ASoC: sta32x: change dai name to be in line with the sta350 driver.
[deliverable/linux.git] / sound / soc / codecs / sta32x.c
1 /*
2 * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3 *
4 * Copyright: 2011 Raumfeld GmbH
5 * Author: Johannes Stezenbach <js@sig21.net>
6 *
7 * based on code from:
8 * Wolfson Microelectronics PLC.
9 * Mark Brown <broonie@opensource.wolfsonmicro.com>
10 * Freescale Semiconductor, Inc.
11 * Timur Tabi <timur@freescale.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/of_device.h>
28 #include <linux/of_gpio.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <sound/core.h>
35 #include <sound/pcm.h>
36 #include <sound/pcm_params.h>
37 #include <sound/soc.h>
38 #include <sound/soc-dapm.h>
39 #include <sound/initval.h>
40 #include <sound/tlv.h>
41
42 #include <sound/sta32x.h>
43 #include "sta32x.h"
44
45 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
46 SNDRV_PCM_RATE_44100 | \
47 SNDRV_PCM_RATE_48000 | \
48 SNDRV_PCM_RATE_88200 | \
49 SNDRV_PCM_RATE_96000 | \
50 SNDRV_PCM_RATE_176400 | \
51 SNDRV_PCM_RATE_192000)
52
53 #define STA32X_FORMATS \
54 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
55 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
56 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
57 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
58 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
59 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
60
61 /* Power-up register defaults */
62 static const struct reg_default sta32x_regs[] = {
63 { 0x0, 0x63 },
64 { 0x1, 0x80 },
65 { 0x2, 0xc2 },
66 { 0x3, 0x40 },
67 { 0x4, 0xc2 },
68 { 0x5, 0x5c },
69 { 0x6, 0x10 },
70 { 0x7, 0xff },
71 { 0x8, 0x60 },
72 { 0x9, 0x60 },
73 { 0xa, 0x60 },
74 { 0xb, 0x80 },
75 { 0xc, 0x00 },
76 { 0xd, 0x00 },
77 { 0xe, 0x00 },
78 { 0xf, 0x40 },
79 { 0x10, 0x80 },
80 { 0x11, 0x77 },
81 { 0x12, 0x6a },
82 { 0x13, 0x69 },
83 { 0x14, 0x6a },
84 { 0x15, 0x69 },
85 { 0x16, 0x00 },
86 { 0x17, 0x00 },
87 { 0x18, 0x00 },
88 { 0x19, 0x00 },
89 { 0x1a, 0x00 },
90 { 0x1b, 0x00 },
91 { 0x1c, 0x00 },
92 { 0x1d, 0x00 },
93 { 0x1e, 0x00 },
94 { 0x1f, 0x00 },
95 { 0x20, 0x00 },
96 { 0x21, 0x00 },
97 { 0x22, 0x00 },
98 { 0x23, 0x00 },
99 { 0x24, 0x00 },
100 { 0x25, 0x00 },
101 { 0x26, 0x00 },
102 { 0x27, 0x2d },
103 { 0x28, 0xc0 },
104 { 0x2b, 0x00 },
105 { 0x2c, 0x0c },
106 };
107
108 static const struct regmap_range sta32x_write_regs_range[] = {
109 regmap_reg_range(STA32X_CONFA, STA32X_AUTO2),
110 regmap_reg_range(STA32X_C1CFG, STA32X_FDRC2),
111 };
112
113 static const struct regmap_range sta32x_read_regs_range[] = {
114 regmap_reg_range(STA32X_CONFA, STA32X_AUTO2),
115 regmap_reg_range(STA32X_C1CFG, STA32X_FDRC2),
116 };
117
118 static const struct regmap_range sta32x_volatile_regs_range[] = {
119 regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD),
120 };
121
122 static const struct regmap_access_table sta32x_write_regs = {
123 .yes_ranges = sta32x_write_regs_range,
124 .n_yes_ranges = ARRAY_SIZE(sta32x_write_regs_range),
125 };
126
127 static const struct regmap_access_table sta32x_read_regs = {
128 .yes_ranges = sta32x_read_regs_range,
129 .n_yes_ranges = ARRAY_SIZE(sta32x_read_regs_range),
130 };
131
132 static const struct regmap_access_table sta32x_volatile_regs = {
133 .yes_ranges = sta32x_volatile_regs_range,
134 .n_yes_ranges = ARRAY_SIZE(sta32x_volatile_regs_range),
135 };
136
137 /* regulator power supply names */
138 static const char *sta32x_supply_names[] = {
139 "Vdda", /* analog supply, 3.3VV */
140 "Vdd3", /* digital supply, 3.3V */
141 "Vcc" /* power amp spply, 10V - 36V */
142 };
143
144 /* codec private data */
145 struct sta32x_priv {
146 struct regmap *regmap;
147 struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
148 struct snd_soc_codec *codec;
149 struct sta32x_platform_data *pdata;
150
151 unsigned int mclk;
152 unsigned int format;
153
154 u32 coef_shadow[STA32X_COEF_COUNT];
155 struct delayed_work watchdog_work;
156 int shutdown;
157 struct gpio_desc *gpiod_nreset;
158 struct mutex coeff_lock;
159 };
160
161 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
162 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
163 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
164
165 static const char *sta32x_drc_ac[] = {
166 "Anti-Clipping", "Dynamic Range Compression" };
167 static const char *sta32x_auto_eq_mode[] = {
168 "User", "Preset", "Loudness" };
169 static const char *sta32x_auto_gc_mode[] = {
170 "User", "AC no clipping", "AC limited clipping (10%)",
171 "DRC nighttime listening mode" };
172 static const char *sta32x_auto_xo_mode[] = {
173 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
174 "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
175 static const char *sta32x_preset_eq_mode[] = {
176 "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
177 "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
178 "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
179 "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
180 "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
181 "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
182 static const char *sta32x_limiter_select[] = {
183 "Limiter Disabled", "Limiter #1", "Limiter #2" };
184 static const char *sta32x_limiter_attack_rate[] = {
