ASoC: soc-cache: Add trace event for snd_soc_cache_sync()
[deliverable/linux.git] / sound / soc / soc-cache.c
1 /*
2 * soc-cache.c -- ASoC register cache helpers
3 *
4 * Copyright 2009 Wolfson Microelectronics PLC.
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 */
13
14 #include <linux/i2c.h>
15 #include <linux/spi/spi.h>
16 #include <sound/soc.h>
17 #include <linux/lzo.h>
18 #include <linux/bitmap.h>
19 #include <linux/rbtree.h>
20
21 #include <trace/events/asoc.h>
22
23 static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
24 unsigned int reg)
25 {
26 int ret;
27 unsigned int val;
28
29 if (reg >= codec->driver->reg_cache_size ||
30 snd_soc_codec_volatile_register(codec, reg) ||
31 codec->cache_bypass) {
32 if (codec->cache_only)
33 return -1;
34
35 BUG_ON(!codec->hw_read);
36 return codec->hw_read(codec, reg);
37 }
38
39 ret = snd_soc_cache_read(codec, reg, &val);
40 if (ret < 0)
41 return -1;
42 return val;
43 }
44
45 static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
46 unsigned int value)
47 {
48 u8 data[2];
49 int ret;
50
51 data[0] = (reg << 4) | ((value >> 8) & 0x000f);
52 data[1] = value & 0x00ff;
53
54 if (!snd_soc_codec_volatile_register(codec, reg) &&
55 reg < codec->driver->reg_cache_size &&
56 !codec->cache_bypass) {
57 ret = snd_soc_cache_write(codec, reg, value);
58 if (ret < 0)
59 return -1;
60 }
61
62 if (codec->cache_only) {
63 codec->cache_sync = 1;
64 return 0;
65 }
66
67 ret = codec->hw_write(codec->control_data, data, 2);
68 if (ret == 2)
69 return 0;
70 if (ret < 0)
71 return ret;
72 else
73 return -EIO;
74 }
75
76 #if defined(CONFIG_SPI_MASTER)
77 static int snd_soc_4_12_spi_write(void *control_data, const char *data,
78 int len)
79 {
80 struct spi_device *spi = control_data;
81 struct spi_transfer t;
82 struct spi_message m;
83 u8 msg[2];
84
85 if (len <= 0)
86 return 0;
87
88 msg[0] = data[1];
89 msg[1] = data[0];
90
91 spi_message_init(&m);
92 memset(&t, 0, sizeof t);
93
94 t.tx_buf = &msg[0];
95 t.len = len;
96
97 spi_message_add_tail(&t, &m);
98 spi_sync(spi, &m);
99
100 return len;
101 }
102 #else
103 #define snd_soc_4_12_spi_write NULL
104 #endif
105
106 static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
107 unsigned int reg)
108 {
109 int ret;
110 unsigned int val;
111
112 if (reg >= codec->driver->reg_cache_size ||
113 snd_soc_codec_volatile_register(codec, reg) ||
114 codec->cache_bypass) {
115 if (codec->cache_only)
116 return -1;
117
118 BUG_ON(!codec->hw_read);
119 return codec->hw_read(codec, reg);
120 }
121
122 ret = snd_soc_cache_read(codec, reg, &val);
123 if (ret < 0)
124 return -1;
125 return val;
126 }
127
128 static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
129 unsigned int value)
130 {
131 u8 data[2];
132 int ret;
133
134 data[0] = (reg << 1) | ((value >> 8) & 0x0001);
135 data[1] = value & 0x00ff;
136
137 if (!snd_soc_codec_volatile_register(codec, reg) &&
138 reg < codec->driver->reg_cache_size &&
139 !codec->cache_bypass) {
140 ret = snd_soc_cache_write(codec, reg, value);
141 if (ret < 0)
142 return -1;
143 }
144
145 if (codec->cache_only) {
146 codec->cache_sync = 1;
147 return 0;
148 }
149
150 ret = codec->hw_write(codec->control_data, data, 2);
151 if (ret == 2)
152 return 0;
153 if (ret < 0)
154 return ret;
155 else
156 return -EIO;
157 }
158
159 #if defined(CONFIG_SPI_MASTER)
160 static int snd_soc_7_9_spi_write(void *control_data, const char *data,
161 int len)
162 {
163 struct spi_device *spi = control_data;
164 struct spi_transfer t;
165 struct spi_message m;
166 u8 msg[2];
167
168 if (len <= 0)
169 return 0;
170
171 msg[0] = data[0];
172 msg[1] = data[1];
173
174 spi_message_init(&m);
175 memset(&t, 0, sizeof t);
176
177 t.tx_buf = &msg[0];
178 t.len = len;
179
180 spi_message_add_tail(&t, &m);
181 spi_sync(spi, &m);
182
183 return len;
184 }
185 #else
186 #define snd_soc_7_9_spi_write NULL
187 #endif
188
189 static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
190 unsigned int value)
191 {
192 u8 data[2];
193 int ret;
194
195 reg &= 0xff;
196 data[0] = reg;
197 data[1] = value & 0xff;
198
199 if (!snd_soc_codec_volatile_register(codec, reg) &&
200 reg < codec->driver->reg_cache_size &&
201 !codec->cache_bypass) {
202 ret = snd_soc_cache_write(codec, reg, value);
203 if (ret < 0)
204 return -1;
205 }
206
207 if (codec->cache_only) {
208 codec->cache_sync = 1;
209 return 0;
210 }
211
212 if (codec->hw_write(codec->control_data, data, 2) == 2)
213 return 0;
214 else
215 return -EIO;
216 }
217
218 static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
219 unsigned int reg)
220 {
221 int ret;
222 unsigned int val;
223
224 reg &= 0xff;
225 if (reg >= codec->driver->reg_cache_size ||
226 snd_soc_codec_volatile_register(codec, reg) ||
227 codec->cache_bypass) {
228 if (codec->cache_only)
229 return -1;
230
231 BUG_ON(!codec->hw_read);
232 return codec->hw_read(codec, reg);
233 }
234
235 ret = snd_soc_cache_read(codec, reg, &val);
236 if (ret < 0)
237 return -1;
238 return val;
239 }
240
241 #if defined(CONFIG_SPI_MASTER)
242 static int snd_soc_8_8_spi_write(void *control_data, const char *data,
243 int len)
244 {
245 struct spi_device *spi = control_data;
246 struct spi_transfer t;
247 struct spi_message m;
