Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / sound / soc / fsl / fsl_spdif.c
1 /*
2 * Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
5 *
6 * Based on stmp3xxx_spdif_dai.c
7 * Vladimir Barinov <vbarinov@embeddedalley.com>
8 * Copyright 2008 SigmaTel, Inc
9 * Copyright 2008 Embedded Alley Solutions, Inc
10 *
11 * This file is licensed under the terms of the GNU General Public License
12 * version 2. This program is licensed "as is" without any warranty of any
13 * kind, whether express or implied.
14 */
15
16 #include <linux/bitrev.h>
17 #include <linux/clk.h>
18 #include <linux/module.h>
19 #include <linux/of_address.h>
20 #include <linux/of_device.h>
21 #include <linux/of_irq.h>
22 #include <linux/regmap.h>
23
24 #include <sound/asoundef.h>
25 #include <sound/dmaengine_pcm.h>
26 #include <sound/soc.h>
27
28 #include "fsl_spdif.h"
29 #include "imx-pcm.h"
30
31 #define FSL_SPDIF_TXFIFO_WML 0x8
32 #define FSL_SPDIF_RXFIFO_WML 0x8
33
34 #define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC)
35 #define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
36 INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
37 INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
38 INT_LOSS_LOCK | INT_DPLL_LOCKED)
39
40 #define SIE_INTR_FOR(tx) (tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
41
42 /* Index list for the values that has if (DPLL Locked) condition */
43 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
44 #define SRPC_NODPLL_START1 0x5
45 #define SRPC_NODPLL_START2 0xc
46
47 #define DEFAULT_RXCLK_SRC 1
48
49 /*
50 * SPDIF control structure
51 * Defines channel status, subcode and Q sub
52 */
53 struct spdif_mixer_control {
54 /* spinlock to access control data */
55 spinlock_t ctl_lock;
56
57 /* IEC958 channel tx status bit */
58 unsigned char ch_status[4];
59
60 /* User bits */
61 unsigned char subcode[2 * SPDIF_UBITS_SIZE];
62
63 /* Q subcode part of user bits */
64 unsigned char qsub[2 * SPDIF_QSUB_SIZE];
65
66 /* Buffer offset for U/Q */
67 u32 upos;
68 u32 qpos;
69
70 /* Ready buffer index of the two buffers */
71 u32 ready_buf;
72 };
73
74 /**
75 * fsl_spdif_priv: Freescale SPDIF private data
76 *
77 * @fsl_spdif_control: SPDIF control data
78 * @cpu_dai_drv: cpu dai driver
79 * @pdev: platform device pointer
80 * @regmap: regmap handler
81 * @dpll_locked: dpll lock flag
82 * @txrate: the best rates for playback
83 * @txclk_df: STC_TXCLK_DF dividers value for playback
84 * @sysclk_df: STC_SYSCLK_DF dividers value for playback
85 * @txclk_src: STC_TXCLK_SRC values for playback
86 * @rxclk_src: SRPC_CLKSRC_SEL values for capture
87 * @txclk: tx clock sources for playback
88 * @rxclk: rx clock sources for capture
89 * @coreclk: core clock for register access via DMA
90 * @sysclk: system clock for rx clock rate measurement
91 * @dma_params_tx: DMA parameters for transmit channel
92 * @dma_params_rx: DMA parameters for receive channel
93 */
94 struct fsl_spdif_priv {
95 struct spdif_mixer_control fsl_spdif_control;
96 struct snd_soc_dai_driver cpu_dai_drv;
97 struct platform_device *pdev;
98 struct regmap *regmap;
99 bool dpll_locked;
100 u32 txrate[SPDIF_TXRATE_MAX];
101 u8 txclk_df[SPDIF_TXRATE_MAX];
102 u8 sysclk_df[SPDIF_TXRATE_MAX];
103 u8 txclk_src[SPDIF_TXRATE_MAX];
104 u8 rxclk_src;
105 struct clk *txclk[SPDIF_TXRATE_MAX];
106 struct clk *rxclk;
107 struct clk *coreclk;
108 struct clk *sysclk;
109 struct snd_dmaengine_dai_dma_data dma_params_tx;
110 struct snd_dmaengine_dai_dma_data dma_params_rx;
111 };
112
113 /* DPLL locked and lock loss interrupt handler */
114 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
115 {
116 struct regmap *regmap = spdif_priv->regmap;
117 struct platform_device *pdev = spdif_priv->pdev;
118 u32 locked;
119
120 regmap_read(regmap, REG_SPDIF_SRPC, &locked);
121 locked &= SRPC_DPLL_LOCKED;
122
123 dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
124 locked ? "locked" : "loss lock");
125
126 spdif_priv->dpll_locked = locked ? true : false;
127 }
128
129 /* Receiver found illegal symbol interrupt handler */
130 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
131 {
132 struct regmap *regmap = spdif_priv->regmap;
133 struct platform_device *pdev = spdif_priv->pdev;
134
135 dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
136
137 /* Clear illegal symbol if DPLL unlocked since no audio stream */
138 if (!spdif_priv->dpll_locked)
139 regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
140 }
141
142 /* U/Q Channel receive register full */
143 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
144 {
145 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
146 struct regmap *regmap = spdif_priv->regmap;
147 struct platform_device *pdev = spdif_priv->pdev;
148 u32 *pos, size, val, reg;
149
150 switch (name) {
151 case 'U':
152 pos = &ctrl->upos;
153 size = SPDIF_UBITS_SIZE;
154 reg = REG_SPDIF_SRU;
155 break;
156 case 'Q':
157 pos = &ctrl->qpos;
158 size = SPDIF_QSUB_SIZE;
159 reg = REG_SPDIF_SRQ;
160 break;
161 default:
162 dev_err(&pdev->dev, "unsupported channel name\n");
163 return;
164 }
165
166 dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
167
168 if (*pos >= size * 2) {
169 *pos = 0;
170 } else if (unlikely((*pos % size) + 3 > size)) {
171 dev_err(&pdev->dev, "User bit receivce buffer overflow\n");
