Merge branch 'acpi-processor'
[deliverable/linux.git] / sound / soc / omap / mcbsp.c
1 /*
2 * sound/soc/omap/mcbsp.c
3 *
4 * Copyright (C) 2004 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com>
6 *
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 * Peter Ujfalusi <peter.ujfalusi@ti.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * Multichannel mode not supported.
15 */
16
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/platform_device.h>
21 #include <linux/interrupt.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/pm_runtime.h>
28
29 #include <linux/platform_data/asoc-ti-mcbsp.h>
30
31 #include "mcbsp.h"
32
33 static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
34 {
35 void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
36
37 if (mcbsp->pdata->reg_size == 2) {
38 ((u16 *)mcbsp->reg_cache)[reg] = (u16)val;
39 writew_relaxed((u16)val, addr);
40 } else {
41 ((u32 *)mcbsp->reg_cache)[reg] = val;
42 writel_relaxed(val, addr);
43 }
44 }
45
46 static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache)
47 {
48 void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
49
50 if (mcbsp->pdata->reg_size == 2) {
51 return !from_cache ? readw_relaxed(addr) :
52 ((u16 *)mcbsp->reg_cache)[reg];
53 } else {
54 return !from_cache ? readl_relaxed(addr) :
55 ((u32 *)mcbsp->reg_cache)[reg];
56 }
57 }
58
59 static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
60 {
61 writel_relaxed(val, mcbsp->st_data->io_base_st + reg);
62 }
63
64 static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg)
65 {
66 return readl_relaxed(mcbsp->st_data->io_base_st + reg);
67 }
68
69 #define MCBSP_READ(mcbsp, reg) \
70 omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0)
71 #define MCBSP_WRITE(mcbsp, reg, val) \
72 omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val)
73 #define MCBSP_READ_CACHE(mcbsp, reg) \
74 omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1)
75
76 #define MCBSP_ST_READ(mcbsp, reg) \
77 omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg)
78 #define MCBSP_ST_WRITE(mcbsp, reg, val) \
79 omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val)
80
81 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
82 {
83 dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
84 dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n",
85 MCBSP_READ(mcbsp, DRR2));
86 dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n",
87 MCBSP_READ(mcbsp, DRR1));
88 dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n",
89 MCBSP_READ(mcbsp, DXR2));
90 dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n",
91 MCBSP_READ(mcbsp, DXR1));
92 dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n",
93 MCBSP_READ(mcbsp, SPCR2));
94 dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n",
95 MCBSP_READ(mcbsp, SPCR1));
96 dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n",
97 MCBSP_READ(mcbsp, RCR2));
98 dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n",
99 MCBSP_READ(mcbsp, RCR1));
100 dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n",
101 MCBSP_READ(mcbsp, XCR2));
102 dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n",
103 MCBSP_READ(mcbsp, XCR1));
104 dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n",
105 MCBSP_READ(mcbsp, SRGR2));
106 dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n",
107 MCBSP_READ(mcbsp, SRGR1));
108 dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n",
109 MCBSP_READ(mcbsp, PCR0));
110 dev_dbg(mcbsp->dev, "***********************\n");
111 }
112
113 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *dev_id)
114 {
115 struct omap_mcbsp *mcbsp = dev_id;
116 u16 irqst;
117
118 irqst = MCBSP_READ(mcbsp, IRQST);
119 dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
120
121 if (irqst & RSYNCERREN)
122 dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
123 if (irqst & RFSREN)
124 dev_dbg(mcbsp->dev, "RX Frame Sync\n");
125 if (irqst & REOFEN)
126 dev_dbg(mcbsp->dev, "RX End Of Frame\n");
127 if (irqst & RRDYEN)
128 dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
129 if (irqst & RUNDFLEN)
130 dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
131 if (irqst & ROVFLEN)
132 dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
133
134 if (irqst & XSYNCERREN)
135 dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
136 if (irqst & XFSXEN)
137 dev_dbg(mcbsp->dev, "TX Frame Sync\n");
138 if (irqst & XEOFEN)
139 dev_dbg(mcbsp->dev, "TX End Of Frame\n");
140 if (irqst & XRDYEN)
141 dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
142 if (irqst & XUNDFLEN)
143 dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
144 if (irqst & XOVFLEN)
145 dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
146 if (irqst & XEMPTYEOFEN)
147 dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
148
149 MCBSP_WRITE(mcbsp, IRQST, irqst);
150
151 return IRQ_HANDLED;
152 }
153
154 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
155 {
156 struct omap_mcbsp *mcbsp_tx = dev_id;
157 u16 irqst_spcr2;
158
159 irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2);
160 dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
161
162 if (irqst_spcr2 & XSYNC_ERR) {
163 dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n",
164 irqst_spcr2);
165 /* Writing zero to XSYNC_ERR clears the IRQ */
166 MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2));
167 }
168
169 return IRQ_HANDLED;
170 }
171
172 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
173 {
174 struct omap_mcbsp *mcbsp_rx = dev_id;
175 u16 irqst_spcr1;
176
177 irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1);
178 dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
179
180 if (irqst_spcr1 & RSYNC_ERR) {
181 dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n",
182 irqst_spcr1);
183 /* Writing zero to RSYNC_ERR clears the IRQ */
184 MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1));
185 }
186
187 return IRQ_HANDLED;
188 }
189
190 /*
191 * omap_mcbsp_config simply write a config to the
192 * appropriate McBSP.