248 u8 msg[2];
249
250 if (len <= 0)
251 return 0;
252
253 msg[0] = data[0];
254 msg[1] = data[1];
255
256 spi_message_init(&m);
257 memset(&t, 0, sizeof t);
258
259 t.tx_buf = &msg[0];
260 t.len = len;
261
262 spi_message_add_tail(&t, &m);
263 spi_sync(spi, &m);
264
265 return len;
266 }
267 #else
268 #define snd_soc_8_8_spi_write NULL
269 #endif
270
271 static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
272 unsigned int value)
273 {
274 u8 data[3];
275 int ret;
276
277 data[0] = reg;
278 data[1] = (value >> 8) & 0xff;
279 data[2] = value & 0xff;
280
281 if (!snd_soc_codec_volatile_register(codec, reg) &&
282 reg < codec->driver->reg_cache_size &&
283 !codec->cache_bypass) {
284 ret = snd_soc_cache_write(codec, reg, value);
285 if (ret < 0)
286 return -1;
287 }
288
289 if (codec->cache_only) {
290 codec->cache_sync = 1;
291 return 0;
292 }
293
294 if (codec->hw_write(codec->control_data, data, 3) == 3)
295 return 0;
296 else
297 return -EIO;
298 }
299
300 static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
301 unsigned int reg)
302 {
303 int ret;
304 unsigned int val;
305
306 if (reg >= codec->driver->reg_cache_size ||
307 snd_soc_codec_volatile_register(codec, reg) ||
308 codec->cache_bypass) {
309 if (codec->cache_only)
310 return -1;
311
312 BUG_ON(!codec->hw_read);
313 return codec->hw_read(codec, reg);
314 }
315
316 ret = snd_soc_cache_read(codec, reg, &val);
317 if (ret < 0)
318 return -1;
319 return val;
320 }
321
322 #if defined(CONFIG_SPI_MASTER)
323 static int snd_soc_8_16_spi_write(void *control_data, const char *data,
324 int len)
325 {
326 struct spi_device *spi = control_data;
327 struct spi_transfer t;
328 struct spi_message m;
329 u8 msg[3];
330
331 if (len <= 0)
332 return 0;
333
334 msg[0] = data[0];
335 msg[1] = data[1];
336 msg[2] = data[2];
337
338 spi_message_init(&m);
339 memset(&t, 0, sizeof t);
340
341 t.tx_buf = &msg[0];
342 t.len = len;
343
344 spi_message_add_tail(&t, &m);
345 spi_sync(spi, &m);
346
347 return len;
348 }
349 #else
350 #define snd_soc_8_16_spi_write NULL
351 #endif
352
353 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
354 static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
355 unsigned int r)
356 {
357 struct i2c_msg xfer[2];
358 u8 reg = r;
359 u8 data;
360 int ret;
361 struct i2c_client *client = codec->control_data;
362
363 /* Write register */
364 xfer[0].addr = client->addr;
365 xfer[0].flags = 0;
366 xfer[0].len = 1;
367 xfer[0].buf = &reg;
368
369 /* Read data */
370 xfer[1].addr = client->addr;
371 xfer[1].flags = I2C_M_RD;
372 xfer[1].len = 1;
373 xfer[1].buf = &data;
374
375 ret = i2c_transfer(client->adapter, xfer, 2);
376 if (ret != 2) {
377 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
378 return 0;
379 }
380
381 return data;
382 }
383 #else
384 #define snd_soc_8_8_read_i2c NULL
385 #endif
386
387 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
388 static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
389 unsigned int r)
390 {
391 struct i2c_msg xfer[2];
392 u8 reg = r;
393 u16 data;
394 int ret;
395 struct i2c_client *client = codec->control_data;
396
397 /* Write register */
398 xfer[0].addr = client->addr;
399 xfer[0].flags = 0;
400 xfer[0].len = 1;
401 xfer[0].buf = &reg;
402
403 /* Read data */
404 xfer[1].addr = client->addr;
405 xfer[1].flags = I2C_M_RD;
406 xfer[1].len = 2;
407 xfer[1].buf = (u8 *)&data;
408
409 ret = i2c_transfer(client->adapter, xfer, 2);
410 if (ret != 2) {
411 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
412 return 0;
413 }
414
415 return (data >> 8) | ((data & 0xff) << 8);
416 }
417 #else
418 #define snd_soc_8_16_read_i2c NULL
419 #endif
420
421 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
422 static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
423 unsigned int r)
424 {
425 struct i2c_msg xfer[2];
426 u16 reg = r;
427 u8 data;
428 int ret;
429 struct i2c_client *client = codec->control_data;
430
431 /* Write register */
432 xfer[0].addr = client->addr;
433 xfer[0].flags = 0;
434 xfer[0].len = 2;
435 xfer[0].buf = (u8 *)&reg;
436
437 /* Read data */
438 xfer[1].addr = client->addr;
439 xfer[1].flags = I2C_M_RD;
440 xfer[1].len = 1;
441 xfer[1].buf = &data;
442
443 ret = i2c_transfer(client->adapter, xfer, 2);
444 if (ret != 2) {
445 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
446 return 0;
447 }
448
449 return data;
450 }
451 #else
452 #define snd_soc_16_8_read_i2c NULL
453 #endif
454
455 static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
456 unsigned int reg)
457 {
458 int ret;
459 unsigned int val;
460
461 reg &= 0xff;
462 if (reg >= codec->driver->reg_cache_size ||
463 snd_soc_codec_volatile_register(codec, reg) ||
464 codec->cache_bypass) {
465 if (codec->cache_only)
466 return -1;
467
468 BUG_ON(!codec->hw_read);
469 return codec->hw_read(codec, reg);
470 }
471
472 ret = snd_soc_cache_read(codec, reg, &val);
473 if (ret < 0)
474 return -1;
475 return val;
476 }
477
478 static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
479 unsigned int value)
480 {
481 u8 data[3];
482 int ret;
483
484 data[0] = (reg >> 8) & 0xff;
485 data[1] = reg & 0xff;
486 data[2] = value;
487
488 reg &= 0xff;
