51b7313a4c14b05c7da73c82313e4be49478c71a
[deliverable/linux.git] / sound / soc / codecs / sta32x.c
1 /*
2 * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3 *
4 * Copyright: 2011 Raumfeld GmbH
5 * Author: Johannes Stezenbach <js@sig21.net>
6 *
7 * based on code from:
8 * Wolfson Microelectronics PLC.
9 * Mark Brown <broonie@opensource.wolfsonmicro.com>
10 * Freescale Semiconductor, Inc.
11 * Timur Tabi <timur@freescale.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/slab.h>
29 #include <linux/workqueue.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 #include <sound/soc-dapm.h>
35 #include <sound/initval.h>
36 #include <sound/tlv.h>
37
38 #include <sound/sta32x.h>
39 #include "sta32x.h"
40
41 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
42 SNDRV_PCM_RATE_44100 | \
43 SNDRV_PCM_RATE_48000 | \
44 SNDRV_PCM_RATE_88200 | \
45 SNDRV_PCM_RATE_96000 | \
46 SNDRV_PCM_RATE_176400 | \
47 SNDRV_PCM_RATE_192000)
48
49 #define STA32X_FORMATS \
50 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
51 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
52 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
53 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
54 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
55 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
56
57 /* Power-up register defaults */
58 static const u8 sta32x_regs[STA32X_REGISTER_COUNT] = {
59 0x63, 0x80, 0xc2, 0x40, 0xc2, 0x5c, 0x10, 0xff, 0x60, 0x60,
60 0x60, 0x80, 0x00, 0x00, 0x00, 0x40, 0x80, 0x77, 0x6a, 0x69,
61 0x6a, 0x69, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
62 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d,
63 0xc0, 0xf3, 0x33, 0x00, 0x0c,
64 };
65
66 /* regulator power supply names */
67 static const char *sta32x_supply_names[] = {
68 "Vdda", /* analog supply, 3.3VV */
69 "Vdd3", /* digital supply, 3.3V */
70 "Vcc" /* power amp spply, 10V - 36V */
71 };
72
73 /* codec private data */
74 struct sta32x_priv {
75 struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
76 struct snd_soc_codec *codec;
77 struct sta32x_platform_data *pdata;
78
79 unsigned int mclk;
80 unsigned int format;
81
82 u32 coef_shadow[STA32X_COEF_COUNT];
83 struct delayed_work watchdog_work;
84 int shutdown;
85 };
86
87 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
88 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
89 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
90
91 static const char *sta32x_drc_ac[] = {
92 "Anti-Clipping", "Dynamic Range Compression" };
93 static const char *sta32x_auto_eq_mode[] = {
94 "User", "Preset", "Loudness" };
95 static const char *sta32x_auto_gc_mode[] = {
96 "User", "AC no clipping", "AC limited clipping (10%)",
97 "DRC nighttime listening mode" };
98 static const char *sta32x_auto_xo_mode[] = {
99 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
100 "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
101 static const char *sta32x_preset_eq_mode[] = {
102 "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
103 "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
104 "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
105 "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
106 "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
107 "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
108 static const char *sta32x_limiter_select[] = {
109 "Limiter Disabled", "Limiter #1", "Limiter #2" };
110 static const char *sta32x_limiter_attack_rate[] = {
111 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
112 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
113 "0.0645", "0.0564", "0.0501", "0.0451" };
114 static const char *sta32x_limiter_release_rate[] = {
115 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
116 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
117 "0.0134", "0.0117", "0.0110", "0.0104" };
118
119 static const unsigned int sta32x_limiter_ac_attack_tlv[] = {
120 TLV_DB_RANGE_HEAD(2),
121 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
122 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
123 };
124
125 static const unsigned int sta32x_limiter_ac_release_tlv[] = {
126 TLV_DB_RANGE_HEAD(5),
127 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
128 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
129 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
130 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
131 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
132 };
133
134 static const unsigned int sta32x_limiter_drc_attack_tlv[] = {
135 TLV_DB_RANGE_HEAD(3),
136 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
137 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
