Merge branch 'for-chris' of git://git.jan-o-sch.net/btrfs-unstable into integration
[deliverable/linux.git] / sound / soc / codecs / sta32x.c
1 /*
2 * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3 *
4 * Copyright: 2011 Raumfeld GmbH
5 * Author: Johannes Stezenbach <js@sig21.net>
6 *
7 * based on code from:
8 * Wolfson Microelectronics PLC.
9 * Mark Brown <broonie@opensource.wolfsonmicro.com>
10 * Freescale Semiconductor, Inc.
11 * Timur Tabi <timur@freescale.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 #include <sound/soc-dapm.h>
35 #include <sound/initval.h>
36 #include <sound/tlv.h>
37
38 #include "sta32x.h"
39
40 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
41 SNDRV_PCM_RATE_44100 | \
42 SNDRV_PCM_RATE_48000 | \
43 SNDRV_PCM_RATE_88200 | \
44 SNDRV_PCM_RATE_96000 | \
45 SNDRV_PCM_RATE_176400 | \
46 SNDRV_PCM_RATE_192000)
47
48 #define STA32X_FORMATS \
49 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
50 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
51 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
52 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
53 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
54 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
55
56 /* Power-up register defaults */
57 static const u8 sta32x_regs[STA32X_REGISTER_COUNT] = {
58 0x63, 0x80, 0xc2, 0x40, 0xc2, 0x5c, 0x10, 0xff, 0x60, 0x60,
59 0x60, 0x80, 0x00, 0x00, 0x00, 0x40, 0x80, 0x77, 0x6a, 0x69,
60 0x6a, 0x69, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
61 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d,
62 0xc0, 0xf3, 0x33, 0x00, 0x0c,
63 };
64
65 /* regulator power supply names */
66 static const char *sta32x_supply_names[] = {
67 "Vdda", /* analog supply, 3.3VV */
68 "Vdd3", /* digital supply, 3.3V */
69 "Vcc" /* power amp spply, 10V - 36V */
70 };
71
72 /* codec private data */
73 struct sta32x_priv {
74 struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
75 struct snd_soc_codec *codec;
76
77 unsigned int mclk;
78 unsigned int format;
79
80 u32 coef_shadow[STA32X_COEF_COUNT];
81 };
82
83 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
84 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
85 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
86
87 static const char *sta32x_drc_ac[] = {
88 "Anti-Clipping", "Dynamic Range Compression" };
89 static const char *sta32x_auto_eq_mode[] = {
90 "User", "Preset", "Loudness" };
91 static const char *sta32x_auto_gc_mode[] = {
92 "User", "AC no clipping", "AC limited clipping (10%)",
93 "DRC nighttime listening mode" };
94 static const char *sta32x_auto_xo_mode[] = {
95 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
96 "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
97 static const char *sta32x_preset_eq_mode[] = {
98 "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
99 "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
100 "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
101 "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
102 "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
103 "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
104 static const char *sta32x_limiter_select[] = {
105 "Limiter Disabled", "Limiter #1", "Limiter #2" };
106 static const char *sta32x_limiter_attack_rate[] = {
107 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
108 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
109 "0.0645", "0.0564", "0.0501", "0.0451" };
110 static const char *sta32x_limiter_release_rate[] = {
111 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
112 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
113 "0.0134", "0.0117", "0.0110", "0.0104" };
114
115 static const unsigned int sta32x_limiter_ac_attack_tlv[] = {
116 TLV_DB_RANGE_HEAD(2),
117 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
118 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
119 };
120
121 static const unsigned int sta32x_limiter_ac_release_tlv[] = {
122 TLV_DB_RANGE_HEAD(5),
123 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
124 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
125 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
126 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
127 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
128 };
129
130 static const unsigned int sta32x_limiter_drc_attack_tlv[] = {
131 TLV_DB_RANGE_HEAD(3),
132 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
133 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
134 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
135 };
136
137 static const unsigned int sta32x_limiter_drc_release_tlv[] = {
138 TLV_DB_RANGE_HEAD(5),
139 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
