ASoC: fsl: Set sdma peripheral type directly
[deliverable/linux.git] / sound / soc / fsl / fsl_ssi.c
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 */
12
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/clk.h>
18 #include <linux/device.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/initval.h>
29 #include <sound/soc.h>
30 #include <sound/dmaengine_pcm.h>
31
32 #include "fsl_ssi.h"
33 #include "imx-pcm.h"
34
35 #ifdef PPC
36 #define read_ssi(addr) in_be32(addr)
37 #define write_ssi(val, addr) out_be32(addr, val)
38 #define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
39 #else
40 #define read_ssi(addr) readl(addr)
41 #define write_ssi(val, addr) writel(val, addr)
42 /*
43 * FIXME: Proper locking should be added at write_ssi_mask caller level
44 * to ensure this register read/modify/write sequence is race free.
45 */
46 static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
47 {
48 u32 val = readl(addr);
49 val = (val & ~clear) | set;
50 writel(val, addr);
51 }
52 #endif
53
54 /**
55 * FSLSSI_I2S_RATES: sample rates supported by the I2S
56 *
57 * This driver currently only supports the SSI running in I2S slave mode,
58 * which means the codec determines the sample rate. Therefore, we tell
59 * ALSA that we support all rates and let the codec driver decide what rates
60 * are really supported.
61 */
62 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
63 SNDRV_PCM_RATE_CONTINUOUS)
64
65 /**
66 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
67 *
68 * This driver currently only supports the SSI running in I2S slave mode.
69 *
70 * The SSI has a limitation in that the samples must be in the same byte
71 * order as the host CPU. This is because when multiple bytes are written
72 * to the STX register, the bytes and bits must be written in the same
73 * order. The STX is a shift register, so all the bits need to be aligned
74 * (bit-endianness must match byte-endianness). Processors typically write
75 * the bits within a byte in the same order that the bytes of a word are
76 * written in. So if the host CPU is big-endian, then only big-endian
77 * samples will be written to STX properly.
78 */
79 #ifdef __BIG_ENDIAN
80 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83 #else
84 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88
89 /* SIER bitflag of interrupts to enable */
90 #define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
91 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
92 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
93 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
94 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
95
96 /**
97 * fsl_ssi_private: per-SSI private data
98 *
99 * @ssi: pointer to the SSI's registers
100 * @ssi_phys: physical address of the SSI registers
101 * @irq: IRQ of this SSI
102 * @first_stream: pointer to the stream that was opened first
103 * @second_stream: pointer to second stream
104 * @playback: the number of playback streams opened
105 * @capture: the number of capture streams opened
106 * @cpu_dai: the CPU DAI for this device
107 * @dev_attr: the sysfs device attribute structure
108 * @stats: SSI statistics
109 * @name: name for this device
110 */
111 struct fsl_ssi_private {
112 struct ccsr_ssi __iomem *ssi;
113 dma_addr_t ssi_phys;
114 unsigned int irq;
115 struct snd_pcm_substream *first_stream;
116 struct snd_pcm_substream *second_stream;
117 unsigned int fifo_depth;
118 struct snd_soc_dai_driver cpu_dai_drv;
119 struct device_attribute dev_attr;
120 struct platform_device *pdev;
121
122 bool new_binding;
123 bool ssi_on_imx;
124 struct clk *clk;
125 struct snd_dmaengine_dai_dma_data dma_params_tx;
126 struct snd_dmaengine_dai_dma_data dma_params_rx;
127 struct imx_dma_data filter_data_tx;
128 struct imx_dma_data filter_data_rx;
129
130 struct {
131 unsigned int rfrc;
132 unsigned int tfrc;
133 unsigned int cmdau;
134 unsigned int cmddu;
135 unsigned int rxt;
136 unsigned int rdr1;
137 unsigned int rdr0;
138 unsigned int tde1;
139 unsigned int tde0;
140 unsigned int roe1;
141 unsigned int roe0;
142 unsigned int tue1;
143 unsigned int tue0;
144 unsigned int tfs;
145 unsigned int rfs;
146 unsigned int tls;
147 unsigned int rls;
148 unsigned int rff1;
149 unsigned int rff0;
150 unsigned int tfe1;
151 unsigned int tfe0;
152 } stats;
153
154 char name[1];
155 };
156
157 /**
158 * fsl_ssi_isr: SSI interrupt handler
159 *
160 * Although it's possible to use the interrupt handler to send and receive
161 * data to/from the SSI, we use the DMA instead. Programming is more
162 * complicated, but the performance is much better.