138 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
139 };
140
141 static const unsigned int sta32x_limiter_drc_release_tlv[] = {
142 TLV_DB_RANGE_HEAD(5),
143 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
144 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
145 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
146 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
147 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
148 };
149
150 static const struct soc_enum sta32x_drc_ac_enum =
151 SOC_ENUM_SINGLE(STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
152 2, sta32x_drc_ac);
153 static const struct soc_enum sta32x_auto_eq_enum =
154 SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
155 3, sta32x_auto_eq_mode);
156 static const struct soc_enum sta32x_auto_gc_enum =
157 SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
158 4, sta32x_auto_gc_mode);
159 static const struct soc_enum sta32x_auto_xo_enum =
160 SOC_ENUM_SINGLE(STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
161 16, sta32x_auto_xo_mode);
162 static const struct soc_enum sta32x_preset_eq_enum =
163 SOC_ENUM_SINGLE(STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
164 32, sta32x_preset_eq_mode);
165 static const struct soc_enum sta32x_limiter_ch1_enum =
166 SOC_ENUM_SINGLE(STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
167 3, sta32x_limiter_select);
168 static const struct soc_enum sta32x_limiter_ch2_enum =
169 SOC_ENUM_SINGLE(STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
170 3, sta32x_limiter_select);
171 static const struct soc_enum sta32x_limiter_ch3_enum =
172 SOC_ENUM_SINGLE(STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
173 3, sta32x_limiter_select);
174 static const struct soc_enum sta32x_limiter1_attack_rate_enum =
175 SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxA_SHIFT,
176 16, sta32x_limiter_attack_rate);
177 static const struct soc_enum sta32x_limiter2_attack_rate_enum =
178 SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxA_SHIFT,
179 16, sta32x_limiter_attack_rate);
180 static const struct soc_enum sta32x_limiter1_release_rate_enum =
181 SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxR_SHIFT,
182 16, sta32x_limiter_release_rate);
183 static const struct soc_enum sta32x_limiter2_release_rate_enum =
184 SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxR_SHIFT,
185 16, sta32x_limiter_release_rate);
186
187 /* byte array controls for setting biquad, mixer, scaling coefficients;
188 * for biquads all five coefficients need to be set in one go,
189 * mixer and pre/postscale coefs can be set individually;
190 * each coef is 24bit, the bytes are ordered in the same way
191 * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
192 */
193
194 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
195 struct snd_ctl_elem_info *uinfo)
196 {
197 int numcoef = kcontrol->private_value >> 16;
198 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
199 uinfo->count = 3 * numcoef;
200 return 0;
201 }
202
203 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
204 struct snd_ctl_elem_value *ucontrol)
205 {
206 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
207 int numcoef = kcontrol->private_value >> 16;
208 int index = kcontrol->private_value & 0xffff;
209 unsigned int cfud;
210 int i;
211
212 /* preserve reserved bits in STA32X_CFUD */
213 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
214 /* chip documentation does not say if the bits are self clearing,
215 * so do it explicitly */
216 snd_soc_write(codec, STA32X_CFUD, cfud);
217
218 snd_soc_write(codec, STA32X_CFADDR2, index);
219 if (numcoef == 1)
220 snd_soc_write(codec, STA32X_CFUD, cfud | 0x04);
221 else if (numcoef == 5)
222 snd_soc_write(codec, STA32X_CFUD, cfud | 0x08);
223 else
224 return -EINVAL;
225 for (i = 0; i < 3 * numcoef; i++)
226 ucontrol->value.bytes.data[i] =
227 snd_soc_read(codec, STA32X_B1CF1 + i);
228
229 return 0;
230 }
231
232 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
233 struct snd_ctl_elem_value *ucontrol)
234 {
235 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
236 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
237 int numcoef = kcontrol->private_value >> 16;
238 int index = kcontrol->private_value & 0xffff;
239 unsigned int cfud;
240 int i;
241
242 /* preserve reserved bits in STA32X_CFUD */
243 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
244 /* chip documentation does not say if the bits are self clearing,
245 * so do it explicitly */
246 snd_soc_write(codec, STA32X_CFUD, cfud);
247
248 snd_soc_write(codec, STA32X_CFADDR2, index);
