ASoC: soc-cache: add i2c read entry for 8_8 mode
[deliverable/linux.git] / sound / soc / soc-cache.c
1 /*
2 * soc-cache.c -- ASoC register cache helpers
3 *
4 * Copyright 2009 Wolfson Microelectronics PLC.
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 */
13
14 #include <linux/i2c.h>
15 #include <linux/spi/spi.h>
16 #include <sound/soc.h>
17
18 static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
19 unsigned int reg)
20 {
21 u16 *cache = codec->reg_cache;
22 if (reg >= codec->reg_cache_size)
23 return -1;
24 return cache[reg];
25 }
26
27 static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
28 unsigned int value)
29 {
30 u16 *cache = codec->reg_cache;
31 u8 data[2];
32 int ret;
33
34 BUG_ON(codec->volatile_register);
35
36 data[0] = (reg << 4) | ((value >> 8) & 0x000f);
37 data[1] = value & 0x00ff;
38
39 if (reg < codec->reg_cache_size)
40 cache[reg] = value;
41
42 if (codec->cache_only) {
43 codec->cache_sync = 1;
44 return 0;
45 }
46
47 ret = codec->hw_write(codec->control_data, data, 2);
48 if (ret == 2)
49 return 0;
50 if (ret < 0)
51 return ret;
52 else
53 return -EIO;
54 }
55
56 #if defined(CONFIG_SPI_MASTER)
57 static int snd_soc_4_12_spi_write(void *control_data, const char *data,
58 int len)
59 {
60 struct spi_device *spi = control_data;
61 struct spi_transfer t;
62 struct spi_message m;
63 u8 msg[2];
64
65 if (len <= 0)
66 return 0;
67
68 msg[0] = data[1];
69 msg[1] = data[0];
70
71 spi_message_init(&m);
72 memset(&t, 0, (sizeof t));
73
74 t.tx_buf = &msg[0];
75 t.len = len;
76
77 spi_message_add_tail(&t, &m);
78 spi_sync(spi, &m);
79
80 return len;
81 }
82 #else
83 #define snd_soc_4_12_spi_write NULL
84 #endif
85
86 static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
87 unsigned int reg)
88 {
89 u16 *cache = codec->reg_cache;
90 if (reg >= codec->reg_cache_size)
91 return -1;
92 return cache[reg];
93 }
94
95 static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
96 unsigned int value)
97 {
98 u16 *cache = codec->reg_cache;
99 u8 data[2];
100 int ret;
101
102 BUG_ON(codec->volatile_register);
103
104 data[0] = (reg << 1) | ((value >> 8) & 0x0001);
105 data[1] = value & 0x00ff;
106
107 if (reg < codec->reg_cache_size)
108 cache[reg] = value;
109
110 if (codec->cache_only) {
111 codec->cache_sync = 1;
112 return 0;
113 }
114
115 ret = codec->hw_write(codec->control_data, data, 2);
116 if (ret == 2)
117 return 0;
118 if (ret < 0)
119 return ret;
120 else
121 return -EIO;
122 }
123
124 #if defined(CONFIG_SPI_MASTER)
125 static int snd_soc_7_9_spi_write(void *control_data, const char *data,
126 int len)
127 {
128 struct spi_device *spi = control_data;
129 struct spi_transfer t;
130 struct spi_message m;
131 u8 msg[2];
132
133 if (len <= 0)
134 return 0;
135
136 msg[0] = data[0];
137 msg[1] = data[1];
138
139 spi_message_init(&m);
140 memset(&t, 0, (sizeof t));
141
142 t.tx_buf = &msg[0];
143 t.len = len;
144
145 spi_message_add_tail(&t, &m);
146 spi_sync(spi, &m);
147
148 return len;
149 }
150 #else
151 #define snd_soc_7_9_spi_write NULL
152 #endif
153
154 static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
155 unsigned int value)
156 {
157 u8 *cache = codec->reg_cache;
158 u8 data[2];
159
160 BUG_ON(codec->volatile_register);
161
162 data[0] = reg & 0xff;
163 data[1] = value & 0xff;
164
165 if (reg < codec->reg_cache_size)
166 cache[reg] = value;
167
168 if (codec->cache_only) {
169 codec->cache_sync = 1;
170 return 0;
171 }
172
173 if (codec->hw_write(codec->control_data, data, 2) == 2)
174 return 0;
175 else
176 return -EIO;
177 }
178
179 static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
180 unsigned int reg)
181 {
182 u8 *cache = codec->reg_cache;
183 if (reg >= codec->reg_cache_size)
184 return -1;
185 return cache[reg];
186 }
187
188 static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
189 unsigned int value)
190 {
191 u16 *reg_cache = codec->reg_cache;
192 u8 data[3];
193
194 data[0] = reg;
195 data[1] = (value >> 8) & 0xff;
196 data[2] = value & 0xff;
197
198 if (!snd_soc_codec_volatile_register(codec, reg))
199 reg_cache[reg] = value;
200
201 if (codec->cache_only) {
202 codec->cache_sync = 1;
203 return 0;
204 }
205
206 if (codec->hw_write(codec->control_data, data, 3) == 3)
207 return 0;
208 else
209 return -EIO;
210 }
211
212 static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
213 unsigned int reg)
214 {
215 u16 *cache = codec->reg_cache;
216
217 if (reg >= codec->reg_cache_size ||
