Merge branch 'drm-armada-devel' of git://ftp.arm.linux.org.uk/~rmk/linux-arm into...
[deliverable/linux.git] / sound / soc / fsl / fsl_spdif.c
1 /*
2 * Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
5 *
6 * Based on stmp3xxx_spdif_dai.c
7 * Vladimir Barinov <vbarinov@embeddedalley.com>
8 * Copyright 2008 SigmaTel, Inc
9 * Copyright 2008 Embedded Alley Solutions, Inc
10 *
11 * This file is licensed under the terms of the GNU General Public License
12 * version 2. This program is licensed "as is" without any warranty of any
13 * kind, whether express or implied.
14 */
15
16 #include <linux/bitrev.h>
17 #include <linux/clk.h>
18 #include <linux/module.h>
19 #include <linux/of_address.h>
20 #include <linux/of_device.h>
21 #include <linux/of_irq.h>
22 #include <linux/regmap.h>
23
24 #include <sound/asoundef.h>
25 #include <sound/dmaengine_pcm.h>
26 #include <sound/soc.h>
27
28 #include "fsl_spdif.h"
29 #include "imx-pcm.h"
30
31 #define FSL_SPDIF_TXFIFO_WML 0x8
32 #define FSL_SPDIF_RXFIFO_WML 0x8
33
34 #define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC)
35 #define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
36 INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
37 INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
38 INT_LOSS_LOCK | INT_DPLL_LOCKED)
39
40 #define SIE_INTR_FOR(tx) (tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
41
42 /* Index list for the values that has if (DPLL Locked) condition */
43 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
44 #define SRPC_NODPLL_START1 0x5
45 #define SRPC_NODPLL_START2 0xc
46
47 #define DEFAULT_RXCLK_SRC 1
48
49 /*
50 * SPDIF control structure
51 * Defines channel status, subcode and Q sub
52 */
53 struct spdif_mixer_control {
54 /* spinlock to access control data */
55 spinlock_t ctl_lock;
56
57 /* IEC958 channel tx status bit */
58 unsigned char ch_status[4];
59
60 /* User bits */
61 unsigned char subcode[2 * SPDIF_UBITS_SIZE];
62
63 /* Q subcode part of user bits */
64 unsigned char qsub[2 * SPDIF_QSUB_SIZE];
65
66 /* Buffer offset for U/Q */
67 u32 upos;
68 u32 qpos;
69
70 /* Ready buffer index of the two buffers */
71 u32 ready_buf;
72 };
73
74 /**
75 * fsl_spdif_priv: Freescale SPDIF private data
76 *
77 * @fsl_spdif_control: SPDIF control data
78 * @cpu_dai_drv: cpu dai driver
79 * @pdev: platform device pointer
80 * @regmap: regmap handler
81 * @dpll_locked: dpll lock flag
82 * @txrate: the best rates for playback
83 * @txclk_df: STC_TXCLK_DF dividers value for playback
84 * @sysclk_df: STC_SYSCLK_DF dividers value for playback
85 * @txclk_src: STC_TXCLK_SRC values for playback
86 * @rxclk_src: SRPC_CLKSRC_SEL values for capture
87 * @txclk: tx clock sources for playback
88 * @rxclk: rx clock sources for capture
89 * @coreclk: core clock for register access via DMA
90 * @sysclk: system clock for rx clock rate measurement
91 * @dma_params_tx: DMA parameters for transmit channel
92 * @dma_params_rx: DMA parameters for receive channel
93 */
94 struct fsl_spdif_priv {
95 struct spdif_mixer_control fsl_spdif_control;
96 struct snd_soc_dai_driver cpu_dai_drv;
97 struct platform_device *pdev;
98 struct regmap *regmap;
99 bool dpll_locked;
100 u32 txrate[SPDIF_TXRATE_MAX];
101 u8 txclk_df[SPDIF_TXRATE_MAX];
102 u8 sysclk_df[SPDIF_TXRATE_MAX];
103 u8 txclk_src[SPDIF_TXRATE_MAX];
104 u8 rxclk_src;
105 struct clk *txclk[SPDIF_TXRATE_MAX];
106 struct clk *rxclk;
107 struct clk *coreclk;
108 struct clk *sysclk;
109 struct snd_dmaengine_dai_dma_data dma_params_tx;
110 struct snd_dmaengine_dai_dma_data dma_params_rx;
111 /* regcache for SRPC */
112 u32 regcache_srpc;
113 };
114
115 /* DPLL locked and lock loss interrupt handler */
116 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
117 {
118 struct regmap *regmap = spdif_priv->regmap;
119 struct platform_device *pdev = spdif_priv->pdev;
120 u32 locked;
121
122 regmap_read(regmap, REG_SPDIF_SRPC, &locked);
123 locked &= SRPC_DPLL_LOCKED;
124
125 dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
126 locked ? "locked" : "loss lock");
127
128 spdif_priv->dpll_locked = locked ? true : false;
129 }
130
131 /* Receiver found illegal symbol interrupt handler */
132 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
133 {
134 struct regmap *regmap = spdif_priv->regmap;
135 struct platform_device *pdev = spdif_priv->pdev;
136
137 dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
138
139 /* Clear illegal symbol if DPLL unlocked since no audio stream */
140 if (!spdif_priv->dpll_locked)
141 regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
142 }
143
144 /* U/Q Channel receive register full */
145 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
146 {
147 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
148 struct regmap *regmap = spdif_priv->regmap;
149 struct platform_device *pdev = spdif_priv->pdev;
150 u32 *pos, size, val, reg;
151
152 switch (name) {
153 case 'U':
154 pos = &ctrl->upos;
155 size = SPDIF_UBITS_SIZE;
156 reg = REG_SPDIF_SRU;
157 break;
158 case 'Q':
159 pos = &ctrl->qpos;
160 size = SPDIF_QSUB_SIZE;
161 reg = REG_SPDIF_SRQ;
162 break;
163 default:
164 dev_err(&pdev->dev, "unsupported channel name\n");
165 return;
166 }
167
168 dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
169
170 if (*pos >= size * 2) {
171 *pos = 0;
172 } else if (unlikely((*pos % size) + 3 > size)) {
173 dev_err(&pdev->dev, "User bit receivce buffer overflow\n");