249 for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
250 sta32x->coef_shadow[index + i] =
251 (ucontrol->value.bytes.data[3 * i] << 16)
252 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
253 | (ucontrol->value.bytes.data[3 * i + 2]);
254 for (i = 0; i < 3 * numcoef; i++)
255 snd_soc_write(codec, STA32X_B1CF1 + i,
256 ucontrol->value.bytes.data[i]);
257 if (numcoef == 1)
258 snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
259 else if (numcoef == 5)
260 snd_soc_write(codec, STA32X_CFUD, cfud | 0x02);
261 else
262 return -EINVAL;
263
264 return 0;
265 }
266
267 static int sta32x_sync_coef_shadow(struct snd_soc_codec *codec)
268 {
269 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
270 unsigned int cfud;
271 int i;
272
273 /* preserve reserved bits in STA32X_CFUD */
274 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
275
276 for (i = 0; i < STA32X_COEF_COUNT; i++) {
277 snd_soc_write(codec, STA32X_CFADDR2, i);
278 snd_soc_write(codec, STA32X_B1CF1,
279 (sta32x->coef_shadow[i] >> 16) & 0xff);
280 snd_soc_write(codec, STA32X_B1CF2,
281 (sta32x->coef_shadow[i] >> 8) & 0xff);
282 snd_soc_write(codec, STA32X_B1CF3,
283 (sta32x->coef_shadow[i]) & 0xff);
284 /* chip documentation does not say if the bits are
285 * self-clearing, so do it explicitly */
286 snd_soc_write(codec, STA32X_CFUD, cfud);
287 snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
288 }
289 return 0;
290 }
291
292 static int sta32x_cache_sync(struct snd_soc_codec *codec)
293 {
294 unsigned int mute;
295 int rc;
296
297 if (!codec->cache_sync)
298 return 0;
299
300 /* mute during register sync */
301 mute = snd_soc_read(codec, STA32X_MMUTE);
302 snd_soc_write(codec, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
303 sta32x_sync_coef_shadow(codec);
304 rc = snd_soc_cache_sync(codec);
305 snd_soc_write(codec, STA32X_MMUTE, mute);
306 return rc;
307 }
308
309 /* work around ESD issue where sta32x resets and loses all configuration */
310 static void sta32x_watchdog(struct work_struct *work)
311 {
312 struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
313 watchdog_work.work);
314 struct snd_soc_codec *codec = sta32x->codec;
315 unsigned int confa, confa_cached;
316
317 /* check if sta32x has reset itself */
318 confa_cached = snd_soc_read(codec, STA32X_CONFA);
319 codec->cache_bypass = 1;
320 confa = snd_soc_read(codec, STA32X_CONFA);
321 codec->cache_bypass = 0;
322 if (confa != confa_cached) {
323 codec->cache_sync = 1;
324 sta32x_cache_sync(codec);
325 }
326
327 if (!sta32x->shutdown)
328 schedule_delayed_work(&sta32x->watchdog_work,
329 round_jiffies_relative(HZ));
330 }
331
332 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
333 {
334 if (sta32x->pdata->needs_esd_watchdog) {
335 sta32x->shutdown = 0;
336 schedule_delayed_work(&sta32x->watchdog_work,
337 round_jiffies_relative(HZ));
338 }
339 }
340
341 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
342 {
343 if (sta32x->pdata->needs_esd_watchdog) {
344 sta32x->shutdown = 1;
345 cancel_delayed_work_sync(&sta32x->watchdog_work);
346 }
347 }
348
349 #define SINGLE_COEF(xname, index) \
350 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
351 .info = sta32x_coefficient_info, \
352 .get = sta32x_coefficient_get,\
353 .put = sta32x_coefficient_put, \
354 .private_value = index | (1 << 16) }
355
356 #define BIQUAD_COEFS(xname, index) \
357 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
358 .info = sta32x_coefficient_info, \
359 .get = sta32x_coefficient_get,\
360 .put = sta32x_coefficient_put, \
361 .private_value = index | (5 << 16) }
362
363 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
364 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
365 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
366 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
367 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
368 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
369 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
370 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
371 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
372 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
373 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
374 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
375 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
376 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
377 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
378 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
379 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
380 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
381 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