185 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
186 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
187 "0.0645", "0.0564", "0.0501", "0.0451" };
188 static const char *sta32x_limiter_release_rate[] = {
189 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
190 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
191 "0.0134", "0.0117", "0.0110", "0.0104" };
192 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv,
193 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
194 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
195 );
196
197 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv,
198 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
199 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
200 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
201 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
202 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
203 );
204
205 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv,
206 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
207 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
208 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
209 );
210
211 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv,
212 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
213 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
214 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
215 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
216 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
217 );
218
219 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
220 STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
221 sta32x_drc_ac);
222 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
223 STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
224 sta32x_auto_eq_mode);
225 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
226 STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
227 sta32x_auto_gc_mode);
228 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
229 STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
230 sta32x_auto_xo_mode);
231 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
232 STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
233 sta32x_preset_eq_mode);
234 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
235 STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
236 sta32x_limiter_select);
237 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
238 STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
239 sta32x_limiter_select);
240 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
241 STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
242 sta32x_limiter_select);
243 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
244 STA32X_L1AR, STA32X_LxA_SHIFT,
245 sta32x_limiter_attack_rate);
246 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
247 STA32X_L2AR, STA32X_LxA_SHIFT,
248 sta32x_limiter_attack_rate);
249 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
250 STA32X_L1AR, STA32X_LxR_SHIFT,
251 sta32x_limiter_release_rate);
252 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
253 STA32X_L2AR, STA32X_LxR_SHIFT,
254 sta32x_limiter_release_rate);
255
256 /* byte array controls for setting biquad, mixer, scaling coefficients;
257 * for biquads all five coefficients need to be set in one go,
258 * mixer and pre/postscale coefs can be set individually;
259 * each coef is 24bit, the bytes are ordered in the same way
260 * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
261 */
262
263 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
264 struct snd_ctl_elem_info *uinfo)
265 {
266 int numcoef = kcontrol->private_value >> 16;
267 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
268 uinfo->count = 3 * numcoef;
269 return 0;
270 }
271
272 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
273 struct snd_ctl_elem_value *ucontrol)
274 {
275 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
276 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
277 int numcoef = kcontrol->private_value >> 16;
278 int index = kcontrol->private_value & 0xffff;
279 unsigned int cfud, val;
280 int i, ret = 0;
281
282 mutex_lock(&sta32x->coeff_lock);
283
284 /* preserve reserved bits in STA32X_CFUD */
285 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
286 cfud &= 0xf0;
287 /*
288 * chip documentation does not say if the bits are self clearing,
289 * so do it explicitly
290 */
291 regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
292
293 regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
294 if (numcoef == 1) {
295 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04);
296 } else if (numcoef == 5) {
297 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08);
298 } else {
299 ret = -EINVAL;
300 goto exit_unlock;
301 }
302
303 for (i = 0; i < 3 * numcoef; i++) {
304 regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val);
305 ucontrol->value.bytes.data[i] = val;
306 }
307
308 exit_unlock:
309 mutex_unlock(&sta32x->coeff_lock);
310
311 return ret;
312 }
313
314 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
315 struct snd_ctl_elem_value *ucontrol)
316 {
317 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