174 return;
175 }
176
177 regmap_read(regmap, reg, &val);
178 ctrl->subcode[*pos++] = val >> 16;
179 ctrl->subcode[*pos++] = val >> 8;
180 ctrl->subcode[*pos++] = val;
181 }
182
183 /* U/Q Channel sync found */
184 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
185 {
186 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
187 struct platform_device *pdev = spdif_priv->pdev;
188
189 dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
190
191 /* U/Q buffer reset */
192 if (ctrl->qpos == 0)
193 return;
194
195 /* Set ready to this buffer */
196 ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
197 }
198
199 /* U/Q Channel framing error */
200 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
201 {
202 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
203 struct regmap *regmap = spdif_priv->regmap;
204 struct platform_device *pdev = spdif_priv->pdev;
205 u32 val;
206
207 dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
208
209 /* Read U/Q data to clear the irq and do buffer reset */
210 regmap_read(regmap, REG_SPDIF_SRU, &val);
211 regmap_read(regmap, REG_SPDIF_SRQ, &val);
212
213 /* Drop this U/Q buffer */
214 ctrl->ready_buf = 0;
215 ctrl->upos = 0;
216 ctrl->qpos = 0;
217 }
218
219 /* Get spdif interrupt status and clear the interrupt */
220 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
221 {
222 struct regmap *regmap = spdif_priv->regmap;
223 u32 val, val2;
224
225 regmap_read(regmap, REG_SPDIF_SIS, &val);
226 regmap_read(regmap, REG_SPDIF_SIE, &val2);
227
228 regmap_write(regmap, REG_SPDIF_SIC, val & val2);
229
230 return val;
231 }
232
233 static irqreturn_t spdif_isr(int irq, void *devid)
234 {
235 struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
236 struct platform_device *pdev = spdif_priv->pdev;
237 u32 sis;
238
239 sis = spdif_intr_status_clear(spdif_priv);
240
241 if (sis & INT_DPLL_LOCKED)
242 spdif_irq_dpll_lock(spdif_priv);
243
244 if (sis & INT_TXFIFO_UNOV)
245 dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
246
247 if (sis & INT_TXFIFO_RESYNC)
248 dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
249
250 if (sis & INT_CNEW)
251 dev_dbg(&pdev->dev, "isr: cstatus new\n");
252
253 if (sis & INT_VAL_NOGOOD)
254 dev_dbg(&pdev->dev, "isr: validity flag no good\n");
255
256 if (sis & INT_SYM_ERR)
257 spdif_irq_sym_error(spdif_priv);
258
259 if (sis & INT_BIT_ERR)
260 dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
261
262 if (sis & INT_URX_FUL)
263 spdif_irq_uqrx_full(spdif_priv, 'U');
264
265 if (sis & INT_URX_OV)
266 dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
267
268 if (sis & INT_QRX_FUL)
269 spdif_irq_uqrx_full(spdif_priv, 'Q');
270
271 if (sis & INT_QRX_OV)
272 dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
273
274 if (sis & INT_UQ_SYNC)
275 spdif_irq_uq_sync(spdif_priv);
276
277 if (sis & INT_UQ_ERR)
278 spdif_irq_uq_err(spdif_priv);
279
280 if (sis & INT_RXFIFO_UNOV)
281 dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
282
283 if (sis & INT_RXFIFO_RESYNC)
284 dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
285
286 if (sis & INT_LOSS_LOCK)
287 spdif_irq_dpll_lock(spdif_priv);
288
289 /* FIXME: Write Tx FIFO to clear TxEm */
290 if (sis & INT_TX_EM)
291 dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
292
293 /* FIXME: Read Rx FIFO to clear RxFIFOFul */
294 if (sis & INT_RXFIFO_FUL)
295 dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
296
297 return IRQ_HANDLED;
298 }
299
300 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
301 {
302 struct regmap *regmap = spdif_priv->regmap;
303 u32 val, cycle = 1000;
304
305 regcache_cache_bypass(regmap, true);
306
307 regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
308
309 /*
310 * RESET bit would be cleared after finishing its reset procedure,
311 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
312 */
313 do {
314 regmap_read(regmap, REG_SPDIF_SCR, &val);
315 } while ((val & SCR_SOFT_RESET) && cycle--);
316
317 regcache_cache_bypass(regmap, false);
318 regcache_mark_dirty(regmap);
319 regcache_sync(regmap);
320
321 if (cycle)
322 return 0;
323 else
324 return -EBUSY;
325 }
326
327 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
328 u8 mask, u8 cstatus)
329 {
330 ctrl->ch_status[3] &= ~mask;
331 ctrl->ch_status[3] |= cstatus & mask;
332 }
333
334 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
335 {
336 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
337 struct regmap *regmap = spdif_priv->regmap;
338 struct platform_device *pdev = spdif_priv->pdev;
339 u32 ch_status;
340
341 ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
342 (bitrev8(ctrl->ch_status[1]) << 8) |
343 bitrev8(ctrl->ch_status[2]);
344 regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
345
346 dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
347
348 ch_status = bitrev8(ctrl->ch_status[3]) << 16;
349 regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
350
351 dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
352 }
353
354 /* Set SPDIF PhaseConfig register for rx clock */
355 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
356 enum spdif_gainsel gainsel, int dpll_locked)
357 {
358 struct regmap *regmap = spdif_priv->regmap;
359 u8 clksrc = spdif_priv->rxclk_src;
360
361 if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
362 return -EINVAL;
363
364 regmap_update_bits(regmap, REG_SPDIF_SRPC,