382 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
383 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
384 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
385 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
386 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
387 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
388 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
389 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
390 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
391 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
392 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
393 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
394 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
395 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
396 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
397 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
398
399 /* depending on mode, the attack/release thresholds have
400 * two different enum definitions; provide both
401 */
402 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
403 16, 0, sta32x_limiter_ac_attack_tlv),
404 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
405 16, 0, sta32x_limiter_ac_attack_tlv),
406 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
407 16, 0, sta32x_limiter_ac_release_tlv),
408 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
409 16, 0, sta32x_limiter_ac_release_tlv),
410 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
411 16, 0, sta32x_limiter_drc_attack_tlv),
412 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
413 16, 0, sta32x_limiter_drc_attack_tlv),
414 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
415 16, 0, sta32x_limiter_drc_release_tlv),
416 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
417 16, 0, sta32x_limiter_drc_release_tlv),
418
419 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
420 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
421 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
422 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
423 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
424 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
425 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
426 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
427 BIQUAD_COEFS("High-pass", 40),
428 BIQUAD_COEFS("Low-pass", 45),
429 SINGLE_COEF("Ch1 - Prescale", 50),
430 SINGLE_COEF("Ch2 - Prescale", 51),
431 SINGLE_COEF("Ch1 - Postscale", 52),
432 SINGLE_COEF("Ch2 - Postscale", 53),
433 SINGLE_COEF("Ch3 - Postscale", 54),
434 SINGLE_COEF("Thermal warning - Postscale", 55),
435 SINGLE_COEF("Ch1 - Mix 1", 56),
436 SINGLE_COEF("Ch1 - Mix 2", 57),
437 SINGLE_COEF("Ch2 - Mix 1", 58),
438 SINGLE_COEF("Ch2 - Mix 2", 59),
439 SINGLE_COEF("Ch3 - Mix 1", 60),
440 SINGLE_COEF("Ch3 - Mix 2", 61),
441 };
442
443 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
444 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
445 SND_SOC_DAPM_OUTPUT("LEFT"),
446 SND_SOC_DAPM_OUTPUT("RIGHT"),
447 SND_SOC_DAPM_OUTPUT("SUB"),
448 };
449
450 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
451 { "LEFT", NULL, "DAC" },
452 { "RIGHT", NULL, "DAC" },
453 { "SUB", NULL, "DAC" },
454 };
455
456 /* MCLK interpolation ratio per fs */
457 static struct {
458 int fs;
459 int ir;
460 } interpolation_ratios[] = {
461 { 32000, 0 },
462 { 44100, 0 },
463 { 48000, 0 },
464 { 88200, 1 },
465 { 96000, 1 },
466 { 176400, 2 },
467 { 192000, 2 },
468 };
469
470 /* MCLK to fs clock ratios */
471 static struct {
472 int ratio;
473 int mcs;
474 } mclk_ratios[3][7] = {
475 { { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 },
476 { 128, 4 }, { 576, 5 }, { 0, 0 } },
477 { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
478 { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
479 };
480
481
482 /**
483 * sta32x_set_dai_sysclk - configure MCLK
484 * @codec_dai: the codec DAI
485 * @clk_id: the clock ID (ignored)
486 * @freq: the MCLK input frequency
487 * @dir: the clock direction (ignored)
488 *
489 * The value of MCLK is used to determine which sample rates are supported
490 * by the STA32X, based on the mclk_ratios table.
491 *
492 * This function must be called by the machine driver's 'startup' function,
493 * otherwise the list of supported sample rates will not be available in
494 * time for ALSA.
495 *
496 * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
497 * theoretically possible sample rates to be enabled. Call it again with a
498 * proper value set one the external clock is set (most probably you would do
499 * that from a machine's driver 'hw_param' hook.