318 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
319 int numcoef = kcontrol->private_value >> 16;
320 int index = kcontrol->private_value & 0xffff;
321 unsigned int cfud;
322 int i;
323
324 /* preserve reserved bits in STA32X_CFUD */
325 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
326 cfud &= 0xf0;
327 /*
328 * chip documentation does not say if the bits are self clearing,
329 * so do it explicitly
330 */
331 regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
332
333 regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
334 for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
335 sta32x->coef_shadow[index + i] =
336 (ucontrol->value.bytes.data[3 * i] << 16)
337 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
338 | (ucontrol->value.bytes.data[3 * i + 2]);
339 for (i = 0; i < 3 * numcoef; i++)
340 regmap_write(sta32x->regmap, STA32X_B1CF1 + i,
341 ucontrol->value.bytes.data[i]);
342 if (numcoef == 1)
343 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
344 else if (numcoef == 5)
345 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02);
346 else
347 return -EINVAL;
348
349 return 0;
350 }
351
352 static int sta32x_sync_coef_shadow(struct snd_soc_codec *codec)
353 {
354 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
355 unsigned int cfud;
356 int i;
357
358 /* preserve reserved bits in STA32X_CFUD */
359 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
360 cfud &= 0xf0;
361
362 for (i = 0; i < STA32X_COEF_COUNT; i++) {
363 regmap_write(sta32x->regmap, STA32X_CFADDR2, i);
364 regmap_write(sta32x->regmap, STA32X_B1CF1,
365 (sta32x->coef_shadow[i] >> 16) & 0xff);
366 regmap_write(sta32x->regmap, STA32X_B1CF2,
367 (sta32x->coef_shadow[i] >> 8) & 0xff);
368 regmap_write(sta32x->regmap, STA32X_B1CF3,
369 (sta32x->coef_shadow[i]) & 0xff);
370 /*
371 * chip documentation does not say if the bits are
372 * self-clearing, so do it explicitly
373 */
374 regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
375 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
376 }
377 return 0;
378 }
379
380 static int sta32x_cache_sync(struct snd_soc_codec *codec)
381 {
382 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
383 unsigned int mute;
384 int rc;
385
386 /* mute during register sync */
387 regmap_read(sta32x->regmap, STA32X_MMUTE, &mute);
388 regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
389 sta32x_sync_coef_shadow(codec);
390 rc = regcache_sync(sta32x->regmap);
391 regmap_write(sta32x->regmap, STA32X_MMUTE, mute);
392 return rc;
393 }
394
395 /* work around ESD issue where sta32x resets and loses all configuration */
396 static void sta32x_watchdog(struct work_struct *work)
397 {
398 struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
399 watchdog_work.work);
400 struct snd_soc_codec *codec = sta32x->codec;
401 unsigned int confa, confa_cached;
402
403 /* check if sta32x has reset itself */
404 confa_cached = snd_soc_read(codec, STA32X_CONFA);
405 regcache_cache_bypass(sta32x->regmap, true);
406 confa = snd_soc_read(codec, STA32X_CONFA);
407 regcache_cache_bypass(sta32x->regmap, false);
408 if (confa != confa_cached) {
409 regcache_mark_dirty(sta32x->regmap);
410 sta32x_cache_sync(codec);
411 }
412
413 if (!sta32x->shutdown)
414 queue_delayed_work(system_power_efficient_wq,
415 &sta32x->watchdog_work,
416 round_jiffies_relative(HZ));
417 }
418
419 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
420 {
421 if (sta32x->pdata->needs_esd_watchdog) {
422 sta32x->shutdown = 0;
423 queue_delayed_work(system_power_efficient_wq,
424 &sta32x->watchdog_work,
425 round_jiffies_relative(HZ));
426 }
427 }
428
429 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
430 {
431 if (sta32x->pdata->needs_esd_watchdog) {
432 sta32x->shutdown = 1;
433 cancel_delayed_work_sync(&sta32x->watchdog_work);
434 }
435 }
436
437 #define SINGLE_COEF(xname, index) \
438 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
439 .info = sta32x_coefficient_info, \
440 .get = sta32x_coefficient_get,\
441 .put = sta32x_coefficient_put, \
442 .private_value = index | (1 << 16) }
443
444 #define BIQUAD_COEFS(xname, index) \
445 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
446 .info = sta32x_coefficient_info, \
447 .get = sta32x_coefficient_get,\
448 .put = sta32x_coefficient_put, \
449 .private_value = index | (5 << 16) }
450
451 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
452 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
453 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
454 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
455 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
456 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
457 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
458 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
459 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
460 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
461 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
462 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
463 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
464 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
465 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
466 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