172 return;
173 }
174
175 regmap_read(regmap, reg, &val);
176 ctrl->subcode[*pos++] = val >> 16;
177 ctrl->subcode[*pos++] = val >> 8;
178 ctrl->subcode[*pos++] = val;
179 }
180
181 /* U/Q Channel sync found */
182 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
183 {
184 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
185 struct platform_device *pdev = spdif_priv->pdev;
186
187 dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
188
189 /* U/Q buffer reset */
190 if (ctrl->qpos == 0)
191 return;
192
193 /* Set ready to this buffer */
194 ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
195 }
196
197 /* U/Q Channel framing error */
198 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
199 {
200 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
201 struct regmap *regmap = spdif_priv->regmap;
202 struct platform_device *pdev = spdif_priv->pdev;
203 u32 val;
204
205 dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
206
207 /* Read U/Q data to clear the irq and do buffer reset */
208 regmap_read(regmap, REG_SPDIF_SRU, &val);
209 regmap_read(regmap, REG_SPDIF_SRQ, &val);
210
211 /* Drop this U/Q buffer */
212 ctrl->ready_buf = 0;
213 ctrl->upos = 0;
214 ctrl->qpos = 0;
215 }
216
217 /* Get spdif interrupt status and clear the interrupt */
218 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
219 {
220 struct regmap *regmap = spdif_priv->regmap;
221 u32 val, val2;
222
223 regmap_read(regmap, REG_SPDIF_SIS, &val);
224 regmap_read(regmap, REG_SPDIF_SIE, &val2);
225
226 regmap_write(regmap, REG_SPDIF_SIC, val & val2);
227
228 return val;
229 }
230
231 static irqreturn_t spdif_isr(int irq, void *devid)
232 {
233 struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
234 struct platform_device *pdev = spdif_priv->pdev;
235 u32 sis;
236
237 sis = spdif_intr_status_clear(spdif_priv);
238
239 if (sis & INT_DPLL_LOCKED)
240 spdif_irq_dpll_lock(spdif_priv);
241
242 if (sis & INT_TXFIFO_UNOV)
243 dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
244
245 if (sis & INT_TXFIFO_RESYNC)
246 dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
247
248 if (sis & INT_CNEW)
249 dev_dbg(&pdev->dev, "isr: cstatus new\n");
250
251 if (sis & INT_VAL_NOGOOD)
252 dev_dbg(&pdev->dev, "isr: validity flag no good\n");
253
254 if (sis & INT_SYM_ERR)
255 spdif_irq_sym_error(spdif_priv);
256
257 if (sis & INT_BIT_ERR)
258 dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
259
260 if (sis & INT_URX_FUL)
261 spdif_irq_uqrx_full(spdif_priv, 'U');
262
263 if (sis & INT_URX_OV)
264 dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
265
266 if (sis & INT_QRX_FUL)
267 spdif_irq_uqrx_full(spdif_priv, 'Q');
268
269 if (sis & INT_QRX_OV)
270 dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
271
272 if (sis & INT_UQ_SYNC)
273 spdif_irq_uq_sync(spdif_priv);
274
275 if (sis & INT_UQ_ERR)
276 spdif_irq_uq_err(spdif_priv);
277
278 if (sis & INT_RXFIFO_UNOV)
279 dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
280
281 if (sis & INT_RXFIFO_RESYNC)
282 dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
283
284 if (sis & INT_LOSS_LOCK)
285 spdif_irq_dpll_lock(spdif_priv);
286
287 /* FIXME: Write Tx FIFO to clear TxEm */
288 if (sis & INT_TX_EM)
289 dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
290
291 /* FIXME: Read Rx FIFO to clear RxFIFOFul */
292 if (sis & INT_RXFIFO_FUL)
293 dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
294
295 return IRQ_HANDLED;
296 }
297
298 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
299 {
300 struct regmap *regmap = spdif_priv->regmap;
301 u32 val, cycle = 1000;
302
303 regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
304
305 /*
306 * RESET bit would be cleared after finishing its reset procedure,
307 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
308 */
309 do {
310 regmap_read(regmap, REG_SPDIF_SCR, &val);
311 } while ((val & SCR_SOFT_RESET) && cycle--);
312
313 if (cycle)
314 return 0;
315 else
316 return -EBUSY;
317 }
318
319 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
320 u8 mask, u8 cstatus)
321 {
322 ctrl->ch_status[3] &= ~mask;
323 ctrl->ch_status[3] |= cstatus & mask;
324 }
325
326 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
327 {
328 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
329 struct regmap *regmap = spdif_priv->regmap;
330 struct platform_device *pdev = spdif_priv->pdev;
331 u32 ch_status;
332
333 ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
334 (bitrev8(ctrl->ch_status[1]) << 8) |
335 bitrev8(ctrl->ch_status[2]);
336 regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
337
338 dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
339
340 ch_status = bitrev8(ctrl->ch_status[3]) << 16;
341 regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
342
343 dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
344 }
345
346 /* Set SPDIF PhaseConfig register for rx clock */
347 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
348 enum spdif_gainsel gainsel, int dpll_locked)
349 {
350 struct regmap *regmap = spdif_priv->regmap;
351 u8 clksrc = spdif_priv->rxclk_src;
352
353 if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
354 return -EINVAL;
355
356 regmap_update_bits(regmap, REG_SPDIF_SRPC,
357 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