365 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
366 SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
367
368 return 0;
369 }
370
371 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
372 int sample_rate)
373 {
374 struct snd_soc_pcm_runtime *rtd = substream->private_data;
375 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
376 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
377 struct regmap *regmap = spdif_priv->regmap;
378 struct platform_device *pdev = spdif_priv->pdev;
379 unsigned long csfs = 0;
380 u32 stc, mask, rate;
381 u8 clk, txclk_df, sysclk_df;
382 int ret;
383
384 switch (sample_rate) {
385 case 32000:
386 rate = SPDIF_TXRATE_32000;
387 csfs = IEC958_AES3_CON_FS_32000;
388 break;
389 case 44100:
390 rate = SPDIF_TXRATE_44100;
391 csfs = IEC958_AES3_CON_FS_44100;
392 break;
393 case 48000:
394 rate = SPDIF_TXRATE_48000;
395 csfs = IEC958_AES3_CON_FS_48000;
396 break;
397 case 96000:
398 rate = SPDIF_TXRATE_96000;
399 csfs = IEC958_AES3_CON_FS_96000;
400 break;
401 case 192000:
402 rate = SPDIF_TXRATE_192000;
403 csfs = IEC958_AES3_CON_FS_192000;
404 break;
405 default:
406 dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
407 return -EINVAL;
408 }
409
410 clk = spdif_priv->txclk_src[rate];
411 if (clk >= STC_TXCLK_SRC_MAX) {
412 dev_err(&pdev->dev, "tx clock source is out of range\n");
413 return -EINVAL;
414 }
415
416 txclk_df = spdif_priv->txclk_df[rate];
417 if (txclk_df == 0) {
418 dev_err(&pdev->dev, "the txclk_df can't be zero\n");
419 return -EINVAL;
420 }
421
422 sysclk_df = spdif_priv->sysclk_df[rate];
423
424 /* Don't mess up the clocks from other modules */
425 if (clk != STC_TXCLK_SPDIF_ROOT)
426 goto clk_set_bypass;
427
428 /* The S/PDIF block needs a clock of 64 * fs * txclk_df */
429 ret = clk_set_rate(spdif_priv->txclk[rate],
430 64 * sample_rate * txclk_df);
431 if (ret) {
432 dev_err(&pdev->dev, "failed to set tx clock rate\n");
433 return ret;
434 }
435
436 clk_set_bypass:
437 dev_dbg(&pdev->dev, "expected clock rate = %d\n",
438 (64 * sample_rate * txclk_df * sysclk_df));
439 dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
440 clk_get_rate(spdif_priv->txclk[rate]));
441
442 /* set fs field in consumer channel status */
443 spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
444
445 /* select clock source and divisor */
446 stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
447 STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
448 mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
449 STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
450 regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
451
452 dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
453 spdif_priv->txrate[rate], sample_rate);
454
455 return 0;
456 }
457
458 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
459 struct snd_soc_dai *cpu_dai)
460 {
461 struct snd_soc_pcm_runtime *rtd = substream->private_data;
462 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
463 struct platform_device *pdev = spdif_priv->pdev;
464 struct regmap *regmap = spdif_priv->regmap;
465 u32 scr, mask;
466 int i;
467 int ret;
468
469 /* Reset module and interrupts only for first initialization */
470 if (!cpu_dai->active) {
471 ret = clk_prepare_enable(spdif_priv->coreclk);
472 if (ret) {
473 dev_err(&pdev->dev, "failed to enable core clock\n");
474 return ret;
475 }
476
477 ret = spdif_softreset(spdif_priv);
478 if (ret) {
479 dev_err(&pdev->dev, "failed to soft reset\n");
480 goto err;
481 }
482
483 /* Disable all the interrupts */
484 regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
485 }
486
487 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
488 scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
489 SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
490 SCR_TXFIFO_FSEL_IF8;
491 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
492 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
493 SCR_TXFIFO_FSEL_MASK;
494 for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
495 ret = clk_prepare_enable(spdif_priv->txclk[i]);
496 if (ret)
497 goto disable_txclk;
498 }
499 } else {
500 scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
501 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
502 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
503 ret = clk_prepare_enable(spdif_priv->rxclk);
504 if (ret)
505 goto err;
506 }
507 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
508
509 /* Power up SPDIF module */
510 regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
511
512 return 0;
513
514 disable_txclk:
515 for (i--; i >= 0; i--)
516 clk_disable_unprepare(spdif_priv->txclk[i]);
517 err:
518 clk_disable_unprepare(spdif_priv->coreclk);
519
520 return ret;
521 }
522
523 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
524 struct snd_soc_dai *cpu_dai)
525 {
526 struct snd_soc_pcm_runtime *rtd = substream->private_data;
527 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
528 struct regmap *regmap = spdif_priv->regmap;
529 u32 scr, mask, i;
530
531 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
532 scr = 0;
533 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
534 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
535 SCR_TXFIFO_FSEL_MASK;
536 for (i = 0; i < SPDIF_TXRATE_MAX; i++)
537 clk_disable_unprepare(spdif_priv->txclk[i]);
538 } else {
539 scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