467 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
468 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
469 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
470 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
471 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
472 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
473 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
474 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
475 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
476 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
477 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
478 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
479 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
480 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
481 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
482 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
483 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
484 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
485 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
486
487 /* depending on mode, the attack/release thresholds have
488 * two different enum definitions; provide both
489 */
490 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
491 16, 0, sta32x_limiter_ac_attack_tlv),
492 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
493 16, 0, sta32x_limiter_ac_attack_tlv),
494 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
495 16, 0, sta32x_limiter_ac_release_tlv),
496 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
497 16, 0, sta32x_limiter_ac_release_tlv),
498 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
499 16, 0, sta32x_limiter_drc_attack_tlv),
500 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
501 16, 0, sta32x_limiter_drc_attack_tlv),
502 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
503 16, 0, sta32x_limiter_drc_release_tlv),
504 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
505 16, 0, sta32x_limiter_drc_release_tlv),
506
507 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
508 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
509 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
510 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
511 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
512 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
513 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
514 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
515 BIQUAD_COEFS("High-pass", 40),
516 BIQUAD_COEFS("Low-pass", 45),
517 SINGLE_COEF("Ch1 - Prescale", 50),
518 SINGLE_COEF("Ch2 - Prescale", 51),
519 SINGLE_COEF("Ch1 - Postscale", 52),
520 SINGLE_COEF("Ch2 - Postscale", 53),
521 SINGLE_COEF("Ch3 - Postscale", 54),
522 SINGLE_COEF("Thermal warning - Postscale", 55),
523 SINGLE_COEF("Ch1 - Mix 1", 56),
524 SINGLE_COEF("Ch1 - Mix 2", 57),
525 SINGLE_COEF("Ch2 - Mix 1", 58),
526 SINGLE_COEF("Ch2 - Mix 2", 59),
527 SINGLE_COEF("Ch3 - Mix 1", 60),
528 SINGLE_COEF("Ch3 - Mix 2", 61),
529 };
530
531 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
532 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
533 SND_SOC_DAPM_OUTPUT("LEFT"),
534 SND_SOC_DAPM_OUTPUT("RIGHT"),
535 SND_SOC_DAPM_OUTPUT("SUB"),
536 };
537
538 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
539 { "LEFT", NULL, "DAC" },
540 { "RIGHT", NULL, "DAC" },
541 { "SUB", NULL, "DAC" },
542 };
543
544 /* MCLK interpolation ratio per fs */
545 static struct {
546 int fs;
547 int ir;
548 } interpolation_ratios[] = {
549 { 32000, 0 },
550 { 44100, 0 },
551 { 48000, 0 },
552 { 88200, 1 },
553 { 96000, 1 },
554 { 176400, 2 },
555 { 192000, 2 },
556 };
557
558 /* MCLK to fs clock ratios */
559 static int mcs_ratio_table[3][7] = {
560 { 768, 512, 384, 256, 128, 576, 0 },
561 { 384, 256, 192, 128, 64, 0 },
562 { 384, 256, 192, 128, 64, 0 },
563 };
564
565 /**
566 * sta32x_set_dai_sysclk - configure MCLK
567 * @codec_dai: the codec DAI
568 * @clk_id: the clock ID (ignored)
569 * @freq: the MCLK input frequency
570 * @dir: the clock direction (ignored)
571 *
572 * The value of MCLK is used to determine which sample rates are supported
573 * by the STA32X, based on the mclk_ratios table.
574 *
575 * This function must be called by the machine driver's 'startup' function,
576 * otherwise the list of supported sample rates will not be available in
577 * time for ALSA.
578 *
579 * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
580 * theoretically possible sample rates to be enabled. Call it again with a
581 * proper value set one the external clock is set (most probably you would do
582 * that from a machine's driver 'hw_param' hook.
583 */
584 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
585 int clk_id, unsigned int freq, int dir)
586 {
587 struct snd_soc_codec *codec = codec_dai->codec;
588 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
589
590 dev_dbg(codec->dev, "mclk=%u\n", freq);
591 sta32x->mclk = freq;
592
593 return 0;
594 }
595
596 /**
597 * sta32x_set_dai_fmt - configure the codec for the selected audio format
598 * @codec_dai: the codec DAI
599 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
600 *
601 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
602 * codec accordingly.