140 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
141 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
142 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
143 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
144 };
145
146 static const struct soc_enum sta32x_drc_ac_enum =
147 SOC_ENUM_SINGLE(STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
148 2, sta32x_drc_ac);
149 static const struct soc_enum sta32x_auto_eq_enum =
150 SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
151 3, sta32x_auto_eq_mode);
152 static const struct soc_enum sta32x_auto_gc_enum =
153 SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
154 4, sta32x_auto_gc_mode);
155 static const struct soc_enum sta32x_auto_xo_enum =
156 SOC_ENUM_SINGLE(STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
157 16, sta32x_auto_xo_mode);
158 static const struct soc_enum sta32x_preset_eq_enum =
159 SOC_ENUM_SINGLE(STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
160 32, sta32x_preset_eq_mode);
161 static const struct soc_enum sta32x_limiter_ch1_enum =
162 SOC_ENUM_SINGLE(STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
163 3, sta32x_limiter_select);
164 static const struct soc_enum sta32x_limiter_ch2_enum =
165 SOC_ENUM_SINGLE(STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
166 3, sta32x_limiter_select);
167 static const struct soc_enum sta32x_limiter_ch3_enum =
168 SOC_ENUM_SINGLE(STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
169 3, sta32x_limiter_select);
170 static const struct soc_enum sta32x_limiter1_attack_rate_enum =
171 SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxA_SHIFT,
172 16, sta32x_limiter_attack_rate);
173 static const struct soc_enum sta32x_limiter2_attack_rate_enum =
174 SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxA_SHIFT,
175 16, sta32x_limiter_attack_rate);
176 static const struct soc_enum sta32x_limiter1_release_rate_enum =
177 SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxR_SHIFT,
178 16, sta32x_limiter_release_rate);
179 static const struct soc_enum sta32x_limiter2_release_rate_enum =
180 SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxR_SHIFT,
181 16, sta32x_limiter_release_rate);
182
183 /* byte array controls for setting biquad, mixer, scaling coefficients;
184 * for biquads all five coefficients need to be set in one go,
185 * mixer and pre/postscale coefs can be set individually;
186 * each coef is 24bit, the bytes are ordered in the same way
187 * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
188 */
189
190 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
191 struct snd_ctl_elem_info *uinfo)
192 {
193 int numcoef = kcontrol->private_value >> 16;
194 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
195 uinfo->count = 3 * numcoef;
196 return 0;
197 }
198
199 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
200 struct snd_ctl_elem_value *ucontrol)
201 {
202 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
203 int numcoef = kcontrol->private_value >> 16;
204 int index = kcontrol->private_value & 0xffff;
205 unsigned int cfud;
206 int i;
207
208 /* preserve reserved bits in STA32X_CFUD */
209 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
210 /* chip documentation does not say if the bits are self clearing,
211 * so do it explicitly */
212 snd_soc_write(codec, STA32X_CFUD, cfud);
213
214 snd_soc_write(codec, STA32X_CFADDR2, index);
215 if (numcoef == 1)
216 snd_soc_write(codec, STA32X_CFUD, cfud | 0x04);
217 else if (numcoef == 5)
218 snd_soc_write(codec, STA32X_CFUD, cfud | 0x08);
219 else
220 return -EINVAL;
221 for (i = 0; i < 3 * numcoef; i++)
222 ucontrol->value.bytes.data[i] =
223 snd_soc_read(codec, STA32X_B1CF1 + i);
224
225 return 0;
226 }
227
228 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
229 struct snd_ctl_elem_value *ucontrol)
230 {
231 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
232 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
233 int numcoef = kcontrol->private_value >> 16;
234 int index = kcontrol->private_value & 0xffff;
235 unsigned int cfud;
236 int i;
237
238 /* preserve reserved bits in STA32X_CFUD */
239 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
240 /* chip documentation does not say if the bits are self clearing,
241 * so do it explicitly */
242 snd_soc_write(codec, STA32X_CFUD, cfud);
243
244 snd_soc_write(codec, STA32X_CFADDR2, index);
245 for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
246 sta32x->coef_shadow[index + i] =
247 (ucontrol->value.bytes.data[3 * i] << 16)
248 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
249 | (ucontrol->value.bytes.data[3 * i + 2]);
250 for (i = 0; i < 3 * numcoef; i++)
