Merge tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/of.h>
37 #include <linux/gpio.h>
38 #include <linux/of_gpio.h>
39 #include <sound/ac97_codec.h>
40 #include <sound/core.h>
41 #include <sound/jack.h>
42 #include <sound/pcm.h>
43 #include <sound/pcm_params.h>
44 #include <sound/soc.h>
45 #include <sound/soc-dpcm.h>
46 #include <sound/initval.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/asoc.h>
50
51 #define NAME_SIZE 32
52
53 #ifdef CONFIG_DEBUG_FS
54 struct dentry *snd_soc_debugfs_root;
55 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
56 #endif
57
58 static DEFINE_MUTEX(client_mutex);
59 static LIST_HEAD(platform_list);
60 static LIST_HEAD(codec_list);
61 static LIST_HEAD(component_list);
62
63 /*
64 * This is a timeout to do a DAPM powerdown after a stream is closed().
65 * It can be used to eliminate pops between different playback streams, e.g.
66 * between two audio tracks.
67 */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 struct snd_ac97_reset_cfg {
73 struct pinctrl *pctl;
74 struct pinctrl_state *pstate_reset;
75 struct pinctrl_state *pstate_warm_reset;
76 struct pinctrl_state *pstate_run;
77 int gpio_sdata;
78 int gpio_sync;
79 int gpio_reset;
80 };
81
82 /* returns the minimum number of bytes needed to represent
83 * a particular given value */
84 static int min_bytes_needed(unsigned long val)
85 {
86 int c = 0;
87 int i;
88
89 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
90 if (val & (1UL << i))
91 break;
92 c = (sizeof val * 8) - c;
93 if (!c || (c % 8))
94 c = (c + 8) / 8;
95 else
96 c /= 8;
97 return c;
98 }
99
100 /* fill buf which is 'len' bytes with a formatted
101 * string of the form 'reg: value\n' */
102 static int format_register_str(struct snd_soc_codec *codec,
103 unsigned int reg, char *buf, size_t len)
104 {
105 int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
106 int regsize = codec->driver->reg_word_size * 2;
107 int ret;
108 char tmpbuf[len + 1];
109 char regbuf[regsize + 1];
110
111 /* since tmpbuf is allocated on the stack, warn the callers if they
112 * try to abuse this function */
113 WARN_ON(len > 63);
114
115 /* +2 for ': ' and + 1 for '\n' */
116 if (wordsize + regsize + 2 + 1 != len)
117 return -EINVAL;
118
119 ret = snd_soc_read(codec, reg);
120 if (ret < 0) {
121 memset(regbuf, 'X', regsize);
122 regbuf[regsize] = '\0';
123 } else {
124 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
125 }
126
127 /* prepare the buffer */
128 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
129 /* copy it back to the caller without the '\0' */
130 memcpy(buf, tmpbuf, len);
131
132 return 0;
133 }
134
135 /* codec register dump */
136 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
137 size_t count, loff_t pos)
138 {
139 int i, step = 1;
140 int wordsize, regsize;
141 int len;
142 size_t total = 0;
143 loff_t p = 0;
144
145 wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
146 regsize = codec->driver->reg_word_size * 2;
147
148 len = wordsize + regsize + 2 + 1;
149
150 if (!codec->driver->reg_cache_size)
151 return 0;
152
153 if (codec->driver->reg_cache_step)
154 step = codec->driver->reg_cache_step;
155
156 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
157 if (!snd_soc_codec_readable_register(codec, i))
158 continue;
159 if (codec->driver->display_register) {
160 count += codec->driver->display_register(codec, buf + count,
161 PAGE_SIZE - count, i);
162 } else {
163 /* only support larger than PAGE_SIZE bytes debugfs
164 * entries for the default case */
165 if (p >= pos) {
166 if (total + len >= count - 1)
167 break;
168 format_register_str(codec, i, buf + total, len);
169 total += len;
170 }
171 p += len;
172 }
173 }
174
175 total = min(total, count - 1);
176
177 return total;
178 }
179
180 static ssize_t codec_reg_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
184
185 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
186 }
187
188 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
189
190 static ssize_t pmdown_time_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
194
195 return sprintf(buf, "%ld\n", rtd->pmdown_time);
196 }
197
198 static ssize_t pmdown_time_set(struct device *dev,
199 struct device_attribute *attr,
200 const char *buf, size_t count)
201 {
202 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
203 int ret;
204
205 ret = kstrtol(buf, 10, &rtd->pmdown_time);
206 if (ret)
207 return ret;
208
209 return count;
210 }
211
212 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
213
214 #ifdef CONFIG_DEBUG_FS
215 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
216 size_t count, loff_t *ppos)
217 {
218 ssize_t ret;
219 struct snd_soc_codec *codec = file->private_data;
220 char *buf;
221
222 if (*ppos < 0 || !count)
223 return -EINVAL;
224
225 buf = kmalloc(count, GFP_KERNEL);
226 if (!buf)
227 return -ENOMEM;
228
229 ret = soc_codec_reg_show(codec, buf, count, *ppos);
230 if (ret >= 0) {
231 if (copy_to_user(user_buf, buf, ret)) {
232 kfree(buf);
233 return -EFAULT;
234 }
235 *ppos += ret;
236 }
237
238 kfree(buf);
239 return ret;
240 }
241
242 static ssize_t codec_reg_write_file(struct file *file,
243 const char __user *user_buf, size_t count, loff_t *ppos)
244 {
245 char buf[32];
246 size_t buf_size;
247 char *start = buf;
248 unsigned long reg, value;
249 struct snd_soc_codec *codec = file->private_data;
250 int ret;
251
252 buf_size = min(count, (sizeof(buf)-1));
253 if (copy_from_user(buf, user_buf, buf_size))
254 return -EFAULT;
255 buf[buf_size] = 0;
256
257 while (*start == ' ')
258 start++;
259 reg = simple_strtoul(start, &start, 16);
260 while (*start == ' ')
261 start++;
262 ret = kstrtoul(start, 16, &value);
263 if (ret)
264 return ret;
265
266 /* Userspace has been fiddling around behind the kernel's back */
267 add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE);
268
269 snd_soc_write(codec, reg, value);
270 return buf_size;
271 }
272
273 static const struct file_operations codec_reg_fops = {
274 .open = simple_open,
275 .read = codec_reg_read_file,
276 .write = codec_reg_write_file,
277 .llseek = default_llseek,
278 };
279
280 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
281 {
282 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
283
284 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
285 debugfs_card_root);
286 if (!codec->debugfs_codec_root) {
287 dev_warn(codec->dev,
288 "ASoC: Failed to create codec debugfs directory\n");
289 return;
290 }
291
292 debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
293 &codec->cache_sync);
294 debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
295 &codec->cache_only);
296
297 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
298 codec->debugfs_codec_root,
299 codec, &codec_reg_fops);
300 if (!codec->debugfs_reg)
301 dev_warn(codec->dev,
302 "ASoC: Failed to create codec register debugfs file\n");
303
304 snd_soc_dapm_debugfs_init(&codec->dapm, codec->debugfs_codec_root);
305 }
306
307 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
308 {
309 debugfs_remove_recursive(codec->debugfs_codec_root);
310 }
311
312 static void soc_init_platform_debugfs(struct snd_soc_platform *platform)
313 {
314 struct dentry *debugfs_card_root = platform->card->debugfs_card_root;
315
316 platform->debugfs_platform_root = debugfs_create_dir(platform->name,
317 debugfs_card_root);
318 if (!platform->debugfs_platform_root) {
319 dev_warn(platform->dev,
320 "ASoC: Failed to create platform debugfs directory\n");
321 return;
322 }
323
324 snd_soc_dapm_debugfs_init(&platform->dapm,
325 platform->debugfs_platform_root);
326 }
327
328 static void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
329 {
330 debugfs_remove_recursive(platform->debugfs_platform_root);
331 }
332
333 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
334 size_t count, loff_t *ppos)
335 {
336 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
337 ssize_t len, ret = 0;
338 struct snd_soc_codec *codec;
339
340 if (!buf)
341 return -ENOMEM;
342
343 list_for_each_entry(codec, &codec_list, list) {
344 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
345 codec->name);
346 if (len >= 0)
347 ret += len;
348 if (ret > PAGE_SIZE) {
349 ret = PAGE_SIZE;
350 break;
351 }
352 }
353
354 if (ret >= 0)
355 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
356
357 kfree(buf);
358
359 return ret;
360 }
361
362 static const struct file_operations codec_list_fops = {
363 .read = codec_list_read_file,
364 .llseek = default_llseek,/* read accesses f_pos */
365 };
366
367 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
368 size_t count, loff_t *ppos)
369 {
370 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
371 ssize_t len, ret = 0;
372 struct snd_soc_component *component;
373 struct snd_soc_dai *dai;
374
375 if (!buf)
376 return -ENOMEM;
377
378 list_for_each_entry(component, &component_list, list) {
379 list_for_each_entry(dai, &component->dai_list, list) {
380 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
381 dai->name);
382 if (len >= 0)
383 ret += len;
384 if (ret > PAGE_SIZE) {
385 ret = PAGE_SIZE;
386 break;
387 }
388 }
389 }
390
391 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
392
393 kfree(buf);
394
395 return ret;
396 }
397
398 static const struct file_operations dai_list_fops = {
399 .read = dai_list_read_file,
400 .llseek = default_llseek,/* read accesses f_pos */
401 };
402
403 static ssize_t platform_list_read_file(struct file *file,
