec->dev, "regulator voltage not set correctly\n");
1130
1131 return -EINVAL;
1132 }
1133
1134 /* according to datasheet, maximum voltage of supplies */
1135 if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1136 dev_err(codec->dev,
1137 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1138 vdda, vddio, vddd);
1139
1140 return -EINVAL;
1141 }
1142
1143 /* reset value */
1144 ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1145 ana_pwr |= SGTL5000_DAC_STEREO |
1146 SGTL5000_ADC_STEREO |
1147 SGTL5000_REFTOP_POWERUP;
1148 lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1149
1150 if (vddio < 3100 && vdda < 3100) {
1151 /* enable internal oscillator used for charge pump */
1152 snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1153 SGTL5000_INT_OSC_EN,
1154 SGTL5000_INT_OSC_EN);
1155 /* Enable VDDC charge pump */
1156 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1157 } else if (vddio >= 3100 && vdda >= 3100) {
1158 /*
1159 * if vddio and vddd > 3.1v,
1160 * charge pump should be clean before set ana_pwr
1161 */
1162 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1163 SGTL5000_VDDC_CHRGPMP_POWERUP, 0);
1164
1165 /* VDDC use VDDIO rail */
1166 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1167 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1168 SGTL5000_VDDC_MAN_ASSN_SHIFT;
1169 }
1170
1171 snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1172
1173 snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1174
1175 /* set voltage to register */
1176 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
1177 SGTL5000_LINREG_VDDD_MASK, 0x8);
1178
1179 /*
1180 * if vddd linear reg has been enabled,
1181 * simple digital supply should be clear to get
1182 * proper VDDD voltage.
1183 */
1184 if (ana_pwr & SGTL5000_LINEREG_D_POWERUP)
1185 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1186 SGTL5000_LINREG_SIMPLE_POWERUP,
1187 0);
1188 else
1189 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1190 SGTL5000_LINREG_SIMPLE_POWERUP |
1191 SGTL5000_STARTUP_POWERUP,
1192 0);
1193
1194 /*
1195 * set ADC/DAC VAG to vdda / 2,
1196 * should stay in range (0.8v, 1.575v)
1197 */
1198 vag = vdda / 2;
1199 if (vag <= SGTL5000_ANA_GND_BASE)
1200 vag = 0;
1201 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1202 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1203 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1204 else
1205 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1206
1207 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1208 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1209
1210 /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1211 vag = vddio / 2;
1212 if (vag <= SGTL5000_LINE_OUT_GND_BASE)
1213 vag = 0;
1214 else if (vag >= SGTL5000_LINE_OUT_GND_BASE +
1215 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1216 vag = SGTL5000_LINE_OUT_GND_MAX;
1217 else
1218 vag = (vag - SGTL5000_LINE_OUT_GND_BASE) /
1219 SGTL5000_LINE_OUT_GND_STP;
1220
1221 snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1222 SGTL5000_LINE_OUT_CURRENT_MASK |
1223 SGTL5000_LINE_OUT_GND_MASK,
1224 vag << SGTL5000_LINE_OUT_GND_SHIFT |
1225 SGTL5000_LINE_OUT_CURRENT_360u <<
1226 SGTL5000_LINE_OUT_CURRENT_SHIFT);
1227
1228 return 0;
1229 }
1230
1231 static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec)
1232 {
1233 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1234 int ret;
1235
1236 /* set internal ldo to 1.2v */
1237 ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE);
1238 if (ret) {
1239 dev_err(codec->dev,
1240 "Failed to register vddd internal supplies: %d\n", ret);
1241 return ret;
1242 }
1243
1244 sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME;
1245
1246 dev_info(codec->dev, "Using internal LDO instead of VDDD\n");
1247 return 0;
1248 }
1249
1250 static int sgtl5000_enable_regulators(struct snd_soc_codec *codec)
1251 {
1252 int ret;
1253 int i;
1254 int external_vddd = 0;
1255 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1256 struct regulator *vddd;
1257
1258 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1259 sgtl5000->supplies[i].supply = supply_names[i];
1260
1261 /* External VDDD only works before revision 0x11 */
1262 if (sgtl5000->revision < 0x11) {