540 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
541 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
542 clk_disable_unprepare(spdif_priv->rxclk);
543 }
544 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
545
546 /* Power down SPDIF module only if tx&rx are both inactive */
547 if (!cpu_dai->active) {
548 spdif_intr_status_clear(spdif_priv);
549 regmap_update_bits(regmap, REG_SPDIF_SCR,
550 SCR_LOW_POWER, SCR_LOW_POWER);
551 clk_disable_unprepare(spdif_priv->coreclk);
552 }
553 }
554
555 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
556 struct snd_pcm_hw_params *params,
557 struct snd_soc_dai *dai)
558 {
559 struct snd_soc_pcm_runtime *rtd = substream->private_data;
560 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
561 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
562 struct platform_device *pdev = spdif_priv->pdev;
563 u32 sample_rate = params_rate(params);
564 int ret = 0;
565
566 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
567 ret = spdif_set_sample_rate(substream, sample_rate);
568 if (ret) {
569 dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
570 __func__, sample_rate);
571 return ret;
572 }
573 spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
574 IEC958_AES3_CON_CLOCK_1000PPM);
575 spdif_write_channel_status(spdif_priv);
576 } else {
577 /* Setup rx clock source */
578 ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
579 }
580
581 return ret;
582 }
583
584 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
585 int cmd, struct snd_soc_dai *dai)
586 {
587 struct snd_soc_pcm_runtime *rtd = substream->private_data;
588 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
589 struct regmap *regmap = spdif_priv->regmap;
590 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
591 u32 intr = SIE_INTR_FOR(tx);
592 u32 dmaen = SCR_DMA_xX_EN(tx);
593
594 switch (cmd) {
595 case SNDRV_PCM_TRIGGER_START:
596 case SNDRV_PCM_TRIGGER_RESUME:
597 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
598 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
599 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
600 break;
601 case SNDRV_PCM_TRIGGER_STOP:
602 case SNDRV_PCM_TRIGGER_SUSPEND:
603 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
604 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
605 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
606 break;
607 default:
608 return -EINVAL;
609 }
610
611 return 0;
612 }
613
614 static struct snd_soc_dai_ops fsl_spdif_dai_ops = {
615 .startup = fsl_spdif_startup,
616 .hw_params = fsl_spdif_hw_params,
617 .trigger = fsl_spdif_trigger,
618 .shutdown = fsl_spdif_shutdown,
619 };
620
621
622 /*
623 * FSL SPDIF IEC958 controller(mixer) functions
624 *
625 * Channel status get/put control
626 * User bit value get/put control
627 * Valid bit value get control
628 * DPLL lock status get control
629 * User bit sync mode selection control
630 */
631
632 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
633 struct snd_ctl_elem_info *uinfo)
634 {
635 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
636 uinfo->count = 1;
637
638 return 0;
639 }
640
641 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
642 struct snd_ctl_elem_value *uvalue)
643 {
644 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
645 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
646 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
647
648 uvalue->value.iec958.status[0] = ctrl->ch_status[0];
649 uvalue->value.iec958.status[1] = ctrl->ch_status[1];
650 uvalue->value.iec958.status[2] = ctrl->ch_status[2];
651 uvalue->value.iec958.status[3] = ctrl->ch_status[3];
652
653 return 0;
654 }
655
656 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
657 struct snd_ctl_elem_value *uvalue)
658 {
659 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
660 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
661 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
662
663 ctrl->ch_status[0] = uvalue->value.iec958.status[0];
664 ctrl->ch_status[1] = uvalue->value.iec958.status[1];
665 ctrl->ch_status[2] = uvalue->value.iec958.status[2];
666 ctrl->ch_status[3] = uvalue->value.iec958.status[3];
667
668 spdif_write_channel_status(spdif_priv);
669
670 return 0;
671 }
672
673 /* Get channel status from SPDIF_RX_CCHAN register */
674 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
675 struct snd_ctl_elem_value *ucontrol)
676 {
677 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
678 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
679 struct regmap *regmap = spdif_priv->regmap;
680 u32 cstatus, val;
681
682 regmap_read(regmap, REG_SPDIF_SIS, &val);
683 if (!(val & INT_CNEW))
684 return -EAGAIN;
685
686 regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
687 ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
688 ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
689 ucontrol->value.iec958.status[2] = cstatus & 0xFF;
690
691 regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
692 ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
693 ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
694 ucontrol->value.iec958.status[5] = cstatus & 0xFF;
695
696 /* Clear intr */
697 regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
698
699 return 0;
700 }
701
702 /*
703 * Get User bits (subcode) from chip value which readed out
704 * in UChannel register.