193 * You either call this function or set the McBSP registers
194 * by yourself before calling omap_mcbsp_start().
195 */
196 void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
197 const struct omap_mcbsp_reg_cfg *config)
198 {
199 dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
200 mcbsp->id, mcbsp->phys_base);
201
202 /* We write the given config */
203 MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
204 MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
205 MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
206 MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
207 MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
208 MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
209 MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
210 MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
211 MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
212 MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
213 MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
214 if (mcbsp->pdata->has_ccr) {
215 MCBSP_WRITE(mcbsp, XCCR, config->xccr);
216 MCBSP_WRITE(mcbsp, RCCR, config->rccr);
217 }
218 /* Enable wakeup behavior */
219 if (mcbsp->pdata->has_wakeup)
220 MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
221
222 /* Enable TX/RX sync error interrupts by default */
223 if (mcbsp->irq)
224 MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN);
225 }
226
227 /**
228 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
229 * @id - mcbsp id
230 * @stream - indicates the direction of data flow (rx or tx)
231 *
232 * Returns the address of mcbsp data transmit register or data receive register
233 * to be used by DMA for transferring/receiving data based on the value of
234 * @stream for the requested mcbsp given by @id
235 */
236 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
237 unsigned int stream)
238 {
239 int data_reg;
240
241 if (mcbsp->pdata->reg_size == 2) {
242 if (stream)
243 data_reg = OMAP_MCBSP_REG_DRR1;
244 else
245 data_reg = OMAP_MCBSP_REG_DXR1;
246 } else {
247 if (stream)
248 data_reg = OMAP_MCBSP_REG_DRR;
249 else
250 data_reg = OMAP_MCBSP_REG_DXR;
251 }
252
253 return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
254 }
255
256 static void omap_st_on(struct omap_mcbsp *mcbsp)
257 {
258 unsigned int w;
259
260 if (mcbsp->pdata->enable_st_clock)
261 mcbsp->pdata->enable_st_clock(mcbsp->id, 1);
262
263 /* Enable McBSP Sidetone */
264 w = MCBSP_READ(mcbsp, SSELCR);
265 MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN);
266
267 /* Enable Sidetone from Sidetone Core */
268 w = MCBSP_ST_READ(mcbsp, SSELCR);
269 MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN);
270 }
271
272 static void omap_st_off(struct omap_mcbsp *mcbsp)
273 {
274 unsigned int w;
275
276 w = MCBSP_ST_READ(mcbsp, SSELCR);
277 MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN));
278
279 w = MCBSP_READ(mcbsp, SSELCR);
280 MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN));
281
282 if (mcbsp->pdata->enable_st_clock)
283 mcbsp->pdata->enable_st_clock(mcbsp->id, 0);
284 }
285
286 static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir)
287 {
288 u16 val, i;
289
290 val = MCBSP_ST_READ(mcbsp, SSELCR);
291
292 if (val & ST_COEFFWREN)
293 MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
294
295 MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN);
296
297 for (i = 0; i < 128; i++)
298 MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]);
299
300 i = 0;
301
302 val = MCBSP_ST_READ(mcbsp, SSELCR);