358 SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
359
360 return 0;
361 }
362
363 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
364 int sample_rate)
365 {
366 struct snd_soc_pcm_runtime *rtd = substream->private_data;
367 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
368 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
369 struct regmap *regmap = spdif_priv->regmap;
370 struct platform_device *pdev = spdif_priv->pdev;
371 unsigned long csfs = 0;
372 u32 stc, mask, rate;
373 u8 clk, txclk_df, sysclk_df;
374 int ret;
375
376 switch (sample_rate) {
377 case 32000:
378 rate = SPDIF_TXRATE_32000;
379 csfs = IEC958_AES3_CON_FS_32000;
380 break;
381 case 44100:
382 rate = SPDIF_TXRATE_44100;
383 csfs = IEC958_AES3_CON_FS_44100;
384 break;
385 case 48000:
386 rate = SPDIF_TXRATE_48000;
387 csfs = IEC958_AES3_CON_FS_48000;
388 break;
389 case 96000:
390 rate = SPDIF_TXRATE_96000;
391 csfs = IEC958_AES3_CON_FS_96000;
392 break;
393 case 192000:
394 rate = SPDIF_TXRATE_192000;
395 csfs = IEC958_AES3_CON_FS_192000;
396 break;
397 default:
398 dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
399 return -EINVAL;
400 }
401
402 clk = spdif_priv->txclk_src[rate];
403 if (clk >= STC_TXCLK_SRC_MAX) {
404 dev_err(&pdev->dev, "tx clock source is out of range\n");
405 return -EINVAL;
406 }
407
408 txclk_df = spdif_priv->txclk_df[rate];
409 if (txclk_df == 0) {
410 dev_err(&pdev->dev, "the txclk_df can't be zero\n");
411 return -EINVAL;
412 }
413
414 sysclk_df = spdif_priv->sysclk_df[rate];
415
416 /* Don't mess up the clocks from other modules */
417 if (clk != STC_TXCLK_SPDIF_ROOT)
418 goto clk_set_bypass;
419
420 /* The S/PDIF block needs a clock of 64 * fs * txclk_df */
421 ret = clk_set_rate(spdif_priv->txclk[rate],
422 64 * sample_rate * txclk_df);
423 if (ret) {
424 dev_err(&pdev->dev, "failed to set tx clock rate\n");
425 return ret;
426 }
427
428 clk_set_bypass:
429 dev_dbg(&pdev->dev, "expected clock rate = %d\n",
430 (64 * sample_rate * txclk_df * sysclk_df));
431 dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
432 clk_get_rate(spdif_priv->txclk[rate]));
433
434 /* set fs field in consumer channel status */
435 spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
436
437 /* select clock source and divisor */
438 stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
439 STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
440 mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
441 STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
442 regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
443
444 dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
445 spdif_priv->txrate[rate], sample_rate);
446
447 return 0;
448 }
449
450 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
451 struct snd_soc_dai *cpu_dai)
452 {
453 struct snd_soc_pcm_runtime *rtd = substream->private_data;
454 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
455 struct platform_device *pdev = spdif_priv->pdev;
456 struct regmap *regmap = spdif_priv->regmap;
457 u32 scr, mask, i;
458 int ret;
459
460 /* Reset module and interrupts only for first initialization */
461 if (!cpu_dai->active) {
462 ret = clk_prepare_enable(spdif_priv->coreclk);
463 if (ret) {
464 dev_err(&pdev->dev, "failed to enable core clock\n");
465 return ret;
466 }
467
468 ret = spdif_softreset(spdif_priv);
469 if (ret) {
470 dev_err(&pdev->dev, "failed to soft reset\n");
471 goto err;
472 }
473
474 /* Disable all the interrupts */
475 regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
476 }
477
478 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
479 scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
480 SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
481 SCR_TXFIFO_FSEL_IF8;
482 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
483 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
484 SCR_TXFIFO_FSEL_MASK;
485 for (i = 0; i < SPDIF_TXRATE_MAX; i++)
486 clk_prepare_enable(spdif_priv->txclk[i]);
487 } else {
488 scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
489 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
490 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
491 clk_prepare_enable(spdif_priv->rxclk);
492 }
493 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
494
495 /* Power up SPDIF module */
496 regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
497
498 return 0;
499
500 err:
501 clk_disable_unprepare(spdif_priv->coreclk);
502
503 return ret;
504 }
505
506 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
507 struct snd_soc_dai *cpu_dai)
508 {
509 struct snd_soc_pcm_runtime *rtd = substream->private_data;
510 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
511 struct regmap *regmap = spdif_priv->regmap;
512 u32 scr, mask, i;
513
514 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
515 scr = 0;
516 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
517 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
518 SCR_TXFIFO_FSEL_MASK;
519 for (i = 0; i < SPDIF_TXRATE_MAX; i++)
520 clk_disable_unprepare(spdif_priv->txclk[i]);
521 } else {
522 scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
523 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
524 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