705 */
706 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
707 struct snd_ctl_elem_value *ucontrol)
708 {
709 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
710 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
711 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
712 unsigned long flags;
713 int ret = -EAGAIN;
714
715 spin_lock_irqsave(&ctrl->ctl_lock, flags);
716 if (ctrl->ready_buf) {
717 int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
718 memcpy(&ucontrol->value.iec958.subcode[0],
719 &ctrl->subcode[idx], SPDIF_UBITS_SIZE);
720 ret = 0;
721 }
722 spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
723
724 return ret;
725 }
726
727 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
728 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
729 struct snd_ctl_elem_info *uinfo)
730 {
731 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
732 uinfo->count = SPDIF_QSUB_SIZE;
733
734 return 0;
735 }
736
737 /* Get Q subcode from chip value which readed out in QChannel register */
738 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
739 struct snd_ctl_elem_value *ucontrol)
740 {
741 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
742 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
743 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
744 unsigned long flags;
745 int ret = -EAGAIN;
746
747 spin_lock_irqsave(&ctrl->ctl_lock, flags);
748 if (ctrl->ready_buf) {
749 int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
750 memcpy(&ucontrol->value.bytes.data[0],
751 &ctrl->qsub[idx], SPDIF_QSUB_SIZE);
752 ret = 0;
753 }
754 spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
755
756 return ret;
757 }
758
759 /* Valid bit information */
760 static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol,
761 struct snd_ctl_elem_info *uinfo)
762 {
763 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
764 uinfo->count = 1;
765 uinfo->value.integer.min = 0;
766 uinfo->value.integer.max = 1;
767
768 return 0;
769 }
770
771 /* Get valid good bit from interrupt status register */
772 static int fsl_spdif_vbit_get(struct snd_kcontrol *kcontrol,
773 struct snd_ctl_elem_value *ucontrol)
774 {
775 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
776 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
777 struct regmap *regmap = spdif_priv->regmap;
778 u32 val;
779
780 regmap_read(regmap, REG_SPDIF_SIS, &val);
781 ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
782 regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
783
784 return 0;
785 }
786
787 /* DPLL lock information */
788 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
789 struct snd_ctl_elem_info *uinfo)
790 {
791 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
792 uinfo->count = 1;
793 uinfo->value.integer.min = 16000;
794 uinfo->value.integer.max = 96000;
795
796 return 0;
797 }
798
799 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
800 24, 16, 12, 8, 6, 4, 3,
801 };
802
803 /* Get RX data clock rate given the SPDIF bus_clk */
804 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
805 enum spdif_gainsel gainsel)
806 {
807 struct regmap *regmap = spdif_priv->regmap;
808 struct platform_device *pdev = spdif_priv->pdev;
809 u64 tmpval64, busclk_freq = 0;
810 u32 freqmeas, phaseconf;
811 u8 clksrc;
812
813 regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
814 regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
815
816 clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
817
818 /* Get bus clock from system */
819 if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
820 busclk_freq = clk_get_rate(spdif_priv->sysclk);
821
822 /* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
823 tmpval64 = (u64) busclk_freq * freqmeas;
824 do_div(tmpval64, gainsel_multi[gainsel] * 1024);
825 do_div(tmpval64, 128 * 1024);
826
827 dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
828 dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
829 dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
830
831 return (int)tmpval64;
832 }
833
834 /*
835 * Get DPLL lock or not info from stable interrupt status register.