404 char __user *user_buf,
405 size_t count, loff_t *ppos)
406 {
407 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
408 ssize_t len, ret = 0;
409 struct snd_soc_platform *platform;
410
411 if (!buf)
412 return -ENOMEM;
413
414 list_for_each_entry(platform, &platform_list, list) {
415 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
416 platform->name);
417 if (len >= 0)
418 ret += len;
419 if (ret > PAGE_SIZE) {
420 ret = PAGE_SIZE;
421 break;
422 }
423 }
424
425 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
426
427 kfree(buf);
428
429 return ret;
430 }
431
432 static const struct file_operations platform_list_fops = {
433 .read = platform_list_read_file,
434 .llseek = default_llseek,/* read accesses f_pos */
435 };
436
437 static void soc_init_card_debugfs(struct snd_soc_card *card)
438 {
439 card->debugfs_card_root = debugfs_create_dir(card->name,
440 snd_soc_debugfs_root);
441 if (!card->debugfs_card_root) {
442 dev_warn(card->dev,
443 "ASoC: Failed to create card debugfs directory\n");
444 return;
445 }
446
447 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
448 card->debugfs_card_root,
449 &card->pop_time);
450 if (!card->debugfs_pop_time)
451 dev_warn(card->dev,
452 "ASoC: Failed to create pop time debugfs file\n");
453 }
454
455 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
456 {
457 debugfs_remove_recursive(card->debugfs_card_root);
458 }
459
460 #else
461
462 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
463 {
464 }
465
466 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
467 {
468 }
469
470 static inline void soc_init_platform_debugfs(struct snd_soc_platform *platform)
471 {
472 }
473
474 static inline void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
475 {
476 }
477
478 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
479 {
480 }
481
482 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
483 {
484 }
485 #endif
486
487 struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card,
488 const char *dai_link, int stream)
489 {
490 int i;
491
492 for (i = 0; i < card->num_links; i++) {
493 if (card->rtd[i].dai_link->no_pcm &&
494 !strcmp(card->rtd[i].dai_link->name, dai_link))
495 return card->rtd[i].pcm->streams[stream].substream;
496 }
497 dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link);
498 return NULL;
499 }
500 EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream);
501
502 struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card,
503 const char *dai_link)
504 {
505 int i;
506
507 for (i = 0; i < card->num_links; i++) {
508 if (!strcmp(card->rtd[i].dai_link->name, dai_link))
509 return &card->rtd[i];
510 }
511 dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link);
512 return NULL;
513 }
514 EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime);
515
516 #ifdef CONFIG_SND_SOC_AC97_BUS
517 /* unregister ac97 codec */
518 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
519 {
520 if (codec->ac97->dev.bus)
521 device_unregister(&codec->ac97->dev);
522 return 0;
523 }
524
525 /* stop no dev release warning */
526 static void soc_ac97_device_release(struct device *dev){}
527
528 /* register ac97 codec to bus */
529 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
530 {
531 int err;
532
533 codec->ac97->dev.bus = &ac97_bus_type;
534 codec->ac97->dev.parent = codec->card->dev;
535 codec->ac97->dev.release = soc_ac97_device_release;
536
537 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
538 codec->card->snd_card->number, 0, codec->name);
539 err = device_register(&codec->ac97->dev);
540 if (err < 0) {
541 dev_err(codec->dev, "ASoC: Can't register ac97 bus\n");
542 codec->ac97->dev.bus = NULL;
543 return err;
544 }
545 return 0;
546 }
547 #endif
548
549 static void codec2codec_close_delayed_work(struct work_struct *work)
550 {
551 /* Currently nothing to do for c2c links
552 * Since c2c links are internal nodes in the DAPM graph and
553 * don't interface with the outside world or application layer
554 * we don't have to do any special handling on close.
555 */
556 }
557
558 #ifdef CONFIG_PM_SLEEP
559 /* powers down audio subsystem for suspend */
560 int snd_soc_suspend(struct device *dev)
561 {
562 struct snd_soc_card *card = dev_get_drvdata(dev);
563 struct snd_soc_codec *codec;
564 int i;
565
566 /* If the initialization of this soc device failed, there is no codec
567 * associated with it. Just bail out in this case.
568 */
569 if (list_empty(&card->codec_dev_list))
570 return 0;
571
572 /* Due to the resume being scheduled into a workqueue we could
573 * suspend before that's finished - wait for it to complete.
574 */
575 snd_power_lock(card->snd_card);
576 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
577 snd_power_unlock(card->snd_card);
578
579 /* we're going to block userspace touching us until resume completes */
580 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
581
582 /* mute any active DACs */
583 for (i = 0; i < card->num_rtd; i++) {
584 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
585 struct snd_soc_dai_driver *drv = dai->driver;
586
587 if (card->rtd[i].dai_link->ignore_suspend)
588 continue;
589
590 if (drv->ops->digital_mute && dai->playback_active)
591 drv->ops->digital_mute(dai, 1);
592 }
593
594 /* suspend all pcms */
595 for (i = 0; i < card->num_rtd; i++) {
596 if (card->rtd[i].dai_link->ignore_suspend)
597 continue;
598
599 snd_pcm_suspend_all(card->rtd[i].pcm);
600 }
601
602 if (card->suspend_pre)
603 card->suspend_pre(card);
604
605 for (i = 0; i < card->num_rtd; i++) {
606 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
607 struct snd_soc_platform *platform = card->rtd[i].platform;
608
609 if (card->rtd[i].dai_link->ignore_suspend)
610 continue;
611
612 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
613 cpu_dai->driver->suspend(cpu_dai);
614 if (platform->driver->suspend && !platform->suspended) {
615 platform->driver->suspend(cpu_dai);
616 platform->suspended = 1;
617 }
618 }
619
620 /* close any waiting streams and save state */
621 for (i = 0; i < card->num_rtd; i++) {
622 flush_delayed_work(&card->rtd[i].delayed_work);
623 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
624 }
625
626 for (i = 0; i < card->num_rtd; i++) {
627
628 if (card->rtd[i].dai_link->ignore_suspend)
629 continue;
630
631 snd_soc_dapm_stream_event(&card->rtd[i],
632 SNDRV_PCM_STREAM_PLAYBACK,
633 SND_SOC_DAPM_STREAM_SUSPEND);
634
635 snd_soc_dapm_stream_event(&card->rtd[i],
636 SNDRV_PCM_STREAM_CAPTURE,
637 SND_SOC_DAPM_STREAM_SUSPEND);
638 }
639
640 /* Recheck all analogue paths too */
641 dapm_mark_io_dirty(&card->dapm);
642 snd_soc_dapm_sync(&card->dapm);
643
644 /* suspend all CODECs */
645 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
646 /* If there are paths active then the CODEC will be held with
647 * bias _ON and should not be suspended. */
648 if (!codec->suspended && codec->driver->suspend) {
649 switch (codec->dapm.bias_level) {
650 case SND_SOC_BIAS_STANDBY:
651 /*
652 * If the CODEC is capable of idle
653 * bias off then being in STANDBY
654 * means it's doing something,
655 * otherwise fall through.
656 */
657 if (codec->dapm.idle_bias_off) {
658 dev_dbg(codec->dev,
659 "ASoC: idle_bias_off CODEC on over suspend\n");
660 break;
661 }
662 case SND_SOC_BIAS_OFF:
663 codec->driver->suspend(codec);
664 codec->suspended = 1;
665 codec->cache_sync = 1;
666 if (codec->using_regmap)
667 regcache_mark_dirty(codec->control_data);
668 /* deactivate pins to sleep state */
669 pinctrl_pm_select_sleep_state(codec->dev);
670 break;
671 default:
672 dev_dbg(codec->dev,
673 "ASoC: CODEC is on over suspend\n");
674 break;
675 }
676 }
677 }
678
679 for (i = 0; i < card->num_rtd; i++) {
680 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
681
682 if (card->rtd[i].dai_link->ignore_suspend)
683 continue;
684
685 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
686 cpu_dai->driver->suspend(cpu_dai);
687
688 /* deactivate pins to sleep state */
689 pinctrl_pm_select_sleep_state(cpu_dai->dev);
690 }
691
692 if (card->suspend_post)
693 card->suspend_post(card);
694
695 return 0;
696 }
697 EXPORT_SYMBOL_GPL(snd_soc_suspend);
698
699 /* deferred resume work, so resume can complete before we finished
700 * setting our codec back up, which can be very slow on I2C
701 */
702 static void soc_resume_deferred(struct work_struct *work)
703 {
704 struct snd_soc_card *card =
705 container_of(work, struct snd_soc_card, deferred_resume_work);
706 struct snd_soc_codec *codec;
707 int i;
708
709 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
710 * so userspace apps are blocked from touching us
711 */
712
713 dev_dbg(card->dev, "ASoC: starting resume work\n");
714
715 /* Bring us up into D2 so that DAPM starts enabling things */
716 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
717
718 if (card->resume_pre)
719 card->resume_pre(card);
720
721 /* resume AC97 DAIs */
722 for (i = 0; i < card->num_rtd; i++) {
723 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
724
725 if (card->rtd[i].dai_link->ignore_suspend)
726 continue;
727
728 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
729 cpu_dai->driver->resume(cpu_dai);
730 }
731
732 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
733 /* If the CODEC was idle over suspend then it will have been
734 * left with bias OFF or STANDBY and suspended so we must now
735 * resume. Otherwise the suspend was suppressed.