218 snd_soc_codec_volatile_register(codec, reg)) {
219 if (codec->cache_only)
220 return -EINVAL;
221
222 return codec->hw_read(codec, reg);
223 } else {
224 return cache[reg];
225 }
226 }
227
228 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
229 static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
230 unsigned int r)
231 {
232 struct i2c_msg xfer[2];
233 u8 reg = r;
234 u8 data;
235 int ret;
236 struct i2c_client *client = codec->control_data;
237
238 /* Write register */
239 xfer[0].addr = client->addr;
240 xfer[0].flags = 0;
241 xfer[0].len = 1;
242 xfer[0].buf = &reg;
243
244 /* Read data */
245 xfer[1].addr = client->addr;
246 xfer[1].flags = I2C_M_RD;
247 xfer[1].len = 1;
248 xfer[1].buf = &data;
249
250 ret = i2c_transfer(client->adapter, xfer, 2);
251 if (ret != 2) {
252 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
253 return 0;
254 }
255
256 return data;
257 }
258 #else
259 #define snd_soc_8_8_read_i2c NULL
260 #endif
261
262 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
263 static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
264 unsigned int r)
265 {
266 struct i2c_msg xfer[2];
267 u8 reg = r;
268 u16 data;
269 int ret;
270 struct i2c_client *client = codec->control_data;
271
272 /* Write register */
273 xfer[0].addr = client->addr;
274 xfer[0].flags = 0;
275 xfer[0].len = 1;
276 xfer[0].buf = &reg;
277
278 /* Read data */
279 xfer[1].addr = client->addr;
280 xfer[1].flags = I2C_M_RD;
281 xfer[1].len = 2;
282 xfer[1].buf = (u8 *)&data;
283
284 ret = i2c_transfer(client->adapter, xfer, 2);
285 if (ret != 2) {
286 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
287 return 0;
288 }
289
290 return (data >> 8) | ((data & 0xff) << 8);
291 }
292 #else
293 #define snd_soc_8_16_read_i2c NULL
294 #endif
295
296 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
297 static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
298 unsigned int r)
299 {
300 struct i2c_msg xfer[2];
301 u16 reg = r;
302 u8 data;
303 int ret;
304 struct i2c_client *client = codec->control_data;
305
306 /* Write register */
307 xfer[0].addr = client->addr;
308 xfer[0].flags = 0;
309 xfer[0].len = 2;
310 xfer[0].buf = (u8 *)&reg;
311
312 /* Read data */
313 xfer[1].addr = client->addr;
314 xfer[1].flags = I2C_M_RD;
315 xfer[1].len = 1;
316 xfer[1].buf = &data;
317
318 ret = i2c_transfer(client->adapter, xfer, 2);
319 if (ret != 2) {
320 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
321 return 0;
322 }
323
324 return data;
325 }
326 #else
327 #define snd_soc_16_8_read_i2c NULL
328 #endif
329
330 static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
331 unsigned int reg)
332 {
333 u16 *cache = codec->reg_cache;
334
335 reg &= 0xff;
336 if (reg >= codec->reg_cache_size)
337 return -1;
338 return cache[reg];
339 }
340
341 static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
342 unsigned int value)
343 {
344 u16 *cache = codec->reg_cache;
345 u8 data[3];
346 int ret;
347
348 BUG_ON(codec->volatile_register);
349
350 data[0] = (reg >> 8) & 0xff;
351 data[1] = reg & 0xff;
352 data[2] = value;
353
354 reg &= 0xff;
355 if (reg < codec->reg_cache_size)
356 cache[reg] = value;
357
358 if (codec->cache_only) {
359 codec->cache_sync = 1;
360 return 0;
361 }
362
363 ret = codec->hw_write(codec->control_data, data, 3);
364 if (ret == 3)
365 return 0;
366 if (ret < 0)
367 return ret;
368 else
369 return -EIO;
370 }
371
372 #if defined(CONFIG_SPI_MASTER)
373 static int snd_soc_16_8_spi_write(void *control_data, const char *data,
374 int len)
375 {
376 struct spi_device *spi = control_data;
377 struct spi_transfer t;
378 struct spi_message m;
379 u8 msg[3];
380
381 if (len <= 0)
382 return 0;
383
384 msg[0] = data[0];
385 msg[1] = data[1];
386 msg[2] = data[2];
387
388 spi_message_init(&m);
389 memset(&t, 0, (sizeof t));
390
391 t.tx_buf = &msg[0];
392 t.len = len;
393
394 spi_message_add_tail(&t, &m);
395 spi_sync(spi, &m);
396
397 return len;
398 }
399 #else
400 #define snd_soc_16_8_spi_write NULL
401 #endif
402
403 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
404 static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
405 unsigned int r)
406 {
407 struct i2c_msg xfer[2];
408 u16 reg = cpu_to_be16(r);
409 u16 data;
410 int ret;
411 struct i2c_client *client = codec->control_data;
412
413 /* Write register */
414 xfer[0].addr = client->addr;
415 xfer[0].flags = 0;
416 xfer[0].len = 2;
417 xfer[0].buf = (u8 *)&reg;
418
419 /* Read data */