836 * User application must use this control to get locked,
837 * then can do next PCM operation
838 */
839 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
840 struct snd_ctl_elem_value *ucontrol)
841 {
842 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
843 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
844 int rate = 0;
845
846 if (spdif_priv->dpll_locked)
847 rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
848
849 ucontrol->value.integer.value[0] = rate;
850
851 return 0;
852 }
853
854 /* User bit sync mode info */
855 static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol,
856 struct snd_ctl_elem_info *uinfo)
857 {
858 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
859 uinfo->count = 1;
860 uinfo->value.integer.min = 0;
861 uinfo->value.integer.max = 1;
862
863 return 0;
864 }
865
866 /*
867 * User bit sync mode:
868 * 1 CD User channel subcode
869 * 0 Non-CD data
870 */
871 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
872 struct snd_ctl_elem_value *ucontrol)
873 {
874 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
875 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
876 struct regmap *regmap = spdif_priv->regmap;
877 u32 val;
878
879 regmap_read(regmap, REG_SPDIF_SRCD, &val);
880 ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
881
882 return 0;
883 }
884
885 /*
886 * User bit sync mode:
887 * 1 CD User channel subcode
888 * 0 Non-CD data
889 */
890 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
891 struct snd_ctl_elem_value *ucontrol)
892 {
893 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
894 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
895 struct regmap *regmap = spdif_priv->regmap;
896 u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
897
898 regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
899
900 return 0;
901 }
902
903 /* FSL SPDIF IEC958 controller defines */
904 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
905 /* Status cchanel controller */
906 {
907 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
908 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
909 .access = SNDRV_CTL_ELEM_ACCESS_READ |
910 SNDRV_CTL_ELEM_ACCESS_WRITE |
911 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
912 .info = fsl_spdif_info,
913 .get = fsl_spdif_pb_get,
914 .put = fsl_spdif_pb_put,
915 },
916 {
917 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
918 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
919 .access = SNDRV_CTL_ELEM_ACCESS_READ |
920 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
921 .info = fsl_spdif_info,
922 .get = fsl_spdif_capture_get,
923 },
924 /* User bits controller */
925 {
926 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
927 .name = "IEC958 Subcode Capture Default",
928 .access = SNDRV_CTL_ELEM_ACCESS_READ |
929 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
930 .info = fsl_spdif_info,
931 .get = fsl_spdif_subcode_get,
932 },
933 {
934 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
935 .name = "IEC958 Q-subcode Capture Default",
936 .access = SNDRV_CTL_ELEM_ACCESS_READ |
937 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
938 .info = fsl_spdif_qinfo,
939 .get = fsl_spdif_qget,
940 },
941 /* Valid bit error controller */
942 {
943 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
944 .name = "IEC958 V-Bit Errors",
945 .access = SNDRV_CTL_ELEM_ACCESS_READ |
946 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
947 .info = fsl_spdif_vbit_info,
948 .get = fsl_spdif_vbit_get,
949 },
950 /* DPLL lock info get controller */
951 {
952 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
953 .name = "RX Sample Rate",
954 .access = SNDRV_CTL_ELEM_ACCESS_READ |
955 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
956 .info = fsl_spdif_rxrate_info,
957 .get = fsl_spdif_rxrate_get,
958 },
959 /* User bit sync mode set/get controller */
960 {
961 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
962 .name = "IEC958 USyncMode CDText",
963 .access = SNDRV_CTL_ELEM_ACCESS_READ |
964 SNDRV_CTL_ELEM_ACCESS_WRITE |
965 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
966 .info = fsl_spdif_usync_info,
967 .get = fsl_spdif_usync_get,
968 .put = fsl_spdif_usync_put,
969 },
970 };
971
972 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
973 {
974 struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
975
976 snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
977 &spdif_private->dma_params_rx);
978
979 snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
980
981 return 0;
982 }
983
984 static struct snd_soc_dai_driver fsl_spdif_dai = {
985 .probe = &fsl_spdif_dai_probe,
986 .playback = {
987 .stream_name = "CPU-Playback",
988 .channels_min = 2,
989 .channels_max = 2,
990 .rates = FSL_SPDIF_RATES_PLAYBACK,
991 .formats = FSL_SPDIF_FORMATS_PLAYBACK,
992 },
993 .capture = {
994 .stream_name = "CPU-Capture",
995 .channels_min = 2,
996 .channels_max = 2,
997 .rates = FSL_SPDIF_RATES_CAPTURE,
998 .formats = FSL_SPDIF_FORMATS_CAPTURE,
999 },
1000 .ops = &fsl_spdif_dai_ops,
1001 };
1002
1003 static const struct snd_soc_component_driver fsl_spdif_component = {
1004 .name = "fsl-spdif",
1005 };
1006
1007 /* FSL SPDIF REGMAP */
1008 static const struct reg_default fsl_spdif_reg_defaults[] = {
1009 {0x0, 0x00000400},
1010 {0x4, 0x00000000},
1011 {0xc, 0x00000000},