489 if (!snd_soc_codec_volatile_register(codec, reg) &&
490 reg < codec->driver->reg_cache_size &&
491 !codec->cache_bypass) {
492 ret = snd_soc_cache_write(codec, reg, value);
493 if (ret < 0)
494 return -1;
495 }
496
497 if (codec->cache_only) {
498 codec->cache_sync = 1;
499 return 0;
500 }
501
502 ret = codec->hw_write(codec->control_data, data, 3);
503 if (ret == 3)
504 return 0;
505 if (ret < 0)
506 return ret;
507 else
508 return -EIO;
509 }
510
511 #if defined(CONFIG_SPI_MASTER)
512 static int snd_soc_16_8_spi_write(void *control_data, const char *data,
513 int len)
514 {
515 struct spi_device *spi = control_data;
516 struct spi_transfer t;
517 struct spi_message m;
518 u8 msg[3];
519
520 if (len <= 0)
521 return 0;
522
523 msg[0] = data[0];
524 msg[1] = data[1];
525 msg[2] = data[2];
526
527 spi_message_init(&m);
528 memset(&t, 0, sizeof t);
529
530 t.tx_buf = &msg[0];
531 t.len = len;
532
533 spi_message_add_tail(&t, &m);
534 spi_sync(spi, &m);
535
536 return len;
537 }
538 #else
539 #define snd_soc_16_8_spi_write NULL
540 #endif
541
542 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
543 static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
544 unsigned int r)
545 {
546 struct i2c_msg xfer[2];
547 u16 reg = cpu_to_be16(r);
548 u16 data;
549 int ret;
550 struct i2c_client *client = codec->control_data;
551
552 /* Write register */
553 xfer[0].addr = client->addr;
554 xfer[0].flags = 0;
555 xfer[0].len = 2;
556 xfer[0].buf = (u8 *)&reg;
557
558 /* Read data */
559 xfer[1].addr = client->addr;
560 xfer[1].flags = I2C_M_RD;
561 xfer[1].len = 2;
562 xfer[1].buf = (u8 *)&data;
563
564 ret = i2c_transfer(client->adapter, xfer, 2);
565 if (ret != 2) {
566 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
567 return 0;
568 }
569
570 return be16_to_cpu(data);
571 }
572 #else
573 #define snd_soc_16_16_read_i2c NULL
574 #endif
575
576 static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
577 unsigned int reg)
578 {
579 int ret;
580 unsigned int val;
581
582 if (reg >= codec->driver->reg_cache_size ||
583 snd_soc_codec_volatile_register(codec, reg) ||
584 codec->cache_bypass) {
585 if (codec->cache_only)
586 return -1;
587
588 BUG_ON(!codec->hw_read);
589 return codec->hw_read(codec, reg);
590 }
591
592 ret = snd_soc_cache_read(codec, reg, &val);
593 if (ret < 0)
594 return -1;
595
596 return val;
597 }
598
599 static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
600 unsigned int value)
601 {
602 u8 data[4];
603 int ret;
604
605 data[0] = (reg >> 8) & 0xff;
606 data[1] = reg & 0xff;
607 data[2] = (value >> 8) & 0xff;
608 data[3] = value & 0xff;
609
610 if (!snd_soc_codec_volatile_register(codec, reg) &&
611 reg < codec->driver->reg_cache_size &&
612 !codec->cache_bypass) {
613 ret = snd_soc_cache_write(codec, reg, value);
614 if (ret < 0)
615 return -1;
616 }
617
618 if (codec->cache_only) {
619 codec->cache_sync = 1;
620 return 0;
621 }
622
623 ret = codec->hw_write(codec->control_data, data, 4);
624 if (ret == 4)
625 return 0;
626 if (ret < 0)
627 return ret;
628 else
629 return -EIO;
630 }
631
632 #if defined(CONFIG_SPI_MASTER)
633 static int snd_soc_16_16_spi_write(void *control_data, const char *data,
634 int len)
635 {
636 struct spi_device *spi = control_data;
637 struct spi_transfer t;
638 struct spi_message m;
639 u8 msg[4];
640
641 if (len <= 0)
642 return 0;
643
644 msg[0] = data[0];
645 msg[1] = data[1];
646 msg[2] = data[2];
647 msg[3] = data[3];
648
649 spi_message_init(&m);
650 memset(&t, 0, sizeof t);
651
652 t.tx_buf = &msg[0];
653 t.len = len;
654
655 spi_message_add_tail(&t, &m);
656 spi_sync(spi, &m);
657
658 return len;
659 }
660 #else
661 #define snd_soc_16_16_spi_write NULL
662 #endif
663
664 static struct {
665 int addr_bits;
666 int data_bits;
667 int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
668 int (*spi_write)(void *, const char *, int);
669 unsigned int (*read)(struct snd_soc_codec *, unsigned int);
670 unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
671 } io_types[] = {
672 {
673 .addr_bits = 4, .data_bits = 12,
674 .write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
675 .spi_write = snd_soc_4_12_spi_write,
676 },
677 {
678 .addr_bits = 7, .data_bits = 9,
679 .write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
680 .spi_write = snd_soc_7_9_spi_write,
681 },
682 {
683 .addr_bits = 8, .data_bits = 8,
684 .write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
685 .i2c_read = snd_soc_8_8_read_i2c,
686 .spi_write = snd_soc_8_8_spi_write,
687 },
688 {
689 .addr_bits = 8, .data_bits = 16,
690 .write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
691 .i2c_read = snd_soc_8_16_read_i2c,
692 .spi_write = snd_soc_8_16_spi_write,
693 },
694 {
695 .addr_bits = 16, .data_bits = 8,
696 .write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
697 .i2c_read = snd_soc_16_8_read_i2c,
698 .spi_write = snd_soc_16_8_spi_write,
699 },
700 {
701 .addr_bits = 16, .data_bits = 16,
702 .write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
703 .i2c_read = snd_soc_16_16_read_i2c,
704 .spi_write = snd_soc_16_16_spi_write,
705 },
706 };
707
708 /**
709 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
710 *
711 * @codec: CODEC to configure.