251 snd_soc_write(codec, STA32X_B1CF1 + i,
252 ucontrol->value.bytes.data[i]);
253 if (numcoef == 1)
254 snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
255 else if (numcoef == 5)
256 snd_soc_write(codec, STA32X_CFUD, cfud | 0x02);
257 else
258 return -EINVAL;
259
260 return 0;
261 }
262
263 int sta32x_sync_coef_shadow(struct snd_soc_codec *codec)
264 {
265 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
266 unsigned int cfud;
267 int i;
268
269 /* preserve reserved bits in STA32X_CFUD */
270 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
271
272 for (i = 0; i < STA32X_COEF_COUNT; i++) {
273 snd_soc_write(codec, STA32X_CFADDR2, i);
274 snd_soc_write(codec, STA32X_B1CF1,
275 (sta32x->coef_shadow[i] >> 16) & 0xff);
276 snd_soc_write(codec, STA32X_B1CF2,
277 (sta32x->coef_shadow[i] >> 8) & 0xff);
278 snd_soc_write(codec, STA32X_B1CF3,
279 (sta32x->coef_shadow[i]) & 0xff);
280 /* chip documentation does not say if the bits are
281 * self-clearing, so do it explicitly */
282 snd_soc_write(codec, STA32X_CFUD, cfud);
283 snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
284 }
285 return 0;
286 }
287
288 int sta32x_cache_sync(struct snd_soc_codec *codec)
289 {
290 unsigned int mute;
291 int rc;
292
293 if (!codec->cache_sync)
294 return 0;
295
296 /* mute during register sync */
297 mute = snd_soc_read(codec, STA32X_MMUTE);
298 snd_soc_write(codec, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
299 sta32x_sync_coef_shadow(codec);
300 rc = snd_soc_cache_sync(codec);
301 snd_soc_write(codec, STA32X_MMUTE, mute);
302 return rc;
303 }
304
305 #define SINGLE_COEF(xname, index) \
306 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
307 .info = sta32x_coefficient_info, \
308 .get = sta32x_coefficient_get,\
309 .put = sta32x_coefficient_put, \
310 .private_value = index | (1 << 16) }
311
312 #define BIQUAD_COEFS(xname, index) \
313 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
314 .info = sta32x_coefficient_info, \
315 .get = sta32x_coefficient_get,\
316 .put = sta32x_coefficient_put, \
317 .private_value = index | (5 << 16) }
318
319 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
320 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
321 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
322 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
323 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
324 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
325 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
326 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
327 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
328 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
329 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
330 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
331 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
332 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
333 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
334 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
335 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
336 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
337 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
338 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
339 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
340 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
341 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
342 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
343 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
344 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
345 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
346 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
347 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
348 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
349 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
350 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
351 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
352 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
353 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
354
355 /* depending on mode, the attack/release thresholds have
356 * two different enum definitions; provide both
357 */
358 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
359 16, 0, sta32x_limiter_ac_attack_tlv),
360 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
361 16, 0, sta32x_limiter_ac_attack_tlv),
362 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
363 16, 0, sta32x_limiter_ac_release_tlv),
364 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
365 16, 0, sta32x_limiter_ac_release_tlv),
366 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
