Merge remote-tracking branch 'asoc/topic/fsl' into asoc-next
[deliverable/linux.git] / sound / soc / codecs / tlv320aic3x.c
1 /*
2 * ALSA SoC TLV320AIC3X codec driver
3 *
4 * Author: Vladimir Barinov, <vbarinov@embeddedalley.com>
5 * Copyright: (C) 2007 MontaVista Software, Inc., <source@mvista.com>
6 *
7 * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * Notes:
14 * The AIC3X is a driver for a low power stereo audio
15 * codecs aic31, aic32, aic33, aic3007.
16 *
17 * It supports full aic33 codec functionality.
18 * The compatibility with aic32, aic31 and aic3007 is as follows:
19 * aic32/aic3007 | aic31
20 * ---------------------------------------
21 * MONO_LOUT -> N/A | MONO_LOUT -> N/A
22 * | IN1L -> LINE1L
23 * | IN1R -> LINE1R
24 * | IN2L -> LINE2L
25 * | IN2R -> LINE2R
26 * | MIC3L/R -> N/A
27 * truncated internal functionality in
28 * accordance with documentation
29 * ---------------------------------------
30 *
31 * Hence the machine layer should disable unsupported inputs/outputs by
32 * snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33 */
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/pm.h>
40 #include <linux/i2c.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/of_gpio.h>
44 #include <linux/slab.h>
45 #include <sound/core.h>
46 #include <sound/pcm.h>
47 #include <sound/pcm_params.h>
48 #include <sound/soc.h>
49 #include <sound/initval.h>
50 #include <sound/tlv.h>
51 #include <sound/tlv320aic3x.h>
52
53 #include "tlv320aic3x.h"
54
55 #define AIC3X_NUM_SUPPLIES 4
56 static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
57 "IOVDD", /* I/O Voltage */
58 "DVDD", /* Digital Core Voltage */
59 "AVDD", /* Analog DAC Voltage */
60 "DRVDD", /* ADC Analog and Output Driver Voltage */
61 };
62
63 static LIST_HEAD(reset_list);
64
65 struct aic3x_priv;
66
67 struct aic3x_disable_nb {
68 struct notifier_block nb;
69 struct aic3x_priv *aic3x;
70 };
71
72 /* codec private data */
73 struct aic3x_priv {
74 struct snd_soc_codec *codec;
75 struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
76 struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
77 enum snd_soc_control_type control_type;
78 struct aic3x_setup_data *setup;
79 unsigned int sysclk;
80 struct list_head list;
81 int master;
82 int gpio_reset;
83 int power;
84 #define AIC3X_MODEL_3X 0
85 #define AIC3X_MODEL_33 1
86 #define AIC3X_MODEL_3007 2
87 u16 model;
88
89 /* Selects the micbias voltage */
90 enum aic3x_micbias_voltage micbias_vg;
91 };
92
93 /*
94 * AIC3X register cache
95 * We can't read the AIC3X register space when we are
96 * using 2 wire for device control, so we cache them instead.
97 * There is no point in caching the reset register
98 */
99 static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
100 0x00, 0x00, 0x00, 0x10, /* 0 */
101 0x04, 0x00, 0x00, 0x00, /* 4 */
102 0x00, 0x00, 0x00, 0x01, /* 8 */
103 0x00, 0x00, 0x00, 0x80, /* 12 */
104 0x80, 0xff, 0xff, 0x78, /* 16 */
105 0x78, 0x78, 0x78, 0x78, /* 20 */
106 0x78, 0x00, 0x00, 0xfe, /* 24 */
107 0x00, 0x00, 0xfe, 0x00, /* 28 */
108 0x18, 0x18, 0x00, 0x00, /* 32 */
109 0x00, 0x00, 0x00, 0x00, /* 36 */
110 0x00, 0x00, 0x00, 0x80, /* 40 */
111 0x80, 0x00, 0x00, 0x00, /* 44 */
112 0x00, 0x00, 0x00, 0x04, /* 48 */
113 0x00, 0x00, 0x00, 0x00, /* 52 */
114 0x00, 0x00, 0x04, 0x00, /* 56 */
115 0x00, 0x00, 0x00, 0x00, /* 60 */
116 0x00, 0x04, 0x00, 0x00, /* 64 */
117 0x00, 0x00, 0x00, 0x00, /* 68 */
118 0x04, 0x00, 0x00, 0x00, /* 72 */
119 0x00, 0x00, 0x00, 0x00, /* 76 */
120 0x00, 0x00, 0x00, 0x00, /* 80 */
121 0x00, 0x00, 0x00, 0x00, /* 84 */
122 0x00, 0x00, 0x00, 0x00, /* 88 */
123 0x00, 0x00, 0x00, 0x00, /* 92 */
124 0x00, 0x00, 0x00, 0x00, /* 96 */
125 0x00, 0x00, 0x02, 0x00, /* 100 */
126 0x00, 0x00, 0x00, 0x00, /* 104 */
127 0x00, 0x00, /* 108 */
128 };
129
130 #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
131 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
132 .info = snd_soc_info_volsw, \
133 .get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
134 .private_value = SOC_SINGLE_VALUE(reg, shift, mask, invert) }
135
136 /*
137 * All input lines are connected when !0xf and disconnected with 0xf bit field,
138 * so we have to use specific dapm_put call for input mixer
139 */
140 static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
141 struct snd_ctl_elem_value *ucontrol)
142 {
143 struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
144 struct snd_soc_dapm_widget *widget = wlist->widgets[0];
145 struct soc_mixer_control *mc =
146 (struct soc_mixer_control *)kcontrol->private_value;
147 unsigned int reg = mc->reg;
148 unsigned int shift = mc->shift;
149 int max = mc->max;
150 unsigned int mask = (1 << fls(max)) - 1;
151 unsigned int invert = mc->invert;
152 unsigned short val, val_mask;
153 int ret;
154 struct snd_soc_dapm_path *path;
155 int found = 0;
156
157 val = (ucontrol->value.integer.value[0] & mask);
158
159 mask = 0xf;
160 if (val)
161 val = mask;
162
163 if (invert)
164 val = mask - val;
165 val_mask = mask << shift;
166 val = val << shift;
167
168 mutex_lock(&widget->codec->mutex);
169
170 if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
171 /* find dapm widget path assoc with kcontrol */
172 list_for_each_entry(path, &widget->dapm->card->paths, list) {
173 if (path->kcontrol != kcontrol)
174 continue;
175
176 /* found, now check type */
177 found = 1;
178 if (val)
179 /* new connection */
180 path->connect = invert ? 0 : 1;
181 else
182 /* old connection must be powered down */
183 path->connect = invert ? 1 : 0;
184
185 dapm_mark_dirty(path->source, "tlv320aic3x source");
186 dapm_mark_dirty(path->sink, "tlv320aic3x sink");
187
188 break;
189 }
190
191 if (found)
192 snd_soc_dapm_sync(widget->dapm);
193 }
194
195 ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
196
197 mutex_unlock(&widget->codec->mutex);
198 return ret;
199 }
200
201 /*
202 * mic bias power on/off share the same register bits with
203 * output voltage of mic bias. when power on mic bias, we
204 * need reclaim it to voltage value.