712 * @type: Type of cache.
713 * @addr_bits: Number of bits of register address data.
714 * @data_bits: Number of bits of data per register.
715 * @control: Control bus used.
716 *
717 * Register formats are frequently shared between many I2C and SPI
718 * devices. In order to promote code reuse the ASoC core provides
719 * some standard implementations of CODEC read and write operations
720 * which can be set up using this function.
721 *
722 * The caller is responsible for allocating and initialising the
723 * actual cache.
724 *
725 * Note that at present this code cannot be used by CODECs with
726 * volatile registers.
727 */
728 int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
729 int addr_bits, int data_bits,
730 enum snd_soc_control_type control)
731 {
732 int i;
733
734 for (i = 0; i < ARRAY_SIZE(io_types); i++)
735 if (io_types[i].addr_bits == addr_bits &&
736 io_types[i].data_bits == data_bits)
737 break;
738 if (i == ARRAY_SIZE(io_types)) {
739 printk(KERN_ERR
740 "No I/O functions for %d bit address %d bit data\n",
741 addr_bits, data_bits);
742 return -EINVAL;
743 }
744
745 codec->write = io_types[i].write;
746 codec->read = io_types[i].read;
747
748 switch (control) {
749 case SND_SOC_CUSTOM:
750 break;
751
752 case SND_SOC_I2C:
753 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
754 codec->hw_write = (hw_write_t)i2c_master_send;
755 #endif
756 if (io_types[i].i2c_read)
757 codec->hw_read = io_types[i].i2c_read;
758
759 codec->control_data = container_of(codec->dev,
760 struct i2c_client,
761 dev);
762 break;
763
764 case SND_SOC_SPI:
765 if (io_types[i].spi_write)
766 codec->hw_write = io_types[i].spi_write;
767
768 codec->control_data = container_of(codec->dev,
769 struct spi_device,
770 dev);
771 break;
772 }
773
774 return 0;
775 }
776 EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
777
778 static bool snd_soc_set_cache_val(void *base, unsigned int idx,
779 unsigned int val, unsigned int word_size)
780 {
781 switch (word_size) {
782 case 1: {
783 u8 *cache = base;
784 if (cache[idx] == val)
785 return true;
786 cache[idx] = val;
787 break;
788 }
789 case 2: {
790 u16 *cache = base;
791 if (cache[idx] == val)
792 return true;
793 cache[idx] = val;
794 break;
795 }
796 default:
797 BUG();
798 }
799 return false;
800 }
801
802 static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
803 unsigned int word_size)
804 {
805 switch (word_size) {
806 case 1: {
807 const u8 *cache = base;
808 return cache[idx];
809 }
810 case 2: {
811 const u16 *cache = base;
812 return cache[idx];
813 }
814 default:
815 BUG();
816 }
817 /* unreachable */
818 return -1;
819 }
820
821 struct snd_soc_rbtree_node {
822 struct rb_node node;
823 unsigned int reg;
824 unsigned int value;
825 unsigned int defval;
826 } __attribute__ ((packed));
827
828 struct snd_soc_rbtree_ctx {
829 struct rb_root root;
830 };
831
832 static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
833 struct rb_root *root, unsigned int reg)
834 {
835 struct rb_node *node;
836 struct snd_soc_rbtree_node *rbnode;
837
838 node = root->rb_node;
839 while (node) {
840 rbnode = container_of(node, struct snd_soc_rbtree_node, node);
841 if (rbnode->reg < reg)
842 node = node->rb_left;
843 else if (rbnode->reg > reg)
844 node = node->rb_right;
845 else
846 return rbnode;
847 }
848
849 return NULL;
850 }
851
852 static int snd_soc_rbtree_insert(struct rb_root *root,
853 struct snd_soc_rbtree_node *rbnode)
854 {
855 struct rb_node **new, *parent;
856 struct snd_soc_rbtree_node *rbnode_tmp;
857
858 parent = NULL;
859 new = &root->rb_node;
860 while (*new) {
861 rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
862 node);
863 parent = *new;
864 if (rbnode_tmp->reg < rbnode->reg)
865 new = &((*new)->rb_left);
866 else if (rbnode_tmp->reg > rbnode->reg)
867 new = &((*new)->rb_right);
868 else
869 return 0;
870 }
871
872 /* insert the node into the rbtree */
873 rb_link_node(&rbnode->node, parent, new);
874 rb_insert_color(&rbnode->node, root);
875
876 return 1;
877 }
878
879 static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
880 {
881 struct snd_soc_rbtree_ctx *rbtree_ctx;
882 struct rb_node *node;
883 struct snd_soc_rbtree_node *rbnode;
884 unsigned int val;
885 int ret;
886
887 rbtree_ctx = codec->reg_cache;
888 for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
889 rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
890 if (rbnode->value == rbnode->defval)
891 continue;
892 ret = snd_soc_cache_read(codec, rbnode->reg, &val);
893 if (ret)
894 return ret;
895 codec->cache_bypass = 1;
896 ret = snd_soc_write(codec, rbnode->reg, val);
897 codec->cache_bypass = 0;
898 if (ret)
899 return ret;
900 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
901 rbnode->reg, val);
902 }
903
904 return 0;
905 }
906
907 static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
908 unsigned int reg, unsigned int value)
909 {
910 struct snd_soc_rbtree_ctx *rbtree_ctx;
911 struct snd_soc_rbtree_node *rbnode;
912
913 rbtree_ctx = codec->reg_cache;
914 rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
915 if (rbnode) {
916 if (rbnode->value == value)
917 return 0;
918 rbnode->value = value;
919 } else {
920 /* bail out early, no need to create the rbnode yet */
921 if (!value)
922 return 0;
923 /*
924 * for uninitialized registers whose value is changed
925 * from the default zero, create an rbnode and insert
926 * it into the tree.