303 while (!(val & ST_COEFFWRDONE) && (++i < 1000))
304 val = MCBSP_ST_READ(mcbsp, SSELCR);
305
306 MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
307
308 if (i == 1000)
309 dev_err(mcbsp->dev, "McBSP FIR load error!\n");
310 }
311
312 static void omap_st_chgain(struct omap_mcbsp *mcbsp)
313 {
314 u16 w;
315 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
316
317 w = MCBSP_ST_READ(mcbsp, SSELCR);
318
319 MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \
320 ST_CH1GAIN(st_data->ch1gain));
321 }
322
323 int omap_st_set_chgain(struct omap_mcbsp *mcbsp, int channel, s16 chgain)
324 {
325 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
326 int ret = 0;
327
328 if (!st_data)
329 return -ENOENT;
330
331 spin_lock_irq(&mcbsp->lock);
332 if (channel == 0)
333 st_data->ch0gain = chgain;
334 else if (channel == 1)
335 st_data->ch1gain = chgain;
336 else
337 ret = -EINVAL;
338
339 if (st_data->enabled)
340 omap_st_chgain(mcbsp);
341 spin_unlock_irq(&mcbsp->lock);
342
343 return ret;
344 }
345
346 int omap_st_get_chgain(struct omap_mcbsp *mcbsp, int channel, s16 *chgain)
347 {
348 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
349 int ret = 0;
350
351 if (!st_data)
352 return -ENOENT;
353
354 spin_lock_irq(&mcbsp->lock);
355 if (channel == 0)
356 *chgain = st_data->ch0gain;
357 else if (channel == 1)
358 *chgain = st_data->ch1gain;
359 else
360 ret = -EINVAL;
361 spin_unlock_irq(&mcbsp->lock);
362
363 return ret;
364 }
365
366 static int omap_st_start(struct omap_mcbsp *mcbsp)
367 {
368 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
369
370 if (st_data->enabled && !st_data->running) {
371 omap_st_fir_write(mcbsp, st_data->taps);
372 omap_st_chgain(mcbsp);
373
374 if (!mcbsp->free) {
375 omap_st_on(mcbsp);
376 st_data->running = 1;
377 }
378 }
379
380 return 0;
381 }
382
383 int omap_st_enable(struct omap_mcbsp *mcbsp)
384 {
385 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
386
387 if (!st_data)
388 return -ENODEV;
389
390 spin_lock_irq(&mcbsp->lock);
391 st_data->enabled = 1;
392 omap_st_start(mcbsp);
393 spin_unlock_irq(&mcbsp->lock);
394
395 return 0;
396 }
397
398 static int omap_st_stop(struct omap_mcbsp *mcbsp)
399 {
400 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
401
402 if (st_data->running) {
403 if (!mcbsp->free) {
404 omap_st_off(mcbsp);
405 st_data->running = 0;
406 }
407 }
408
409 return 0;
410 }
411
412 int omap_st_disable(struct omap_mcbsp *mcbsp)
413 {
414 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
415 int ret = 0;
416
417 if (!st_data)
418 return -ENODEV;
419
420 spin_lock_irq(&mcbsp->lock);
421 omap_st_stop(mcbsp);
422 st_data->enabled = 0;
423 spin_unlock_irq(&mcbsp->lock);
424
425 return ret;
426 }
427
428 int omap_st_is_enabled(struct omap_mcbsp *mcbsp)
429 {
430 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
431
432 if (!st_data)
433 return -ENODEV;
434
435 return st_data->enabled;
436 }
437
438 /*
439 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
440 * The threshold parameter is 1 based, and it is converted (threshold - 1)
441 * for the THRSH2 register.
442 */
443 void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
444 {
445 if (mcbsp->pdata->buffer_size == 0)
446 return;
447
448 if (threshold && threshold <= mcbsp->max_tx_thres)
449 MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
450 }
451
452 /*
453 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
454 * The threshold parameter is 1 based, and it is converted (threshold - 1)
455 * for the THRSH1 register.