1263 vddd = regulator_get_optional(codec->dev, "VDDD");
1264 if (IS_ERR(vddd)) {
1265 /* See if it's just not registered yet */
1266 if (PTR_ERR(vddd) == -EPROBE_DEFER)
1267 return -EPROBE_DEFER;
1268 } else {
1269 external_vddd = 1;
1270 regulator_put(vddd);
1271 }
1272 }
1273
1274 if (!external_vddd) {
1275 ret = sgtl5000_replace_vddd_with_ldo(codec);
1276 if (ret)
1277 return ret;
1278 }
1279
1280 ret = devm_regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
1281 sgtl5000->supplies);
1282 if (ret)
1283 goto err_ldo_remove;
1284
1285 ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1286 sgtl5000->supplies);
1287 if (ret)
1288 goto err_ldo_remove;
1289
1290 /* wait for all power rails bring up */
1291 udelay(10);
1292
1293 return 0;
1294
1295 err_ldo_remove:
1296 if (!external_vddd)
1297 ldo_regulator_remove(codec);
1298 return ret;
1299
1300 }
1301
1302 static int sgtl5000_probe(struct snd_soc_codec *codec)
1303 {
1304 int ret;
1305 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1306
1307 ret = sgtl5000_enable_regulators(codec);
1308 if (ret)
1309 return ret;
1310
1311 /* power up sgtl5000 */
1312 ret = sgtl5000_set_power_regs(codec);
1313 if (ret)
1314 goto err;
1315
1316 /* enable small pop, introduce 400ms delay in turning off */
1317 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1318 SGTL5000_SMALL_POP,
1319 SGTL5000_SMALL_POP);
1320
1321 /* disable short cut detector */
1322 snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1323
1324 /*
1325 * set i2s as default input of sound switch
1326 * TODO: add sound switch to control and dapm widge.
1327 */
1328 snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1329 SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1330 snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1331 SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1332
1333 /* enable dac volume ramp by default */
1334 snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1335 SGTL5000_DAC_VOL_RAMP_EN |
1336 SGTL5000_DAC_MUTE_RIGHT |
1337 SGTL5000_DAC_MUTE_LEFT);
1338
1339 snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);
1340
1341 snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1342 SGTL5000_HP_ZCD_EN |
1343 SGTL5000_ADC_ZCD_EN);
1344
1345 snd_soc_write(codec, SGTL5000_CHIP_MIC_CTRL, 2);
1346
1347 /*
1348 * disable DAP
1349 * TODO:
1350 * Enable DAP in kcontrol and dapm.
1351 */
1352 snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1353
1354 /* leading to standby state */
1355 ret = sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1356 if (ret)
1357 goto err;
1358
1359 return 0;
1360
1361 err:
1362 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1363 sgtl5000->supplies);
1364 ldo_regulator_remove(codec);
1365
1366 return ret;
1367 }
1368
1369 static int sgtl5000_remove(struct snd_soc_codec *codec)
1370 {
1371 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1372
1373 sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);
1374
1375 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1376 sgtl5000->supplies);
1377 ldo_regulator_remove(codec);
1378
1379 return 0;
1380 }
1381
1382 static struct snd_soc_codec_driver sgtl5000_driver = {
1383 .probe = sgtl5000_probe,
1384 .remove = sgtl5000_remove,
1385 .suspend = sgtl5000_suspend,
1386 .resume = sgtl5000_resume,
1387 .set_bias_level = sgtl5000_set_bias_level,
1388 .controls = sgtl5000_snd_controls,
1389 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1390 .dapm_widgets = sgtl5000_dapm_widgets,
1391 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1392 .dapm_routes = sgtl5000_dapm_routes,
1393 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1394 };
1395
1396 static const struct regmap_config sgtl5000_regmap = {
1397 .reg_bits = 16,
1398 .val_bits = 16,
1399 .reg_stride = 2,
1400
1401 .max_register = SGTL5000_MAX_REG_OFFSET,
1402 .volatile_reg = sgtl5000_volatile,
1403 .readable_reg = sgtl5000_readable,
1404
1405 .cache_type = REGCACHE_RBTREE,
1406 .reg_defaults = sgtl5000_reg_defaults,
1407 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1408 };
1409
1410 /*
1411 * Write all the default values from sgtl5000_reg_defaults[] array into the
1412 * sgtl5000 registers, to make sure we always start with the sane registers
1413 * values as stated in the datasheet.