163 *
164 * This interrupt handler is used only to gather statistics.
165 *
166 * @irq: IRQ of the SSI device
167 * @dev_id: pointer to the ssi_private structure for this SSI device
168 */
169 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
170 {
171 struct fsl_ssi_private *ssi_private = dev_id;
172 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
173 irqreturn_t ret = IRQ_NONE;
174 __be32 sisr;
175 __be32 sisr2 = 0;
176
177 /* We got an interrupt, so read the status register to see what we
178 were interrupted for. We mask it with the Interrupt Enable register
179 so that we only check for events that we're interested in.
180 */
181 sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
182
183 if (sisr & CCSR_SSI_SISR_RFRC) {
184 ssi_private->stats.rfrc++;
185 sisr2 |= CCSR_SSI_SISR_RFRC;
186 ret = IRQ_HANDLED;
187 }
188
189 if (sisr & CCSR_SSI_SISR_TFRC) {
190 ssi_private->stats.tfrc++;
191 sisr2 |= CCSR_SSI_SISR_TFRC;
192 ret = IRQ_HANDLED;
193 }
194
195 if (sisr & CCSR_SSI_SISR_CMDAU) {
196 ssi_private->stats.cmdau++;
197 ret = IRQ_HANDLED;
198 }
199
200 if (sisr & CCSR_SSI_SISR_CMDDU) {
201 ssi_private->stats.cmddu++;
202 ret = IRQ_HANDLED;
203 }
204
205 if (sisr & CCSR_SSI_SISR_RXT) {
206 ssi_private->stats.rxt++;
207 ret = IRQ_HANDLED;
208 }
209
210 if (sisr & CCSR_SSI_SISR_RDR1) {
211 ssi_private->stats.rdr1++;
212 ret = IRQ_HANDLED;
213 }
214
215 if (sisr & CCSR_SSI_SISR_RDR0) {
216 ssi_private->stats.rdr0++;
217 ret = IRQ_HANDLED;
218 }
219
220 if (sisr & CCSR_SSI_SISR_TDE1) {
221 ssi_private->stats.tde1++;
222 ret = IRQ_HANDLED;
223 }
224
225 if (sisr & CCSR_SSI_SISR_TDE0) {
226 ssi_private->stats.tde0++;
227 ret = IRQ_HANDLED;
228 }
229
230 if (sisr & CCSR_SSI_SISR_ROE1) {
231 ssi_private->stats.roe1++;
232 sisr2 |= CCSR_SSI_SISR_ROE1;
233 ret = IRQ_HANDLED;
234 }
235
236 if (sisr & CCSR_SSI_SISR_ROE0) {
237 ssi_private->stats.roe0++;
238 sisr2 |= CCSR_SSI_SISR_ROE0;
239 ret = IRQ_HANDLED;
240 }
241
242 if (sisr & CCSR_SSI_SISR_TUE1) {
243 ssi_private->stats.tue1++;
244 sisr2 |= CCSR_SSI_SISR_TUE1;
245 ret = IRQ_HANDLED;
246 }
247
248 if (sisr & CCSR_SSI_SISR_TUE0) {
249 ssi_private->stats.tue0++;
250 sisr2 |= CCSR_SSI_SISR_TUE0;
251 ret = IRQ_HANDLED;
252 }
253
254 if (sisr & CCSR_SSI_SISR_TFS) {
255 ssi_private->stats.tfs++;
256 ret = IRQ_HANDLED;
257 }
258
259 if (sisr & CCSR_SSI_SISR_RFS) {
260 ssi_private->stats.rfs++;
261 ret = IRQ_HANDLED;
262 }
263
264 if (sisr & CCSR_SSI_SISR_TLS) {
265 ssi_private->stats.tls++;
266 ret = IRQ_HANDLED;
267 }
268
269 if (sisr & CCSR_SSI_SISR_RLS) {
270 ssi_private->stats.rls++;
271 ret = IRQ_HANDLED;
272 }
273
274 if (sisr & CCSR_SSI_SISR_RFF1) {
275 ssi_private->stats.rff1++;
276 ret = IRQ_HANDLED;
277 }
278
279 if (sisr & CCSR_SSI_SISR_RFF0) {
280 ssi_private->stats.rff0++;
281 ret = IRQ_HANDLED;
282 }
283
284 if (sisr & CCSR_SSI_SISR_TFE1) {
285 ssi_private->stats.tfe1++;
286 ret = IRQ_HANDLED;
287 }
288
289 if (sisr & CCSR_SSI_SISR_TFE0) {
290 ssi_private->stats.tfe0++;
291 ret = IRQ_HANDLED;
292 }
293
294 /* Clear the bits that we set */
295 if (sisr2)
296 write_ssi(sisr2, &ssi->sisr);
297
298 return ret;
299 }
300
301 /**
302 * fsl_ssi_startup: create a new substream
303 *
304 * This is the first function called when a stream is opened.
305 *
306 * If this is the first stream open, then grab the IRQ and program most of
307 * the SSI registers.