456 */
457 void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
458 {
459 if (mcbsp->pdata->buffer_size == 0)
460 return;
461
462 if (threshold && threshold <= mcbsp->max_rx_thres)
463 MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
464 }
465
466 /*
467 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
468 */
469 u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
470 {
471 u16 buffstat;
472
473 if (mcbsp->pdata->buffer_size == 0)
474 return 0;
475
476 /* Returns the number of free locations in the buffer */
477 buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
478
479 /* Number of slots are different in McBSP ports */
480 return mcbsp->pdata->buffer_size - buffstat;
481 }
482
483 /*
484 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
485 * to reach the threshold value (when the DMA will be triggered to read it)
486 */
487 u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
488 {
489 u16 buffstat, threshold;
490
491 if (mcbsp->pdata->buffer_size == 0)
492 return 0;
493
494 /* Returns the number of used locations in the buffer */
495 buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
496 /* RX threshold */
497 threshold = MCBSP_READ(mcbsp, THRSH1);
498
499 /* Return the number of location till we reach the threshold limit */
500 if (threshold <= buffstat)
501 return 0;
502 else
503 return threshold - buffstat;
504 }
505
506 int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
507 {
508 void *reg_cache;
509 int err;
510
511 reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
512 if (!reg_cache) {
513 return -ENOMEM;
514 }
515
516 spin_lock(&mcbsp->lock);
517 if (!mcbsp->free) {
518 dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
519 mcbsp->id);
520 err = -EBUSY;
521 goto err_kfree;
522 }
523
524 mcbsp->free = false;
525 mcbsp->reg_cache = reg_cache;
526 spin_unlock(&mcbsp->lock);
527
528 if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request)
529 mcbsp->pdata->ops->request(mcbsp->id - 1);
530
531 /*
532 * Make sure that transmitter, receiver and sample-rate generator are
533 * not running before activating IRQs.
534 */
535 MCBSP_WRITE(mcbsp, SPCR1, 0);
536 MCBSP_WRITE(mcbsp, SPCR2, 0);
537
538 if (mcbsp->irq) {
539 err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
540 "McBSP", (void *)mcbsp);
541 if (err != 0) {
542 dev_err(mcbsp->dev, "Unable to request IRQ\n");
543 goto err_clk_disable;
544 }
545 } else {
546 err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
547 "McBSP TX", (void *)mcbsp);
548 if (err != 0) {
549 dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
550 goto err_clk_disable;
551 }
552
553 err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
554 "McBSP RX", (void *)mcbsp);
555 if (err != 0) {
556 dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
557 goto err_free_irq;
558 }
559 }
560
561 return 0;
562 err_free_irq:
563 free_irq(mcbsp->tx_irq, (void *)mcbsp);
564 err_clk_disable:
565 if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
566 mcbsp->pdata->ops->free(mcbsp->id - 1);
567
568 /* Disable wakeup behavior */
569 if (mcbsp->pdata->has_wakeup)
570 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
571
572 spin_lock(&mcbsp->lock);
573 mcbsp->free = true;
574 mcbsp->reg_cache = NULL;
575 err_kfree:
576 spin_unlock(&mcbsp->lock);
577 kfree(reg_cache);
578
579 return err;
580 }
581
582 void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
583 {
584 void *reg_cache;
585
586 if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
587 mcbsp->pdata->ops->free(mcbsp->id - 1);
588
589 /* Disable wakeup behavior */
590 if (mcbsp->pdata->has_wakeup)
591 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
592
593 /* Disable interrupt requests */
594 if (mcbsp->irq)
595 MCBSP_WRITE(mcbsp, IRQEN, 0);
596
597 if (mcbsp->irq) {
598 free_irq(mcbsp->irq, (void *)mcbsp);
599 } else {
600 free_irq(mcbsp->rx_irq, (void *)mcbsp);
601 free_irq(mcbsp->tx_irq, (void *)mcbsp);
602 }
603
604 reg_cache = mcbsp->reg_cache;
605
606 /*
607 * Select CLKS source from internal source unconditionally before
608 * marking the McBSP port as free.
609 * If the external clock source via MCBSP_CLKS pin has been selected the
610 * system will refuse to enter idle if the CLKS pin source is not reset
611 * back to internal source.
612 */
613 if (!mcbsp_omap1())
614 omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
615
616 spin_lock(&mcbsp->lock);
617 if (mcbsp->free)
618 dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
619 else
620 mcbsp->free = true;
621 mcbsp->reg_cache = NULL;
622 spin_unlock(&mcbsp->lock);
623
624 kfree(reg_cache);
625 }
626
627 /*
628 * Here we start the McBSP, by enabling transmitter, receiver or both.
629 * If no transmitter or receiver is active prior calling, then sample-rate
630 * generator and frame sync are started.