927 */
928 rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
929 if (!rbnode)
930 return -ENOMEM;
931 rbnode->reg = reg;
932 rbnode->value = value;
933 snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
934 }
935
936 return 0;
937 }
938
939 static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
940 unsigned int reg, unsigned int *value)
941 {
942 struct snd_soc_rbtree_ctx *rbtree_ctx;
943 struct snd_soc_rbtree_node *rbnode;
944
945 rbtree_ctx = codec->reg_cache;
946 rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
947 if (rbnode) {
948 *value = rbnode->value;
949 } else {
950 /* uninitialized registers default to 0 */
951 *value = 0;
952 }
953
954 return 0;
955 }
956
957 static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
958 {
959 struct rb_node *next;
960 struct snd_soc_rbtree_ctx *rbtree_ctx;
961 struct snd_soc_rbtree_node *rbtree_node;
962
963 /* if we've already been called then just return */
964 rbtree_ctx = codec->reg_cache;
965 if (!rbtree_ctx)
966 return 0;
967
968 /* free up the rbtree */
969 next = rb_first(&rbtree_ctx->root);
970 while (next) {
971 rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
972 next = rb_next(&rbtree_node->node);
973 rb_erase(&rbtree_node->node, &rbtree_ctx->root);
974 kfree(rbtree_node);
975 }
976
977 /* release the resources */
978 kfree(codec->reg_cache);
979 codec->reg_cache = NULL;
980
981 return 0;
982 }
983
984 static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
985 {
986 struct snd_soc_rbtree_node *rbtree_node;
987 struct snd_soc_rbtree_ctx *rbtree_ctx;
988 unsigned int val;
989 unsigned int word_size;
990 int i;
991 int ret;
992
993 codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
994 if (!codec->reg_cache)
995 return -ENOMEM;
996
997 rbtree_ctx = codec->reg_cache;
998 rbtree_ctx->root = RB_ROOT;
999
1000 if (!codec->reg_def_copy)
1001 return 0;
1002
1003 /*
1004 * populate the rbtree with the initialized registers. All other
1005 * registers will be inserted when they are first modified.
1006 */
1007 word_size = codec->driver->reg_word_size;
1008 for (i = 0; i < codec->driver->reg_cache_size; ++i) {
1009 val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
1010 if (!val)
1011 continue;
1012 rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
1013 if (!rbtree_node) {
1014 ret = -ENOMEM;
1015 snd_soc_cache_exit(codec);
1016 break;
1017 }
1018 rbtree_node->reg = i;
1019 rbtree_node->value = val;
1020 rbtree_node->defval = val;
1021 snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
1022 }
1023
1024 return 0;
1025 }
1026
1027 #ifdef CONFIG_SND_SOC_CACHE_LZO
1028 struct snd_soc_lzo_ctx {
1029 void *wmem;
1030 void *dst;
1031 const void *src;
1032 size_t src_len;
1033 size_t dst_len;
1034 size_t decompressed_size;
1035 unsigned long *sync_bmp;
1036 int sync_bmp_nbits;
1037 };
1038
1039 #define LZO_BLOCK_NUM 8
1040 static int snd_soc_lzo_block_count(void)
1041 {
1042 return LZO_BLOCK_NUM;
1043 }
1044
1045 static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
1046 {
1047 lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
1048 if (!lzo_ctx->wmem)
1049 return -ENOMEM;
1050 return 0;
1051 }
1052
1053 static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
1054 {
1055 size_t compress_size;
1056 int ret;
1057
1058 ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
1059 lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
1060 if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
1061 return -EINVAL;
1062 lzo_ctx->dst_len = compress_size;
1063 return 0;
1064 }
1065
1066 static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
1067 {
1068 size_t dst_len;
1069 int ret;
1070
1071 dst_len = lzo_ctx->dst_len;
1072 ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
1073 lzo_ctx->dst, &dst_len);
1074 if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
1075 return -EINVAL;
1076 return 0;
1077 }
1078
1079 static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
1080 struct snd_soc_lzo_ctx *lzo_ctx)
1081 {
1082 int ret;
1083
1084 lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
1085 lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
1086 if (!lzo_ctx->dst) {
1087 lzo_ctx->dst_len = 0;
1088 return -ENOMEM;
1089 }
1090
1091 ret = snd_soc_lzo_compress(lzo_ctx);
1092 if (ret < 0)
1093 return ret;
1094 return 0;
1095 }
1096
1097 static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
1098 struct snd_soc_lzo_ctx *lzo_ctx)
1099 {
1100 int ret;
1101
1102 lzo_ctx->dst_len = lzo_ctx->decompressed_size;
1103 lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
1104 if (!lzo_ctx->dst) {
1105 lzo_ctx->dst_len = 0;
1106 return -ENOMEM;
1107 }
1108
1109 ret = snd_soc_lzo_decompress(lzo_ctx);
1110 if (ret < 0)
1111 return ret;
1112 return 0;
1113 }
1114
1115 static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
1116 unsigned int reg)
1117 {
1118 const struct snd_soc_codec_driver *codec_drv;
1119
1120 codec_drv = codec->driver;
1121 return (reg * codec_drv->reg_word_size) /
1122 DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1123 }
1124
1125 static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
1126 unsigned int reg)
1127 {
1128 const struct snd_soc_codec_driver *codec_drv;
1129
1130 codec_drv = codec->driver;
1131 return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
1132 codec_drv->reg_word_size);
1133 }
1134
1135 static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