736 */
737 if (codec->driver->resume && codec->suspended) {
738 switch (codec->dapm.bias_level) {
739 case SND_SOC_BIAS_STANDBY:
740 case SND_SOC_BIAS_OFF:
741 codec->driver->resume(codec);
742 codec->suspended = 0;
743 break;
744 default:
745 dev_dbg(codec->dev,
746 "ASoC: CODEC was on over suspend\n");
747 break;
748 }
749 }
750 }
751
752 for (i = 0; i < card->num_rtd; i++) {
753
754 if (card->rtd[i].dai_link->ignore_suspend)
755 continue;
756
757 snd_soc_dapm_stream_event(&card->rtd[i],
758 SNDRV_PCM_STREAM_PLAYBACK,
759 SND_SOC_DAPM_STREAM_RESUME);
760
761 snd_soc_dapm_stream_event(&card->rtd[i],
762 SNDRV_PCM_STREAM_CAPTURE,
763 SND_SOC_DAPM_STREAM_RESUME);
764 }
765
766 /* unmute any active DACs */
767 for (i = 0; i < card->num_rtd; i++) {
768 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
769 struct snd_soc_dai_driver *drv = dai->driver;
770
771 if (card->rtd[i].dai_link->ignore_suspend)
772 continue;
773
774 if (drv->ops->digital_mute && dai->playback_active)
775 drv->ops->digital_mute(dai, 0);
776 }
777
778 for (i = 0; i < card->num_rtd; i++) {
779 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
780 struct snd_soc_platform *platform = card->rtd[i].platform;
781
782 if (card->rtd[i].dai_link->ignore_suspend)
783 continue;
784
785 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
786 cpu_dai->driver->resume(cpu_dai);
787 if (platform->driver->resume && platform->suspended) {
788 platform->driver->resume(cpu_dai);
789 platform->suspended = 0;
790 }
791 }
792
793 if (card->resume_post)
794 card->resume_post(card);
795
796 dev_dbg(card->dev, "ASoC: resume work completed\n");
797
798 /* userspace can access us now we are back as we were before */
799 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
800
801 /* Recheck all analogue paths too */
802 dapm_mark_io_dirty(&card->dapm);
803 snd_soc_dapm_sync(&card->dapm);
804 }
805
806 /* powers up audio subsystem after a suspend */
807 int snd_soc_resume(struct device *dev)
808 {
809 struct snd_soc_card *card = dev_get_drvdata(dev);
810 int i, ac97_control = 0;
811
812 /* If the initialization of this soc device failed, there is no codec
813 * associated with it. Just bail out in this case.
814 */
815 if (list_empty(&card->codec_dev_list))
816 return 0;
817
818 /* activate pins from sleep state */
819 for (i = 0; i < card->num_rtd; i++) {
820 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
821 struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai;
822 if (cpu_dai->active)
823 pinctrl_pm_select_default_state(cpu_dai->dev);
824 if (codec_dai->active)
825 pinctrl_pm_select_default_state(codec_dai->dev);
826 }
827
828 /* AC97 devices might have other drivers hanging off them so
829 * need to resume immediately. Other drivers don't have that
830 * problem and may take a substantial amount of time to resume
831 * due to I/O costs and anti-pop so handle them out of line.
832 */
833 for (i = 0; i < card->num_rtd; i++) {
834 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
835 ac97_control |= cpu_dai->driver->ac97_control;
836 }
837 if (ac97_control) {
838 dev_dbg(dev, "ASoC: Resuming AC97 immediately\n");
839 soc_resume_deferred(&card->deferred_resume_work);
840 } else {
841 dev_dbg(dev, "ASoC: Scheduling resume work\n");
842 if (!schedule_work(&card->deferred_resume_work))
843 dev_err(dev, "ASoC: resume work item may be lost\n");
844 }
845
846 return 0;
847 }
848 EXPORT_SYMBOL_GPL(snd_soc_resume);
849 #else
850 #define snd_soc_suspend NULL
851 #define snd_soc_resume NULL
852 #endif
853
854 static const struct snd_soc_dai_ops null_dai_ops = {
855 };
856
857 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
858 {
859 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
860 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
861 struct snd_soc_component *component;
862 struct snd_soc_codec *codec;
863 struct snd_soc_platform *platform;
864 struct snd_soc_dai *codec_dai, *cpu_dai;
865 const char *platform_name;
866
867 dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num);
868
869 /* Find CPU DAI from registered DAIs*/
870 list_for_each_entry(component, &component_list, list) {
871 if (dai_link->cpu_of_node &&
872 component->dev->of_node != dai_link->cpu_of_node)
873 continue;
874 if (dai_link->cpu_name &&
875 strcmp(dev_name(component->dev), dai_link->cpu_name))
876 continue;
877 list_for_each_entry(cpu_dai, &component->dai_list, list) {
878 if (dai_link->cpu_dai_name &&
879 strcmp(cpu_dai->name, dai_link->cpu_dai_name))
880 continue;
881
882 rtd->cpu_dai = cpu_dai;
883 }
884 }
885
886 if (!rtd->cpu_dai) {
887 dev_err(card->dev, "ASoC: CPU DAI %s not registered\n",
888 dai_link->cpu_dai_name);
889 return -EPROBE_DEFER;
890 }
891
892 /* Find CODEC from registered CODECs */
893 list_for_each_entry(codec, &codec_list, list) {
894 if (dai_link->codec_of_node) {
895 if (codec->dev->of_node != dai_link->codec_of_node)
896 continue;
897 } else {
898 if (strcmp(codec->name, dai_link->codec_name))
899 continue;
900 }
901
902 rtd->codec = codec;
903
904 /*
905 * CODEC found, so find CODEC DAI from registered DAIs from
906 * this CODEC
907 */
908 list_for_each_entry(codec_dai, &codec->component.dai_list, list) {
909 if (!strcmp(codec_dai->name, dai_link->codec_dai_name)) {
910 rtd->codec_dai = codec_dai;
911 break;
912 }
913 }
914
915 if (!rtd->codec_dai) {
916 dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n",
917 dai_link->codec_dai_name);
918 return -EPROBE_DEFER;
919 }
920 }
921
922 if (!rtd->codec) {
923 dev_err(card->dev, "ASoC: CODEC %s not registered\n",
924 dai_link->codec_name);
925 return -EPROBE_DEFER;
926 }
927
928 /* if there's no platform we match on the empty platform */
929 platform_name = dai_link->platform_name;
930 if (!platform_name && !dai_link->platform_of_node)
931 platform_name = "snd-soc-dummy";
932
933 /* find one from the set of registered platforms */
934 list_for_each_entry(platform, &platform_list, list) {
935 if (dai_link->platform_of_node) {
936 if (platform->dev->of_node !=
937 dai_link->platform_of_node)
938 continue;
939 } else {
940 if (strcmp(platform->name, platform_name))
941 continue;
942 }
943
944 rtd->platform = platform;
945 }
946 if (!rtd->platform) {
947 dev_err(card->dev, "ASoC: platform %s not registered\n",
948 dai_link->platform_name);
949 return -EPROBE_DEFER;
950 }
951
952 card->num_rtd++;
953
954 return 0;
955 }
956
957 static int soc_remove_platform(struct snd_soc_platform *platform)
958 {
959 int ret;
960
961 if (platform->driver->remove) {
962 ret = platform->driver->remove(platform);
963 if (ret < 0)
964 dev_err(platform->dev, "ASoC: failed to remove %d\n",
965 ret);
966 }
967
968 /* Make sure all DAPM widgets are freed */
969 snd_soc_dapm_free(&platform->dapm);
970
971 soc_cleanup_platform_debugfs(platform);
972 platform->probed = 0;
973 list_del(&platform->card_list);
974 module_put(platform->dev->driver->owner);
975
976 return 0;
977 }
978
979 static void soc_remove_codec(struct snd_soc_codec *codec)
980 {
981 int err;
982
983 if (codec->driver->remove) {
984 err = codec->driver->remove(codec);
985 if (err < 0)
986 dev_err(codec->dev, "ASoC: failed to remove %d\n", err);
987 }
988
989 /* Make sure all DAPM widgets are freed */
990 snd_soc_dapm_free(&codec->dapm);
991
992 soc_cleanup_codec_debugfs(codec);
993 codec->probed = 0;
994 list_del(&codec->card_list);
995 module_put(codec->dev->driver->owner);
996 }
997
998 static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order)
999 {
1000 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1001 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1002 int err;