631 */
632 void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int tx, int rx)
633 {
634 int enable_srg = 0;
635 u16 w;
636
637 if (mcbsp->st_data)
638 omap_st_start(mcbsp);
639
640 /* Only enable SRG, if McBSP is master */
641 w = MCBSP_READ_CACHE(mcbsp, PCR0);
642 if (w & (FSXM | FSRM | CLKXM | CLKRM))
643 enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
644 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
645
646 if (enable_srg) {
647 /* Start the sample generator */
648 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
649 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
650 }
651
652 /* Enable transmitter and receiver */
653 tx &= 1;
654 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
655 MCBSP_WRITE(mcbsp, SPCR2, w | tx);
656
657 rx &= 1;
658 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
659 MCBSP_WRITE(mcbsp, SPCR1, w | rx);
660
661 /*
662 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
663 * REVISIT: 100us may give enough time for two CLKSRG, however
664 * due to some unknown PM related, clock gating etc. reason it
665 * is now at 500us.
666 */
667 udelay(500);
668
669 if (enable_srg) {
670 /* Start frame sync */
671 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
672 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
673 }
674
675 if (mcbsp->pdata->has_ccr) {
676 /* Release the transmitter and receiver */
677 w = MCBSP_READ_CACHE(mcbsp, XCCR);
678 w &= ~(tx ? XDISABLE : 0);
679 MCBSP_WRITE(mcbsp, XCCR, w);
680 w = MCBSP_READ_CACHE(mcbsp, RCCR);
681 w &= ~(rx ? RDISABLE : 0);
682 MCBSP_WRITE(mcbsp, RCCR, w);
683 }
684
685 /* Dump McBSP Regs */
686 omap_mcbsp_dump_reg(mcbsp);
687 }
688
689 void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int tx, int rx)
690 {
691 int idle;
692 u16 w;
693
694 /* Reset transmitter */
695 tx &= 1;
696 if (mcbsp->pdata->has_ccr) {
697 w = MCBSP_READ_CACHE(mcbsp, XCCR);
698 w |= (tx ? XDISABLE : 0);
699 MCBSP_WRITE(mcbsp, XCCR, w);
700 }
701 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
702 MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
703
704 /* Reset receiver */
705 rx &= 1;
706 if (mcbsp->pdata->has_ccr) {
707 w = MCBSP_READ_CACHE(mcbsp, RCCR);
708 w |= (rx ? RDISABLE : 0);
709 MCBSP_WRITE(mcbsp, RCCR, w);
710 }
711 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
712 MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
713
714 idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
715 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
716
717 if (idle) {
718 /* Reset the sample rate generator */
719 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
720 MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
721 }
722
723 if (mcbsp->st_data)
724 omap_st_stop(mcbsp);
725 }
726
727 int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
728 {
729 struct clk *fck_src;
730 const char *src;
731 int r;
732
733 if (fck_src_id == MCBSP_CLKS_PAD_SRC)
734 src = "pad_fck";
735 else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
736 src = "prcm_fck";
737 else
738 return -EINVAL;
739
740 fck_src = clk_get(mcbsp->dev, src);
741 if (IS_ERR(fck_src)) {
742 dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
743 return -EINVAL;
744 }
745
746 pm_runtime_put_sync(mcbsp->dev);
747
748 r = clk_set_parent(mcbsp->fclk, fck_src);
749 if (r) {
750 dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
751 src);
752 clk_put(fck_src);
753 return r;
754 }
755
756 pm_runtime_get_sync(mcbsp->dev);
757
758 clk_put(fck_src);
759
760 return 0;
761
762 }
763
764 #define max_thres(m) (mcbsp->pdata->buffer_size)
765 #define valid_threshold(m, val) ((val) <= max_thres(m))
766 #define THRESHOLD_PROP_BUILDER(prop) \
767 static ssize_t prop##_show(struct device *dev, \
768 struct device_attribute *attr, char *buf) \
769 { \
770 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
771 \
772 return sprintf(buf, "%u\n", mcbsp->prop); \
773 } \
774 \
775 static ssize_t prop##_store(struct device *dev, \
776 struct device_attribute *attr, \
777 const char *buf, size_t size) \
778 { \
779 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
780 unsigned long val; \
781 int status; \
782 \
783 status = kstrtoul(buf, 0, &val); \
784 if (status) \
785 return status; \
786 \