367 16, 0, sta32x_limiter_drc_attack_tlv),
368 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
369 16, 0, sta32x_limiter_drc_attack_tlv),
370 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
371 16, 0, sta32x_limiter_drc_release_tlv),
372 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
373 16, 0, sta32x_limiter_drc_release_tlv),
374
375 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
376 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
377 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
378 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
379 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
380 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
381 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
382 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
383 BIQUAD_COEFS("High-pass", 40),
384 BIQUAD_COEFS("Low-pass", 45),
385 SINGLE_COEF("Ch1 - Prescale", 50),
386 SINGLE_COEF("Ch2 - Prescale", 51),
387 SINGLE_COEF("Ch1 - Postscale", 52),
388 SINGLE_COEF("Ch2 - Postscale", 53),
389 SINGLE_COEF("Ch3 - Postscale", 54),
390 SINGLE_COEF("Thermal warning - Postscale", 55),
391 SINGLE_COEF("Ch1 - Mix 1", 56),
392 SINGLE_COEF("Ch1 - Mix 2", 57),
393 SINGLE_COEF("Ch2 - Mix 1", 58),
394 SINGLE_COEF("Ch2 - Mix 2", 59),
395 SINGLE_COEF("Ch3 - Mix 1", 60),
396 SINGLE_COEF("Ch3 - Mix 2", 61),
397 };
398
399 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
400 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
401 SND_SOC_DAPM_OUTPUT("LEFT"),
402 SND_SOC_DAPM_OUTPUT("RIGHT"),
403 SND_SOC_DAPM_OUTPUT("SUB"),
404 };
405
406 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
407 { "LEFT", NULL, "DAC" },
408 { "RIGHT", NULL, "DAC" },
409 { "SUB", NULL, "DAC" },
410 };
411
412 /* MCLK interpolation ratio per fs */
413 static struct {
414 int fs;
415 int ir;
416 } interpolation_ratios[] = {
417 { 32000, 0 },
418 { 44100, 0 },
419 { 48000, 0 },
420 { 88200, 1 },
421 { 96000, 1 },
422 { 176400, 2 },
423 { 192000, 2 },
424 };
425
426 /* MCLK to fs clock ratios */
427 static struct {
428 int ratio;
429 int mcs;
430 } mclk_ratios[3][7] = {
431 { { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 },
432 { 128, 4 }, { 576, 5 }, { 0, 0 } },
433 { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
434 { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
435 };
436
437
438 /**
439 * sta32x_set_dai_sysclk - configure MCLK
440 * @codec_dai: the codec DAI
441 * @clk_id: the clock ID (ignored)
442 * @freq: the MCLK input frequency
443 * @dir: the clock direction (ignored)
444 *
445 * The value of MCLK is used to determine which sample rates are supported
446 * by the STA32X, based on the mclk_ratios table.
447 *
448 * This function must be called by the machine driver's 'startup' function,
449 * otherwise the list of supported sample rates will not be available in
450 * time for ALSA.
451 *
452 * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
453 * theoretically possible sample rates to be enabled. Call it again with a
454 * proper value set one the external clock is set (most probably you would do
455 * that from a machine's driver 'hw_param' hook.
456 */
457 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
458 int clk_id, unsigned int freq, int dir)
459 {
460 struct snd_soc_codec *codec = codec_dai->codec;
461 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
462 int i, j, ir, fs;
463 unsigned int rates = 0;
464 unsigned int rate_min = -1;
465 unsigned int rate_max = 0;
466
467 pr_debug("mclk=%u\n", freq);
468 sta32x->mclk = freq;
469
470 if (sta32x->mclk) {
471 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
472 ir = interpolation_ratios[i].ir;
473 fs = interpolation_ratios[i].fs;
474 for (j = 0; mclk_ratios[ir][j].ratio; j++) {
475 if (mclk_ratios[ir][j].ratio * fs == freq) {
476 rates |= snd_pcm_rate_to_rate_bit(fs);
477 if (fs < rate_min)
478 rate_min = fs;
479 if (fs > rate_max)
480 rate_max = fs;
481 }
482 }
483 }
484 /* FIXME: soc should support a rate list */
485 rates &= ~SNDRV_PCM_RATE_KNOT;
486
487 if (!rates) {
488 dev_err(codec->dev, "could not find a valid sample rate\n");
489 return -EINVAL;
490 }
491 } else {
492 /* enable all possible rates */
493 rates = STA32X_RATES;
494 rate_min = 32000;
495 rate_max = 192000;
496 }
497
498 codec_dai->driver->playback.rates = rates;
499 codec_dai->driver->playback.rate_min = rate_min;
500 codec_dai->driver->playback.rate_max = rate_max;
501 return 0;
502 }
503
504 /**
505 * sta32x_set_dai_fmt - configure the codec for the selected audio format
506 * @codec_dai: the codec DAI
507 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
508 *
509 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
510 * codec accordingly.