603 */
604 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
605 unsigned int fmt)
606 {
607 struct snd_soc_codec *codec = codec_dai->codec;
608 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
609 u8 confb = 0;
610
611 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
612 case SND_SOC_DAIFMT_CBS_CFS:
613 break;
614 default:
615 return -EINVAL;
616 }
617
618 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
619 case SND_SOC_DAIFMT_I2S:
620 case SND_SOC_DAIFMT_RIGHT_J:
621 case SND_SOC_DAIFMT_LEFT_J:
622 sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
623 break;
624 default:
625 return -EINVAL;
626 }
627
628 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
629 case SND_SOC_DAIFMT_NB_NF:
630 confb |= STA32X_CONFB_C2IM;
631 break;
632 case SND_SOC_DAIFMT_NB_IF:
633 confb |= STA32X_CONFB_C1IM;
634 break;
635 default:
636 return -EINVAL;
637 }
638
639 return regmap_update_bits(sta32x->regmap, STA32X_CONFB,
640 STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb);
641 }
642
643 /**
644 * sta32x_hw_params - program the STA32X with the given hardware parameters.
645 * @substream: the audio stream
646 * @params: the hardware parameters to set
647 * @dai: the SOC DAI (ignored)
648 *
649 * This function programs the hardware with the values provided.
650 * Specifically, the sample rate and the data format.
651 */
652 static int sta32x_hw_params(struct snd_pcm_substream *substream,
653 struct snd_pcm_hw_params *params,
654 struct snd_soc_dai *dai)
655 {
656 struct snd_soc_codec *codec = dai->codec;
657 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
658 int i, mcs = -EINVAL, ir = -EINVAL;
659 unsigned int confa, confb;
660 unsigned int rate, ratio;
661 int ret;
662
663 if (!sta32x->mclk) {
664 dev_err(codec->dev,
665 "sta32x->mclk is unset. Unable to determine ratio\n");
666 return -EIO;
667 }
668
669 rate = params_rate(params);
670 ratio = sta32x->mclk / rate;
671 dev_dbg(codec->dev, "rate: %u, ratio: %u\n", rate, ratio);
672
673 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
674 if (interpolation_ratios[i].fs == rate) {
675 ir = interpolation_ratios[i].ir;
676 break;
677 }
678 }
679
680 if (ir < 0) {
681 dev_err(codec->dev, "Unsupported samplerate: %u\n", rate);
682 return -EINVAL;
683 }
684
685 for (i = 0; i < 6; i++) {
686 if (mcs_ratio_table[ir][i] == ratio) {
687 mcs = i;
688 break;
689 }
690 }
691
692 if (mcs < 0) {
693 dev_err(codec->dev, "Unresolvable ratio: %u\n", ratio);
694 return -EINVAL;
695 }
696
697 confa = (ir << STA32X_CONFA_IR_SHIFT) |
698 (mcs << STA32X_CONFA_MCS_SHIFT);
699 confb = 0;
700
701 switch (params_width(params)) {
702 case 24:
703 dev_dbg(codec->dev, "24bit\n");
704 /* fall through */
705 case 32:
706 dev_dbg(codec->dev, "24bit or 32bit\n");
707 switch (sta32x->format) {
708 case SND_SOC_DAIFMT_I2S:
709 confb |= 0x0;
710 break;
711 case SND_SOC_DAIFMT_LEFT_J:
712 confb |= 0x1;
713 break;
714 case SND_SOC_DAIFMT_RIGHT_J:
715 confb |= 0x2;
716 break;
717 }
718
719 break;
720 case 20:
721 dev_dbg(codec->dev, "20bit\n");
722 switch (sta32x->format) {
723 case SND_SOC_DAIFMT_I2S:
724 confb |= 0x4;
725 break;
726 case SND_SOC_DAIFMT_LEFT_J:
727 confb |= 0x5;
728 break;
729 case SND_SOC_DAIFMT_RIGHT_J:
730 confb |= 0x6;
731 break;
732 }
733
734 break;
735 case 18:
736 dev_dbg(codec->dev, "18bit\n");
737 switch (sta32x->format) {
738 case SND_SOC_DAIFMT_I2S:
739 confb |= 0x8;
740 break;
741 case SND_SOC_DAIFMT_LEFT_J:
742 confb |= 0x9;
743 break;
744 case SND_SOC_DAIFMT_RIGHT_J:
745 confb |= 0xa;
746 break;
747 }
748
749 break;
750 case 16:
751 dev_dbg(codec->dev, "16bit\n");
752 switch (sta32x->format) {
753 case SND_SOC_DAIFMT_I2S:
754 confb |= 0x0;
755 break;
756 case SND_SOC_DAIFMT_LEFT_J:
757 confb |= 0xd;
758 break;
759 case SND_SOC_DAIFMT_RIGHT_J:
760 confb |= 0xe;
761 break;
762 }
763
764 break;
765 default:
766 return -EINVAL;
767 }
768
769 ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA,
770 STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK,
771 confa);
772 if (ret < 0)
773 return ret;
774
775 ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB,
776 STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB,
777 confb);
778 if (ret < 0)
779 return ret;
780
781 return 0;
782 }
783
784 static int sta32x_startup_sequence(struct sta32x_priv *sta32x)
785 {
786 if (sta32x->gpiod_nreset) {
787 gpiod_set_value(sta32x->gpiod_nreset, 0);
788 mdelay(1);
789 gpiod_set_value(sta32x->gpiod_nreset, 1);
790 mdelay(1);
791 }
792
793 return 0;
794 }
795
796 /**
797 * sta32x_set_bias_level - DAPM callback
798 * @codec: the codec device
799 * @level: DAPM power level
800 *
801 * This is called by ALSA to put the codec into low power mode
802 * or to wake it up. If the codec is powered off completely
803 * all registers must be restored after power on.