525 clk_disable_unprepare(spdif_priv->rxclk);
526 }
527 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
528
529 /* Power down SPDIF module only if tx&rx are both inactive */
530 if (!cpu_dai->active) {
531 spdif_intr_status_clear(spdif_priv);
532 regmap_update_bits(regmap, REG_SPDIF_SCR,
533 SCR_LOW_POWER, SCR_LOW_POWER);
534 clk_disable_unprepare(spdif_priv->coreclk);
535 }
536 }
537
538 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
539 struct snd_pcm_hw_params *params,
540 struct snd_soc_dai *dai)
541 {
542 struct snd_soc_pcm_runtime *rtd = substream->private_data;
543 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
544 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
545 struct platform_device *pdev = spdif_priv->pdev;
546 u32 sample_rate = params_rate(params);
547 int ret = 0;
548
549 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
550 ret = spdif_set_sample_rate(substream, sample_rate);
551 if (ret) {
552 dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
553 __func__, sample_rate);
554 return ret;
555 }
556 spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
557 IEC958_AES3_CON_CLOCK_1000PPM);
558 spdif_write_channel_status(spdif_priv);
559 } else {
560 /* Setup rx clock source */
561 ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
562 }
563
564 return ret;
565 }
566
567 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
568 int cmd, struct snd_soc_dai *dai)
569 {
570 struct snd_soc_pcm_runtime *rtd = substream->private_data;
571 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
572 struct regmap *regmap = spdif_priv->regmap;
573 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
574 u32 intr = SIE_INTR_FOR(tx);
575 u32 dmaen = SCR_DMA_xX_EN(tx);
576
577 switch (cmd) {
578 case SNDRV_PCM_TRIGGER_START:
579 case SNDRV_PCM_TRIGGER_RESUME:
580 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
581 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
582 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
583 break;
584 case SNDRV_PCM_TRIGGER_STOP:
585 case SNDRV_PCM_TRIGGER_SUSPEND:
586 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
587 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
588 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
589 break;
590 default:
591 return -EINVAL;
592 }
593
594 return 0;
595 }
596
597 static struct snd_soc_dai_ops fsl_spdif_dai_ops = {
598 .startup = fsl_spdif_startup,
599 .hw_params = fsl_spdif_hw_params,
600 .trigger = fsl_spdif_trigger,
601 .shutdown = fsl_spdif_shutdown,
602 };
603
604
605 /*
606 * FSL SPDIF IEC958 controller(mixer) functions
607 *
608 * Channel status get/put control
609 * User bit value get/put control
610 * Valid bit value get control
611 * DPLL lock status get control
612 * User bit sync mode selection control
613 */
614
615 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
616 struct snd_ctl_elem_info *uinfo)
617 {
618 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
619 uinfo->count = 1;
620
621 return 0;
622 }
623
624 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
625 struct snd_ctl_elem_value *uvalue)
626 {
627 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
628 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
629 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
630
631 uvalue->value.iec958.status[0] = ctrl->ch_status[0];
632 uvalue->value.iec958.status[1] = ctrl->ch_status[1];
633 uvalue->value.iec958.status[2] = ctrl->ch_status[2];
634 uvalue->value.iec958.status[3] = ctrl->ch_status[3];
635
636 return 0;
637 }
638
639 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
640 struct snd_ctl_elem_value *uvalue)
641 {
642 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
643 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
644 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
645
646 ctrl->ch_status[0] = uvalue->value.iec958.status[0];
647 ctrl->ch_status[1] = uvalue->value.iec958.status[1];
648 ctrl->ch_status[2] = uvalue->value.iec958.status[2];
649 ctrl->ch_status[3] = uvalue->value.iec958.status[3];
650
651 spdif_write_channel_status(spdif_priv);
652
653 return 0;
654 }
655
656 /* Get channel status from SPDIF_RX_CCHAN register */
657 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
658 struct snd_ctl_elem_value *ucontrol)
659 {
660 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
661 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
662 struct regmap *regmap = spdif_priv->regmap;
663 u32 cstatus, val;
664
665 regmap_read(regmap, REG_SPDIF_SIS, &val);
666 if (!(val & INT_CNEW))
667 return -EAGAIN;
668
669 regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
670 ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
671 ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
672 ucontrol->value.iec958.status[2] = cstatus & 0xFF;
673
674 regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
675 ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
676 ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
677 ucontrol->value.iec958.status[5] = cstatus & 0xFF;
678
679 /* Clear intr */
680 regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
681
682 return 0;
683 }
684
685 /*
686 * Get User bits (subcode) from chip value which readed out
687 * in UChannel register.