511 */
512 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
513 unsigned int fmt)
514 {
515 struct snd_soc_codec *codec = codec_dai->codec;
516 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
517 u8 confb = snd_soc_read(codec, STA32X_CONFB);
518
519 pr_debug("\n");
520 confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM);
521
522 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
523 case SND_SOC_DAIFMT_CBS_CFS:
524 break;
525 default:
526 return -EINVAL;
527 }
528
529 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
530 case SND_SOC_DAIFMT_I2S:
531 case SND_SOC_DAIFMT_RIGHT_J:
532 case SND_SOC_DAIFMT_LEFT_J:
533 sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
534 break;
535 default:
536 return -EINVAL;
537 }
538
539 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
540 case SND_SOC_DAIFMT_NB_NF:
541 confb |= STA32X_CONFB_C2IM;
542 break;
543 case SND_SOC_DAIFMT_NB_IF:
544 confb |= STA32X_CONFB_C1IM;
545 break;
546 default:
547 return -EINVAL;
548 }
549
550 snd_soc_write(codec, STA32X_CONFB, confb);
551 return 0;
552 }
553
554 /**
555 * sta32x_hw_params - program the STA32X with the given hardware parameters.
556 * @substream: the audio stream
557 * @params: the hardware parameters to set
558 * @dai: the SOC DAI (ignored)
559 *
560 * This function programs the hardware with the values provided.
561 * Specifically, the sample rate and the data format.
562 */
563 static int sta32x_hw_params(struct snd_pcm_substream *substream,
564 struct snd_pcm_hw_params *params,
565 struct snd_soc_dai *dai)
566 {
567 struct snd_soc_pcm_runtime *rtd = substream->private_data;
568 struct snd_soc_codec *codec = rtd->codec;
569 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
570 unsigned int rate;
571 int i, mcs = -1, ir = -1;
572 u8 confa, confb;
573
574 rate = params_rate(params);
575 pr_debug("rate: %u\n", rate);
576 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++)
577 if (interpolation_ratios[i].fs == rate) {
578 ir = interpolation_ratios[i].ir;
579 break;
580 }
581 if (ir < 0)
582 return -EINVAL;
583 for (i = 0; mclk_ratios[ir][i].ratio; i++)
584 if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk) {
585 mcs = mclk_ratios[ir][i].mcs;
586 break;
587 }
588 if (mcs < 0)
589 return -EINVAL;
590
591 confa = snd_soc_read(codec, STA32X_CONFA);
592 confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK);
593 confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT);
594
595 confb = snd_soc_read(codec, STA32X_CONFB);
596 confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB);
597 switch (params_format(params)) {
598 case SNDRV_PCM_FORMAT_S24_LE:
599 case SNDRV_PCM_FORMAT_S24_BE:
600 case SNDRV_PCM_FORMAT_S24_3LE:
601 case SNDRV_PCM_FORMAT_S24_3BE:
602 pr_debug("24bit\n");
603 /* fall through */
604 case SNDRV_PCM_FORMAT_S32_LE:
605 case SNDRV_PCM_FORMAT_S32_BE:
606 pr_debug("24bit or 32bit\n");
607 switch (sta32x->format) {
608 case SND_SOC_DAIFMT_I2S:
609 confb |= 0x0;
610 break;
611 case SND_SOC_DAIFMT_LEFT_J:
612 confb |= 0x1;
613 break;
614 case SND_SOC_DAIFMT_RIGHT_J:
615 confb |= 0x2;
616 break;
617 }
618
619 break;
620 case SNDRV_PCM_FORMAT_S20_3LE:
621 case SNDRV_PCM_FORMAT_S20_3BE:
622 pr_debug("20bit\n");