1003
1004 /* unregister the rtd device */
1005 if (rtd->dev_registered) {
1006 device_remove_file(rtd->dev, &dev_attr_pmdown_time);
1007 device_remove_file(rtd->dev, &dev_attr_codec_reg);
1008 device_unregister(rtd->dev);
1009 rtd->dev_registered = 0;
1010 }
1011
1012 /* remove the CODEC DAI */
1013 if (codec_dai && codec_dai->probed &&
1014 codec_dai->driver->remove_order == order) {
1015 if (codec_dai->driver->remove) {
1016 err = codec_dai->driver->remove(codec_dai);
1017 if (err < 0)
1018 dev_err(codec_dai->dev,
1019 "ASoC: failed to remove %s: %d\n",
1020 codec_dai->name, err);
1021 }
1022 codec_dai->probed = 0;
1023 list_del(&codec_dai->card_list);
1024 }
1025
1026 /* remove the cpu_dai */
1027 if (cpu_dai && cpu_dai->probed &&
1028 cpu_dai->driver->remove_order == order) {
1029 if (cpu_dai->driver->remove) {
1030 err = cpu_dai->driver->remove(cpu_dai);
1031 if (err < 0)
1032 dev_err(cpu_dai->dev,
1033 "ASoC: failed to remove %s: %d\n",
1034 cpu_dai->name, err);
1035 }
1036 cpu_dai->probed = 0;
1037 list_del(&cpu_dai->card_list);
1038
1039 if (!cpu_dai->codec) {
1040 snd_soc_dapm_free(&cpu_dai->dapm);
1041 module_put(cpu_dai->dev->driver->owner);
1042 }
1043 }
1044 }
1045
1046 static void soc_remove_link_components(struct snd_soc_card *card, int num,
1047 int order)
1048 {
1049 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1050 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1051 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1052 struct snd_soc_platform *platform = rtd->platform;
1053 struct snd_soc_codec *codec;
1054
1055 /* remove the platform */
1056 if (platform && platform->probed &&
1057 platform->driver->remove_order == order) {
1058 soc_remove_platform(platform);
1059 }
1060
1061 /* remove the CODEC-side CODEC */
1062 if (codec_dai) {
1063 codec = codec_dai->codec;
1064 if (codec && codec->probed &&
1065 codec->driver->remove_order == order)
1066 soc_remove_codec(codec);
1067 }
1068
1069 /* remove any CPU-side CODEC */
1070 if (cpu_dai) {
1071 codec = cpu_dai->codec;
1072 if (codec && codec->probed &&
1073 codec->driver->remove_order == order)
1074 soc_remove_codec(codec);
1075 }
1076 }
1077
1078 static void soc_remove_dai_links(struct snd_soc_card *card)
1079 {
1080 int dai, order;
1081
1082 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1083 order++) {
1084 for (dai = 0; dai < card->num_rtd; dai++)
1085 soc_remove_link_dais(card, dai, order);
1086 }
1087
1088 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1089 order++) {
1090 for (dai = 0; dai < card->num_rtd; dai++)
1091 soc_remove_link_components(card, dai, order);
1092 }
1093
1094 card->num_rtd = 0;
1095 }
1096
1097 static void soc_set_name_prefix(struct snd_soc_card *card,
1098 struct snd_soc_codec *codec)
1099 {
1100 int i;
1101
1102 if (card->codec_conf == NULL)
1103 return;
1104
1105 for (i = 0; i < card->num_configs; i++) {
1106 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1107 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1108 codec->name_prefix = map->name_prefix;
1109 break;
1110 }
1111 }
1112 }
1113
1114 static int soc_probe_codec(struct snd_soc_card *card,
1115 struct snd_soc_codec *codec)
1116 {
1117 int ret = 0;
1118 const struct snd_soc_codec_driver *driver = codec->driver;
1119 struct snd_soc_dai *dai;
1120
1121 codec->card = card;
1122 codec->dapm.card = card;
1123 soc_set_name_prefix(card, codec);
1124
1125 if (!try_module_get(codec->dev->driver->owner))
1126 return -ENODEV;
1127
1128 soc_init_codec_debugfs(codec);
1129
1130 if (driver->dapm_widgets)
1131 snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
1132 driver->num_dapm_widgets);
1133
1134 /* Create DAPM widgets for each DAI stream */
1135 list_for_each_entry(dai, &codec->component.dai_list, list)
1136 snd_soc_dapm_new_dai_widgets(&codec->dapm, dai);
1137
1138 codec->dapm.idle_bias_off = driver->idle_bias_off;
1139
1140 if (!codec->write && dev_get_regmap(codec->dev, NULL)) {
1141 /* Set the default I/O up try regmap */
1142 ret = snd_soc_codec_set_cache_io(codec, NULL);
1143 if (ret < 0) {
1144 dev_err(codec->dev,
1145 "Failed to set cache I/O: %d\n", ret);
1146 goto err_probe;
1147 }
1148 }
1149
1150 if (driver->probe) {
1151 ret = driver->probe(codec);
1152 if (ret < 0) {
1153 dev_err(codec->dev,
1154 "ASoC: failed to probe CODEC %d\n", ret);
1155 goto err_probe;
1156 }
1157 WARN(codec->dapm.idle_bias_off &&
1158 codec->dapm.bias_level != SND_SOC_BIAS_OFF,
1159 "codec %s can not start from non-off bias with idle_bias_off==1\n",
1160 codec->name);
1161 }
1162
1163 if (driver->controls)
1164 snd_soc_add_codec_controls(codec, driver->controls,
1165 driver->num_controls);
1166 if (driver->dapm_routes)
1167 snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1168 driver->num_dapm_routes);
1169
1170 /* mark codec as probed and add to card codec list */
1171 codec->probed = 1;
1172 list_add(&codec->card_list, &card->codec_dev_list);
1173 list_add(&codec->dapm.list, &card->dapm_list);
1174
1175 return 0;
1176
1177 err_probe:
1178 soc_cleanup_codec_debugfs(codec);
1179 module_put(codec->dev->driver->owner);
1180
1181 return ret;
1182 }
1183
1184 static int soc_probe_platform(struct snd_soc_card *card,
1185 struct snd_soc_platform *platform)
1186 {
1187 int ret = 0;
1188 const struct snd_soc_platform_driver *driver = platform->driver;
1189 struct snd_soc_component *component;
1190 struct snd_soc_dai *dai;
1191
1192 platform->card = card;
1193 platform->dapm.card = card;
1194
1195 if (!try_module_get(platform->dev->driver->owner))
1196 return -ENODEV;
1197
1198 soc_init_platform_debugfs(platform);
1199
1200 if (driver->dapm_widgets)
1201 snd_soc_dapm_new_controls(&platform->dapm,
1202 driver->dapm_widgets, driver->num_dapm_widgets);
1203
1204 /* Create DAPM widgets for each DAI stream */
1205 list_for_each_entry(component, &component_list, list) {
1206 if (component->dev != platform->dev)
1207 continue;
1208 list_for_each_entry(dai, &component->dai_list, list)
1209 snd_soc_dapm_new_dai_widgets(&platform->dapm, dai);
1210 }
1211
1212 platform->dapm.idle_bias_off = 1;
1213
1214 if (driver->probe) {
1215 ret = driver->probe(platform);
1216 if (ret < 0) {
1217 dev_err(platform->dev,
1218 "ASoC: failed to probe platform %d\n", ret);
1219 goto err_probe;
1220 }
1221 }
1222
1223 if (driver->controls)
1224 snd_soc_add_platform_controls(platform, driver->controls,
1225 driver->num_controls);
1226 if (driver->dapm_routes)
1227 snd_soc_dapm_add_routes(&platform->dapm, driver->dapm_routes,
1228 driver->num_dapm_routes);
1229
1230 /* mark platform as probed and add to card platform list */
1231 platform->probed = 1;
1232 list_add(&platform->card_list, &card->platform_dev_list);
1233 list_add(&platform->dapm.list, &card->dapm_list);
1234
1235 return 0;
1236
1237 err_probe:
1238 soc_cleanup_platform_debugfs(platform);
1239 module_put(platform->dev->driver->owner);
1240
1241 return ret;
1242 }
1243
1244 static void rtd_release(struct device *dev)
1245 {
1246 kfree(dev);
1247 }
1248
1249 static int soc_post_component_init(struct snd_soc_card *card,
1250 struct snd_soc_codec *codec,
1251 int num, int dailess)
1252 {
1253 struct snd_soc_dai_link *dai_link = NULL;
1254 struct snd_soc_aux_dev *aux_dev = NULL;
1255 struct snd_soc_pcm_runtime *rtd;
1256 const char *name;
1257 int ret = 0;
1258
1259 if (!dailess) {
1260 dai_link = &card->dai_link[num];
1261 rtd = &card->rtd[num];
1262 name = dai_link->name;
1263 } else {
1264 aux_dev = &card->aux_dev[num];
1265 rtd = &card->rtd_aux[num];
1266 name = aux_dev->name;
1267 }
1268 rtd->card = card;
1269