308 */
309 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
310 struct snd_soc_dai *dai)
311 {
312 struct snd_soc_pcm_runtime *rtd = substream->private_data;
313 struct fsl_ssi_private *ssi_private =
314 snd_soc_dai_get_drvdata(rtd->cpu_dai);
315 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
316
317 /*
318 * If this is the first stream opened, then request the IRQ
319 * and initialize the SSI registers.
320 */
321 if (!ssi_private->first_stream) {
322 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
323
324 ssi_private->first_stream = substream;
325
326 /*
327 * Section 16.5 of the MPC8610 reference manual says that the
328 * SSI needs to be disabled before updating the registers we set
329 * here.
330 */
331 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
332
333 /*
334 * Program the SSI into I2S Slave Non-Network Synchronous mode.
335 * Also enable the transmit and receive FIFO.
336 *
337 * FIXME: Little-endian samples require a different shift dir
338 */
339 write_ssi_mask(&ssi->scr,
340 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
341 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
342 | (synchronous ? CCSR_SSI_SCR_SYN : 0));
343
344 write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
345 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
346 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
347
348 write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
349 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
350 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
351
352 /*
353 * The DC and PM bits are only used if the SSI is the clock
354 * master.
355 */
356
357 /* Enable the interrupts and DMA requests */
358 write_ssi(SIER_FLAGS, &ssi->sier);
359
360 /*
361 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
362 * don't use FIFO 1. We program the transmit water to signal a
363 * DMA transfer if there are only two (or fewer) elements left
364 * in the FIFO. Two elements equals one frame (left channel,
365 * right channel). This value, however, depends on the depth of
366 * the transmit buffer.
367 *
368 * We program the receive FIFO to notify us if at least two
369 * elements (one frame) have been written to the FIFO. We could
370 * make this value larger (and maybe we should), but this way
371 * data will be written to memory as soon as it's available.
372 */
373 write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
374 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
375 &ssi->sfcsr);
376
377 /*
378 * We keep the SSI disabled because if we enable it, then the
379 * DMA controller will start. It's not supposed to start until
380 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
381 * DMA controller will transfer one "BWC" of data (i.e. the
382 * amount of data that the MR.BWC bits are set to). The reason
383 * this is bad is because at this point, the PCM driver has not
384 * finished initializing the DMA controller.
385 */
386 } else {
387 if (synchronous) {
388 struct snd_pcm_runtime *first_runtime =
389 ssi_private->first_stream->runtime;
390 /*
391 * This is the second stream open, and we're in
392 * synchronous mode, so we need to impose sample
393 * sample size constraints. This is because STCCR is
394 * used for playback and capture in synchronous mode,
395 * so there's no way to specify different word
396 * lengths.