623 switch (sta32x->format) {
624 case SND_SOC_DAIFMT_I2S:
625 confb |= 0x4;
626 break;
627 case SND_SOC_DAIFMT_LEFT_J:
628 confb |= 0x5;
629 break;
630 case SND_SOC_DAIFMT_RIGHT_J:
631 confb |= 0x6;
632 break;
633 }
634
635 break;
636 case SNDRV_PCM_FORMAT_S18_3LE:
637 case SNDRV_PCM_FORMAT_S18_3BE:
638 pr_debug("18bit\n");
639 switch (sta32x->format) {
640 case SND_SOC_DAIFMT_I2S:
641 confb |= 0x8;
642 break;
643 case SND_SOC_DAIFMT_LEFT_J:
644 confb |= 0x9;
645 break;
646 case SND_SOC_DAIFMT_RIGHT_J:
647 confb |= 0xa;
648 break;
649 }
650
651 break;
652 case SNDRV_PCM_FORMAT_S16_LE:
653 case SNDRV_PCM_FORMAT_S16_BE:
654 pr_debug("16bit\n");
655 switch (sta32x->format) {
656 case SND_SOC_DAIFMT_I2S:
657 confb |= 0x0;
658 break;
659 case SND_SOC_DAIFMT_LEFT_J:
660 confb |= 0xd;
661 break;
662 case SND_SOC_DAIFMT_RIGHT_J:
663 confb |= 0xe;
664 break;
665 }
666
667 break;
668 default:
669 return -EINVAL;
670 }
671
672 snd_soc_write(codec, STA32X_CONFA, confa);
673 snd_soc_write(codec, STA32X_CONFB, confb);
674 return 0;
675 }
676
677 /**
678 * sta32x_set_bias_level - DAPM callback
679 * @codec: the codec device
680 * @level: DAPM power level
681 *
682 * This is called by ALSA to put the codec into low power mode
683 * or to wake it up. If the codec is powered off completely
684 * all registers must be restored after power on.
685 */
686 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
687 enum snd_soc_bias_level level)
688 {
689 int ret;
690 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
691
692 pr_debug("level = %d\n", level);
693 switch (level) {
694 case SND_SOC_BIAS_ON:
695 break;
696
697 case SND_SOC_BIAS_PREPARE:
698 /* Full power on */
699 snd_soc_update_bits(codec, STA32X_CONFF,
700 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
701 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
702 break;
703
704 case SND_SOC_BIAS_STANDBY:
705 if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
706 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
707 sta32x->supplies);
708 if (ret != 0) {
709 dev_err(codec->dev,
710 "Failed to enable supplies: %d\n", ret);
711 return ret;
712 }
713
714 sta32x_cache_sync(codec);
715 }
716
717 /* Power up to mute */
718 /* FIXME */
719 snd_soc_update_bits(codec, STA32X_CONFF,
720 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
721 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
722
723 break;
724
725 case SND_SOC_BIAS_OFF:
726 /* The chip runs through the power down sequence for us. */
727 snd_soc_update_bits(codec, STA32X_CONFF,
728 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
729 STA32X_CONFF_PWDN);
730 msleep(300);
731
732 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
733 sta32x->supplies);
734 break;
735 }
736 codec->dapm.bias_level = level;
737 return 0;
738 }
739
740 static struct snd_soc_dai_ops sta32x_dai_ops = {
741 .hw_params = sta32x_hw_params,
742 .set_sysclk = sta32x_set_dai_sysclk,
743 .set_fmt = sta32x_set_dai_fmt,
744 };
745
746 static struct snd_soc_dai_driver sta32x_dai = {
747 .name = "STA32X",
748 .playback = {
749 .stream_name = "Playback",
750 .channels_min = 2,
751 .channels_max = 2,
752 .rates = STA32X_RATES,
753 .formats = STA32X_FORMATS,
754 },