688 */
689 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
690 struct snd_ctl_elem_value *ucontrol)
691 {
692 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
693 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
694 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
695 unsigned long flags;
696 int ret = -EAGAIN;
697
698 spin_lock_irqsave(&ctrl->ctl_lock, flags);
699 if (ctrl->ready_buf) {
700 int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
701 memcpy(&ucontrol->value.iec958.subcode[0],
702 &ctrl->subcode[idx], SPDIF_UBITS_SIZE);
703 ret = 0;
704 }
705 spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
706
707 return ret;
708 }
709
710 /* Q-subcode infomation. The byte size is SPDIF_UBITS_SIZE/8 */
711 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
712 struct snd_ctl_elem_info *uinfo)
713 {
714 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
715 uinfo->count = SPDIF_QSUB_SIZE;
716
717 return 0;
718 }
719
720 /* Get Q subcode from chip value which readed out in QChannel register */
721 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
722 struct snd_ctl_elem_value *ucontrol)
723 {
724 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
725 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
726 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
727 unsigned long flags;
728 int ret = -EAGAIN;
729
730 spin_lock_irqsave(&ctrl->ctl_lock, flags);
731 if (ctrl->ready_buf) {
732 int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
733 memcpy(&ucontrol->value.bytes.data[0],
734 &ctrl->qsub[idx], SPDIF_QSUB_SIZE);
735 ret = 0;
736 }
737 spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
738
739 return ret;
740 }
741
742 /* Valid bit infomation */
743 static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol,
744 struct snd_ctl_elem_info *uinfo)
745 {
746 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
747 uinfo->count = 1;
748 uinfo->value.integer.min = 0;
749 uinfo->value.integer.max = 1;
750
751 return 0;
752 }
753
754 /* Get valid good bit from interrupt status register */
755 static int fsl_spdif_vbit_get(struct snd_kcontrol *kcontrol,
756 struct snd_ctl_elem_value *ucontrol)
757 {
758 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
759 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
760 struct regmap *regmap = spdif_priv->regmap;
761 u32 val;
762
763 regmap_read(regmap, REG_SPDIF_SIS, &val);
764 ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
765 regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
766
767 return 0;
768 }
769
770 /* DPLL lock infomation */
771 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
772 struct snd_ctl_elem_info *uinfo)
773 {
774 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
775 uinfo->count = 1;
776 uinfo->value.integer.min = 16000;
777 uinfo->value.integer.max = 96000;
778
779 return 0;
780 }
781
782 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
783 24, 16, 12, 8, 6, 4, 3,
784 };
785
786 /* Get RX data clock rate given the SPDIF bus_clk */
787 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
788 enum spdif_gainsel gainsel)
789 {
790 struct regmap *regmap = spdif_priv->regmap;
791 struct platform_device *pdev = spdif_priv->pdev;
792 u64 tmpval64, busclk_freq = 0;
793 u32 freqmeas, phaseconf;
794 u8 clksrc;
795
796 regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
797 regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
798
799 clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
800
801 /* Get bus clock from system */
802 if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
803 busclk_freq = clk_get_rate(spdif_priv->sysclk);
804
805 /* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
806 tmpval64 = (u64) busclk_freq * freqmeas;
807 do_div(tmpval64, gainsel_multi[gainsel] * 1024);
808 do_div(tmpval64, 128 * 1024);
809
810 dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
811 dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
812 dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
813
814 return (int)tmpval64;
815 }
816
817 /*
818 * Get DPLL lock or not info from stable interrupt status register.