804 */
805 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
806 enum snd_soc_bias_level level)
807 {
808 int ret;
809 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
810
811 dev_dbg(codec->dev, "level = %d\n", level);
812 switch (level) {
813 case SND_SOC_BIAS_ON:
814 break;
815
816 case SND_SOC_BIAS_PREPARE:
817 /* Full power on */
818 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
819 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
820 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
821 break;
822
823 case SND_SOC_BIAS_STANDBY:
824 if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
825 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
826 sta32x->supplies);
827 if (ret != 0) {
828 dev_err(codec->dev,
829 "Failed to enable supplies: %d\n", ret);
830 return ret;
831 }
832
833 sta32x_startup_sequence(sta32x);
834 sta32x_cache_sync(codec);
835 sta32x_watchdog_start(sta32x);
836 }
837
838 /* Power down */
839 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
840 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
841 0);
842
843 break;
844
845 case SND_SOC_BIAS_OFF:
846 /* The chip runs through the power down sequence for us. */
847 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
848 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0);
849 msleep(300);
850 sta32x_watchdog_stop(sta32x);
851
852 if (sta32x->gpiod_nreset)
853 gpiod_set_value(sta32x->gpiod_nreset, 0);
854
855 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
856 sta32x->supplies);
857 break;
858 }
859 codec->dapm.bias_level = level;
860 return 0;
861 }
862
863 static const struct snd_soc_dai_ops sta32x_dai_ops = {
864 .hw_params = sta32x_hw_params,
865 .set_sysclk = sta32x_set_dai_sysclk,
866 .set_fmt = sta32x_set_dai_fmt,
867 };
868
869 static struct snd_soc_dai_driver sta32x_dai = {
870 .name = "sta32x-hifi",
871 .playback = {
872 .stream_name = "Playback",
873 .channels_min = 2,
874 .channels_max = 2,
875 .rates = STA32X_RATES,
876 .formats = STA32X_FORMATS,
877 },
878 .ops = &sta32x_dai_ops,
879 };
880
881 static int sta32x_probe(struct snd_soc_codec *codec)
882 {
883 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
884 struct sta32x_platform_data *pdata = sta32x->pdata;
885 int i, ret = 0, thermal = 0;
886 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
887 sta32x->supplies);
888 if (ret != 0) {
889 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
890 return ret;
891 }
892
893 ret = sta32x_startup_sequence(sta32x);
894 if (ret < 0) {
895 dev_err(codec->dev, "Failed to startup device\n");
896 return ret;
897 }
898
899 /* CONFA */
900 if (!pdata->thermal_warning_recovery)
901 thermal |= STA32X_CONFA_TWAB;
902 if (!pdata->thermal_warning_adjustment)
903 thermal |= STA32X_CONFA_TWRB;
904 if (!pdata->fault_detect_recovery)
905 thermal |= STA32X_CONFA_FDRB;
906 regmap_update_bits(sta32x->regmap, STA32X_CONFA,
907 STA32X_CONFA_TWAB | STA32X_CONFA_TWRB |
908 STA32X_CONFA_FDRB,
909 thermal);
910
911 /* CONFC */
912 regmap_update_bits(sta32x->regmap, STA32X_CONFC,
913 STA32X_CONFC_CSZ_MASK,
914 pdata->drop_compensation_ns
915 << STA32X_CONFC_CSZ_SHIFT);
916
917 /* CONFE */
918 regmap_update_bits(sta32x->regmap, STA32X_CONFE,
919 STA32X_CONFE_MPCV,
920 pdata->max_power_use_mpcc ?