755 .ops = &sta32x_dai_ops,
756 };
757
758 #ifdef CONFIG_PM
759 static int sta32x_suspend(struct snd_soc_codec *codec, pm_message_t state)
760 {
761 sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
762 return 0;
763 }
764
765 static int sta32x_resume(struct snd_soc_codec *codec)
766 {
767 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
768 return 0;
769 }
770 #else
771 #define sta32x_suspend NULL
772 #define sta32x_resume NULL
773 #endif
774
775 static int sta32x_probe(struct snd_soc_codec *codec)
776 {
777 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
778 int i, ret = 0;
779
780 sta32x->codec = codec;
781
782 /* regulators */
783 for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
784 sta32x->supplies[i].supply = sta32x_supply_names[i];
785
786 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sta32x->supplies),
787 sta32x->supplies);
788 if (ret != 0) {
789 dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
790 goto err;
791 }
792
793 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
794 sta32x->supplies);
795 if (ret != 0) {
796 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
797 goto err_get;
798 }
799
800 /* Tell ASoC what kind of I/O to use to read the registers. ASoC will
801 * then do the I2C transactions itself.
802 */
803 ret = snd_soc_codec_set_cache_io(codec, 8, 8, SND_SOC_I2C);
804 if (ret < 0) {
805 dev_err(codec->dev, "failed to set cache I/O (ret=%i)\n", ret);
806 return ret;
807 }
808
809 /* Chip documentation explicitly requires that the reset values
810 * of reserved register bits are left untouched.
811 * Write the register default value to cache for reserved registers,
812 * so the write to the these registers are suppressed by the cache
813 * restore code when it skips writes of default registers.
814 */
815 snd_soc_cache_write(codec, STA32X_CONFC, 0xc2);
816 snd_soc_cache_write(codec, STA32X_CONFE, 0xc2);
817 snd_soc_cache_write(codec, STA32X_CONFF, 0x5c);
818 snd_soc_cache_write(codec, STA32X_MMUTE, 0x10);
819 snd_soc_cache_write(codec, STA32X_AUTO1, 0x60);
820 snd_soc_cache_write(codec, STA32X_AUTO3, 0x00);
821 snd_soc_cache_write(codec, STA32X_C3CFG, 0x40);
822
823 /* FIXME enable thermal warning adjustment and recovery */
824 snd_soc_update_bits(codec, STA32X_CONFA,
825 STA32X_CONFA_TWAB | STA32X_CONFA_TWRB, 0);
826
827 /* FIXME select 2.1 mode */
828 snd_soc_update_bits(codec, STA32X_CONFF,
829 STA32X_CONFF_OCFG_MASK,
830 1 << STA32X_CONFF_OCFG_SHIFT);
831
832 /* FIXME channel to output mapping */
833 snd_soc_update_bits(codec, STA32X_C1CFG,
834 STA32X_CxCFG_OM_MASK,
835 0 << STA32X_CxCFG_OM_SHIFT);
836 snd_soc_update_bits(codec, STA32X_C2CFG,
837 STA32X_CxCFG_OM_MASK,
838 1 << STA32X_CxCFG_OM_SHIFT);
839 snd_soc_update_bits(codec, STA32X_C3CFG,
840 STA32X_CxCFG_OM_MASK,
841 2 << STA32X_CxCFG_OM_SHIFT);
842
843 /* initialize coefficient shadow RAM with reset values */
844 for (i = 4; i <= 49; i += 5)
845 sta32x->coef_shadow[i] = 0x400000;
846 for (i = 50; i <= 54; i++)
847 sta32x->coef_shadow[i] = 0x7fffff;
848 sta32x->coef_shadow[55] = 0x5a9df7;
849 sta32x->coef_shadow[56] = 0x7fffff;
850 sta32x->coef_shadow[59] = 0x7fffff;
851 sta32x->coef_shadow[60] = 0x400000;
852 sta32x->coef_shadow[61] = 0x400000;