819 * User application must use this control to get locked,
820 * then can do next PCM operation
821 */
822 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
823 struct snd_ctl_elem_value *ucontrol)
824 {
825 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
826 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
827 int rate = 0;
828
829 if (spdif_priv->dpll_locked)
830 rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
831
832 ucontrol->value.integer.value[0] = rate;
833
834 return 0;
835 }
836
837 /* User bit sync mode info */
838 static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol,
839 struct snd_ctl_elem_info *uinfo)
840 {
841 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
842 uinfo->count = 1;
843 uinfo->value.integer.min = 0;
844 uinfo->value.integer.max = 1;
845
846 return 0;
847 }
848
849 /*
850 * User bit sync mode:
851 * 1 CD User channel subcode
852 * 0 Non-CD data
853 */
854 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
855 struct snd_ctl_elem_value *ucontrol)
856 {
857 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
858 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
859 struct regmap *regmap = spdif_priv->regmap;
860 u32 val;
861
862 regmap_read(regmap, REG_SPDIF_SRCD, &val);
863 ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
864
865 return 0;
866 }
867
868 /*
869 * User bit sync mode:
870 * 1 CD User channel subcode
871 * 0 Non-CD data
872 */
873 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
874 struct snd_ctl_elem_value *ucontrol)
875 {
876 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
877 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
878 struct regmap *regmap = spdif_priv->regmap;
879 u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
880
881 regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
882
883 return 0;
884 }
885
886 /* FSL SPDIF IEC958 controller defines */
887 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
888 /* Status cchanel controller */
889 {
890 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
891 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
892 .access = SNDRV_CTL_ELEM_ACCESS_READ |
893 SNDRV_CTL_ELEM_ACCESS_WRITE |
894 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
895 .info = fsl_spdif_info,
896 .get = fsl_spdif_pb_get,
897 .put = fsl_spdif_pb_put,
898 },
899 {
900 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
901 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
902 .access = SNDRV_CTL_ELEM_ACCESS_READ |
903 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
904 .info = fsl_spdif_info,
905 .get = fsl_spdif_capture_get,
906 },
907 /* User bits controller */
908 {
909 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
910 .name = "IEC958 Subcode Capture Default",
911 .access = SNDRV_CTL_ELEM_ACCESS_READ |
912 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
913 .info = fsl_spdif_info,
914 .get = fsl_spdif_subcode_get,
915 },
916 {
917 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
918 .name = "IEC958 Q-subcode Capture Default",
919 .access = SNDRV_CTL_ELEM_ACCESS_READ |
920 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
921 .info = fsl_spdif_qinfo,
922 .get = fsl_spdif_qget,
923 },
924 /* Valid bit error controller */
925 {
926 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
927 .name = "IEC958 V-Bit Errors",
928 .access = SNDRV_CTL_ELEM_ACCESS_READ |
929 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
930 .info = fsl_spdif_vbit_info,
931 .get = fsl_spdif_vbit_get,
932 },
933 /* DPLL lock info get controller */
934 {
935 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
936 .name = "RX Sample Rate",
937 .access = SNDRV_CTL_ELEM_ACCESS_READ |
938 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
939 .info = fsl_spdif_rxrate_info,
940 .get = fsl_spdif_rxrate_get,
941 },
942 /* User bit sync mode set/get controller */
943 {
944 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
945 .name = "IEC958 USyncMode CDText",
946 .access = SNDRV_CTL_ELEM_ACCESS_READ |
947 SNDRV_CTL_ELEM_ACCESS_WRITE |
948 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
949 .info = fsl_spdif_usync_info,
950 .get = fsl_spdif_usync_get,
951 .put = fsl_spdif_usync_put,
952 },
953 };
954
955 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
956 {
957 struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
958
959 snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
960 &spdif_private->dma_params_rx);
961
962 snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
963
964 return 0;
965 }
966
967 static struct snd_soc_dai_driver fsl_spdif_dai = {
968 .probe = &fsl_spdif_dai_probe,
969 .playback = {
970 .stream_name = "CPU-Playback",
971 .channels_min = 2,