1136 {
1137 const struct snd_soc_codec_driver *codec_drv;
1138
1139 codec_drv = codec->driver;
1140 return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1141 }
1142
1143 static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
1144 {
1145 struct snd_soc_lzo_ctx **lzo_blocks;
1146 unsigned int val;
1147 int i;
1148 int ret;
1149
1150 lzo_blocks = codec->reg_cache;
1151 for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
1152 ret = snd_soc_cache_read(codec, i, &val);
1153 if (ret)
1154 return ret;
1155 codec->cache_bypass = 1;
1156 ret = snd_soc_write(codec, i, val);
1157 codec->cache_bypass = 0;
1158 if (ret)
1159 return ret;
1160 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
1161 i, val);
1162 }
1163
1164 return 0;
1165 }
1166
1167 static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
1168 unsigned int reg, unsigned int value)
1169 {
1170 struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
1171 int ret, blkindex, blkpos;
1172 size_t blksize, tmp_dst_len;
1173 void *tmp_dst;
1174
1175 /* index of the compressed lzo block */
1176 blkindex = snd_soc_lzo_get_blkindex(codec, reg);
1177 /* register index within the decompressed block */
1178 blkpos = snd_soc_lzo_get_blkpos(codec, reg);
1179 /* size of the compressed block */
1180 blksize = snd_soc_lzo_get_blksize(codec);
1181 lzo_blocks = codec->reg_cache;
1182 lzo_block = lzo_blocks[blkindex];
1183
1184 /* save the pointer and length of the compressed block */
1185 tmp_dst = lzo_block->dst;
1186 tmp_dst_len = lzo_block->dst_len;
1187
1188 /* prepare the source to be the compressed block */
1189 lzo_block->src = lzo_block->dst;
1190 lzo_block->src_len = lzo_block->dst_len;
1191
1192 /* decompress the block */
1193 ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1194 if (ret < 0) {
1195 kfree(lzo_block->dst);
1196 goto out;
1197 }
1198
1199 /* write the new value to the cache */
1200 if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
1201 codec->driver->reg_word_size)) {
1202 kfree(lzo_block->dst);
1203 goto out;
1204 }
1205
1206 /* prepare the source to be the decompressed block */
1207 lzo_block->src = lzo_block->dst;
1208 lzo_block->src_len = lzo_block->dst_len;
1209
1210 /* compress the block */
1211 ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
1212 if (ret < 0) {
1213 kfree(lzo_block->dst);
1214 kfree(lzo_block->src);
1215 goto out;
1216 }
1217
1218 /* set the bit so we know we have to sync this register */
1219 set_bit(reg, lzo_block->sync_bmp);
1220 kfree(tmp_dst);
1221 kfree(lzo_block->src);
1222 return 0;
1223 out:
1224 lzo_block->dst = tmp_dst;
1225 lzo_block->dst_len = tmp_dst_len;
1226 return ret;
1227 }
1228
1229 static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
1230 unsigned int reg, unsigned int *value)
1231 {
1232 struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
1233 int ret, blkindex, blkpos;
1234 size_t blksize, tmp_dst_len;
1235 void *tmp_dst;
1236
1237 *value = 0;
1238 /* index of the compressed lzo block */
1239 blkindex = snd_soc_lzo_get_blkindex(codec, reg);
1240 /* register index within the decompressed block */
1241 blkpos = snd_soc_lzo_get_blkpos(codec, reg);
1242 /* size of the compressed block */
1243 blksize = snd_soc_lzo_get_blksize(codec);
1244 lzo_blocks = codec->reg_cache;
1245 lzo_block = lzo_blocks[blkindex];
1246
1247 /* save the pointer and length of the compressed block */
1248 tmp_dst = lzo_block->dst;
1249 tmp_dst_len = lzo_block->dst_len;
1250
1251 /* prepare the source to be the compressed block */
1252 lzo_block->src = lzo_block->dst;
1253 lzo_block->src_len = lzo_block->dst_len;
1254
1255 /* decompress the block */
1256 ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1257 if (ret >= 0)
1258 /* fetch the value from the cache */
1259 *value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
1260 codec->driver->reg_word_size);
1261
1262 kfree(lzo_block->dst);
1263 /* restore the pointer and length of the compressed block */
1264 lzo_block->dst = tmp_dst;
1265 lzo_block->dst_len = tmp_dst_len;
1266 return 0;
1267 }
1268
1269 static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
1270 {
1271 struct snd_soc_lzo_ctx **lzo_blocks;
1272 int i, blkcount;
1273
1274 lzo_blocks = codec->reg_cache;
1275 if (!lzo_blocks)
1276 return 0;
1277
1278 blkcount = snd_soc_lzo_block_count();
1279 /*
1280 * the pointer to the bitmap used for syncing the cache
1281 * is shared amongst all lzo_blocks. Ensure it is freed
1282 * only once.
1283 */
1284 if (lzo_blocks[0])
1285 kfree(lzo_blocks[0]->sync_bmp);
1286 for (i = 0; i < blkcount; ++i) {
1287 if (lzo_blocks[i]) {
1288 kfree(lzo_blocks[i]->wmem);
1289 kfree(lzo_blocks[i]->dst);
1290 }
1291 /* each lzo_block is a pointer returned by kmalloc or NULL */
1292 kfree(lzo_blocks[i]);
1293 }
1294 kfree(lzo_blocks);
1295 codec->reg_cache = NULL;
1296 return 0;
1297 }
1298
1299 static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
1300 {
1301 struct snd_soc_lzo_ctx **lzo_blocks;
1302 size_t bmp_size;
1303 const struct snd_soc_codec_driver *codec_drv;
1304 int ret, tofree, i, blksize, blkcount;
1305 const char *p, *end;
1306 unsigned long *sync_bmp;
1307
1308 ret = 0;
1309 codec_drv = codec->driver;
1310
1311 /*
1312 * If we have not been given a default register cache
1313 * then allocate a dummy zero-ed out region, compress it
1314 * and remember to free it afterwards.