420 xfer[1].addr = client->addr;
421 xfer[1].flags = I2C_M_RD;
422 xfer[1].len = 2;
423 xfer[1].buf = (u8 *)&data;
424
425 ret = i2c_transfer(client->adapter, xfer, 2);
426 if (ret != 2) {
427 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
428 return 0;
429 }
430
431 return be16_to_cpu(data);
432 }
433 #else
434 #define snd_soc_16_16_read_i2c NULL
435 #endif
436
437 static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
438 unsigned int reg)
439 {
440 u16 *cache = codec->reg_cache;
441
442 if (reg >= codec->reg_cache_size ||
443 snd_soc_codec_volatile_register(codec, reg)) {
444 if (codec->cache_only)
445 return -EINVAL;
446
447 return codec->hw_read(codec, reg);
448 }
449
450 return cache[reg];
451 }
452
453 static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
454 unsigned int value)
455 {
456 u16 *cache = codec->reg_cache;
457 u8 data[4];
458 int ret;
459
460 data[0] = (reg >> 8) & 0xff;
461 data[1] = reg & 0xff;
462 data[2] = (value >> 8) & 0xff;
463 data[3] = value & 0xff;
464
465 if (reg < codec->reg_cache_size)
466 cache[reg] = value;
467
468 if (codec->cache_only) {
469 codec->cache_sync = 1;
470 return 0;
471 }
472
473 ret = codec->hw_write(codec->control_data, data, 4);
474 if (ret == 4)
475 return 0;
476 if (ret < 0)
477 return ret;
478 else
479 return -EIO;
480 }
481
482 static struct {
483 int addr_bits;
484 int data_bits;
485 int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
486 int (*spi_write)(void *, const char *, int);
487 unsigned int (*read)(struct snd_soc_codec *, unsigned int);
488 unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
489 } io_types[] = {
490 {
491 .addr_bits = 4, .data_bits = 12,
492 .write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
493 .spi_write = snd_soc_4_12_spi_write,
494 },
495 {
496 .addr_bits = 7, .data_bits = 9,
497 .write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
498 .spi_write = snd_soc_7_9_spi_write,
499 },
500 {
501 .addr_bits = 8, .data_bits = 8,
502 .write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
503 .i2c_read = snd_soc_8_8_read_i2c,
504 },
505 {
506 .addr_bits = 8, .data_bits = 16,
507 .write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
508 .i2c_read = snd_soc_8_16_read_i2c,
509 },
510 {
511 .addr_bits = 16, .data_bits = 8,
512 .write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
513 .i2c_read = snd_soc_16_8_read_i2c,
514 .spi_write = snd_soc_16_8_spi_write,
515 },
516 {
517 .addr_bits = 16, .data_bits = 16,
518 .write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
519 .i2c_read = snd_soc_16_16_read_i2c,
520 },
521 };
522
523 /**
524 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
525 *
526 * @codec: CODEC to configure.
527 * @type: Type of cache.
528 * @addr_bits: Number of bits of register address data.
529 * @data_bits: Number of bits of data per register.
530 * @control: Control bus used.
531 *
532 * Register formats are frequently shared between many I2C and SPI
533 * devices. In order to promote code reuse the ASoC core provides
534 * some standard implementations of CODEC read and write operations
535 * which can be set up using this function.
536 *
537 * The caller is responsible for allocating and initialising the
538 * actual cache.
539 *
540 * Note that at present this code cannot be used by CODECs with
541 * volatile registers.
542 */
543 int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
544 int addr_bits, int data_bits,
545 enum snd_soc_control_type control)
546 {
547 int i;
548
549 for (i = 0; i < ARRAY_SIZE(io_types); i++)
550 if (io_types[i].addr_bits == addr_bits &&
551 io_types[i].data_bits == data_bits)
552 break;
553 if (i == ARRAY_SIZE(io_types)) {
554 printk(KERN_ERR
555 "No I/O functions for %d bit address %d bit data\n",
556 addr_bits, data_bits);
557 return -EINVAL;
558 }
559
560 codec->write = io_types[i].write;
561 codec->read = io_types[i].read;
562
563 switch (control) {
564 case SND_SOC_CUSTOM:
565 break;
566
567 case SND_SOC_I2C:
568 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
569 codec->hw_write = (hw_write_t)i2c_master_send;
570 #endif
571 if (io_types[i].i2c_read)
572 codec->hw_read = io_types[i].i2c_read;
573 break;
574
575 case SND_SOC_SPI:
576 if (io_types[i].spi_write)
577 codec->hw_write = io_types[i].spi_write;
578 break;
579 }
580
581 return 0;
582 }
583 EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
This page took 0.043394 seconds and 5 git commands to generate.