397 *
398 * Note that this can cause a race condition if the
399 * second stream is opened before the first stream is
400 * fully initialized. We provide some protection by
401 * checking to make sure the first stream is
402 * initialized, but it's not perfect. ALSA sometimes
403 * re-initializes the driver with a different sample
404 * rate or size. If the second stream is opened
405 * before the first stream has received its final
406 * parameters, then the second stream may be
407 * constrained to the wrong sample rate or size.
408 */
409 if (!first_runtime->sample_bits) {
410 dev_err(substream->pcm->card->dev,
411 "set sample size in %s stream first\n",
412 substream->stream ==
413 SNDRV_PCM_STREAM_PLAYBACK
414 ? "capture" : "playback");
415 return -EAGAIN;
416 }
417
418 snd_pcm_hw_constraint_minmax(substream->runtime,
419 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
420 first_runtime->sample_bits,
421 first_runtime->sample_bits);
422 }
423
424 ssi_private->second_stream = substream;
425 }
426
427 return 0;
428 }
429
430 /**
431 * fsl_ssi_hw_params - program the sample size
432 *
433 * Most of the SSI registers have been programmed in the startup function,
434 * but the word length must be programmed here. Unfortunately, programming
435 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
436 * cause a problem with supporting simultaneous playback and capture. If
437 * the SSI is already playing a stream, then that stream may be temporarily
438 * stopped when you start capture.
439 *
440 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
441 * clock master.
442 */
443 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
444 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
445 {
446 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
447 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
448 unsigned int sample_size =
449 snd_pcm_format_width(params_format(hw_params));
450 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
451 int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
452
453 /*
454 * If we're in synchronous mode, and the SSI is already enabled,
455 * then STCCR is already set properly.
456 */
457 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
458 return 0;
459
460 /*
461 * FIXME: The documentation says that SxCCR[WL] should not be
462 * modified while the SSI is enabled. The only time this can
463 * happen is if we're trying to do simultaneous playback and
464 * capture in asynchronous mode. Unfortunately, I have been enable
465 * to get that to work at all on the P1022DS. Therefore, we don't
466 * bother to disable/enable the SSI when setting SxCCR[WL], because
467 * the SSI will stop anyway. Maybe one day, this will get fixed.
468 */
469
470 /* In synchronous mode, the SSI uses STCCR for capture */
471 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
472 ssi_private->cpu_dai_drv.symmetric_rates)
473 write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
474 else
475 write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
476
477 return 0;
478 }
479
480 /**
481 * fsl_ssi_trigger: start and stop the DMA transfer.
482 *
483 * This function is called by ALSA to start, stop, pause, and resume the DMA
484 * transfer of data.
485 *
486 * The DMA channel is in external master start and pause mode, which
487 * means the SSI completely controls the flow of data.
488 */
489 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
490 struct snd_soc_dai *dai)
491 {
492 struct snd_soc_pcm_runtime *rtd = substream->private_data;
493 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
494 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
495
496 switch (cmd) {
497 case SNDRV_PCM_TRIGGER_START:
498 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
499 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
500 write_ssi_mask(&ssi->scr, 0,
501 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
502 else
503 write_ssi_mask(&ssi->scr, 0,
504 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
505 break;
506
507 case SNDRV_PCM_TRIGGER_STOP:
508 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
509 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
510 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
511 else
512 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
513
514 if ((read_ssi(&ssi->scr) & (CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
515 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
516 break;
517
518 default:
519 return -EINVAL;
520 }
521
522 return 0;
523 }
524
525 /**
526 * fsl_ssi_shutdown: shutdown the SSI
527 *
528 * Shutdown the SSI if there are no other substreams open.