1012 {0x34, 0x00000000},
1013 {0x38, 0x00000000},
1014 {0x50, 0x00020f00},
1015 };
1016
1017 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1018 {
1019 switch (reg) {
1020 case REG_SPDIF_SCR:
1021 case REG_SPDIF_SRCD:
1022 case REG_SPDIF_SRPC:
1023 case REG_SPDIF_SIE:
1024 case REG_SPDIF_SIS:
1025 case REG_SPDIF_SRL:
1026 case REG_SPDIF_SRR:
1027 case REG_SPDIF_SRCSH:
1028 case REG_SPDIF_SRCSL:
1029 case REG_SPDIF_SRU:
1030 case REG_SPDIF_SRQ:
1031 case REG_SPDIF_STCSCH:
1032 case REG_SPDIF_STCSCL:
1033 case REG_SPDIF_SRFM:
1034 case REG_SPDIF_STC:
1035 return true;
1036 default:
1037 return false;
1038 }
1039 }
1040
1041 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1042 {
1043 switch (reg) {
1044 case REG_SPDIF_SRPC:
1045 case REG_SPDIF_SIS:
1046 case REG_SPDIF_SRL:
1047 case REG_SPDIF_SRR:
1048 case REG_SPDIF_SRCSH:
1049 case REG_SPDIF_SRCSL:
1050 case REG_SPDIF_SRU:
1051 case REG_SPDIF_SRQ:
1052 case REG_SPDIF_STL:
1053 case REG_SPDIF_STR:
1054 case REG_SPDIF_SRFM:
1055 return true;
1056 default:
1057 return false;
1058 }
1059 }
1060
1061 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1062 {
1063 switch (reg) {
1064 case REG_SPDIF_SCR:
1065 case REG_SPDIF_SRCD:
1066 case REG_SPDIF_SRPC:
1067 case REG_SPDIF_SIE:
1068 case REG_SPDIF_SIC:
1069 case REG_SPDIF_STL:
1070 case REG_SPDIF_STR:
1071 case REG_SPDIF_STCSCH:
1072 case REG_SPDIF_STCSCL:
1073 case REG_SPDIF_STC:
1074 return true;
1075 default:
1076 return false;
1077 }
1078 }
1079
1080 static const struct regmap_config fsl_spdif_regmap_config = {
1081 .reg_bits = 32,
1082 .reg_stride = 4,
1083 .val_bits = 32,
1084
1085 .max_register = REG_SPDIF_STC,
1086 .reg_defaults = fsl_spdif_reg_defaults,
1087 .num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1088 .readable_reg = fsl_spdif_readable_reg,
1089 .volatile_reg = fsl_spdif_volatile_reg,
1090 .writeable_reg = fsl_spdif_writeable_reg,
1091 .cache_type = REGCACHE_RBTREE,
1092 };
1093
1094 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1095 struct clk *clk, u64 savesub,
1096 enum spdif_txrate index, bool round)
1097 {
1098 const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1099 bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1100 u64 rate_ideal, rate_actual, sub;
1101 u32 sysclk_dfmin, sysclk_dfmax;
1102 u32 txclk_df, sysclk_df, arate;
1103
1104 /* The sysclk has an extra divisor [2, 512] */
1105 sysclk_dfmin = is_sysclk ? 2 : 1;
1106 sysclk_dfmax = is_sysclk ? 512 : 1;
1107
1108 for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1109 for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1110 rate_ideal = rate[index] * txclk_df * 64;
1111 if (round)
1112 rate_actual = clk_round_rate(clk, rate_ideal);
1113 else
1114 rate_actual = clk_get_rate(clk);
1115
1116 arate = rate_actual / 64;
1117 arate /= txclk_df * sysclk_df;
1118
1119 if (arate == rate[index]) {
1120 /* We are lucky */
1121 savesub = 0;
1122 spdif_priv->txclk_df[index] = txclk_df;
1123 spdif_priv->sysclk_df[index] = sysclk_df;
1124 spdif_priv->txrate[index] = arate;
1125 goto out;
1126 } else if (arate / rate[index] == 1) {
1127 /* A little bigger than expect */
1128 sub = (u64)(arate - rate[index]) * 100000;
1129 do_div(sub, rate[index]);
1130 if (sub >= savesub)
1131 continue;
1132 savesub = sub;
1133 spdif_priv->txclk_df[index] = txclk_df;
1134 spdif_priv->sysclk_df[index] = sysclk_df;
1135 spdif_priv->txrate[index] = arate;
1136 } else if (rate[index] / arate == 1) {
1137 /* A little smaller than expect */
1138 sub = (u64)(rate[index] - arate) * 100000;
1139 do_div(sub, rate[index]);
1140 if (sub >= savesub)
1141 continue;
1142 savesub = sub;
1143 spdif_priv->txclk_df[index] = txclk_df;
1144 spdif_priv->sysclk_df[index] = sysclk_df;
1145 spdif_priv->txrate[index] = arate;
1146 }
1147 }
1148 }
1149
1150 out:
1151 return savesub;
1152 }
1153
1154 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1155 enum spdif_txrate index)
1156 {
1157 const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1158 struct platform_device *pdev = spdif_priv->pdev;
1159 struct device *dev = &pdev->dev;
1160 u64 savesub = 100000, ret;
1161 struct clk *clk;
1162 char tmp[16];
1163 int i;
1164
1165 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1166 sprintf(tmp, "rxtx%d", i);
1167 clk = devm_clk_get(&pdev->dev, tmp);
1168 if (IS_ERR(clk)) {
1169 dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1170 return PTR_ERR(clk);
1171 }
1172 if (!clk_get_rate(clk))
1173 continue;
1174
1175 ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1176 i == STC_TXCLK_SPDIF_ROOT);
1177 if (savesub == ret)
1178 continue;
1179
1180 savesub = ret;
1181 spdif_priv->txclk[index] = clk;
1182 spdif_priv->txclk_src[index] = i;
1183
1184 /* To quick catch a divisor, we allow a 0.1% deviation */
1185 if (savesub < 100)
1186 break;
1187 }
1188
1189 dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1190 spdif_priv->txclk_src[index], rate[index]);
1191 dev_dbg(&pdev->dev, "use txclk df %d for %dHz sample rate\n",
1192 spdif_priv->txclk_df[index], rate[index]);
1193 if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk))
1194 dev_dbg(&pdev->dev, "use sysclk df %d for %dHz sample rate\n",
1195 spdif_priv->sysclk_df[index], rate[index]);
1196 dev_dbg(&pdev->dev, "the best rate for %dHz sample rate is %dHz\n",
1197 rate[index], spdif_priv->txrate[index]);
1198
1199 return 0;
1200 }
1201