500 */
501 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
502 int clk_id, unsigned int freq, int dir)
503 {
504 struct snd_soc_codec *codec = codec_dai->codec;
505 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
506 int i, j, ir, fs;
507 unsigned int rates = 0;
508 unsigned int rate_min = -1;
509 unsigned int rate_max = 0;
510
511 pr_debug("mclk=%u\n", freq);
512 sta32x->mclk = freq;
513
514 if (sta32x->mclk) {
515 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
516 ir = interpolation_ratios[i].ir;
517 fs = interpolation_ratios[i].fs;
518 for (j = 0; mclk_ratios[ir][j].ratio; j++) {
519 if (mclk_ratios[ir][j].ratio * fs == freq) {
520 rates |= snd_pcm_rate_to_rate_bit(fs);
521 if (fs < rate_min)
522 rate_min = fs;
523 if (fs > rate_max)
524 rate_max = fs;
525 break;
526 }
527 }
528 }
529 /* FIXME: soc should support a rate list */
530 rates &= ~SNDRV_PCM_RATE_KNOT;
531
532 if (!rates) {
533 dev_err(codec->dev, "could not find a valid sample rate\n");
534 return -EINVAL;
535 }
536 } else {
537 /* enable all possible rates */
538 rates = STA32X_RATES;
539 rate_min = 32000;
540 rate_max = 192000;
541 }
542
543 codec_dai->driver->playback.rates = rates;
544 codec_dai->driver->playback.rate_min = rate_min;
545 codec_dai->driver->playback.rate_max = rate_max;
546 return 0;
547 }
548
549 /**
550 * sta32x_set_dai_fmt - configure the codec for the selected audio format
551 * @codec_dai: the codec DAI
552 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
553 *
554 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
555 * codec accordingly.
556 */
557 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
558 unsigned int fmt)
559 {
560 struct snd_soc_codec *codec = codec_dai->codec;
561 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
562 u8 confb = snd_soc_read(codec, STA32X_CONFB);
563
564 pr_debug("\n");
565 confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM);
566
567 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
568 case SND_SOC_DAIFMT_CBS_CFS:
569 break;
570 default:
571 return -EINVAL;
572 }
573
574 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
575 case SND_SOC_DAIFMT_I2S:
576 case SND_SOC_DAIFMT_RIGHT_J:
577 case SND_SOC_DAIFMT_LEFT_J:
578 sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
579 break;
580 default:
581 return -EINVAL;
582 }
583
584 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
585 case SND_SOC_DAIFMT_NB_NF:
586 confb |= STA32X_CONFB_C2IM;
587 break;
588 case SND_SOC_DAIFMT_NB_IF:
589 confb |= STA32X_CONFB_C1IM;
590 break;
591 default:
592 return -EINVAL;
593 }
594
595 snd_soc_write(codec, STA32X_CONFB, confb);
596 return 0;
597 }
598
599 /**
600 * sta32x_hw_params - program the STA32X with the given hardware parameters.
601 * @substream: the audio stream
602 * @params: the hardware parameters to set
603 * @dai: the SOC DAI (ignored)
604 *
605 * This function programs the hardware with the values provided.
606 * Specifically, the sample rate and the data format.