1270 /* do machine specific initialization */
1271 if (!dailess && dai_link->init)
1272 ret = dai_link->init(rtd);
1273 else if (dailess && aux_dev->init)
1274 ret = aux_dev->init(&codec->dapm);
1275 if (ret < 0) {
1276 dev_err(card->dev, "ASoC: failed to init %s: %d\n", name, ret);
1277 return ret;
1278 }
1279
1280 /* register the rtd device */
1281 rtd->codec = codec;
1282
1283 rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
1284 if (!rtd->dev)
1285 return -ENOMEM;
1286 device_initialize(rtd->dev);
1287 rtd->dev->parent = card->dev;
1288 rtd->dev->release = rtd_release;
1289 rtd->dev->init_name = name;
1290 dev_set_drvdata(rtd->dev, rtd);
1291 mutex_init(&rtd->pcm_mutex);
1292 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients);
1293 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients);
1294 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients);
1295 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients);
1296 ret = device_add(rtd->dev);
1297 if (ret < 0) {
1298 /* calling put_device() here to free the rtd->dev */
1299 put_device(rtd->dev);
1300 dev_err(card->dev,
1301 "ASoC: failed to register runtime device: %d\n", ret);
1302 return ret;
1303 }
1304 rtd->dev_registered = 1;
1305
1306 /* add DAPM sysfs entries for this codec */
1307 ret = snd_soc_dapm_sys_add(rtd->dev);
1308 if (ret < 0)
1309 dev_err(codec->dev,
1310 "ASoC: failed to add codec dapm sysfs entries: %d\n", ret);
1311
1312 /* add codec sysfs entries */
1313 ret = device_create_file(rtd->dev, &dev_attr_codec_reg);
1314 if (ret < 0)
1315 dev_err(codec->dev,
1316 "ASoC: failed to add codec sysfs files: %d\n", ret);
1317
1318 #ifdef CONFIG_DEBUG_FS
1319 /* add DPCM sysfs entries */
1320 if (!dailess && !dai_link->dynamic)
1321 goto out;
1322
1323 ret = soc_dpcm_debugfs_add(rtd);
1324 if (ret < 0)
1325 dev_err(rtd->dev, "ASoC: failed to add dpcm sysfs entries: %d\n", ret);
1326
1327 out:
1328 #endif
1329 return 0;
1330 }
1331
1332 static int soc_probe_link_components(struct snd_soc_card *card, int num,
1333 int order)
1334 {
1335 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1336 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1337 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1338 struct snd_soc_platform *platform = rtd->platform;
1339 int ret;
1340
1341 /* probe the CPU-side component, if it is a CODEC */
1342 if (cpu_dai->codec &&
1343 !cpu_dai->codec->probed &&
1344 cpu_dai->codec->driver->probe_order == order) {
1345 ret = soc_probe_codec(card, cpu_dai->codec);
1346 if (ret < 0)
1347 return ret;
1348 }
1349
1350 /* probe the CODEC-side component */
1351 if (!codec_dai->codec->probed &&
1352 codec_dai->codec->driver->probe_order == order) {
1353 ret = soc_probe_codec(card, codec_dai->codec);
1354 if (ret < 0)
1355 return ret;
1356 }
1357
1358 /* probe the platform */
1359 if (!platform->probed &&
1360 platform->driver->probe_order == order) {
1361 ret = soc_probe_platform(card, platform);
1362 if (ret < 0)
1363 return ret;
1364 }
1365
1366 return 0;
1367 }
1368
1369 static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order)
1370 {
1371 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1372 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1373 struct snd_soc_codec *codec = rtd->codec;
1374 struct snd_soc_platform *platform = rtd->platform;
1375 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1376 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1377 struct snd_soc_dapm_widget *play_w, *capture_w;
1378 int ret;
1379
1380 dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n",
1381 card->name, num, order);
1382
1383 /* config components */
1384 cpu_dai->platform = platform;
1385 codec_dai->card = card;
1386 cpu_dai->card = card;
1387
1388 /* set default power off timeout */
1389 rtd->pmdown_time = pmdown_time;
1390
1391 /* probe the cpu_dai */
1392 if (!cpu_dai->probed &&
1393 cpu_dai->driver->probe_order == order) {
1394 if (!cpu_dai->codec) {
1395 cpu_dai->dapm.card = card;
1396 if (!try_module_get(cpu_dai->dev->driver->owner))
1397 return -ENODEV;
1398
1399 list_add(&cpu_dai->dapm.list, &card->dapm_list);
1400 }
1401
1402 if (cpu_dai->driver->probe) {
1403 ret = cpu_dai->driver->probe(cpu_dai);
1404 if (ret < 0) {
1405 dev_err(cpu_dai->dev,
1406 "ASoC: failed to probe CPU DAI %s: %d\n",
1407 cpu_dai->name, ret);
1408 module_put(cpu_dai->dev->driver->owner);
1409 return ret;
1410 }
1411 }
1412 cpu_dai->probed = 1;
1413 /* mark cpu_dai as probed and add to card dai list */
1414 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1415 }
1416
1417 /* probe the CODEC DAI */
1418 if (!codec_dai->probed && codec_dai->driver->probe_order == order) {
1419 if (codec_dai->driver->probe) {
1420 ret = codec_dai->driver->probe(codec_dai);
1421 if (ret < 0) {
1422 dev_err(codec_dai->dev,
1423 "ASoC: failed to probe CODEC DAI %s: %d\n",
1424 codec_dai->name, ret);
1425 return ret;
1426 }
1427 }
1428
1429 /* mark codec_dai as probed and add to card dai list */
1430 codec_dai->probed = 1;
1431 list_add(&codec_dai->card_list, &card->dai_dev_list);
1432 }
1433
1434 /* complete DAI probe during last probe */
1435 if (order != SND_SOC_COMP_ORDER_LAST)
1436 return 0;
1437
1438 ret = soc_post_component_init(card, codec, num, 0);
1439 if (ret)
1440 return ret;
1441
1442 ret = device_create_file(rtd->dev, &dev_attr_pmdown_time);
1443 if (ret < 0)
1444 dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n",
1445 ret);
1446
1447 if (cpu_dai->driver->compress_dai) {
1448 /*create compress_device"*/
1449 ret = soc_new_compress(rtd, num);
1450 if (ret < 0) {
1451 dev_err(card->dev, "ASoC: can't create compress %s\n",
1452 dai_link->stream_name);
1453 return ret;
1454 }
1455 } else {
1456
1457 if (!dai_link->params) {
1458 /* create the pcm */
1459 ret = soc_new_pcm(rtd, num);
1460 if (ret < 0) {
1461 dev_err(card->dev, "ASoC: can't create pcm %s :%d\n",
1462 dai_link->stream_name, ret);
1463 return ret;
1464 }
1465 } else {
1466 INIT_DELAYED_WORK(&rtd->delayed_work,
1467 codec2codec_close_delayed_work);
1468
1469 /* link the DAI widgets */
1470 play_w = codec_dai->playback_widget;
1471 capture_w = cpu_dai->capture_widget;
1472 if (play_w && capture_w) {
1473 ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1474 capture_w, play_w);
1475 if (ret != 0) {
1476 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1477 play_w->name, capture_w->name, ret);
1478 return ret;
1479 }
1480 }
1481
1482 play_w = cpu_dai->playback_widget;
1483 capture_w = codec_dai->capture_widget;
1484 if (play_w && capture_w) {
1485 ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1486 capture_w, play_w);
1487 if (ret != 0) {
1488 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1489 play_w->name, capture_w->name, ret);
1490 return ret;
1491 }
1492 }
1493 }
1494 }
1495
1496 /* add platform data for AC97 devices */
1497 if (rtd->codec_dai->driver->ac97_control)
1498 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1499
1500 return 0;
1501 }
1502
1503 #ifdef CONFIG_SND_SOC_AC97_BUS
1504 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1505 {
1506 int ret;
1507
1508 /* Only instantiate AC97 if not already done by the adaptor
1509 * for the generic AC97 subsystem.
1510 */
1511 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1512 /*
1513 * It is possible that the AC97 device is already registered to
1514 * the device subsystem. This happens when the device is created
1515 * via snd_ac97_mixer(). Currently only SoC codec that does so
1516 * is the generic AC97 glue but others migh emerge.
1517 *
1518 * In those cases we don't try to register the device again.