921 STA32X_CONFE_MPCV : 0);
922 regmap_update_bits(sta32x->regmap, STA32X_CONFE,
923 STA32X_CONFE_MPC,
924 pdata->max_power_correction ?
925 STA32X_CONFE_MPC : 0);
926 regmap_update_bits(sta32x->regmap, STA32X_CONFE,
927 STA32X_CONFE_AME,
928 pdata->am_reduction_mode ?
929 STA32X_CONFE_AME : 0);
930 regmap_update_bits(sta32x->regmap, STA32X_CONFE,
931 STA32X_CONFE_PWMS,
932 pdata->odd_pwm_speed_mode ?
933 STA32X_CONFE_PWMS : 0);
934
935 /* CONFF */
936 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
937 STA32X_CONFF_IDE,
938 pdata->invalid_input_detect_mute ?
939 STA32X_CONFF_IDE : 0);
940
941 /* select output configuration */
942 regmap_update_bits(sta32x->regmap, STA32X_CONFF,
943 STA32X_CONFF_OCFG_MASK,
944 pdata->output_conf
945 << STA32X_CONFF_OCFG_SHIFT);
946
947 /* channel to output mapping */
948 regmap_update_bits(sta32x->regmap, STA32X_C1CFG,
949 STA32X_CxCFG_OM_MASK,
950 pdata->ch1_output_mapping
951 << STA32X_CxCFG_OM_SHIFT);
952 regmap_update_bits(sta32x->regmap, STA32X_C2CFG,
953 STA32X_CxCFG_OM_MASK,
954 pdata->ch2_output_mapping
955 << STA32X_CxCFG_OM_SHIFT);
956 regmap_update_bits(sta32x->regmap, STA32X_C3CFG,
957 STA32X_CxCFG_OM_MASK,
958 pdata->ch3_output_mapping
959 << STA32X_CxCFG_OM_SHIFT);
960
961 /* initialize coefficient shadow RAM with reset values */
962 for (i = 4; i <= 49; i += 5)
963 sta32x->coef_shadow[i] = 0x400000;
964 for (i = 50; i <= 54; i++)
965 sta32x->coef_shadow[i] = 0x7fffff;
966 sta32x->coef_shadow[55] = 0x5a9df7;
967 sta32x->coef_shadow[56] = 0x7fffff;
968 sta32x->coef_shadow[59] = 0x7fffff;
969 sta32x->coef_shadow[60] = 0x400000;
970 sta32x->coef_shadow[61] = 0x400000;
971
972 if (sta32x->pdata->needs_esd_watchdog)
973 INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
974
975 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
976 /* Bias level configuration will have done an extra enable */
977 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
978
979 return 0;
980 }
981
982 static int sta32x_remove(struct snd_soc_codec *codec)
983 {
984 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
985
986 sta32x_watchdog_stop(sta32x);
987 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
988
989 return 0;
990 }
991
992 static const struct snd_soc_codec_driver sta32x_codec = {
993 .probe = sta32x_probe,
994 .remove = sta32x_remove,
995 .set_bias_level = sta32x_set_bias_level,
996 .suspend_bias_off = true,
997 .controls = sta32x_snd_controls,
998 .num_controls = ARRAY_SIZE(sta32x_snd_controls),
999 .dapm_widgets = sta32x_dapm_widgets,
1000 .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets),
1001 .dapm_routes = sta32x_dapm_routes,
1002 .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes),
1003 };
1004
1005 static const struct regmap_config sta32x_regmap = {
1006 .reg_bits = 8,
1007 .val_bits = 8,
1008 .max_register = STA32X_FDRC2,
1009 .reg_defaults = sta32x_regs,
1010 .num_reg_defaults = ARRAY_SIZE(sta32x_regs),
1011 .cache_type = REGCACHE_RBTREE,
1012 .wr_table = &sta32x_write_regs,
1013 .rd_table = &sta32x_read_regs,
1014 .volatile_table = &sta32x_volatile_regs,
1015 };
1016
1017 #ifdef CONFIG_OF
1018 static const struct of_device_id st32x_dt_ids[] = {
1019 { .compatible = "st,sta32x", },
1020 { }
1021 };
1022 MODULE_DEVICE_TABLE(of, st32x_dt_ids);
1023
1024 static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x)
1025 {
1026 struct device_node *np = dev->of_node;
1027 struct sta32x_platform_data *pdata;
1028 u16 tmp;
1029
1030 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1031 if (!pdata)
1032 return -ENOMEM;
1033
1034 of_property_read_u8(np, "st,output-conf",
1035 &pdata->output_conf);
1036 of_property_read_u8(np, "st,ch1-output-mapping",
1037 &pdata->ch1_output_mapping);
1038 of_property_read_u8(np, "st,ch2-output-mapping",