787 if (!valid_threshold(mcbsp, val)) \
788 return -EDOM; \
789 \
790 mcbsp->prop = val; \
791 return size; \
792 } \
793 \
794 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store);
795
796 THRESHOLD_PROP_BUILDER(max_tx_thres);
797 THRESHOLD_PROP_BUILDER(max_rx_thres);
798
799 static const char *dma_op_modes[] = {
800 "element", "threshold",
801 };
802
803 static ssize_t dma_op_mode_show(struct device *dev,
804 struct device_attribute *attr, char *buf)
805 {
806 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
807 int dma_op_mode, i = 0;
808 ssize_t len = 0;
809 const char * const *s;
810
811 dma_op_mode = mcbsp->dma_op_mode;
812
813 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
814 if (dma_op_mode == i)
815 len += sprintf(buf + len, "[%s] ", *s);
816 else
817 len += sprintf(buf + len, "%s ", *s);
818 }
819 len += sprintf(buf + len, "\n");
820
821 return len;
822 }
823
824 static ssize_t dma_op_mode_store(struct device *dev,
825 struct device_attribute *attr,
826 const char *buf, size_t size)
827 {
828 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
829 const char * const *s;
830 int i = 0;
831
832 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++)
833 if (sysfs_streq(buf, *s))
834 break;
835
836 if (i == ARRAY_SIZE(dma_op_modes))
837 return -EINVAL;
838
839 spin_lock_irq(&mcbsp->lock);
840 if (!mcbsp->free) {
841 size = -EBUSY;
842 goto unlock;
843 }
844 mcbsp->dma_op_mode = i;
845
846 unlock:
847 spin_unlock_irq(&mcbsp->lock);
848
849 return size;
850 }
851
852 static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store);
853
854 static const struct attribute *additional_attrs[] = {
855 &dev_attr_max_tx_thres.attr,
856 &dev_attr_max_rx_thres.attr,
857 &dev_attr_dma_op_mode.attr,
858 NULL,
859 };
860
861 static const struct attribute_group additional_attr_group = {
862 .attrs = (struct attribute **)additional_attrs,
863 };
864
865 static ssize_t st_taps_show(struct device *dev,
866 struct device_attribute *attr, char *buf)
867 {
868 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
869 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
870 ssize_t status = 0;
871 int i;
872
873 spin_lock_irq(&mcbsp->lock);
874 for (i = 0; i < st_data->nr_taps; i++)
875 status += sprintf(&buf[status], (i ? ", %d" : "%d"),
876 st_data->taps[i]);
877 if (i)
878 status += sprintf(&buf[status], "\n");
879 spin_unlock_irq(&mcbsp->lock);
880
881 return status;
882 }
883
884 static ssize_t st_taps_store(struct device *dev,
885 struct device_attribute *attr,
886 const char *buf, size_t size)
887 {
888 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
889 struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
890 int val, tmp, status, i = 0;
891
892 spin_lock_irq(&mcbsp->lock);
893 memset(st_data->taps, 0, sizeof(st_data->taps));
894 st_data->nr_taps = 0;
895
896 do {
897 status = sscanf(buf, "%d%n", &val, &tmp);
898 if (status < 0 || status == 0) {
899 size = -EINVAL;
900 goto out;
901 }
902 if (val < -32768 || val > 32767) {
903 size = -EINVAL;
904 goto out;
905 }
906 st_data->taps[i++] = val;
907 buf += tmp;
908 if (*buf != ',')
909 break;
910 buf++;
911 } while (1);
912
913 st_data->nr_taps = i;
914
915 out:
916 spin_unlock_irq(&mcbsp->lock);
917
918 return size;
919 }
920
921 static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store);
922
923 static const struct attribute *sidetone_attrs[] = {
924 &dev_attr_st_taps.attr,
925 NULL,
926 };
927
928 static const struct attribute_group sidetone_attr_group = {
929 .attrs = (struct attribute **)sidetone_attrs,
930 };
931
932 static int omap_st_add(struct omap_mcbsp *mcbsp, struct resource *res)
933 {
934 struct omap_mcbsp_st_data *st_data;
935 int err;
936
937 st_data = devm_kzalloc(mcbsp->dev, sizeof(*mcbsp->st_data), GFP_KERNEL);
938 if (!st_data)
939 return -ENOMEM;
940
941 st_data->io_base_st = devm_ioremap(mcbsp->dev, res->start,
942 resource_size(res));
943 if (!st_data->io_base_st)
944 return -ENOMEM;
945
946 err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group);
947 if (err)
948 return err;
949
950 mcbsp->st_data = st_data;
951 return 0;
952 }
953
954 /*
955 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
956 * 730 has only 2 McBSP, and both of them are MPU peripherals.