1519 */
1520 if (!rtd->codec->ac97_created)
1521 return 0;
1522
1523 ret = soc_ac97_dev_register(rtd->codec);
1524 if (ret < 0) {
1525 dev_err(rtd->codec->dev,
1526 "ASoC: AC97 device register failed: %d\n", ret);
1527 return ret;
1528 }
1529
1530 rtd->codec->ac97_registered = 1;
1531 }
1532 return 0;
1533 }
1534
1535 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1536 {
1537 if (codec->ac97_registered) {
1538 soc_ac97_dev_unregister(codec);
1539 codec->ac97_registered = 0;
1540 }
1541 }
1542 #endif
1543
1544 static int soc_check_aux_dev(struct snd_soc_card *card, int num)
1545 {
1546 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1547 struct snd_soc_codec *codec;
1548
1549 /* find CODEC from registered CODECs*/
1550 list_for_each_entry(codec, &codec_list, list) {
1551 if (!strcmp(codec->name, aux_dev->codec_name))
1552 return 0;
1553 }
1554
1555 dev_err(card->dev, "ASoC: %s not registered\n", aux_dev->codec_name);
1556
1557 return -EPROBE_DEFER;
1558 }
1559
1560 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1561 {
1562 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1563 struct snd_soc_codec *codec;
1564 int ret = -ENODEV;
1565
1566 /* find CODEC from registered CODECs*/
1567 list_for_each_entry(codec, &codec_list, list) {
1568 if (!strcmp(codec->name, aux_dev->codec_name)) {
1569 if (codec->probed) {
1570 dev_err(codec->dev,
1571 "ASoC: codec already probed");
1572 ret = -EBUSY;
1573 goto out;
1574 }
1575 goto found;
1576 }
1577 }
1578 /* codec not found */
1579 dev_err(card->dev, "ASoC: codec %s not found", aux_dev->codec_name);
1580 return -EPROBE_DEFER;
1581
1582 found:
1583 ret = soc_probe_codec(card, codec);
1584 if (ret < 0)
1585 return ret;
1586
1587 ret = soc_post_component_init(card, codec, num, 1);
1588
1589 out:
1590 return ret;
1591 }
1592
1593 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1594 {
1595 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1596 struct snd_soc_codec *codec = rtd->codec;
1597
1598 /* unregister the rtd device */
1599 if (rtd->dev_registered) {
1600 device_remove_file(rtd->dev, &dev_attr_codec_reg);
1601 device_unregister(rtd->dev);
1602 rtd->dev_registered = 0;
1603 }
1604
1605 if (codec && codec->probed)
1606 soc_remove_codec(codec);
1607 }
1608
1609 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec)
1610 {
1611 int ret;
1612
1613 if (codec->cache_init)
1614 return 0;
1615
1616 ret = snd_soc_cache_init(codec);
1617 if (ret < 0) {
1618 dev_err(codec->dev,
1619 "ASoC: Failed to set cache compression type: %d\n",
1620 ret);
1621 return ret;
1622 }
1623 codec->cache_init = 1;
1624 return 0;
1625 }
1626
1627 static int snd_soc_instantiate_card(struct snd_soc_card *card)
1628 {
1629 struct snd_soc_codec *codec;
1630 struct snd_soc_dai_link *dai_link;
1631 int ret, i, order, dai_fmt;
1632
1633 mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT);
1634
1635 /* bind DAIs */
1636 for (i = 0; i < card->num_links; i++) {
1637 ret = soc_bind_dai_link(card, i);
1638 if (ret != 0)
1639 goto base_error;
1640 }
1641
1642 /* check aux_devs too */
1643 for (i = 0; i < card->num_aux_devs; i++) {
1644 ret = soc_check_aux_dev(card, i);
1645 if (ret != 0)
1646 goto base_error;
1647 }
1648
1649 /* initialize the register cache for each available codec */
1650 list_for_each_entry(codec, &codec_list, list) {
1651 if (codec->cache_init)
1652 continue;
1653 ret = snd_soc_init_codec_cache(codec);
1654 if (ret < 0)
1655 goto base_error;
1656 }
1657
1658 /* card bind complete so register a sound card */
1659 ret = snd_card_new(card->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1660 card->owner, 0, &card->snd_card);
1661 if (ret < 0) {
1662 dev_err(card->dev,
1663 "ASoC: can't create sound card for card %s: %d\n",
1664 card->name, ret);
1665 goto base_error;
1666 }
1667
1668 card->dapm.bias_level = SND_SOC_BIAS_OFF;
1669 card->dapm.dev = card->dev;
1670 card->dapm.card = card;
1671 list_add(&card->dapm.list, &card->dapm_list);
1672
1673 #ifdef CONFIG_DEBUG_FS
1674 snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
1675 #endif
1676
1677 #ifdef CONFIG_PM_SLEEP
1678 /* deferred resume work */
1679 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1680 #endif
1681
1682 if (card->dapm_widgets)
1683 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1684 card->num_dapm_widgets);
1685
1686 /* initialise the sound card only once */
1687 if (card->probe) {
1688 ret = card->probe(card);
1689 if (ret < 0)
1690 goto card_probe_error;
1691 }
1692
1693 /* probe all components used by DAI links on this card */
1694 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1695 order++) {
1696 for (i = 0; i < card->num_links; i++) {
1697 ret = soc_probe_link_components(card, i, order);
1698 if (ret < 0) {
1699 dev_err(card->dev,
1700 "ASoC: failed to instantiate card %d\n",
1701 ret);
1702 goto probe_dai_err;
1703 }
1704 }
1705 }
1706
1707 /* probe all DAI links on this card */
1708 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1709 order++) {
1710 for (i = 0; i < card->num_links; i++) {
1711 ret = soc_probe_link_dais(card, i, order);
1712 if (ret < 0) {
1713 dev_err(card->dev,
1714 "ASoC: failed to instantiate card %d\n",
1715 ret);
1716 goto probe_dai_err;
1717 }
1718 }
1719 }
1720
1721 for (i = 0; i < card->num_aux_devs; i++) {
1722 ret = soc_probe_aux_dev(card, i);
1723 if (ret < 0) {
1724 dev_err(card->dev,
1725 "ASoC: failed to add auxiliary devices %d\n",
1726 ret);
1727 goto probe_aux_dev_err;
1728 }
1729 }
1730
1731 snd_soc_dapm_link_dai_widgets(card);
1732 snd_soc_dapm_connect_dai_link_widgets(card);
1733
1734 if (card->controls)
1735 snd_soc_add_card_controls(card, card->controls, card->num_controls);
1736
1737 if (card->dapm_routes)
1738 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1739 card->num_dapm_routes);
1740
1741 for (i = 0; i < card->num_links; i++) {
1742 dai_link = &card->dai_link[i];
1743 dai_fmt = dai_link->dai_fmt;
1744
1745 if (dai_fmt) {
1746 ret = snd_soc_dai_set_fmt(card->rtd[i].codec_dai,
1747 dai_fmt);
1748 if (ret != 0 && ret != -ENOTSUPP)
1749 dev_warn(card->rtd[i].codec_dai->dev,
1750 "ASoC: Failed to set DAI format: %d\n",
1751 ret);
1752 }
1753
1754 /* If this is a regular CPU link there will be a platform */
1755 if (dai_fmt &&
1756 (dai_link->platform_name || dai_link->platform_of_node)) {
1757 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1758 dai_fmt);
1759 if (ret != 0 && ret != -ENOTSUPP)
1760 dev_warn(card->rtd[i].cpu_dai->dev,
1761 "ASoC: Failed to set DAI format: %d\n",
1762 ret);
1763 } else if (dai_fmt) {
1764 /* Flip the polarity for the "CPU" end */
1765 dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK;
1766 switch (dai_link->dai_fmt &
1767 SND_SOC_DAIFMT_MASTER_MASK) {
1768 case SND_SOC_DAIFMT_CBM_CFM:
1769 dai_fmt |= SND_SOC_DAIFMT_CBS_CFS;
1770 break;
1771 case SND_SOC_DAIFMT_CBM_CFS:
1772 dai_fmt |= SND_SOC_DAIFMT_CBS_CFM;
1773 break;
1774 case SND_SOC_DAIFMT_CBS_CFM:
1775 dai_fmt |= SND_SOC_DAIFMT_CBM_CFS;
1776 break;
1777 case SND_SOC_DAIFMT_CBS_CFS:
1778 dai_fmt |= SND_SOC_DAIFMT_CBM_CFM;
1779 break;
1780 }
1781
1782 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1783 dai_fmt);
1784 if (ret != 0 && ret != -ENOTSUPP)
1785 dev_warn(card->rtd[i].cpu_dai->dev,
1786 "ASoC: Failed to set DAI format: %d\n",
1787 ret);
1788 }
1789 }
1790
1791 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1792 "%s", card->name);
1793 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1794 "%s", card->long_name ? card->long_name : card->name);
1795 snprintf(card->snd_card->driver, sizeof(card->snd_card->driver),
1796 "%s", card->driver_name ? card->driver_name : card->name);
1797 for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) {
1798 switch (card->snd_card->driver[i]) {
1799 case '_':
1800 case '-':
1801 case '\0':
1802 break;
1803 default:
1804 if (!isalnum(card->snd_card->driver[i]))
1805 card->snd_card->driver[i] = '_';
1806 break;
1807 }
1808 }
1809
1810 if (card->late_probe) {
1811 ret = card->late_probe(card);
1812 if (ret < 0) {
1813 dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n",
1814 card->name, ret);
1815 goto probe_aux_dev_err;
1816 }
1817 }
1818
1819 if (card->fully_routed)
1820 list_for_each_entry(codec, &card->codec_dev_list, card_list)
1821 snd_soc_dapm_auto_nc_codec_pins(codec);
1822
1823 snd_soc_dapm_new_widgets(card);
1824
1825 ret = snd_card_register(card->snd_card);
1826 if (ret < 0) {
1827 dev_err(card->dev, "ASoC: failed to register soundcard %d\n",
1828 ret);
1829 goto probe_aux_dev_err;
1830 }
1831
1832 #ifdef CONFIG_SND_SOC_AC97_BUS
1833 /* register any AC97 codecs */
1834 for (i = 0; i < card->num_rtd; i++) {
1835 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1836 if (ret < 0) {
1837 dev_err(card->dev,
1838 "ASoC: failed to register AC97: %d\n", ret);
1839 while (--i >= 0)
1840 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1841 goto probe_aux_dev_err;
1842 }
1843 }
1844 #endif
1845
1846 card->instantiated = 1;
1847 snd_soc_dapm_sync(&card->dapm);
1848 mutex_unlock(&card->mutex);
1849
1850 return 0;
1851
1852 probe_aux_dev_err:
1853 for (i = 0; i < card->num_aux_devs; i++)
1854 soc_remove_aux_dev(card, i);
1855
1856 probe_dai_err:
1857 soc_remove_dai_links(card);
1858
1859 card_probe_error:
1860 if (card->remove)
1861 card->remove(card);
1862
1863 snd_card_free(card->snd_card);
1864
1865 base_error:
1866 mutex_unlock(&card->mutex);
1867
1868 return ret;
1869 }
1870
1871 /* probes a new socdev */
1872 static int soc_probe(struct platform_device *pdev)
1873 {
1874 struct snd_soc_card *card = platform_get_drvdata(pdev);
1875
1876 /*
1877 * no card, so machine driver should be registering card
1878 * we should not be here in that case so ret error
1879 */
1880 if (!card)
1881 return -EINVAL;
1882
1883 dev_warn(&pdev->dev,
1884 "ASoC: machine %s should use snd_soc_register_card()\n",
1885 card->name);
1886
1887 /* Bodge while we unpick instantiation */
1888 card->dev = &pdev->dev;
1889
1890 return snd_soc_register_card(card);
1891 }
1892
1893 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1894 {
1895 int i;
1896
1897 /* make sure any delayed work runs */
1898 for (i = 0; i < card->num_rtd; i++) {
1899 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1900 flush_delayed_work(&rtd->delayed_work);
1901 }
1902
1903 /* remove auxiliary devices */
1904 for (i = 0; i < card->num_aux_devs; i++)
1905 soc_remove_aux_dev(card, i);
1906
1907 /* remove and free each DAI */
1908 soc_remove_dai_links(card);
1909
1910 soc_cleanup_card_debugfs(card);
1911
1912 /* remove the card */
1913 if (card->remove)
1914 card->remove(card);
1915
1916 snd_soc_dapm_free(&card->dapm);
1917
1918 snd_card_free(card->snd_card);
1919 return 0;
1920
1921 }
1922
1923 /* removes a socdev */
1924 static int soc_remove(struct platform_device *pdev)
1925 {
1926 struct snd_soc_card *card = platform_get_drvdata(pdev);
1927
1928 snd_soc_unregister_card(card);
1929 return 0;
1930 }
1931
1932 int snd_soc_poweroff(struct device *dev)
1933 {
1934 struct snd_soc_card *card = dev_get_drvdata(dev);
1935 int i;
1936
1937 if (!card->instantiated)
1938 return 0;
1939
1940 /* Flush out pmdown_time work - we actually do want to run it
1941 * now, we're shutting down so no imminent restart. */
1942 for (i = 0; i < card->num_rtd; i++) {
1943 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1944 flush_delayed_work(&rtd->delayed_work);
1945 }
1946
1947 snd_soc_dapm_shutdown(card);
1948
1949 /* deactivate pins to sleep state */
1950 for (i = 0; i < card->num_rtd; i++) {
1951 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1952 struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai;
1953 pinctrl_pm_select_sleep_state(codec_dai->dev);
1954 pinctrl_pm_select_sleep_state(cpu_dai->dev);
1955 }
1956
1957 return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
1960
1961 const struct dev_pm_ops snd_soc_pm_ops = {
1962 .suspend = snd_soc_suspend,
1963 .resume = snd_soc_resume,
1964 .freeze = snd_soc_suspend,
1965 .thaw = snd_soc_resume,
1966 .poweroff = snd_soc_poweroff,
1967 .restore = snd_soc_resume,
1968 };
1969 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
1970
1971 /* ASoC platform driver */
1972 static struct platform_driver soc_driver = {
1973 .driver = {
1974 .name = "soc-audio",
1975 .owner = THIS_MODULE,
1976 .pm = &snd_soc_pm_ops,
1977 },
1978 .probe = soc_probe,
1979 .remove = soc_remove,
1980 };
1981
1982 /**
1983 * snd_soc_codec_volatile_register: Report if a register is volatile.