1414 *
1415 * Since sgtl5000 does not have a reset line, nor a reset command in software,
1416 * we follow this approach to guarantee we always start from the default values
1417 * and avoid problems like, not being able to probe after an audio playback
1418 * followed by a system reset or a 'reboot' command in Linux
1419 */
1420 static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000)
1421 {
1422 int i, ret, val, index;
1423
1424 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1425 val = sgtl5000_reg_defaults[i].def;
1426 index = sgtl5000_reg_defaults[i].reg;
1427 ret = regmap_write(sgtl5000->regmap, index, val);
1428 if (ret)
1429 return ret;
1430 }
1431
1432 return 0;
1433 }
1434
1435 static int sgtl5000_i2c_probe(struct i2c_client *client,
1436 const struct i2c_device_id *id)
1437 {
1438 struct sgtl5000_priv *sgtl5000;
1439 int ret, reg, rev;
1440
1441 sgtl5000 = devm_kzalloc(&client->dev, sizeof(struct sgtl5000_priv),
1442 GFP_KERNEL);
1443 if (!sgtl5000)
1444 return -ENOMEM;
1445
1446 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1447 if (IS_ERR(sgtl5000->regmap)) {
1448 ret = PTR_ERR(sgtl5000->regmap);
1449 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1450 return ret;
1451 }
1452
1453 sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1454 if (IS_ERR(sgtl5000->mclk)) {
1455 ret = PTR_ERR(sgtl5000->mclk);
1456 dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1457 /* Defer the probe to see if the clk will be provided later */
1458 if (ret == -ENOENT)
1459 return -EPROBE_DEFER;
1460 return ret;
1461 }
1462
1463 ret = clk_prepare_enable(sgtl5000->mclk);
1464 if (ret)
1465 return ret;
1466
1467 /* read chip information */
1468 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1469 if (ret)
1470 goto disable_clk;
1471
1472 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1473 SGTL5000_PARTID_PART_ID) {
1474 dev_err(&client->dev,
1475 "Device with ID register %x is not a sgtl5000\n", reg);
1476 ret = -ENODEV;
1477 goto disable_clk;
1478 }
1479
1480 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1481 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1482 sgtl5000->revision = rev;
1483
1484 i2c_set_clientdata(client, sgtl5000);
1485
1486 /* Ensure sgtl5000 will start with sane register values */
1487 ret = sgtl5000_fill_defaults(sgtl5000);
1488 if (ret)
1489 goto disable_clk;
1490
1491 ret = snd_soc_register_codec(&client->dev,
1492 &sgtl5000_driver, &sgtl5000_dai, 1);
1493 if (ret)
1494 goto disable_clk;
1495
1496 return 0;
1497
1498 disable_clk:
1499 clk_disable_unprepare(sgtl5000->mclk);
1500 return ret;
1501 }
1502
1503 static int sgtl5000_i2c_remove(struct i2c_client *client)
1504 {
1505 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1506
1507 snd_soc_unregister_codec(&client->dev);
1508 clk_disable_unprepare(sgtl5000->mclk);
1509 return 0;
1510 }
1511
1512 static const struct i2c_device_id sgtl5000_id[] = {
1513 {"sgtl5000", 0},
1514 {},
1515 };
1516
1517 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1518
1519 static const struct of_device_id sgtl5000_dt_ids[] = {
1520 { .compatible = "fsl,sgtl5000", },
1521 { /* sentinel */ }
1522 };
1523 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1524
1525 static struct i2c_driver sgtl5000_i2c_driver = {
1526 .driver = {
1527 .name = "sgtl5000",
1528 .owner = THIS_MODULE,
1529 .of_match_table = sgtl5000_dt_ids,
1530 },
1531 .probe = sgtl5000_i2c_probe,
1532 .remove = sgtl5000_i2c_remove,
1533 .id_table = sgtl5000_id,
1534 };
1535
1536 module_i2c_driver(sgtl5000_i2c_driver);
1537
1538 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1539 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1540 MODULE_LICENSE("GPL");
This page took 0.198385 seconds and 6 git commands to generate.