205 * 0x0 = Powered off
206 * 0x1 = MICBIAS output is powered to 2.0V,
207 * 0x2 = MICBIAS output is powered to 2.5V
208 * 0x3 = MICBIAS output is connected to AVDD
209 */
210 static int mic_bias_event(struct snd_soc_dapm_widget *w,
211 struct snd_kcontrol *kcontrol, int event)
212 {
213 struct snd_soc_codec *codec = w->codec;
214 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
215
216 switch (event) {
217 case SND_SOC_DAPM_POST_PMU:
218 /* change mic bias voltage to user defined */
219 snd_soc_update_bits(codec, MICBIAS_CTRL,
220 MICBIAS_LEVEL_MASK,
221 aic3x->micbias_vg << MICBIAS_LEVEL_SHIFT);
222 break;
223
224 case SND_SOC_DAPM_PRE_PMD:
225 snd_soc_update_bits(codec, MICBIAS_CTRL,
226 MICBIAS_LEVEL_MASK, 0);
227 break;
228 }
229 return 0;
230 }
231
232 static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
233 static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
234 static const char *aic3x_left_hpcom_mux[] =
235 { "differential of HPLOUT", "constant VCM", "single-ended" };
236 static const char *aic3x_right_hpcom_mux[] =
237 { "differential of HPROUT", "constant VCM", "single-ended",
238 "differential of HPLCOM", "external feedback" };
239 static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
240 static const char *aic3x_adc_hpf[] =
241 { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
242
243 #define LDAC_ENUM 0
244 #define RDAC_ENUM 1
245 #define LHPCOM_ENUM 2
246 #define RHPCOM_ENUM 3
247 #define LINE1L_2_L_ENUM 4
248 #define LINE1L_2_R_ENUM 5
249 #define LINE1R_2_L_ENUM 6
250 #define LINE1R_2_R_ENUM 7
251 #define LINE2L_ENUM 8
252 #define LINE2R_ENUM 9
253 #define ADC_HPF_ENUM 10
254
255 static const struct soc_enum aic3x_enum[] = {
256 SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
257 SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
258 SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
259 SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
260 SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
261 SOC_ENUM_SINGLE(LINE1L_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
262 SOC_ENUM_SINGLE(LINE1R_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
263 SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
264 SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
265 SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
266 SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
267 };
268
269 static const char *aic3x_agc_level[] =
270 { "-5.5dB", "-8dB", "-10dB", "-12dB", "-14dB", "-17dB", "-20dB", "-24dB" };
271 static const struct soc_enum aic3x_agc_level_enum[] = {
272 SOC_ENUM_SINGLE(LAGC_CTRL_A, 4, 8, aic3x_agc_level),
273 SOC_ENUM_SINGLE(RAGC_CTRL_A, 4, 8, aic3x_agc_level),
274 };
275
276 static const char *aic3x_agc_attack[] = { "8ms", "11ms", "16ms", "20ms" };
277 static const struct soc_enum aic3x_agc_attack_enum[] = {
278 SOC_ENUM_SINGLE(LAGC_CTRL_A, 2, 4, aic3x_agc_attack),
279 SOC_ENUM_SINGLE(RAGC_CTRL_A, 2, 4, aic3x_agc_attack),
280 };
281
282 static const char *aic3x_agc_decay[] = { "100ms", "200ms", "400ms", "500ms" };
283 static const struct soc_enum aic3x_agc_decay_enum[] = {
284 SOC_ENUM_SINGLE(LAGC_CTRL_A, 0, 4, aic3x_agc_decay),
285 SOC_ENUM_SINGLE(RAGC_CTRL_A, 0, 4, aic3x_agc_decay),
286 };
287
288 /*
289 * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
290 */
291 static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
292 /* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
293 static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
294 /*
295 * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
296 * Step size is approximately 0.5 dB over most of the scale but increasing
297 * near the very low levels.
298 * Define dB scale so that it is mostly correct for range about -55 to 0 dB
299 * but having increasing dB difference below that (and where it doesn't count
300 * so much). This setting shows -50 dB (actual is -50.3 dB) for register
301 * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
302 */
303 static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);
304
305 static const struct snd_kcontrol_new aic3x_snd_controls[] = {
306 /* Output */
307 SOC_DOUBLE_R_TLV("PCM Playback Volume",
308 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
309
310 /*
311 * Output controls that map to output mixer switches. Note these are
312 * only for swapped L-to-R and R-to-L routes. See below stereo controls
313 * for direct L-to-L and R-to-R routes.
314 */
315 SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
316 LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
317 SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
318 PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
319 SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
320 DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
321
322 SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
323 LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
324 SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
325 PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
326 SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
327 DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
328
329 SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
330 LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
331 SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
332 PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
333 SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
334 DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
335
336 SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
337 LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
338 SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
339 PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
340 SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
341 DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
342
343 SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
344 LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
345 SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
346 PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
347 SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
348 DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
349
350 SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
351 LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
352 SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
353 PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
354 SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
355 DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
356
357 /* Stereo output controls for direct L-to-L and R-to-R routes */
358 SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
359 LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
360 0, 118, 1, output_stage_tlv),
361 SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
362 PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
363 0, 118, 1, output_stage_tlv),
364 SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
365 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
366 0, 118, 1, output_stage_tlv),
367
368 SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
369 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
370 0, 118, 1, output_stage_tlv),
371 SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
372 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
373 0, 118, 1, output_stage_tlv),
374 SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
375 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
376 0, 118, 1, output_stage_tlv),
377
378 SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
379 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
380 0, 118, 1, output_stage_tlv),
381 SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
382 PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
383 0, 118, 1, output_stage_tlv),
384 SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
385 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
386 0, 118, 1, output_stage_tlv),
387
388 SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
389 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
390 0, 118, 1, output_stage_tlv),
391 SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
392 PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
393 0, 118, 1, output_stage_tlv),
394 SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
395 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
396 0, 118, 1, output_stage_tlv),
397
398 /* Output pin mute controls */
399 SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
400 0x01, 0),
401 SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
402 SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
403 0x01, 0),
404 SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
405 0x01, 0),
406
407 /*
408 * Note: enable Automatic input Gain Controller with care. It can
409 * adjust PGA to max value when ADC is on and will never go back.