972 .channels_max = 2,
973 .rates = FSL_SPDIF_RATES_PLAYBACK,
974 .formats = FSL_SPDIF_FORMATS_PLAYBACK,
975 },
976 .capture = {
977 .stream_name = "CPU-Capture",
978 .channels_min = 2,
979 .channels_max = 2,
980 .rates = FSL_SPDIF_RATES_CAPTURE,
981 .formats = FSL_SPDIF_FORMATS_CAPTURE,
982 },
983 .ops = &fsl_spdif_dai_ops,
984 };
985
986 static const struct snd_soc_component_driver fsl_spdif_component = {
987 .name = "fsl-spdif",
988 };
989
990 /* FSL SPDIF REGMAP */
991
992 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
993 {
994 switch (reg) {
995 case REG_SPDIF_SCR:
996 case REG_SPDIF_SRCD:
997 case REG_SPDIF_SRPC:
998 case REG_SPDIF_SIE:
999 case REG_SPDIF_SIS:
1000 case REG_SPDIF_SRL:
1001 case REG_SPDIF_SRR:
1002 case REG_SPDIF_SRCSH:
1003 case REG_SPDIF_SRCSL:
1004 case REG_SPDIF_SRU:
1005 case REG_SPDIF_SRQ:
1006 case REG_SPDIF_STCSCH:
1007 case REG_SPDIF_STCSCL:
1008 case REG_SPDIF_SRFM:
1009 case REG_SPDIF_STC:
1010 return true;
1011 default:
1012 return false;
1013 }
1014 }
1015
1016 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1017 {
1018 switch (reg) {
1019 case REG_SPDIF_SCR:
1020 case REG_SPDIF_SRCD:
1021 case REG_SPDIF_SRPC:
1022 case REG_SPDIF_SIE:
1023 case REG_SPDIF_SIC:
1024 case REG_SPDIF_STL:
1025 case REG_SPDIF_STR:
1026 case REG_SPDIF_STCSCH:
1027 case REG_SPDIF_STCSCL:
1028 case REG_SPDIF_STC:
1029 return true;
1030 default:
1031 return false;
1032 }
1033 }
1034
1035 static const struct regmap_config fsl_spdif_regmap_config = {
1036 .reg_bits = 32,
1037 .reg_stride = 4,
1038 .val_bits = 32,
1039
1040 .max_register = REG_SPDIF_STC,
1041 .readable_reg = fsl_spdif_readable_reg,
1042 .writeable_reg = fsl_spdif_writeable_reg,
1043 };
1044
1045 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1046 struct clk *clk, u64 savesub,
1047 enum spdif_txrate index, bool round)
1048 {
1049 const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1050 bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1051 u64 rate_ideal, rate_actual, sub;
1052 u32 sysclk_dfmin, sysclk_dfmax;
1053 u32 txclk_df, sysclk_df, arate;
1054
1055 /* The sysclk has an extra divisor [2, 512] */
1056 sysclk_dfmin = is_sysclk ? 2 : 1;
1057 sysclk_dfmax = is_sysclk ? 512 : 1;
1058
1059 for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1060 for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1061 rate_ideal = rate[index] * txclk_df * 64;
1062 if (round)
1063 rate_actual = clk_round_rate(clk, rate_ideal);
1064 else
1065 rate_actual = clk_get_rate(clk);
1066
1067 arate = rate_actual / 64;
1068 arate /= txclk_df * sysclk_df;
1069
1070 if (arate == rate[index]) {
1071 /* We are lucky */
1072 savesub = 0;
1073 spdif_priv->txclk_df[index] = txclk_df;
1074 spdif_priv->sysclk_df[index] = sysclk_df;
1075 spdif_priv->txrate[index] = arate;
1076 goto out;
1077 } else if (arate / rate[index] == 1) {
1078 /* A little bigger than expect */
1079 sub = (u64)(arate - rate[index]) * 100000;
1080 do_div(sub, rate[index]);
1081 if (sub >= savesub)
1082 continue;
1083 savesub = sub;
1084 spdif_priv->txclk_df[index] = txclk_df;
1085 spdif_priv->sysclk_df[index] = sysclk_df;
1086 spdif_priv->txrate[index] = arate;
1087 } else if (rate[index] / arate == 1) {
1088 /* A little smaller than expect */
1089 sub = (u64)(rate[index] - arate) * 100000;
1090 do_div(sub, rate[index]);
1091 if (sub >= savesub)
1092 continue;
1093 savesub = sub;
1094 spdif_priv->txclk_df[index] = txclk_df;
1095 spdif_priv->sysclk_df[index] = sysclk_df;
1096 spdif_priv->txrate[index] = arate;
1097 }
1098 }
1099 }
1100
1101 out:
1102 return savesub;
1103 }
1104
1105 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1106 enum spdif_txrate index)
1107 {
1108 const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1109 struct platform_device *pdev = spdif_priv->pdev;
1110 struct device *dev = &pdev->dev;
1111 u64 savesub = 100000, ret;
1112 struct clk *clk;
1113 char tmp[16];
1114 int i;
1115
1116 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1117 sprintf(tmp, "rxtx%d", i);
1118 clk = devm_clk_get(&pdev->dev, tmp);
1119 if (IS_ERR(clk)) {
1120 dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1121 return PTR_ERR(clk);
1122 }
1123 if (!clk_get_rate(clk))
1124 continue;
1125
1126 ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1127 i == STC_TXCLK_SPDIF_ROOT);
1128 if (savesub == ret)
1129 continue;
1130
1131 savesub = ret;
1132 spdif_priv->txclk[index] = clk;
1133 spdif_priv->txclk_src[index] = i;
1134
1135 /* To quick catch a divisor, we allow a 0.1% deviation */
1136 if (savesub < 100)
1137 break;
1138 }
1139
1140 dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1141 spdif_priv->txclk_src[index], rate[index]);
1142 dev_dbg(&pdev->dev, "use txclk df %d for %dHz sample rate\n",