1984 *
1985 * @codec: CODEC to query.
1986 * @reg: Register to query.
1987 *
1988 * Boolean function indiciating if a CODEC register is volatile.
1989 */
1990 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
1991 unsigned int reg)
1992 {
1993 if (codec->volatile_register)
1994 return codec->volatile_register(codec, reg);
1995 else
1996 return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1999
2000 /**
2001 * snd_soc_codec_readable_register: Report if a register is readable.
2002 *
2003 * @codec: CODEC to query.
2004 * @reg: Register to query.
2005 *
2006 * Boolean function indicating if a CODEC register is readable.
2007 */
2008 int snd_soc_codec_readable_register(struct snd_soc_codec *codec,
2009 unsigned int reg)
2010 {
2011 if (codec->readable_register)
2012 return codec->readable_register(codec, reg);
2013 else
2014 return 1;
2015 }
2016 EXPORT_SYMBOL_GPL(snd_soc_codec_readable_register);
2017
2018 /**
2019 * snd_soc_codec_writable_register: Report if a register is writable.
2020 *
2021 * @codec: CODEC to query.
2022 * @reg: Register to query.
2023 *
2024 * Boolean function indicating if a CODEC register is writable.
2025 */
2026 int snd_soc_codec_writable_register(struct snd_soc_codec *codec,
2027 unsigned int reg)
2028 {
2029 if (codec->writable_register)
2030 return codec->writable_register(codec, reg);
2031 else
2032 return 1;
2033 }
2034 EXPORT_SYMBOL_GPL(snd_soc_codec_writable_register);
2035
2036 int snd_soc_platform_read(struct snd_soc_platform *platform,
2037 unsigned int reg)
2038 {
2039 unsigned int ret;
2040
2041 if (!platform->driver->read) {
2042 dev_err(platform->dev, "ASoC: platform has no read back\n");
2043 return -1;
2044 }
2045
2046 ret = platform->driver->read(platform, reg);
2047 dev_dbg(platform->dev, "read %x => %x\n", reg, ret);
2048 trace_snd_soc_preg_read(platform, reg, ret);
2049
2050 return ret;
2051 }
2052 EXPORT_SYMBOL_GPL(snd_soc_platform_read);
2053
2054 int snd_soc_platform_write(struct snd_soc_platform *platform,
2055 unsigned int reg, unsigned int val)
2056 {
2057 if (!platform->driver->write) {
2058 dev_err(platform->dev, "ASoC: platform has no write back\n");
2059 return -1;
2060 }
2061
2062 dev_dbg(platform->dev, "write %x = %x\n", reg, val);
2063 trace_snd_soc_preg_write(platform, reg, val);
2064 return platform->driver->write(platform, reg, val);
2065 }
2066 EXPORT_SYMBOL_GPL(snd_soc_platform_write);
2067
2068 /**
2069 * snd_soc_new_ac97_codec - initailise AC97 device
2070 * @codec: audio codec
2071 * @ops: AC97 bus operations
2072 * @num: AC97 codec number
2073 *
2074 * Initialises AC97 codec resources for use by ad-hoc devices only.
2075 */
2076 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2077 struct snd_ac97_bus_ops *ops, int num)
2078 {
2079 mutex_lock(&codec->mutex);
2080
2081 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2082 if (codec->ac97 == NULL) {
2083 mutex_unlock(&codec->mutex);
2084 return -ENOMEM;
2085 }
2086
2087 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2088 if (codec->ac97->bus == NULL) {
2089 kfree(codec->ac97);
2090 codec->ac97 = NULL;
2091 mutex_unlock(&codec->mutex);
2092 return -ENOMEM;
2093 }
2094
2095 codec->ac97->bus->ops = ops;
2096 codec->ac97->num = num;
2097
2098 /*
2099 * Mark the AC97 device to be created by us. This way we ensure that the
2100 * device will be registered with the device subsystem later on.
2101 */
2102 codec->ac97_created = 1;
2103
2104 mutex_unlock(&codec->mutex);
2105 return 0;
2106 }
2107 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2108
2109 static struct snd_ac97_reset_cfg snd_ac97_rst_cfg;
2110
2111 static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97)
2112 {
2113 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2114
2115 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset);
2116
2117 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1);
2118
2119 udelay(10);
2120
2121 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2122
2123 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2124 msleep(2);
2125 }
2126
2127 static void snd_soc_ac97_reset(struct snd_ac97 *ac97)
2128 {
2129 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2130
2131 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset);
2132
2133 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2134 gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0);
2135 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0);
2136
2137 udelay(10);
2138
2139 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1);
2140
2141 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2142 msleep(2);
2143 }
2144
2145 static int snd_soc_ac97_parse_pinctl(struct device *dev,
2146 struct snd_ac97_reset_cfg *cfg)
2147 {
2148 struct pinctrl *p;
2149 struct pinctrl_state *state;
2150 int gpio;
2151 int ret;
2152
2153 p = devm_pinctrl_get(dev);
2154 if (IS_ERR(p)) {
2155 dev_err(dev, "Failed to get pinctrl\n");
2156 return PTR_RET(p);
2157 }
2158 cfg->pctl = p;
2159
2160 state = pinctrl_lookup_state(p, "ac97-reset");
2161 if (IS_ERR(state)) {
2162 dev_err(dev, "Can't find pinctrl state ac97-reset\n");
2163 return PTR_RET(state);
2164 }
2165 cfg->pstate_reset = state;
2166
2167 state = pinctrl_lookup_state(p, "ac97-warm-reset");
2168 if (IS_ERR(state)) {
2169 dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n");
2170 return PTR_RET(state);
2171 }
2172 cfg->pstate_warm_reset = state;
2173
2174 state = pinctrl_lookup_state(p, "ac97-running");
2175 if (IS_ERR(state)) {
2176 dev_err(dev, "Can't find pinctrl state ac97-running\n");
2177 return PTR_RET(state);
2178 }
2179 cfg->pstate_run = state;
2180
2181 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0);
2182 if (gpio < 0) {
2183 dev_err(dev, "Can't find ac97-sync gpio\n");
2184 return gpio;
2185 }
2186 ret = devm_gpio_request(dev, gpio, "AC97 link sync");
2187 if (ret) {
2188 dev_err(dev, "Failed requesting ac97-sync gpio\n");
2189 return ret;
2190 }
2191 cfg->gpio_sync = gpio;
2192
2193 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1);
2194 if (gpio < 0) {
2195 dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio);
2196 return gpio;
2197 }
2198 ret = devm_gpio_request(dev, gpio, "AC97 link sdata");
2199 if (ret) {
2200 dev_err(dev, "Failed requesting ac97-sdata gpio\n");
2201 return ret;
2202 }
2203 cfg->gpio_sdata = gpio;
2204
2205 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2);
2206 if (gpio < 0) {
2207 dev_err(dev, "Can't find ac97-reset gpio\n");
2208 return gpio;
2209 }
2210 ret = devm_gpio_request(dev, gpio, "AC97 link reset");
2211 if (ret) {
2212 dev_err(dev, "Failed requesting ac97-reset gpio\n");
2213 return ret;
2214 }
2215 cfg->gpio_reset = gpio;
2216
2217 return 0;
2218 }
2219
2220 struct snd_ac97_bus_ops *soc_ac97_ops;
2221 EXPORT_SYMBOL_GPL(soc_ac97_ops);
2222
2223 int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops)
2224 {
2225 if (ops == soc_ac97_ops)
2226 return 0;
2227
2228 if (soc_ac97_ops && ops)
2229 return -EBUSY;
2230
2231 soc_ac97_ops = ops;
2232
2233 return 0;
2234 }
2235 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops);
2236
2237 /**
2238 * snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions
2239 *
2240 * This function sets the reset and warm_reset properties of ops and parses
2241 * the device node of pdev to get pinctrl states and gpio numbers to use.