410 */
411 SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
412 SOC_ENUM("Left AGC Target level", aic3x_agc_level_enum[0]),
413 SOC_ENUM("Right AGC Target level", aic3x_agc_level_enum[1]),
414 SOC_ENUM("Left AGC Attack time", aic3x_agc_attack_enum[0]),
415 SOC_ENUM("Right AGC Attack time", aic3x_agc_attack_enum[1]),
416 SOC_ENUM("Left AGC Decay time", aic3x_agc_decay_enum[0]),
417 SOC_ENUM("Right AGC Decay time", aic3x_agc_decay_enum[1]),
418
419 /* De-emphasis */
420 SOC_DOUBLE("De-emphasis Switch", AIC3X_CODEC_DFILT_CTRL, 2, 0, 0x01, 0),
421
422 /* Input */
423 SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
424 0, 119, 0, adc_tlv),
425 SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
426
427 SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
428 };
429
430 /*
431 * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
432 */
433 static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);
434
435 static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
436 SOC_DOUBLE_TLV("Class-D Playback Volume", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);
437
438 /* Left DAC Mux */
439 static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
440 SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
441
442 /* Right DAC Mux */
443 static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
444 SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
445
446 /* Left HPCOM Mux */
447 static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
448 SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
449
450 /* Right HPCOM Mux */
451 static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
452 SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
453
454 /* Left Line Mixer */
455 static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
456 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
457 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
458 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
459 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
460 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
461 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
462 };
463
464 /* Right Line Mixer */
465 static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
466 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
467 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
468 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
469 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
470 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
471 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
472 };
473
474 /* Mono Mixer */
475 static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
476 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
477 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
478 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
479 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
480 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
481 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
482 };
483
484 /* Left HP Mixer */
485 static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
486 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
487 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
488 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
489 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
490 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
491 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
492 };
493
494 /* Right HP Mixer */
495 static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
496 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
497 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
498 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
499 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
500 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
501 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
502 };
503
504 /* Left HPCOM Mixer */
505 static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
506 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
507 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
508 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
509 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
510 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
511 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
512 };
513
514 /* Right HPCOM Mixer */
515 static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
516 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
517 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
518 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
519 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
520 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
521 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
522 };
523
524 /* Left PGA Mixer */
525 static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
526 SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
527 SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
528 SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
529 SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
530 SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
531 };
532
533 /* Right PGA Mixer */
534 static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
535 SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
536 SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
537 SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
538 SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
539 SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
540 };
541
542 /* Left Line1 Mux */
543 static const struct snd_kcontrol_new aic3x_left_line1l_mux_controls =
544 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_L_ENUM]);
545 static const struct snd_kcontrol_new aic3x_right_line1l_mux_controls =
546 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_R_ENUM]);
547
548 /* Right Line1 Mux */
549 static const struct snd_kcontrol_new aic3x_right_line1r_mux_controls =
550 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_R_ENUM]);
551 static const struct snd_kcontrol_new aic3x_left_line1r_mux_controls =
552 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_L_ENUM]);
553
554 /* Left Line2 Mux */
555 static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
556 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
557
558 /* Right Line2 Mux */
559 static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
560 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
561
562 static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
563 /* Left DAC to Left Outputs */
564 SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
565 SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
566 &aic3x_left_dac_mux_controls),
567 SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
568 &aic3x_left_hpcom_mux_controls),
569 SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
570 SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
571 SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
572
573 /* Right DAC to Right Outputs */
574 SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
575 SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
576 &aic3x_right_dac_mux_controls),
577 SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
578 &aic3x_right_hpcom_mux_controls),
579 SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
580 SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
581 SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
582
583 /* Mono Output */
584 SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
585
586 /* Inputs to Left ADC */
587 SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
588 SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
589 &aic3x_left_pga_mixer_controls[0],
590 ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
591 SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
592 &aic3x_left_line1l_mux_controls),
593 SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
594 &aic3x_left_line1r_mux_controls),
595 SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
596 &aic3x_left_line2_mux_controls),
597
598 /* Inputs to Right ADC */
599 SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
600 LINE1R_2_RADC_CTRL, 2, 0),
601 SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
602 &aic3x_right_pga_mixer_controls[0],
603 ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
604 SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
605 &aic3x_right_line1l_mux_controls),
606 SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
607 &aic3x_right_line1r_mux_controls),
608 SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
609 &aic3x_right_line2_mux_controls),
610
611 /*
612 * Not a real mic bias widget but similar function. This is for dynamic
613 * control of GPIO1 digital mic modulator clock output function when
614 * using digital mic.
615 */
616 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
617 AIC3X_GPIO1_REG, 4, 0xf,
618 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
619 AIC3X_GPIO1_FUNC_DISABLED),
620
621 /*
622 * Also similar function like mic bias. Selects digital mic with
623 * configurable oversampling rate instead of ADC converter.