1315 */
1316 tofree = 0;
1317 if (!codec->reg_def_copy)
1318 tofree = 1;
1319
1320 if (!codec->reg_def_copy) {
1321 codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
1322 if (!codec->reg_def_copy)
1323 return -ENOMEM;
1324 }
1325
1326 blkcount = snd_soc_lzo_block_count();
1327 codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
1328 GFP_KERNEL);
1329 if (!codec->reg_cache) {
1330 ret = -ENOMEM;
1331 goto err_tofree;
1332 }
1333 lzo_blocks = codec->reg_cache;
1334
1335 /*
1336 * allocate a bitmap to be used when syncing the cache with
1337 * the hardware. Each time a register is modified, the corresponding
1338 * bit is set in the bitmap, so we know that we have to sync
1339 * that register.
1340 */
1341 bmp_size = codec_drv->reg_cache_size;
1342 sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1343 GFP_KERNEL);
1344 if (!sync_bmp) {
1345 ret = -ENOMEM;
1346 goto err;
1347 }
1348 bitmap_zero(sync_bmp, bmp_size);
1349
1350 /* allocate the lzo blocks and initialize them */
1351 for (i = 0; i < blkcount; ++i) {
1352 lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
1353 GFP_KERNEL);
1354 if (!lzo_blocks[i]) {
1355 kfree(sync_bmp);
1356 ret = -ENOMEM;
1357 goto err;
1358 }
1359 lzo_blocks[i]->sync_bmp = sync_bmp;
1360 lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1361 /* alloc the working space for the compressed block */
1362 ret = snd_soc_lzo_prepare(lzo_blocks[i]);
1363 if (ret < 0)
1364 goto err;
1365 }
1366
1367 blksize = snd_soc_lzo_get_blksize(codec);
1368 p = codec->reg_def_copy;
1369 end = codec->reg_def_copy + codec->reg_size;
1370 /* compress the register map and fill the lzo blocks */
1371 for (i = 0; i < blkcount; ++i, p += blksize) {
1372 lzo_blocks[i]->src = p;
1373 if (p + blksize > end)
1374 lzo_blocks[i]->src_len = end - p;
1375 else
1376 lzo_blocks[i]->src_len = blksize;
1377 ret = snd_soc_lzo_compress_cache_block(codec,
1378 lzo_blocks[i]);
1379 if (ret < 0)
1380 goto err;
1381 lzo_blocks[i]->decompressed_size =
1382 lzo_blocks[i]->src_len;
1383 }
1384
1385 if (tofree) {
1386 kfree(codec->reg_def_copy);
1387 codec->reg_def_copy = NULL;
1388 }
1389 return 0;
1390 err:
1391 snd_soc_cache_exit(codec);
1392 err_tofree:
1393 if (tofree) {
1394 kfree(codec->reg_def_copy);
1395 codec->reg_def_copy = NULL;
1396 }
1397 return ret;
1398 }
1399 #endif
1400
1401 static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
1402 {
1403 int i;
1404 int ret;
1405 const struct snd_soc_codec_driver *codec_drv;
1406 unsigned int val;
1407
1408 codec_drv = codec->driver;
1409 for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1410 ret = snd_soc_cache_read(codec, i, &val);
1411 if (ret)
1412 return ret;
1413 if (codec->reg_def_copy)
1414 if (snd_soc_get_cache_val(codec->reg_def_copy,
1415 i, codec_drv->reg_word_size) == val)
1416 continue;
1417 ret = snd_soc_write(codec, i, val);
1418 if (ret)
1419 return ret;
1420 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
1421 i, val);
1422 }
1423 return 0;
1424 }
1425
1426 static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
1427 unsigned int reg, unsigned int value)
1428 {
1429 snd_soc_set_cache_val(codec->reg_cache, reg, value,
1430 codec->driver->reg_word_size);
1431 return 0;
1432 }
1433
1434 static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
1435 unsigned int reg, unsigned int *value)
1436 {
1437 *value = snd_soc_get_cache_val(codec->reg_cache, reg,
1438 codec->driver->reg_word_size);
1439 return 0;
1440 }
1441
1442 static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
1443 {
1444 if (!codec->reg_cache)
1445 return 0;
1446 kfree(codec->reg_cache);
1447 codec->reg_cache = NULL;
1448 return 0;
1449 }
1450
1451 static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
1452 {
1453 const struct snd_soc_codec_driver *codec_drv;
1454
1455 codec_drv = codec->driver;
1456
1457 if (codec->reg_def_copy)
1458 codec->reg_cache = kmemdup(codec->reg_def_copy,
1459 codec->reg_size, GFP_KERNEL);
1460 else
1461 codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1462 if (!codec->reg_cache)
1463 return -ENOMEM;
1464
1465 return 0;
1466 }
1467
1468 /* an array of all supported compression types */
1469 static const struct snd_soc_cache_ops cache_types[] = {
1470 /* Flat *must* be the first entry for fallback */
1471 {
1472 .id = SND_SOC_FLAT_COMPRESSION,
1473 .name = "flat",
1474 .init = snd_soc_flat_cache_init,
1475 .exit = snd_soc_flat_cache_exit,
1476 .read = snd_soc_flat_cache_read,
1477 .write = snd_soc_flat_cache_write,
1478 .sync = snd_soc_flat_cache_sync
1479 },
1480 #ifdef CONFIG_SND_SOC_CACHE_LZO
1481 {
1482 .id = SND_SOC_LZO_COMPRESSION,
1483 .name = "LZO",
1484 .init = snd_soc_lzo_cache_init,
1485 .exit = snd_soc_lzo_cache_exit,
1486 .read = snd_soc_lzo_cache_read,
1487 .write = snd_soc_lzo_cache_write,
1488 .sync = snd_soc_lzo_cache_sync
1489 },
1490 #endif
1491 {
1492 .id = SND_SOC_RBTREE_COMPRESSION,
1493 .name = "rbtree",
1494 .init = snd_soc_rbtree_cache_init,
1495 .exit = snd_soc_rbtree_cache_exit,
1496 .read = snd_soc_rbtree_cache_read,
1497 .write = snd_soc_rbtree_cache_write,
1498 .sync = snd_soc_rbtree_cache_sync
1499 }
1500 };
1501
1502 int snd_soc_cache_init(struct snd_soc_codec *codec)
1503 {
1504 int i;
1505
1506 for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1507 if (cache_types[i].id == codec->compress_type)
1508 break;
1509
1510 /* Fall back to flat compression */
1511 if (i == ARRAY_SIZE(cache_types)) {
1512 dev_warn(codec->dev, "Could not match compress type: %d\n",
1513 codec->compress_type);
1514 i = 0;
1515 }
1516
1517 mutex_init(&codec->cache_rw_mutex);
1518 codec->cache_ops = &cache_types[i];
1519
1520 if (codec->cache_ops->init) {
1521 if (codec->cache_ops->name)
1522 dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
1523 codec->cache_ops->name, codec->name);
1524 return codec->cache_ops->init(codec);
1525 }
1526 return -EINVAL;
1527 }
1528
1529 /*
1530 * NOTE: keep in mind that this function might be called
1531 * multiple times.