607 */
608 static int sta32x_hw_params(struct snd_pcm_substream *substream,
609 struct snd_pcm_hw_params *params,
610 struct snd_soc_dai *dai)
611 {
612 struct snd_soc_codec *codec = dai->codec;
613 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
614 unsigned int rate;
615 int i, mcs = -1, ir = -1;
616 u8 confa, confb;
617
618 rate = params_rate(params);
619 pr_debug("rate: %u\n", rate);
620 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++)
621 if (interpolation_ratios[i].fs == rate) {
622 ir = interpolation_ratios[i].ir;
623 break;
624 }
625 if (ir < 0)
626 return -EINVAL;
627 for (i = 0; mclk_ratios[ir][i].ratio; i++)
628 if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk) {
629 mcs = mclk_ratios[ir][i].mcs;
630 break;
631 }
632 if (mcs < 0)
633 return -EINVAL;
634
635 confa = snd_soc_read(codec, STA32X_CONFA);
636 confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK);
637 confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT);
638
639 confb = snd_soc_read(codec, STA32X_CONFB);
640 confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB);
641 switch (params_format(params)) {
642 case SNDRV_PCM_FORMAT_S24_LE:
643 case SNDRV_PCM_FORMAT_S24_BE:
644 case SNDRV_PCM_FORMAT_S24_3LE:
645 case SNDRV_PCM_FORMAT_S24_3BE:
646 pr_debug("24bit\n");
647 /* fall through */
648 case SNDRV_PCM_FORMAT_S32_LE:
649 case SNDRV_PCM_FORMAT_S32_BE:
650 pr_debug("24bit or 32bit\n");
651 switch (sta32x->format) {
652 case SND_SOC_DAIFMT_I2S:
653 confb |= 0x0;
654 break;
655 case SND_SOC_DAIFMT_LEFT_J:
656 confb |= 0x1;
657 break;
658 case SND_SOC_DAIFMT_RIGHT_J:
659 confb |= 0x2;
660 break;
661 }
662
663 break;
664 case SNDRV_PCM_FORMAT_S20_3LE:
665 case SNDRV_PCM_FORMAT_S20_3BE:
666 pr_debug("20bit\n");
667 switch (sta32x->format) {
668 case SND_SOC_DAIFMT_I2S:
669 confb |= 0x4;
670 break;
671 case SND_SOC_DAIFMT_LEFT_J:
672 confb |= 0x5;
673 break;
674 case SND_SOC_DAIFMT_RIGHT_J:
675 confb |= 0x6;
676 break;
677 }
678
679 break;
680 case SNDRV_PCM_FORMAT_S18_3LE:
681 case SNDRV_PCM_FORMAT_S18_3BE:
682 pr_debug("18bit\n");
683 switch (sta32x->format) {
684 case SND_SOC_DAIFMT_I2S:
685 confb |= 0x8;
686 break;
687 case SND_SOC_DAIFMT_LEFT_J:
688 confb |= 0x9;
689 break;
690 case SND_SOC_DAIFMT_RIGHT_J:
691 confb |= 0xa;
692 break;
693 }
694
695 break;
696 case SNDRV_PCM_FORMAT_S16_LE:
697 case SNDRV_PCM_FORMAT_S16_BE:
698 pr_debug("16bit\n");
699 switch (sta32x->format) {
700 case SND_SOC_DAIFMT_I2S:
701 confb |= 0x0;
702 break;
703 case SND_SOC_DAIFMT_LEFT_J:
704 confb |= 0xd;
705 break;
706 case SND_SOC_DAIFMT_RIGHT_J:
707 confb |= 0xe;
708 break;
709 }
710
711 break;
712 default:
713 return -EINVAL;
714 }
715
716 snd_soc_write(codec, STA32X_CONFA, confa);
717 snd_soc_write(codec, STA32X_CONFB, confb);
718 return 0;
719 }
720
721 /**
722 * sta32x_set_bias_level - DAPM callback
723 * @codec: the codec device
724 * @level: DAPM power level
725 *
726 * This is called by ALSA to put the codec into low power mode
727 * or to wake it up. If the codec is powered off completely
728 * all registers must be restored after power on.