624 */
625 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
626 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
627 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
628 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
629 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
630 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
631
632 /* Mic Bias */
633 SND_SOC_DAPM_SUPPLY("Mic Bias", MICBIAS_CTRL, 6, 0,
634 mic_bias_event,
635 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
636
637 /* Output mixers */
638 SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
639 &aic3x_left_line_mixer_controls[0],
640 ARRAY_SIZE(aic3x_left_line_mixer_controls)),
641 SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
642 &aic3x_right_line_mixer_controls[0],
643 ARRAY_SIZE(aic3x_right_line_mixer_controls)),
644 SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
645 &aic3x_mono_mixer_controls[0],
646 ARRAY_SIZE(aic3x_mono_mixer_controls)),
647 SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
648 &aic3x_left_hp_mixer_controls[0],
649 ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
650 SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
651 &aic3x_right_hp_mixer_controls[0],
652 ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
653 SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
654 &aic3x_left_hpcom_mixer_controls[0],
655 ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
656 SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
657 &aic3x_right_hpcom_mixer_controls[0],
658 ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
659
660 SND_SOC_DAPM_OUTPUT("LLOUT"),
661 SND_SOC_DAPM_OUTPUT("RLOUT"),
662 SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
663 SND_SOC_DAPM_OUTPUT("HPLOUT"),
664 SND_SOC_DAPM_OUTPUT("HPROUT"),
665 SND_SOC_DAPM_OUTPUT("HPLCOM"),
666 SND_SOC_DAPM_OUTPUT("HPRCOM"),
667
668 SND_SOC_DAPM_INPUT("MIC3L"),
669 SND_SOC_DAPM_INPUT("MIC3R"),
670 SND_SOC_DAPM_INPUT("LINE1L"),
671 SND_SOC_DAPM_INPUT("LINE1R"),
672 SND_SOC_DAPM_INPUT("LINE2L"),
673 SND_SOC_DAPM_INPUT("LINE2R"),
674
675 /*
676 * Virtual output pin to detection block inside codec. This can be
677 * used to keep codec bias on if gpio or detection features are needed.
678 * Force pin on or construct a path with an input jack and mic bias
679 * widgets.
680 */
681 SND_SOC_DAPM_OUTPUT("Detection"),
682 };
683
684 static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
685 /* Class-D outputs */
686 SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
687 SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),
688
689 SND_SOC_DAPM_OUTPUT("SPOP"),
690 SND_SOC_DAPM_OUTPUT("SPOM"),
691 };
692
693 static const struct snd_soc_dapm_route intercon[] = {
694 /* Left Input */
695 {"Left Line1L Mux", "single-ended", "LINE1L"},
696 {"Left Line1L Mux", "differential", "LINE1L"},
697
698 {"Left Line2L Mux", "single-ended", "LINE2L"},
699 {"Left Line2L Mux", "differential", "LINE2L"},
700
701 {"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
702 {"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
703 {"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
704 {"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
705 {"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
706
707 {"Left ADC", NULL, "Left PGA Mixer"},
708 {"Left ADC", NULL, "GPIO1 dmic modclk"},
709
710 /* Right Input */
711 {"Right Line1R Mux", "single-ended", "LINE1R"},
712 {"Right Line1R Mux", "differential", "LINE1R"},
713
714 {"Right Line2R Mux", "single-ended", "LINE2R"},
715 {"Right Line2R Mux", "differential", "LINE2R"},
716
717 {"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
718 {"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
719 {"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
720 {"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
721 {"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
722
723 {"Right ADC", NULL, "Right PGA Mixer"},
724 {"Right ADC", NULL, "GPIO1 dmic modclk"},
725
726 /*
727 * Logical path between digital mic enable and GPIO1 modulator clock
728 * output function
729 */
730 {"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
731 {"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
732 {"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
733
734 /* Left DAC Output */
735 {"Left DAC Mux", "DAC_L1", "Left DAC"},
736 {"Left DAC Mux", "DAC_L2", "Left DAC"},
737 {"Left DAC Mux", "DAC_L3", "Left DAC"},
738
739 /* Right DAC Output */
740 {"Right DAC Mux", "DAC_R1", "Right DAC"},
741 {"Right DAC Mux", "DAC_R2", "Right DAC"},
742 {"Right DAC Mux", "DAC_R3", "Right DAC"},
743
744 /* Left Line Output */
745 {"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
746 {"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
747 {"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
748 {"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
749 {"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
750 {"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},
751
752 {"Left Line Out", NULL, "Left Line Mixer"},
753 {"Left Line Out", NULL, "Left DAC Mux"},
754 {"LLOUT", NULL, "Left Line Out"},
755
756 /* Right Line Output */
757 {"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
758 {"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
759 {"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
760 {"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
761 {"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
762 {"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},
763
764 {"Right Line Out", NULL, "Right Line Mixer"},
765 {"Right Line Out", NULL, "Right DAC Mux"},
766 {"RLOUT", NULL, "Right Line Out"},
767
768 /* Mono Output */
769 {"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
770 {"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
771 {"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
772 {"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
773 {"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
774 {"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},
775
776 {"Mono Out", NULL, "Mono Mixer"},
777 {"MONO_LOUT", NULL, "Mono Out"},
778
779 /* Left HP Output */
780 {"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
781 {"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
782 {"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
783 {"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
784 {"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
785 {"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},
786
787 {"Left HP Out", NULL, "Left HP Mixer"},