1202 static int fsl_spdif_probe(struct platform_device *pdev)
1203 {
1204 struct device_node *np = pdev->dev.of_node;
1205 struct fsl_spdif_priv *spdif_priv;
1206 struct spdif_mixer_control *ctrl;
1207 struct resource *res;
1208 void __iomem *regs;
1209 int irq, ret, i;
1210
1211 if (!np)
1212 return -ENODEV;
1213
1214 spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1215 if (!spdif_priv)
1216 return -ENOMEM;
1217
1218 spdif_priv->pdev = pdev;
1219
1220 /* Initialize this copy of the CPU DAI driver structure */
1221 memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1222 spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1223
1224 /* Get the addresses and IRQ */
1225 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1226 regs = devm_ioremap_resource(&pdev->dev, res);
1227 if (IS_ERR(regs))
1228 return PTR_ERR(regs);
1229
1230 spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1231 "core", regs, &fsl_spdif_regmap_config);
1232 if (IS_ERR(spdif_priv->regmap)) {
1233 dev_err(&pdev->dev, "regmap init failed\n");
1234 return PTR_ERR(spdif_priv->regmap);
1235 }
1236
1237 irq = platform_get_irq(pdev, 0);
1238 if (irq < 0) {
1239 dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1240 return irq;
1241 }
1242
1243 ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1244 dev_name(&pdev->dev), spdif_priv);
1245 if (ret) {
1246 dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1247 return ret;
1248 }
1249
1250 /* Get system clock for rx clock rate calculation */
1251 spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
1252 if (IS_ERR(spdif_priv->sysclk)) {
1253 dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1254 return PTR_ERR(spdif_priv->sysclk);
1255 }
1256
1257 /* Get core clock for data register access via DMA */
1258 spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1259 if (IS_ERR(spdif_priv->coreclk)) {
1260 dev_err(&pdev->dev, "no core clock in devicetree\n");
1261 return PTR_ERR(spdif_priv->coreclk);
1262 }
1263
1264 /* Select clock source for rx/tx clock */
1265 spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
1266 if (IS_ERR(spdif_priv->rxclk)) {
1267 dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1268 return PTR_ERR(spdif_priv->rxclk);
1269 }
1270 spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1271
1272 for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1273 ret = fsl_spdif_probe_txclk(spdif_priv, i);
1274 if (ret)
1275 return ret;
1276 }
1277
1278 /* Initial spinlock for control data */
1279 ctrl = &spdif_priv->fsl_spdif_control;
1280 spin_lock_init(&ctrl->ctl_lock);
1281
1282 /* Init tx channel status default value */
1283 ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1284 IEC958_AES0_CON_EMPHASIS_5015;
1285 ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1286 ctrl->ch_status[2] = 0x00;
1287 ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1288 IEC958_AES3_CON_CLOCK_1000PPM;
1289
1290 spdif_priv->dpll_locked = false;
1291
1292 spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML;
1293 spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML;
1294 spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1295 spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1296
1297 /* Register with ASoC */
1298 dev_set_drvdata(&pdev->dev, spdif_priv);
1299
1300 ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1301 &spdif_priv->cpu_dai_drv, 1);
1302 if (ret) {
1303 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1304 return ret;
1305 }
1306
1307 ret = imx_pcm_dma_init(pdev, IMX_SPDIF_DMABUF_SIZE);
1308 if (ret)
1309 dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);
1310
1311 return ret;
1312 }
1313
1314 #ifdef CONFIG_PM_SLEEP
1315 static int fsl_spdif_suspend(struct device *dev)
1316 {
1317 struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1318
1319 regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1320 &spdif_priv->regcache_srpc);
1321
1322 regcache_cache_only(spdif_priv->regmap, true);
1323 regcache_mark_dirty(spdif_priv->regmap);
1324
1325 return 0;
1326 }
1327
1328 static int fsl_spdif_resume(struct device *dev)
1329 {
1330 struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1331
1332 regcache_cache_only(spdif_priv->regmap, false);
1333
1334 regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1335 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1336 spdif_priv->regcache_srpc);
1337
1338 return regcache_sync(spdif_priv->regmap);
1339 }
1340 #endif /* CONFIG_PM_SLEEP */
1341
1342 static const struct dev_pm_ops fsl_spdif_pm = {
1343 SET_SYSTEM_SLEEP_PM_OPS(fsl_spdif_suspend, fsl_spdif_resume)
1344 };
1345
1346 static const struct of_device_id fsl_spdif_dt_ids[] = {
1347 { .compatible = "fsl,imx35-spdif", },
1348 { .compatible = "fsl,vf610-spdif", },
1349 {}
1350 };
1351 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1352
1353 static struct platform_driver fsl_spdif_driver = {
1354 .driver = {
1355 .name = "fsl-spdif-dai",
1356 .of_match_table = fsl_spdif_dt_ids,
1357 .pm = &fsl_spdif_pm,
1358 },
1359 .probe = fsl_spdif_probe,
1360 };
1361
1362 module_platform_driver(fsl_spdif_driver);
1363
1364 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1365 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1366 MODULE_LICENSE("GPL v2");
1367 MODULE_ALIAS("platform:fsl-spdif-dai");
This page took 0.060182 seconds and 6 git commands to generate.