529 */
530 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
531 struct snd_soc_dai *dai)
532 {
533 struct snd_soc_pcm_runtime *rtd = substream->private_data;
534 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
535
536 if (ssi_private->first_stream == substream)
537 ssi_private->first_stream = ssi_private->second_stream;
538
539 ssi_private->second_stream = NULL;
540 }
541
542 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
543 {
544 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
545
546 if (ssi_private->ssi_on_imx) {
547 dai->playback_dma_data = &ssi_private->dma_params_tx;
548 dai->capture_dma_data = &ssi_private->dma_params_rx;
549 }
550
551 return 0;
552 }
553
554 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
555 .startup = fsl_ssi_startup,
556 .hw_params = fsl_ssi_hw_params,
557 .shutdown = fsl_ssi_shutdown,
558 .trigger = fsl_ssi_trigger,
559 };
560
561 /* Template for the CPU dai driver structure */
562 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
563 .probe = fsl_ssi_dai_probe,
564 .playback = {
565 /* The SSI does not support monaural audio. */
566 .channels_min = 2,
567 .channels_max = 2,
568 .rates = FSLSSI_I2S_RATES,
569 .formats = FSLSSI_I2S_FORMATS,
570 },
571 .capture = {
572 .channels_min = 2,
573 .channels_max = 2,
574 .rates = FSLSSI_I2S_RATES,
575 .formats = FSLSSI_I2S_FORMATS,
576 },
577 .ops = &fsl_ssi_dai_ops,
578 };
579
580 static const struct snd_soc_component_driver fsl_ssi_component = {
581 .name = "fsl-ssi",
582 };
583
584 /* Show the statistics of a flag only if its interrupt is enabled. The
585 * compiler will optimze this code to a no-op if the interrupt is not
586 * enabled.
587 */
588 #define SIER_SHOW(flag, name) \
589 do { \
590 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
591 length += sprintf(buf + length, #name "=%u\n", \
592 ssi_private->stats.name); \
593 } while (0)
594
595
596 /**
597 * fsl_sysfs_ssi_show: display SSI statistics
598 *
599 * Display the statistics for the current SSI device. To avoid confusion,
600 * we only show those counts that are enabled.
601 */
602 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct fsl_ssi_private *ssi_private =
606 container_of(attr, struct fsl_ssi_private, dev_attr);
607 ssize_t length = 0;
608
609 SIER_SHOW(RFRC_EN, rfrc);
610 SIER_SHOW(TFRC_EN, tfrc);
611 SIER_SHOW(CMDAU_EN, cmdau);
612 SIER_SHOW(CMDDU_EN, cmddu);
613 SIER_SHOW(RXT_EN, rxt);
614 SIER_SHOW(RDR1_EN, rdr1);
615 SIER_SHOW(RDR0_EN, rdr0);
616 SIER_SHOW(TDE1_EN, tde1);
617 SIER_SHOW(TDE0_EN, tde0);
618 SIER_SHOW(ROE1_EN, roe1);
619 SIER_SHOW(ROE0_EN, roe0);
620 SIER_SHOW(TUE1_EN, tue1);
621 SIER_SHOW(TUE0_EN, tue0);
622 SIER_SHOW(TFS_EN, tfs);
623 SIER_SHOW(RFS_EN, rfs);
624 SIER_SHOW(TLS_EN, tls);
625 SIER_SHOW(RLS_EN, rls);
626 SIER_SHOW(RFF1_EN, rff1);
627 SIER_SHOW(RFF0_EN, rff0);
628 SIER_SHOW(TFE1_EN, tfe1);
629 SIER_SHOW(TFE0_EN, tfe0);
630
631 return length;
632 }
633
634 /**
635 * Make every character in a string lower-case
636 */
637 static void make_lowercase(char *s)
638 {
639 char *p = s;
640 char c;
641
642 while ((c = *p)) {
643 if ((c >= 'A') && (c <= 'Z'))
644 *p = c + ('a' - 'A');
645 p++;
646 }
647 }
648
649 static int fsl_ssi_probe(struct platform_device *pdev)
650 {
651 struct fsl_ssi_private *ssi_private;
652 int ret = 0;
653 struct device_attribute *dev_attr = NULL;
654 struct device_node *np = pdev->dev.of_node;
655 const char *p, *sprop;
656 const uint32_t *iprop;
657 struct resource res;
658 char name[64];
659 bool shared;
660
661 /* SSIs that are not connected on the board should have a
662 * status = "disabled"
663 * property in their device tree nodes.