788 {"Left HP Out", NULL, "Left DAC Mux"},
789 {"HPLOUT", NULL, "Left HP Out"},
790
791 /* Right HP Output */
792 {"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
793 {"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
794 {"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
795 {"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
796 {"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
797 {"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},
798
799 {"Right HP Out", NULL, "Right HP Mixer"},
800 {"Right HP Out", NULL, "Right DAC Mux"},
801 {"HPROUT", NULL, "Right HP Out"},
802
803 /* Left HPCOM Output */
804 {"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
805 {"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
806 {"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
807 {"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
808 {"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
809 {"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
810
811 {"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
812 {"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
813 {"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
814 {"Left HP Com", NULL, "Left HPCOM Mux"},
815 {"HPLCOM", NULL, "Left HP Com"},
816
817 /* Right HPCOM Output */
818 {"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
819 {"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
820 {"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
821 {"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
822 {"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
823 {"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
824
825 {"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
826 {"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
827 {"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
828 {"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
829 {"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
830 {"Right HP Com", NULL, "Right HPCOM Mux"},
831 {"HPRCOM", NULL, "Right HP Com"},
832 };
833
834 static const struct snd_soc_dapm_route intercon_3007[] = {
835 /* Class-D outputs */
836 {"Left Class-D Out", NULL, "Left Line Out"},
837 {"Right Class-D Out", NULL, "Left Line Out"},
838 {"SPOP", NULL, "Left Class-D Out"},
839 {"SPOM", NULL, "Right Class-D Out"},
840 };
841
842 static int aic3x_add_widgets(struct snd_soc_codec *codec)
843 {
844 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
845 struct snd_soc_dapm_context *dapm = &codec->dapm;
846
847 snd_soc_dapm_new_controls(dapm, aic3x_dapm_widgets,
848 ARRAY_SIZE(aic3x_dapm_widgets));
849
850 /* set up audio path interconnects */
851 snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
852
853 if (aic3x->model == AIC3X_MODEL_3007) {
854 snd_soc_dapm_new_controls(dapm, aic3007_dapm_widgets,
855 ARRAY_SIZE(aic3007_dapm_widgets));
856 snd_soc_dapm_add_routes(dapm, intercon_3007,
857 ARRAY_SIZE(intercon_3007));
858 }
859
860 return 0;
861 }
862
863 static int aic3x_hw_params(struct snd_pcm_substream *substream,
864 struct snd_pcm_hw_params *params,
865 struct snd_soc_dai *dai)
866 {
867 struct snd_soc_codec *codec = dai->codec;
868 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
869 int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
870 u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
871 u16 d, pll_d = 1;
872 int clk;
873
874 /* select data word length */
875 data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
876 switch (params_format(params)) {
877 case SNDRV_PCM_FORMAT_S16_LE:
878 break;
879 case SNDRV_PCM_FORMAT_S20_3LE:
880 data |= (0x01 << 4);
881 break;
882 case SNDRV_PCM_FORMAT_S24_LE:
883 data |= (0x02 << 4);
884 break;
885 case SNDRV_PCM_FORMAT_S32_LE:
886 data |= (0x03 << 4);
887 break;
888 }
889 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
890
891 /* Fsref can be 44100 or 48000 */
892 fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
893
894 /* Try to find a value for Q which allows us to bypass the PLL and
895 * generate CODEC_CLK directly. */
896 for (pll_q = 2; pll_q < 18; pll_q++)
897 if (aic3x->sysclk / (128 * pll_q) == fsref) {
898 bypass_pll = 1;
899 break;
900 }
901
902 if (bypass_pll) {
903 pll_q &= 0xf;
904 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
905 snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
906 /* disable PLL if it is bypassed */
907 snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG, PLL_ENABLE, 0);
908
909 } else {
910 snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
911 /* enable PLL when it is used */
912 snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
913 PLL_ENABLE, PLL_ENABLE);
914 }
915
916 /* Route Left DAC to left channel input and
917 * right DAC to right channel input */
918 data = (LDAC2LCH | RDAC2RCH);
919 data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
920 if (params_rate(params) >= 64000)
921 data |= DUAL_RATE_MODE;
922 snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
923
924 /* codec sample rate select */
925 data = (fsref * 20) / params_rate(params);
926 if (params_rate(params) < 64000)
927 data /= 2;
928 data /= 5;
929 data -= 2;
930 data |= (data << 4);
931 snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
932
933 if (bypass_pll)
934 return 0;
935
936 /* Use PLL, compute appropriate setup for j, d, r and p, the closest
937 * one wins the game. Try with d==0 first, next with d!=0.
938 * Constraints for j are according to the datasheet.
939 * The sysclk is divided by 1000 to prevent integer overflows.
940 */
941
942 codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
943
944 for (r = 1; r <= 16; r++)
945 for (p = 1; p <= 8; p++) {
946 for (j = 4; j <= 55; j++) {
947 /* This is actually 1000*((j+(d/10000))*r)/p
948 * The term had to be converted to get
949 * rid of the division by 10000; d = 0 here
950 */
951 int tmp_clk = (1000 * j * r) / p;
952
953 /* Check whether this values get closer than
954 * the best ones we had before
955 */
956 if (abs(codec_clk - tmp_clk) <
957 abs(codec_clk - last_clk)) {
958 pll_j = j; pll_d = 0;
959 pll_r = r; pll_p = p;
960 last_clk = tmp_clk;
961 }
962
963 /* Early exit for exact matches */
964 if (tmp_clk == codec_clk)
965 goto found;
966 }
967 }
968
969 /* try with d != 0 */
970 for (p = 1; p <= 8; p++) {
971 j = codec_clk * p / 1000;
972
973 if (j < 4 || j > 11)
974 continue;
975
976 /* do not use codec_clk here since we'd loose precision */
977 d = ((2048 * p * fsref) - j * aic3x->sysclk)
978 * 100 / (aic3x->sysclk/100);
979
980 clk = (10000 * j + d) / (10 * p);
981