853
854 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
855 /* Bias level configuration will have done an extra enable */
856 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
857
858 return 0;
859
860 err_get:
861 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
862 err:
863 return ret;
864 }
865
866 static int sta32x_remove(struct snd_soc_codec *codec)
867 {
868 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
869
870 sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
871 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
872 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
873
874 return 0;
875 }
876
877 static int sta32x_reg_is_volatile(struct snd_soc_codec *codec,
878 unsigned int reg)
879 {
880 switch (reg) {
881 case STA32X_CONFA ... STA32X_L2ATRT:
882 case STA32X_MPCC1 ... STA32X_FDRC2:
883 return 0;
884 }
885 return 1;
886 }
887
888 static const struct snd_soc_codec_driver sta32x_codec = {
889 .probe = sta32x_probe,
890 .remove = sta32x_remove,
891 .suspend = sta32x_suspend,
892 .resume = sta32x_resume,
893 .reg_cache_size = STA32X_REGISTER_COUNT,
894 .reg_word_size = sizeof(u8),
895 .reg_cache_default = sta32x_regs,
896 .volatile_register = sta32x_reg_is_volatile,
897 .set_bias_level = sta32x_set_bias_level,
898 .controls = sta32x_snd_controls,
899 .num_controls = ARRAY_SIZE(sta32x_snd_controls),
900 .dapm_widgets = sta32x_dapm_widgets,
901 .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets),
902 .dapm_routes = sta32x_dapm_routes,
903 .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes),
904 };
905
906 static __devinit int sta32x_i2c_probe(struct i2c_client *i2c,
907 const struct i2c_device_id *id)
908 {
909 struct sta32x_priv *sta32x;
910 int ret;
911
912 sta32x = kzalloc(sizeof(struct sta32x_priv), GFP_KERNEL);
913 if (!sta32x)
914 return -ENOMEM;
915
916 i2c_set_clientdata(i2c, sta32x);
917
918 ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1);
919 if (ret != 0) {
920 dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
921 kfree(sta32x);
922 return ret;
923 }
924
925 return 0;
926 }
927
928 static __devexit int sta32x_i2c_remove(struct i2c_client *client)
929 {
930 struct sta32x_priv *sta32x = i2c_get_clientdata(client);
931
932 snd_soc_unregister_codec(&client->dev);
933 kfree(sta32x);
934 return 0;
935 }
936
937 static const struct i2c_device_id sta32x_i2c_id[] = {
938 { "sta326", 0 },
939 { "sta328", 0 },
940 { "sta329", 0 },
941 { }
942 };
943 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
944
945 static struct i2c_driver sta32x_i2c_driver = {
946 .driver = {
947 .name = "sta32x",
948 .owner = THIS_MODULE,
949 },
950 .probe = sta32x_i2c_probe,
951 .remove = __devexit_p(sta32x_i2c_remove),
952 .id_table = sta32x_i2c_id,
953 };
954
955 static int __init sta32x_init(void)
956 {
957 return i2c_add_driver(&sta32x_i2c_driver);
958 }
959 module_init(sta32x_init);
960
961 static void __exit sta32x_exit(void)
962 {
963 i2c_del_driver(&sta32x_i2c_driver);
964 }
965 module_exit(sta32x_exit);
966
967 MODULE_DESCRIPTION("ASoC STA32X driver");
968 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
969 MODULE_LICENSE("GPL");
This page took 0.050908 seconds and 6 git commands to generate.