664 */
665 if (!of_device_is_available(np))
666 return -ENODEV;
667
668 /* We only support the SSI in "I2S Slave" mode */
669 sprop = of_get_property(np, "fsl,mode", NULL);
670 if (!sprop || strcmp(sprop, "i2s-slave")) {
671 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
672 return -ENODEV;
673 }
674
675 /* The DAI name is the last part of the full name of the node. */
676 p = strrchr(np->full_name, '/') + 1;
677 ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
678 GFP_KERNEL);
679 if (!ssi_private) {
680 dev_err(&pdev->dev, "could not allocate DAI object\n");
681 return -ENOMEM;
682 }
683
684 strcpy(ssi_private->name, p);
685
686 /* Initialize this copy of the CPU DAI driver structure */
687 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
688 sizeof(fsl_ssi_dai_template));
689 ssi_private->cpu_dai_drv.name = ssi_private->name;
690
691 /* Get the addresses and IRQ */
692 ret = of_address_to_resource(np, 0, &res);
693 if (ret) {
694 dev_err(&pdev->dev, "could not determine device resources\n");
695 return ret;
696 }
697 ssi_private->ssi = of_iomap(np, 0);
698 if (!ssi_private->ssi) {
699 dev_err(&pdev->dev, "could not map device resources\n");
700 return -ENOMEM;
701 }
702 ssi_private->ssi_phys = res.start;
703
704 ssi_private->irq = irq_of_parse_and_map(np, 0);
705 if (ssi_private->irq == NO_IRQ) {
706 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
707 return -ENXIO;
708 }
709
710 /* The 'name' should not have any slashes in it. */
711 ret = devm_request_irq(&pdev->dev, ssi_private->irq, fsl_ssi_isr, 0,
712 ssi_private->name, ssi_private);
713 if (ret < 0) {
714 dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
715 goto error_irqmap;
716 }
717
718 /* Are the RX and the TX clocks locked? */
719 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
720 ssi_private->cpu_dai_drv.symmetric_rates = 1;
721
722 /* Determine the FIFO depth. */
723 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
724 if (iprop)
725 ssi_private->fifo_depth = be32_to_cpup(iprop);
726 else
727 /* Older 8610 DTs didn't have the fifo-depth property */
728 ssi_private->fifo_depth = 8;
729
730 if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
731 u32 dma_events[2];
732 ssi_private->ssi_on_imx = true;
733
734 ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
735 if (IS_ERR(ssi_private->clk)) {
736 ret = PTR_ERR(ssi_private->clk);
737 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
738 goto error_irqmap;
739 }
740 ret = clk_prepare_enable(ssi_private->clk);
741 if (ret) {
742 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
743 ret);
744 goto error_irqmap;
745 }
746
747 /*
748 * We have burstsize be "fifo_depth - 2" to match the SSI
749 * watermark setting in fsl_ssi_startup().
750 */
751 ssi_private->dma_params_tx.maxburst =
752 ssi_private->fifo_depth - 2;
753 ssi_private->dma_params_rx.maxburst =
754 ssi_private->fifo_depth - 2;
755 ssi_private->dma_params_tx.addr =
756 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
757 ssi_private->dma_params_rx.addr =
758 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
759 ssi_private->dma_params_tx.filter_data =
760 &ssi_private->filter_data_tx;
761 ssi_private->dma_params_rx.filter_data =
762 &ssi_private->filter_data_rx;
763 /*
764 * TODO: This is a temporary solution and should be changed
765 * to use generic DMA binding later when the helplers get in.