982 /* check whether this values get closer than the best
983 * ones we had before */
984 if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
985 pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
986 last_clk = clk;
987 }
988
989 /* Early exit for exact matches */
990 if (clk == codec_clk)
991 goto found;
992 }
993
994 if (last_clk == 0) {
995 printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
996 return -EINVAL;
997 }
998
999 found:
1000 snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG, PLLP_MASK, pll_p);
1001 snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
1002 pll_r << PLLR_SHIFT);
1003 snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
1004 snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
1005 (pll_d >> 6) << PLLD_MSB_SHIFT);
1006 snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
1007 (pll_d & 0x3F) << PLLD_LSB_SHIFT);
1008
1009 return 0;
1010 }
1011
1012 static int aic3x_mute(struct snd_soc_dai *dai, int mute)
1013 {
1014 struct snd_soc_codec *codec = dai->codec;
1015 u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
1016 u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
1017
1018 if (mute) {
1019 snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
1020 snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
1021 } else {
1022 snd_soc_write(codec, LDAC_VOL, ldac_reg);
1023 snd_soc_write(codec, RDAC_VOL, rdac_reg);
1024 }
1025
1026 return 0;
1027 }
1028
1029 static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
1030 int clk_id, unsigned int freq, int dir)
1031 {
1032 struct snd_soc_codec *codec = codec_dai->codec;
1033 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1034
1035 /* set clock on MCLK or GPIO2 or BCLK */
1036 snd_soc_update_bits(codec, AIC3X_CLKGEN_CTRL_REG, PLLCLK_IN_MASK,
1037 clk_id << PLLCLK_IN_SHIFT);
1038 snd_soc_update_bits(codec, AIC3X_CLKGEN_CTRL_REG, CLKDIV_IN_MASK,
1039 clk_id << CLKDIV_IN_SHIFT);
1040
1041 aic3x->sysclk = freq;
1042 return 0;
1043 }
1044
1045 static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
1046 unsigned int fmt)
1047 {
1048 struct snd_soc_codec *codec = codec_dai->codec;
1049 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1050 u8 iface_areg, iface_breg;
1051 int delay = 0;
1052
1053 iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
1054 iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
1055
1056 /* set master/slave audio interface */
1057 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1058 case SND_SOC_DAIFMT_CBM_CFM:
1059 aic3x->master = 1;
1060 iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
1061 break;
1062 case SND_SOC_DAIFMT_CBS_CFS:
1063 aic3x->master = 0;
1064 iface_areg &= ~(BIT_CLK_MASTER | WORD_CLK_MASTER);
1065 break;
1066 default:
1067 return -EINVAL;
1068 }
1069
1070 /*
1071 * match both interface format and signal polarities since they
1072 * are fixed
1073 */
1074 switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
1075 SND_SOC_DAIFMT_INV_MASK)) {
1076 case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
1077 break;
1078 case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
1079 delay = 1;
1080 case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
1081 iface_breg |= (0x01 << 6);
1082 break;
1083 case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
1084 iface_breg |= (0x02 << 6);
1085 break;
1086 case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
1087 iface_breg |= (0x03 << 6);
1088 break;
1089 default:
1090 return -EINVAL;
1091 }
1092
1093 /* set iface */
1094 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
1095 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
1096 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
1097
1098 return 0;
1099 }
1100
1101 static int aic3x_init_3007(struct snd_soc_codec *codec)
1102 {
1103 u8 tmp1, tmp2, *cache = codec->reg_cache;
1104
1105 /*
1106 * There is no need to cache writes to undocumented page 0xD but
1107 * respective page 0 register cache entries must be preserved
1108 */
1109 tmp1 = cache[0xD];
1110 tmp2 = cache[0x8];
1111 /* Class-D speaker driver init; datasheet p. 46 */
1112 snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
1113 snd_soc_write(codec, 0xD, 0x0D);
1114 snd_soc_write(codec, 0x8, 0x5C);
1115 snd_soc_write(codec, 0x8, 0x5D);
1116 snd_soc_write(codec, 0x8, 0x5C);
1117 snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
1118 cache[0xD] = tmp1;
1119 cache[0x8] = tmp2;
1120
1121 return 0;
1122 }
1123
1124 static int aic3x_regulator_event(struct notifier_block *nb,
1125 unsigned long event, void *data)
1126 {
1127 struct aic3x_disable_nb *disable_nb =
1128 container_of(nb, struct aic3x_disable_nb, nb);
1129 struct aic3x_priv *aic3x = disable_nb->aic3x;
1130
1131 if (event & REGULATOR_EVENT_DISABLE) {
1132 /*
1133 * Put codec to reset and require cache sync as at least one
1134 * of the supplies was disabled
1135 */
1136 if (gpio_is_valid(aic3x->gpio_reset))
1137 gpio_set_value(aic3x->gpio_reset, 0);
1138 aic3x->codec->cache_sync = 1;
1139 }
1140
1141 return 0;
1142 }
1143
1144 static int aic3x_set_power(struct snd_soc_codec *codec, int power)
1145 {
1146 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1147 int i, ret;
1148 u8 *cache = codec->reg_cache;
1149
1150 if (power) {
1151 ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
1152 aic3x->supplies);
1153 if (ret)
1154 goto out;
1155 aic3x->power = 1;
1156 /*
1157 * Reset release and cache sync is necessary only if some
1158 * supply was off or if there were cached writes
1159 */
1160 if (!codec->cache_sync)
1161 goto out;
1162
1163 if (gpio_is_valid(aic3x->gpio_reset)) {
1164 udelay(1);
1165 gpio_set_value(aic3x->gpio_reset, 1);
1166 }
1167
1168 /* Sync reg_cache with the hardware */
1169 codec->cache_only = 0;
1170 for (i = AIC3X_SAMPLE_RATE_SEL_REG; i < ARRAY_SIZE(aic3x_reg); i++)
1171 snd_soc_write(codec, i, cache[i]);
1172 if (aic3x->model == AIC3X_MODEL_3007)
1173 aic3x_init_3007(codec);
1174 codec->cache_sync = 0;
1175 } else {
1176 /*
1177 * Do soft reset to this codec instance in order to clear
1178 * possible VDD leakage currents in case the supply regulators
1179 * remain on
1180 */
1181 snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1182 codec->cache_sync = 1;
1183 aic3x->power = 0;
1184 /* HW writes are needless when bias is off */
1185 codec->cache_only = 1;
1186 ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
1187 aic3x->supplies);
1188 }
1189 out:
1190 return ret;
1191 }
1192
1193 static int aic3x_set_bias_level(struct snd_soc_codec *codec,
1194 enum snd_soc_bias_level level)
1195 {