1143 spdif_priv->txclk_df[index], rate[index]);
1144 if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk))
1145 dev_dbg(&pdev->dev, "use sysclk df %d for %dHz sample rate\n",
1146 spdif_priv->sysclk_df[index], rate[index]);
1147 dev_dbg(&pdev->dev, "the best rate for %dHz sample rate is %dHz\n",
1148 rate[index], spdif_priv->txrate[index]);
1149
1150 return 0;
1151 }
1152
1153 static int fsl_spdif_probe(struct platform_device *pdev)
1154 {
1155 struct device_node *np = pdev->dev.of_node;
1156 struct fsl_spdif_priv *spdif_priv;
1157 struct spdif_mixer_control *ctrl;
1158 struct resource *res;
1159 void __iomem *regs;
1160 int irq, ret, i;
1161
1162 if (!np)
1163 return -ENODEV;
1164
1165 spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1166 if (!spdif_priv)
1167 return -ENOMEM;
1168
1169 spdif_priv->pdev = pdev;
1170
1171 /* Initialize this copy of the CPU DAI driver structure */
1172 memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1173 spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1174
1175 /* Get the addresses and IRQ */
1176 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1177 regs = devm_ioremap_resource(&pdev->dev, res);
1178 if (IS_ERR(regs))
1179 return PTR_ERR(regs);
1180
1181 spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1182 "core", regs, &fsl_spdif_regmap_config);
1183 if (IS_ERR(spdif_priv->regmap)) {
1184 dev_err(&pdev->dev, "regmap init failed\n");
1185 return PTR_ERR(spdif_priv->regmap);
1186 }
1187
1188 irq = platform_get_irq(pdev, 0);
1189 if (irq < 0) {
1190 dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1191 return irq;
1192 }
1193
1194 ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1195 dev_name(&pdev->dev), spdif_priv);
1196 if (ret) {
1197 dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1198 return ret;
1199 }
1200
1201 /* Get system clock for rx clock rate calculation */
1202 spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
1203 if (IS_ERR(spdif_priv->sysclk)) {
1204 dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1205 return PTR_ERR(spdif_priv->sysclk);
1206 }
1207
1208 /* Get core clock for data register access via DMA */
1209 spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1210 if (IS_ERR(spdif_priv->coreclk)) {
1211 dev_err(&pdev->dev, "no core clock in devicetree\n");
1212 return PTR_ERR(spdif_priv->coreclk);
1213 }
1214
1215 /* Select clock source for rx/tx clock */
1216 spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
1217 if (IS_ERR(spdif_priv->rxclk)) {
1218 dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1219 return PTR_ERR(spdif_priv->rxclk);
1220 }
1221 spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1222
1223 for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1224 ret = fsl_spdif_probe_txclk(spdif_priv, i);
1225 if (ret)
1226 return ret;
1227 }
1228
1229 /* Initial spinlock for control data */
1230 ctrl = &spdif_priv->fsl_spdif_control;
1231 spin_lock_init(&ctrl->ctl_lock);
1232
1233 /* Init tx channel status default value */
1234 ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1235 IEC958_AES0_CON_EMPHASIS_5015;
1236 ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1237 ctrl->ch_status[2] = 0x00;
1238 ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1239 IEC958_AES3_CON_CLOCK_1000PPM;
1240
1241 spdif_priv->dpll_locked = false;
1242
1243 spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML;
1244 spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML;
1245 spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1246 spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1247
1248 /* Register with ASoC */
1249 dev_set_drvdata(&pdev->dev, spdif_priv);
1250
1251 ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1252 &spdif_priv->cpu_dai_drv, 1);
1253 if (ret) {
1254 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1255 return ret;
1256 }
1257
1258 ret = imx_pcm_dma_init(pdev);
1259 if (ret)
1260 dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);
1261
1262 return ret;
1263 }
1264
1265 static const struct of_device_id fsl_spdif_dt_ids[] = {
1266 { .compatible = "fsl,imx35-spdif", },
1267 { .compatible = "fsl,vf610-spdif", },
1268 {}
1269 };
1270 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1271
1272 static struct platform_driver fsl_spdif_driver = {
1273 .driver = {
1274 .name = "fsl-spdif-dai",
1275 .of_match_table = fsl_spdif_dt_ids,
1276 },
1277 .probe = fsl_spdif_probe,
1278 };
1279
1280 module_platform_driver(fsl_spdif_driver);
1281
1282 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1283 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1284 MODULE_LICENSE("GPL v2");
1285 MODULE_ALIAS("platform:fsl-spdif-dai");
This page took 0.068391 seconds and 6 git commands to generate.