766 */
767 ret = of_property_read_u32_array(pdev->dev.of_node,
768 "fsl,ssi-dma-events", dma_events, 2);
769 if (ret) {
770 dev_err(&pdev->dev, "could not get dma events\n");
771 goto error_clk;
772 }
773
774 shared = of_device_is_compatible(of_get_parent(np),
775 "fsl,spba-bus");
776
777 imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
778 dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
779 imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
780 dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
781 }
782
783 /* Initialize the the device_attribute structure */
784 dev_attr = &ssi_private->dev_attr;
785 sysfs_attr_init(&dev_attr->attr);
786 dev_attr->attr.name = "statistics";
787 dev_attr->attr.mode = S_IRUGO;
788 dev_attr->show = fsl_sysfs_ssi_show;
789
790 ret = device_create_file(&pdev->dev, dev_attr);
791 if (ret) {
792 dev_err(&pdev->dev, "could not create sysfs %s file\n",
793 ssi_private->dev_attr.attr.name);
794 goto error_clk;
795 }
796
797 /* Register with ASoC */
798 dev_set_drvdata(&pdev->dev, ssi_private);
799
800 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
801 &ssi_private->cpu_dai_drv, 1);
802 if (ret) {
803 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
804 goto error_dev;
805 }
806
807 if (ssi_private->ssi_on_imx) {
808 ret = imx_pcm_dma_init(pdev);
809 if (ret)
810 goto error_dev;
811 }
812
813 /*
814 * If codec-handle property is missing from SSI node, we assume
815 * that the machine driver uses new binding which does not require
816 * SSI driver to trigger machine driver's probe.
817 */
818 if (!of_get_property(np, "codec-handle", NULL)) {
819 ssi_private->new_binding = true;
820 goto done;
821 }
822
823 /* Trigger the machine driver's probe function. The platform driver
824 * name of the machine driver is taken from /compatible property of the
825 * device tree. We also pass the address of the CPU DAI driver
826 * structure.
827 */
828 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
829 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
830 p = strrchr(sprop, ',');
831 if (p)
832 sprop = p + 1;
833 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
834 make_lowercase(name);
835
836 ssi_private->pdev =
837 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
838 if (IS_ERR(ssi_private->pdev)) {
839 ret = PTR_ERR(ssi_private->pdev);
840 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
841 goto error_dai;
842 }
843
844 done:
845 return 0;
846
847 error_dai:
848 if (ssi_private->ssi_on_imx)
849 imx_pcm_dma_exit(pdev);
850 snd_soc_unregister_component(&pdev->dev);
851
852 error_dev:
853 dev_set_drvdata(&pdev->dev, NULL);
854 device_remove_file(&pdev->dev, dev_attr);
855
856 error_clk:
857 if (ssi_private->ssi_on_imx)
858 clk_disable_unprepare(ssi_private->clk);
859
860 error_irqmap:
861 irq_dispose_mapping(ssi_private->irq);
862
863 return ret;
864 }
865
866 static int fsl_ssi_remove(struct platform_device *pdev)
867 {
868 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
869
870 if (!ssi_private->new_binding)
871 platform_device_unregister(ssi_private->pdev);
872 if (ssi_private->ssi_on_imx) {
873 imx_pcm_dma_exit(pdev);
874 clk_disable_unprepare(ssi_private->clk);
875 }
876 snd_soc_unregister_component(&pdev->dev);
877 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
878 irq_dispose_mapping(ssi_private->irq);
879 dev_set_drvdata(&pdev->dev, NULL);
880
881 return 0;
882 }
883
884 static const struct of_device_id fsl_ssi_ids[] = {
885 { .compatible = "fsl,mpc8610-ssi", },
886 { .compatible = "fsl,imx21-ssi", },
887 {}
888 };
889 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
890
891 static struct platform_driver fsl_ssi_driver = {
892 .driver = {
893 .name = "fsl-ssi-dai",
894 .owner = THIS_MODULE,
895 .of_match_table = fsl_ssi_ids,
896 },
897 .probe = fsl_ssi_probe,
898 .remove = fsl_ssi_remove,
899 };
900
901 module_platform_driver(fsl_ssi_driver);
902
903 MODULE_ALIAS("platform:fsl-ssi-dai");
904 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
905 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
906 MODULE_LICENSE("GPL v2");
This page took 0.050852 seconds and 5 git commands to generate.