729 */
730 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
731 enum snd_soc_bias_level level)
732 {
733 int ret;
734 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
735
736 pr_debug("level = %d\n", level);
737 switch (level) {
738 case SND_SOC_BIAS_ON:
739 break;
740
741 case SND_SOC_BIAS_PREPARE:
742 /* Full power on */
743 snd_soc_update_bits(codec, STA32X_CONFF,
744 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
745 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
746 break;
747
748 case SND_SOC_BIAS_STANDBY:
749 if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
750 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
751 sta32x->supplies);
752 if (ret != 0) {
753 dev_err(codec->dev,
754 "Failed to enable supplies: %d\n", ret);
755 return ret;
756 }
757
758 sta32x_cache_sync(codec);
759 sta32x_watchdog_start(sta32x);
760 }
761
762 /* Power up to mute */
763 /* FIXME */
764 snd_soc_update_bits(codec, STA32X_CONFF,
765 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
766 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
767
768 break;
769
770 case SND_SOC_BIAS_OFF:
771 /* The chip runs through the power down sequence for us. */
772 snd_soc_update_bits(codec, STA32X_CONFF,
773 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
774 STA32X_CONFF_PWDN);
775 msleep(300);
776 sta32x_watchdog_stop(sta32x);
777 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
778 sta32x->supplies);
779 break;
780 }
781 codec->dapm.bias_level = level;
782 return 0;
783 }
784
785 static const struct snd_soc_dai_ops sta32x_dai_ops = {
786 .hw_params = sta32x_hw_params,
787 .set_sysclk = sta32x_set_dai_sysclk,
788 .set_fmt = sta32x_set_dai_fmt,
789 };
790
791 static struct snd_soc_dai_driver sta32x_dai = {
792 .name = "STA32X",
793 .playback = {
794 .stream_name = "Playback",
795 .channels_min = 2,
796 .channels_max = 2,
797 .rates = STA32X_RATES,
798 .formats = STA32X_FORMATS,
799 },
800 .ops = &sta32x_dai_ops,
801 };
802
803 #ifdef CONFIG_PM
804 static int sta32x_suspend(struct snd_soc_codec *codec)
805 {
806 sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
807 return 0;
808 }
809
810 static int sta32x_resume(struct snd_soc_codec *codec)
811 {
812 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
813 return 0;
814 }
815 #else
816 #define sta32x_suspend NULL
817 #define sta32x_resume NULL
818 #endif
819
820 static int sta32x_probe(struct snd_soc_codec *codec)
821 {
822 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
823 int i, ret = 0, thermal = 0;
824
825 sta32x->codec = codec;
826 sta32x->pdata = dev_get_platdata(codec->dev);
827
828 /* regulators */
829 for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
830 sta32x->supplies[i].supply = sta32x_supply_names[i];
831
832 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sta32x->supplies),
833 sta32x->supplies);
834 if (ret != 0) {
835 dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
836 goto err;
837 }
838
839 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
840 sta32x->supplies);
841 if (ret != 0) {
842 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
843 goto err_get;
844 }
845
846 /* Tell ASoC what kind of I/O to use to read the registers. ASoC will
847 * then do the I2C transactions itself.
848 */
849 ret = snd_soc_codec_set_cache_io(codec, 8, 8, SND_SOC_I2C);
850 if (ret < 0) {
851 dev_err(codec->dev, "failed to set cache I/O (ret=%i)\n", ret);
852 return ret;
853 }
854
855 /* Chip documentation explicitly requires that the reset values
856 * of reserved register bits are left untouched.
857 * Write the register default value to cache for reserved registers,
858 * so the write to the these registers are suppressed by the cache
859 * restore code when it skips writes of default registers.
860 */
861 snd_soc_cache_write(codec, STA32X_CONFC, 0xc2);
862 snd_soc_cache_write(codec, STA32X_CONFE, 0xc2);
863 snd_soc_cache_write(codec, STA32X_CONFF, 0x5c);
864 snd_soc_cache_write(codec, STA32X_MMUTE, 0x10);
865 snd_soc_cache_write(codec, STA32X_AUTO1, 0x60);
866 snd_soc_cache_write(codec, STA32X_AUTO3, 0x00);
867 snd_soc_cache_write(codec, STA32X_C3CFG, 0x40);
868
869 /* set thermal warning adjustment and recovery */
870 if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_ADJUSTMENT_ENABLE))
871 thermal |= STA32X_CONFA_TWAB;