1532 */
1533 int snd_soc_cache_exit(struct snd_soc_codec *codec)
1534 {
1535 if (codec->cache_ops && codec->cache_ops->exit) {
1536 if (codec->cache_ops->name)
1537 dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
1538 codec->cache_ops->name, codec->name);
1539 return codec->cache_ops->exit(codec);
1540 }
1541 return -EINVAL;
1542 }
1543
1544 /**
1545 * snd_soc_cache_read: Fetch the value of a given register from the cache.
1546 *
1547 * @codec: CODEC to configure.
1548 * @reg: The register index.
1549 * @value: The value to be returned.
1550 */
1551 int snd_soc_cache_read(struct snd_soc_codec *codec,
1552 unsigned int reg, unsigned int *value)
1553 {
1554 int ret;
1555
1556 mutex_lock(&codec->cache_rw_mutex);
1557
1558 if (value && codec->cache_ops && codec->cache_ops->read) {
1559 ret = codec->cache_ops->read(codec, reg, value);
1560 mutex_unlock(&codec->cache_rw_mutex);
1561 return ret;
1562 }
1563
1564 mutex_unlock(&codec->cache_rw_mutex);
1565 return -EINVAL;
1566 }
1567 EXPORT_SYMBOL_GPL(snd_soc_cache_read);
1568
1569 /**
1570 * snd_soc_cache_write: Set the value of a given register in the cache.
1571 *
1572 * @codec: CODEC to configure.
1573 * @reg: The register index.
1574 * @value: The new register value.
1575 */
1576 int snd_soc_cache_write(struct snd_soc_codec *codec,
1577 unsigned int reg, unsigned int value)
1578 {
1579 int ret;
1580
1581 mutex_lock(&codec->cache_rw_mutex);
1582
1583 if (codec->cache_ops && codec->cache_ops->write) {
1584 ret = codec->cache_ops->write(codec, reg, value);
1585 mutex_unlock(&codec->cache_rw_mutex);
1586 return ret;
1587 }
1588
1589 mutex_unlock(&codec->cache_rw_mutex);
1590 return -EINVAL;
1591 }
1592 EXPORT_SYMBOL_GPL(snd_soc_cache_write);
1593
1594 /**
1595 * snd_soc_cache_sync: Sync the register cache with the hardware.
1596 *
1597 * @codec: CODEC to configure.
1598 *
1599 * Any registers that should not be synced should be marked as
1600 * volatile. In general drivers can choose not to use the provided
1601 * syncing functionality if they so require.
1602 */
1603 int snd_soc_cache_sync(struct snd_soc_codec *codec)
1604 {
1605 int ret;
1606 const char *name;
1607
1608 if (!codec->cache_sync) {
1609 return 0;
1610 }
1611
1612 if (codec->cache_ops->name)
1613 name = codec->cache_ops->name;
1614 else
1615 name = "unknown";
1616
1617 if (codec->cache_ops && codec->cache_ops->sync) {
1618 if (codec->cache_ops->name)
1619 dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
1620 codec->cache_ops->name, codec->name);
1621 trace_snd_soc_cache_sync(codec, name, "start");
1622 ret = codec->cache_ops->sync(codec);
1623 if (!ret)
1624 codec->cache_sync = 0;
1625 trace_snd_soc_cache_sync(codec, name, "end");
1626 return ret;
1627 }
1628
1629 return -EINVAL;
1630 }
1631 EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1632
1633 static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
1634 unsigned int reg)
1635 {
1636 const struct snd_soc_codec_driver *codec_drv;
1637 unsigned int min, max, index;
1638
1639 codec_drv = codec->driver;
1640 min = 0;
1641 max = codec_drv->reg_access_size - 1;
1642 do {
1643 index = (min + max) / 2;
1644 if (codec_drv->reg_access_default[index].reg == reg)
1645 return index;
1646 if (codec_drv->reg_access_default[index].reg < reg)
1647 min = index + 1;
1648 else
1649 max = index;
1650 } while (min <= max);
1651 return -1;
1652 }
1653
1654 int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
1655 unsigned int reg)
1656 {
1657 int index;
1658
1659 if (reg >= codec->driver->reg_cache_size)
1660 return 1;
1661 index = snd_soc_get_reg_access_index(codec, reg);
1662 if (index < 0)
1663 return 0;
1664 return codec->driver->reg_access_default[index].vol;
1665 }
1666 EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);
1667
1668 int snd_soc_default_readable_register(struct snd_soc_codec *codec,
1669 unsigned int reg)
1670 {
1671 int index;
1672
1673 if (reg >= codec->driver->reg_cache_size)
1674 return 1;
1675 index = snd_soc_get_reg_access_index(codec, reg);
1676 if (index < 0)
1677 return 0;
1678 return codec->driver->reg_access_default[index].read;
1679 }
1680 EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);
This page took 0.063664 seconds and 5 git commands to generate.