1039 &pdata->ch2_output_mapping);
1040 of_property_read_u8(np, "st,ch3-output-mapping",
1041 &pdata->ch3_output_mapping);
1042
1043 if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1044 pdata->thermal_warning_recovery = 1;
1045 if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1046 pdata->thermal_warning_adjustment = 1;
1047 if (of_get_property(np, "st,needs_esd_watchdog", NULL))
1048 pdata->needs_esd_watchdog = 1;
1049
1050 tmp = 140;
1051 of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1052 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1053
1054 /* CONFE */
1055 if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1056 pdata->max_power_use_mpcc = 1;
1057
1058 if (of_get_property(np, "st,max-power-correction", NULL))
1059 pdata->max_power_correction = 1;
1060
1061 if (of_get_property(np, "st,am-reduction-mode", NULL))
1062 pdata->am_reduction_mode = 1;
1063
1064 if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1065 pdata->odd_pwm_speed_mode = 1;
1066
1067 /* CONFF */
1068 if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1069 pdata->invalid_input_detect_mute = 1;
1070
1071 sta32x->pdata = pdata;
1072
1073 return 0;
1074 }
1075 #endif
1076
1077 static int sta32x_i2c_probe(struct i2c_client *i2c,
1078 const struct i2c_device_id *id)
1079 {
1080 struct device *dev = &i2c->dev;
1081 struct sta32x_priv *sta32x;
1082 int ret, i;
1083
1084 sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
1085 GFP_KERNEL);
1086 if (!sta32x)
1087 return -ENOMEM;
1088
1089 mutex_init(&sta32x->coeff_lock);
1090 sta32x->pdata = dev_get_platdata(dev);
1091
1092 #ifdef CONFIG_OF
1093 if (dev->of_node) {
1094 ret = sta32x_probe_dt(dev, sta32x);
1095 if (ret < 0)
1096 return ret;
1097 }
1098 #endif
1099
1100 /* GPIOs */
1101 sta32x->gpiod_nreset = devm_gpiod_get(dev, "reset");
1102 if (IS_ERR(sta32x->gpiod_nreset)) {
1103 ret = PTR_ERR(sta32x->gpiod_nreset);
1104 if (ret != -ENOENT && ret != -ENOSYS)
1105 return ret;
1106
1107 sta32x->gpiod_nreset = NULL;
1108 } else {
1109 gpiod_direction_output(sta32x->gpiod_nreset, 0);
1110 }
1111
1112 /* regulators */
1113 for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
1114 sta32x->supplies[i].supply = sta32x_supply_names[i];
1115
1116 ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
1117 sta32x->supplies);
1118 if (ret != 0) {
1119 dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
1120 return ret;
1121 }
1122
1123 sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1124 if (IS_ERR(sta32x->regmap)) {
1125 ret = PTR_ERR(sta32x->regmap);
1126 dev_err(dev, "Failed to init regmap: %d\n", ret);
1127 return ret;
1128 }
1129
1130 i2c_set_clientdata(i2c, sta32x);
1131
1132 ret = snd_soc_register_codec(dev, &sta32x_codec, &sta32x_dai, 1);
1133 if (ret < 0)
1134 dev_err(dev, "Failed to register codec (%d)\n", ret);
1135
1136 return ret;
1137 }
1138
1139 static int sta32x_i2c_remove(struct i2c_client *client)
1140 {
1141 snd_soc_unregister_codec(&client->dev);
1142 return 0;
1143 }
1144
1145 static const struct i2c_device_id sta32x_i2c_id[] = {
1146 { "sta326", 0 },
1147 { "sta328", 0 },
1148 { "sta329", 0 },
1149 { }
1150 };
1151 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1152
1153 static struct i2c_driver sta32x_i2c_driver = {
1154 .driver = {
1155 .name = "sta32x",
1156 .owner = THIS_MODULE,
1157 .of_match_table = of_match_ptr(st32x_dt_ids),
1158 },
1159 .probe = sta32x_i2c_probe,
1160 .remove = sta32x_i2c_remove,
1161 .id_table = sta32x_i2c_id,
1162 };
1163
1164 module_i2c_driver(sta32x_i2c_driver);
1165
1166 MODULE_DESCRIPTION("ASoC STA32X driver");
1167 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1168 MODULE_LICENSE("GPL");
This page took 0.096634 seconds and 5 git commands to generate.