872 if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_RECOVERY_ENABLE))
873 thermal |= STA32X_CONFA_TWRB;
874 snd_soc_update_bits(codec, STA32X_CONFA,
875 STA32X_CONFA_TWAB | STA32X_CONFA_TWRB,
876 thermal);
877
878 /* select output configuration */
879 snd_soc_update_bits(codec, STA32X_CONFF,
880 STA32X_CONFF_OCFG_MASK,
881 sta32x->pdata->output_conf
882 << STA32X_CONFF_OCFG_SHIFT);
883
884 /* channel to output mapping */
885 snd_soc_update_bits(codec, STA32X_C1CFG,
886 STA32X_CxCFG_OM_MASK,
887 sta32x->pdata->ch1_output_mapping
888 << STA32X_CxCFG_OM_SHIFT);
889 snd_soc_update_bits(codec, STA32X_C2CFG,
890 STA32X_CxCFG_OM_MASK,
891 sta32x->pdata->ch2_output_mapping
892 << STA32X_CxCFG_OM_SHIFT);
893 snd_soc_update_bits(codec, STA32X_C3CFG,
894 STA32X_CxCFG_OM_MASK,
895 sta32x->pdata->ch3_output_mapping
896 << STA32X_CxCFG_OM_SHIFT);
897
898 /* initialize coefficient shadow RAM with reset values */
899 for (i = 4; i <= 49; i += 5)
900 sta32x->coef_shadow[i] = 0x400000;
901 for (i = 50; i <= 54; i++)
902 sta32x->coef_shadow[i] = 0x7fffff;
903 sta32x->coef_shadow[55] = 0x5a9df7;
904 sta32x->coef_shadow[56] = 0x7fffff;
905 sta32x->coef_shadow[59] = 0x7fffff;
906 sta32x->coef_shadow[60] = 0x400000;
907 sta32x->coef_shadow[61] = 0x400000;
908
909 if (sta32x->pdata->needs_esd_watchdog)
910 INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
911
912 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
913 /* Bias level configuration will have done an extra enable */
914 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
915
916 return 0;
917
918 err_get:
919 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
920 err:
921 return ret;
922 }
923
924 static int sta32x_remove(struct snd_soc_codec *codec)
925 {
926 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
927
928 sta32x_watchdog_stop(sta32x);
929 sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
930 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
931 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
932
933 return 0;
934 }
935
936 static int sta32x_reg_is_volatile(struct snd_soc_codec *codec,
937 unsigned int reg)
938 {
939 switch (reg) {
940 case STA32X_CONFA ... STA32X_L2ATRT:
941 case STA32X_MPCC1 ... STA32X_FDRC2:
942 return 0;
943 }
944 return 1;
945 }
946
947 static const struct snd_soc_codec_driver sta32x_codec = {
948 .probe = sta32x_probe,
949 .remove = sta32x_remove,
950 .suspend = sta32x_suspend,
951 .resume = sta32x_resume,
952 .reg_cache_size = STA32X_REGISTER_COUNT,
953 .reg_word_size = sizeof(u8),
954 .reg_cache_default = sta32x_regs,
955 .volatile_register = sta32x_reg_is_volatile,
956 .set_bias_level = sta32x_set_bias_level,
957 .controls = sta32x_snd_controls,
958 .num_controls = ARRAY_SIZE(sta32x_snd_controls),
959 .dapm_widgets = sta32x_dapm_widgets,
960 .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets),
961 .dapm_routes = sta32x_dapm_routes,
962 .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes),
963 };
964
965 static __devinit int sta32x_i2c_probe(struct i2c_client *i2c,
966 const struct i2c_device_id *id)
967 {
968 struct sta32x_priv *sta32x;
969 int ret;
970
971 sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
972 GFP_KERNEL);
973 if (!sta32x)
974 return -ENOMEM;
975
976 i2c_set_clientdata(i2c, sta32x);
977
978 ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1);
979 if (ret != 0)
980 dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
981
982 return ret;
983 }
984
985 static __devexit int sta32x_i2c_remove(struct i2c_client *client)
986 {
987 snd_soc_unregister_codec(&client->dev);
988 return 0;
989 }
990
991 static const struct i2c_device_id sta32x_i2c_id[] = {
992 { "sta326", 0 },
993 { "sta328", 0 },
994 { "sta329", 0 },
995 { }
996 };
997 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
998
999 static struct i2c_driver sta32x_i2c_driver = {
1000 .driver = {
1001 .name = "sta32x",
1002 .owner = THIS_MODULE,
1003 },
1004 .probe = sta32x_i2c_probe,
1005 .remove = __devexit_p(sta32x_i2c_remove),
1006 .id_table = sta32x_i2c_id,
1007 };
1008
1009 module_i2c_driver(sta32x_i2c_driver);
1010
1011 MODULE_DESCRIPTION("ASoC STA32X driver");
1012 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1013 MODULE_LICENSE("GPL");
This page took 0.051732 seconds and 4 git commands to generate.