957 */
958 int omap_mcbsp_init(struct platform_device *pdev)
959 {
960 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
961 struct resource *res;
962 int ret = 0;
963
964 spin_lock_init(&mcbsp->lock);
965 mcbsp->free = true;
966
967 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
968 if (!res)
969 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
970
971 mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
972 if (IS_ERR(mcbsp->io_base))
973 return PTR_ERR(mcbsp->io_base);
974
975 mcbsp->phys_base = res->start;
976 mcbsp->reg_cache_size = resource_size(res);
977
978 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
979 if (!res)
980 mcbsp->phys_dma_base = mcbsp->phys_base;
981 else
982 mcbsp->phys_dma_base = res->start;
983
984 /*
985 * OMAP1, 2 uses two interrupt lines: TX, RX
986 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
987 * OMAP4 and newer SoC only have the combined IRQ line.
988 * Use the combined IRQ if available since it gives better debugging
989 * possibilities.
990 */
991 mcbsp->irq = platform_get_irq_byname(pdev, "common");
992 if (mcbsp->irq == -ENXIO) {
993 mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
994
995 if (mcbsp->tx_irq == -ENXIO) {
996 mcbsp->irq = platform_get_irq(pdev, 0);
997 mcbsp->tx_irq = 0;
998 } else {
999 mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
1000 mcbsp->irq = 0;
1001 }
1002 }
1003
1004 if (!pdev->dev.of_node) {
1005 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1006 if (!res) {
1007 dev_err(&pdev->dev, "invalid tx DMA channel\n");
1008 return -ENODEV;
1009 }
1010 mcbsp->dma_req[0] = res->start;
1011 mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
1012
1013 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1014 if (!res) {
1015 dev_err(&pdev->dev, "invalid rx DMA channel\n");
1016 return -ENODEV;
1017 }
1018 mcbsp->dma_req[1] = res->start;
1019 mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
1020 } else {
1021 mcbsp->dma_data[0].filter_data = "tx";
1022 mcbsp->dma_data[1].filter_data = "rx";
1023 }
1024
1025 mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp, 0);
1026 mcbsp->dma_data[0].maxburst = 4;
1027
1028 mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp, 1);
1029 mcbsp->dma_data[1].maxburst = 4;
1030
1031 mcbsp->fclk = clk_get(&pdev->dev, "fck");
1032 if (IS_ERR(mcbsp->fclk)) {
1033 ret = PTR_ERR(mcbsp->fclk);
1034 dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
1035 return ret;
1036 }
1037
1038 mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
1039 if (mcbsp->pdata->buffer_size) {
1040 /*
1041 * Initially configure the maximum thresholds to a safe value.
1042 * The McBSP FIFO usage with these values should not go under
1043 * 16 locations.
1044 * If the whole FIFO without safety buffer is used, than there
1045 * is a possibility that the DMA will be not able to push the
1046 * new data on time, causing channel shifts in runtime.
1047 */
1048 mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
1049 mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
1050
1051 ret = sysfs_create_group(&mcbsp->dev->kobj,
1052 &additional_attr_group);
1053 if (ret) {
1054 dev_err(mcbsp->dev,
1055 "Unable to create additional controls\n");
1056 goto err_thres;
1057 }
1058 } else {
1059 mcbsp->max_tx_thres = -EINVAL;
1060 mcbsp->max_rx_thres = -EINVAL;
1061 }
1062
1063 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone");
1064 if (res) {
1065 ret = omap_st_add(mcbsp, res);
1066 if (ret) {
1067 dev_err(mcbsp->dev,
1068 "Unable to create sidetone controls\n");
1069 goto err_st;
1070 }
1071 }
1072
1073 return 0;
1074
1075 err_st:
1076 if (mcbsp->pdata->buffer_size)
1077 sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1078 err_thres:
1079 clk_put(mcbsp->fclk);
1080 return ret;
1081 }
1082
1083 void omap_mcbsp_sysfs_remove(struct omap_mcbsp *mcbsp)
1084 {
1085 if (mcbsp->pdata->buffer_size)
1086 sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1087
1088 if (mcbsp->st_data)
1089 sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group);
1090 }
This page took 0.072218 seconds and 5 git commands to generate.