1196 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1197
1198 switch (level) {
1199 case SND_SOC_BIAS_ON:
1200 break;
1201 case SND_SOC_BIAS_PREPARE:
1202 if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY &&
1203 aic3x->master) {
1204 /* enable pll */
1205 snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
1206 PLL_ENABLE, PLL_ENABLE);
1207 }
1208 break;
1209 case SND_SOC_BIAS_STANDBY:
1210 if (!aic3x->power)
1211 aic3x_set_power(codec, 1);
1212 if (codec->dapm.bias_level == SND_SOC_BIAS_PREPARE &&
1213 aic3x->master) {
1214 /* disable pll */
1215 snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
1216 PLL_ENABLE, 0);
1217 }
1218 break;
1219 case SND_SOC_BIAS_OFF:
1220 if (aic3x->power)
1221 aic3x_set_power(codec, 0);
1222 break;
1223 }
1224 codec->dapm.bias_level = level;
1225
1226 return 0;
1227 }
1228
1229 #define AIC3X_RATES SNDRV_PCM_RATE_8000_96000
1230 #define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
1231 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1232
1233 static const struct snd_soc_dai_ops aic3x_dai_ops = {
1234 .hw_params = aic3x_hw_params,
1235 .digital_mute = aic3x_mute,
1236 .set_sysclk = aic3x_set_dai_sysclk,
1237 .set_fmt = aic3x_set_dai_fmt,
1238 };
1239
1240 static struct snd_soc_dai_driver aic3x_dai = {
1241 .name = "tlv320aic3x-hifi",
1242 .playback = {
1243 .stream_name = "Playback",
1244 .channels_min = 2,
1245 .channels_max = 2,
1246 .rates = AIC3X_RATES,
1247 .formats = AIC3X_FORMATS,},
1248 .capture = {
1249 .stream_name = "Capture",
1250 .channels_min = 2,
1251 .channels_max = 2,
1252 .rates = AIC3X_RATES,
1253 .formats = AIC3X_FORMATS,},
1254 .ops = &aic3x_dai_ops,
1255 .symmetric_rates = 1,
1256 };
1257
1258 static int aic3x_suspend(struct snd_soc_codec *codec)
1259 {
1260 aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1261
1262 return 0;
1263 }
1264
1265 static int aic3x_resume(struct snd_soc_codec *codec)
1266 {
1267 aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * initialise the AIC3X driver
1274 * register the mixer and dsp interfaces with the kernel
1275 */
1276 static int aic3x_init(struct snd_soc_codec *codec)
1277 {
1278 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1279
1280 snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
1281 snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1282
1283 /* DAC default volume and mute */
1284 snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
1285 snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1286
1287 /* DAC to HP default volume and route to Output mixer */
1288 snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
1289 snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
1290 snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1291 snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1292 /* DAC to Line Out default volume and route to Output mixer */
1293 snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1294 snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1295 /* DAC to Mono Line Out default volume and route to Output mixer */
1296 snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1297 snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1298
1299 /* unmute all outputs */
1300 snd_soc_update_bits(codec, LLOPM_CTRL, UNMUTE, UNMUTE);
1301 snd_soc_update_bits(codec, RLOPM_CTRL, UNMUTE, UNMUTE);
1302 snd_soc_update_bits(codec, MONOLOPM_CTRL, UNMUTE, UNMUTE);
1303 snd_soc_update_bits(codec, HPLOUT_CTRL, UNMUTE, UNMUTE);
1304 snd_soc_update_bits(codec, HPROUT_CTRL, UNMUTE, UNMUTE);
1305 snd_soc_update_bits(codec, HPLCOM_CTRL, UNMUTE, UNMUTE);
1306 snd_soc_update_bits(codec, HPRCOM_CTRL, UNMUTE, UNMUTE);
1307
1308 /* ADC default volume and unmute */
1309 snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
1310 snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
1311 /* By default route Line1 to ADC PGA mixer */
1312 snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
1313 snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1314
1315 /* PGA to HP Bypass default volume, disconnect from Output Mixer */
1316 snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
1317 snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
1318 snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
1319 snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1320 /* PGA to Line Out default volume, disconnect from Output Mixer */
1321 snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
1322 snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1323 /* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1324 snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
1325 snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1326
1327 /* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1328 snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
1329 snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
1330 snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
1331 snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1332 /* Line2 Line Out default volume, disconnect from Output Mixer */
1333 snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
1334 snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1335 /* Line2 to Mono Out default volume, disconnect from Output Mixer */
1336 snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
1337 snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1338
1339 if (aic3x->model == AIC3X_MODEL_3007) {
1340 aic3x_init_3007(codec);
1341 snd_soc_write(codec, CLASSD_CTRL, 0);
1342 }
1343
1344 return 0;
1345 }
1346
1347 static bool aic3x_is_shared_reset(struct aic3x_priv *aic3x)
1348 {
1349 struct aic3x_priv *a;
1350
1351 list_for_each_entry(a, &reset_list, list) {
1352 if (gpio_is_valid(aic3x->gpio_reset) &&
1353 aic3x->gpio_reset == a->gpio_reset)
1354 return true;
1355 }
1356
1357 return false;
1358 }
1359
1360 static int aic3x_probe(struct snd_soc_codec *codec)
1361 {
1362 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1363 int ret, i;
1364
1365 INIT_LIST_HEAD(&aic3x->list);
1366 aic3x->codec = codec;
1367
1368 ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
1369 if (ret != 0) {
1370 dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
1371 return ret;
1372 }
1373
1374 if (gpio_is_valid(aic3x->gpio_reset) &&
1375 !aic3x_is_shared_reset(aic3x)) {
1376 ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
1377 if (ret != 0)
1378 goto err_gpio;
1379 gpio_direction_output(aic3x->gpio_reset, 0);
1380 }
1381
1382 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1383 aic3x->supplies[i].supply = aic3x_supply_names[i];
1384
1385 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
1386 aic3x->supplies);
1387 if (ret != 0) {
1388 dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
1389 goto err_get;
1390 }
1391 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
1392 aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
1393 aic3x->disable_nb[i].aic3x = aic3x;
1394 ret = regulator_register_notifier(aic3x->supplies[i].consumer,
1395 &aic3x->disable_nb[i].nb);
1396 if (ret) {
1397 dev_err(codec->dev,
1398 "Failed to request regulator notifier: %d\n",
1399 ret);
1400 goto err_notif;
1401 }
1402 }
1403
1404 codec->cache_only = 1;
1405 aic3x_init(codec);
1406
1407 if (aic3x->setup) {
1408 /* setup GPIO functions */
1409 snd_soc_write(codec, AIC3X_GPIO1_REG,
1410 (aic3x->setup->gpio_func[0] & 0xf) << 4);
1411 snd_soc_write(codec, AIC3X_GPIO2_REG,
1412 (aic3x->setup->gpio_func[1] & 0xf) << 4);
1413 }
1414
1415 snd_soc_add_codec_controls(codec, aic3x_snd_controls,
1416 ARRAY_SIZE(aic3x_snd_controls));
1417 if (aic3x->model == AIC3X_MODEL_3007)
1418 snd_soc_add_codec_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
1419
1420 /* set mic bias voltage */
1421 switch (aic3x->micbias_vg) {
1422 case AIC3X_MICBIAS_2_0V:
1423 case AIC3X_MICBIAS_2_5V:
1424 case AIC3X_MICBIAS_AVDDV:
1425 snd_soc_update_bits(codec, MICBIAS_CTRL,
1426 MICBIAS_LEVEL_MASK,
1427 (aic3x->micbias_vg) << MICBIAS_LEVEL_SHIFT);
1428 break;
1429 case AIC3X_MICBIAS_OFF:
1430 /*
1431 * noting to do. target won't enter here. This is just to avoid
1432 * compile time warning "warning: enumeration value
1433 * 'AIC3X_MICBIAS_OFF' not handled in switch"
1434 */
1435 break;
1436 }
1437
1438 aic3x_add_widgets(codec);
1439 list_add(&aic3x->list, &reset_list);
1440
1441 return 0;
1442
1443 err_notif:
1444 while (i--)
1445 regulator_unregister_notifier(aic3x->supplies[i].consumer,
1446 &aic3x->disable_nb[i].nb);
1447 regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1448 err_get:
1449 if (gpio_is_valid(aic3x->gpio_reset) &&
1450 !aic3x_is_shared_reset(aic3x))
1451 gpio_free(aic3x->gpio_reset);
1452 err_gpio:
1453 return ret;
1454 }
1455
1456 static int aic3x_remove(struct snd_soc_codec *codec)
1457 {
1458 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1459 int i;
1460
1461 aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1462 list_del(&aic3x->list);
1463 if (gpio_is_valid(aic3x->gpio_reset) &&
1464 !aic3x_is_shared_reset(aic3x)) {
1465 gpio_set_value(aic3x->gpio_reset, 0);
1466 gpio_free(aic3x->gpio_reset);
1467 }
1468 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1469 regulator_unregister_notifier(aic3x->supplies[i].consumer,
1470 &aic3x->disable_nb[i].nb);
1471 regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1472
1473 return 0;
1474 }
1475
1476 static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
1477 .set_bias_level = aic3x_set_bias_level,
1478 .idle_bias_off = true,
1479 .reg_cache_size = ARRAY_SIZE(aic3x_reg),
1480 .reg_word_size = sizeof(u8),
1481 .reg_cache_default = aic3x_reg,
1482 .probe = aic3x_probe,
1483 .remove = aic3x_remove,
1484 .suspend = aic3x_suspend,
1485 .resume = aic3x_resume,
1486 };
1487
1488 /*
1489 * AIC3X 2 wire address can be up to 4 devices with device addresses
1490 * 0x18, 0x19, 0x1A, 0x1B
1491 */
1492
1493 static const struct i2c_device_id aic3x_i2c_id[] = {
1494 { "tlv320aic3x", AIC3X_MODEL_3X },
1495 { "tlv320aic33", AIC3X_MODEL_33 },
1496 { "tlv320aic3007", AIC3X_MODEL_3007 },
1497 { }
1498 };
1499 MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
1500
1501 /*
1502 * If the i2c layer weren't so broken, we could pass this kind of data
1503 * around
1504 */
1505 static int aic3x_i2c_probe(struct i2c_client *i2c,
1506 const struct i2c_device_id *id)
1507 {
1508 struct aic3x_pdata *pdata = i2c->dev.platform_data;
1509 struct aic3x_priv *aic3x;
1510 struct aic3x_setup_data *ai3x_setup;
1511 struct device_node *np = i2c->dev.of_node;
1512 int ret;
1513 u32 value;
1514
1515 aic3x = devm_kzalloc(&i2c->dev, sizeof(struct aic3x_priv), GFP_KERNEL);
1516 if (aic3x == NULL) {
1517 dev_err(&i2c->dev, "failed to create private data\n");
1518 return -ENOMEM;
1519 }
1520
1521 aic3x->control_type = SND_SOC_I2C;
1522
1523 i2c_set_clientdata(i2c, aic3x);
1524 if (pdata) {
1525 aic3x->gpio_reset = pdata->gpio_reset;
1526 aic3x->setup = pdata->setup;
1527 aic3x->micbias_vg = pdata->micbias_vg;
1528 } else if (np) {
1529 ai3x_setup = devm_kzalloc(&i2c->dev, sizeof(*ai3x_setup),
1530 GFP_KERNEL);
1531 if (ai3x_setup == NULL) {
1532 dev_err(&i2c->dev, "failed to create private data\n");
1533 return -ENOMEM;
1534 }
1535
1536 ret = of_get_named_gpio(np, "gpio-reset", 0);
1537 if (ret >= 0)
1538 aic3x->gpio_reset = ret;
1539 else
1540 aic3x->gpio_reset = -1;
1541
1542 if (of_property_read_u32_array(np, "ai3x-gpio-func",
1543 ai3x_setup->gpio_func, 2) >= 0) {
1544 aic3x->setup = ai3x_setup;
1545 }
1546
1547 if (!of_property_read_u32(np, "ai3x-micbias-vg", &value)) {
1548 switch (value) {
1549 case 1 :
1550 aic3x->micbias_vg = AIC3X_MICBIAS_2_0V;
1551 break;
1552 case 2 :
1553 aic3x->micbias_vg = AIC3X_MICBIAS_2_5V;
1554 break;
1555 case 3 :
1556 aic3x->micbias_vg = AIC3X_MICBIAS_AVDDV;
1557 break;
1558 default :
1559 aic3x->micbias_vg = AIC3X_MICBIAS_OFF;
1560 dev_err(&i2c->dev, "Unsuitable MicBias voltage "
1561 "found in DT\n");
1562 }
1563 } else {
1564 aic3x->micbias_vg = AIC3X_MICBIAS_OFF;
1565 }
1566
1567 } else {
1568 aic3x->gpio_reset = -1;
1569 }
1570
1571 aic3x->model = id->driver_data;
1572
1573 ret = snd_soc_register_codec(&i2c->dev,
1574 &soc_codec_dev_aic3x, &aic3x_dai, 1);
1575 return ret;
1576 }
1577
1578 static int aic3x_i2c_remove(struct i2c_client *client)
1579 {
1580 snd_soc_unregister_codec(&client->dev);
1581 return 0;
1582 }
1583
1584 #if defined(CONFIG_OF)
1585 static const struct of_device_id tlv320aic3x_of_match[] = {
1586 { .compatible = "ti,tlv320aic3x", },
1587 {},
1588 };
1589 MODULE_DEVICE_TABLE(of, tlv320aic3x_of_match);
1590 #endif
1591
1592 /* machine i2c codec control layer */
1593 static struct i2c_driver aic3x_i2c_driver = {
1594 .driver = {
1595 .name = "tlv320aic3x-codec",
1596 .owner = THIS_MODULE,
1597 .of_match_table = of_match_ptr(tlv320aic3x_of_match),
1598 },
1599 .probe = aic3x_i2c_probe,
1600 .remove = aic3x_i2c_remove,
1601 .id_table = aic3x_i2c_id,
1602 };
1603
1604 module_i2c_driver(aic3x_i2c_driver);
1605
1606 MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
1607 MODULE_AUTHOR("Vladimir Barinov");
1608 MODULE_LICENSE("GPL");
This page took 0.080509 seconds and 5 git commands to generate.