2242 */
2243 int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops,
2244 struct platform_device *pdev)
2245 {
2246 struct device *dev = &pdev->dev;
2247 struct snd_ac97_reset_cfg cfg;
2248 int ret;
2249
2250 ret = snd_soc_ac97_parse_pinctl(dev, &cfg);
2251 if (ret)
2252 return ret;
2253
2254 ret = snd_soc_set_ac97_ops(ops);
2255 if (ret)
2256 return ret;
2257
2258 ops->warm_reset = snd_soc_ac97_warm_reset;
2259 ops->reset = snd_soc_ac97_reset;
2260
2261 snd_ac97_rst_cfg = cfg;
2262 return 0;
2263 }
2264 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset);
2265
2266 /**
2267 * snd_soc_free_ac97_codec - free AC97 codec device
2268 * @codec: audio codec
2269 *
2270 * Frees AC97 codec device resources.
2271 */
2272 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2273 {
2274 mutex_lock(&codec->mutex);
2275 #ifdef CONFIG_SND_SOC_AC97_BUS
2276 soc_unregister_ac97_dai_link(codec);
2277 #endif
2278 kfree(codec->ac97->bus);
2279 kfree(codec->ac97);
2280 codec->ac97 = NULL;
2281 codec->ac97_created = 0;
2282 mutex_unlock(&codec->mutex);
2283 }
2284 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2285
2286 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2287 {
2288 unsigned int ret;
2289
2290 ret = codec->read(codec, reg);
2291 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2292 trace_snd_soc_reg_read(codec, reg, ret);
2293
2294 return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(snd_soc_read);
2297
2298 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2299 unsigned int reg, unsigned int val)
2300 {
2301 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2302 trace_snd_soc_reg_write(codec, reg, val);
2303 return codec->write(codec, reg, val);
2304 }
2305 EXPORT_SYMBOL_GPL(snd_soc_write);
2306
2307 /**
2308 * snd_soc_update_bits - update codec register bits
2309 * @codec: audio codec
2310 * @reg: codec register
2311 * @mask: register mask
2312 * @value: new value
2313 *
2314 * Writes new register value.
2315 *
2316 * Returns 1 for change, 0 for no change, or negative error code.
2317 */
2318 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2319 unsigned int mask, unsigned int value)
2320 {
2321 bool change;
2322 unsigned int old, new;
2323 int ret;
2324
2325 if (codec->using_regmap) {
2326 ret = regmap_update_bits_check(codec->control_data, reg,
2327 mask, value, &change);
2328 } else {
2329 ret = snd_soc_read(codec, reg);
2330 if (ret < 0)
2331 return ret;
2332
2333 old = ret;
2334 new = (old & ~mask) | (value & mask);
2335 change = old != new;
2336 if (change)
2337 ret = snd_soc_write(codec, reg, new);
2338 }
2339
2340 if (ret < 0)
2341 return ret;
2342
2343 return change;
2344 }
2345 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2346
2347 /**
2348 * snd_soc_update_bits_locked - update codec register bits
2349 * @codec: audio codec
2350 * @reg: codec register
2351 * @mask: register mask
2352 * @value: new value
2353 *
2354 * Writes new register value, and takes the codec mutex.
2355 *
2356 * Returns 1 for change else 0.
2357 */
2358 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2359 unsigned short reg, unsigned int mask,
2360 unsigned int value)
2361 {
2362 int change;
2363
2364 mutex_lock(&codec->mutex);
2365 change = snd_soc_update_bits(codec, reg, mask, value);
2366 mutex_unlock(&codec->mutex);
2367
2368 return change;
2369 }
2370 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2371
2372 /**
2373 * snd_soc_test_bits - test register for change
2374 * @codec: audio codec
2375 * @reg: codec register
2376 * @mask: register mask
2377 * @value: new value
2378 *
2379 * Tests a register with a new value and checks if the new value is
2380 * different from the old value.
2381 *
2382 * Returns 1 for change else 0.
2383 */
2384 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2385 unsigned int mask, unsigned int value)
2386 {
2387 int change;
2388 unsigned int old, new;
2389
2390 old = snd_soc_read(codec, reg);
2391 new = (old & ~mask) | value;
2392 change = old != new;
2393
2394 return change;
2395 }
2396 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2397
2398 /**
2399 * snd_soc_cnew - create new control
2400 * @_template: control template
2401 * @data: control private data
2402 * @long_name: control long name
2403 * @prefix: control name prefix
2404 *
2405 * Create a new mixer control from a template control.
2406 *
2407 * Returns 0 for success, else error.
2408 */
2409 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2410 void *data, const char *long_name,
2411 const char *prefix)
2412 {
2413 struct snd_kcontrol_new template;
2414 struct snd_kcontrol *kcontrol;
2415 char *name = NULL;
2416
2417 memcpy(&template, _template, sizeof(template));
2418 template.index = 0;
2419
2420 if (!long_name)
2421 long_name = template.name;
2422
2423 if (prefix) {
2424 name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name);
2425 if (!name)
2426 return NULL;
2427
2428 template.name = name;
2429 } else {
2430 template.name = long_name;
2431 }
2432
2433 kcontrol = snd_ctl_new1(&template, data);
2434
2435 kfree(name);
2436
2437 return kcontrol;
2438 }
2439 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2440
2441 static int snd_soc_add_controls(struct snd_card *card, struct device *dev,
2442 const struct snd_kcontrol_new *controls, int num_controls,
2443 const char *prefix, void *data)
2444 {
2445 int err, i;
2446
2447 for (i = 0; i < num_controls; i++) {
2448 const struct snd_kcontrol_new *control = &controls[i];
2449 err = snd_ctl_add(card, snd_soc_cnew(control, data,
2450 control->name, prefix));
2451 if (err < 0) {
2452 dev_err(dev, "ASoC: Failed to add %s: %d\n",
2453 control->name, err);
2454 return err;
2455 }
2456 }
2457
2458 return 0;
2459 }
2460
2461 struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card,
2462 const char *name)
2463 {
2464 struct snd_card *card = soc_card->snd_card;
2465 struct snd_kcontrol *kctl;
2466
2467 if (unlikely(!name))
2468 return NULL;
2469
2470 list_for_each_entry(kctl, &card->controls, list)
2471 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name)))
2472 return kctl;
2473 return NULL;
2474 }
2475 EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol);
2476
2477 /**
2478 * snd_soc_add_codec_controls - add an array of controls to a codec.
2479 * Convenience function to add a list of controls. Many codecs were
2480 * duplicating this code.
2481 *
2482 * @codec: codec to add controls to
2483 * @controls: array of controls to add
2484 * @num_controls: number of elements in the array
2485 *
2486 * Return 0 for success, else error.
2487 */
2488 int snd_soc_add_codec_controls(struct snd_soc_codec *codec,
2489 const struct snd_kcontrol_new *controls, int num_controls)
2490 {
2491 struct snd_card *card = codec->card->snd_card;
2492
2493 return snd_soc_add_controls(card, codec->dev, controls, num_controls,
2494 codec->name_prefix, codec);
2495 }
2496 EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls);
2497
2498 /**
2499 * snd_soc_add_platform_controls - add an array of controls to a platform.
2500 * Convenience function to add a list of controls.
2501 *
2502 * @platform: platform to add controls to
2503 * @controls: array of controls to add
2504 * @num_controls: number of elements in the array
2505 *
2506 * Return 0 for success, else error.
2507 */
2508 int snd_soc_add_platform_controls(struct snd_soc_platform *platform,
2509 const struct snd_kcontrol_new *controls, int num_controls)
2510 {
2511 struct snd_card *card = platform->card->snd_card;
2512
2513 return snd_soc_add_controls(card, platform->dev, controls, num_controls,
2514 NULL, platform);
2515 }
2516 EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls);
2517
2518 /**
2519 * snd_soc_add_card_controls - add an array of controls to a SoC card.
2520 * Convenience function to add a list of controls.
2521 *
2522 * @soc_card: SoC card to add controls to
2523 * @controls: array of controls to add
2524 * @num_controls: number of elements in the array
2525 *
2526 * Return 0 for success, else error.
2527 */
2528 int snd_soc_add_card_controls(struct snd_soc_card *soc_card,
2529 const struct snd_kcontrol_new *controls, int num_controls)
2530 {
2531 struct snd_card *card = soc_card->snd_card;
2532
2533 return snd_soc_add_controls(card, soc_card->dev, controls, num_controls,
2534 NULL, soc_card);
2535 }
2536 EXPORT_SYMBOL_GPL(snd_soc_add_card_controls);
2537
2538 /**
2539 * snd_soc_add_dai_controls - add an array of controls to a DAI.
2540 * Convienience function to add a list of controls.
2541 *
2542 * @dai: DAI to add controls to
2543 * @controls: array of controls to add
2544 * @num_controls: number of elements in the array
2545 *
2546 * Return 0 for success, else error.
2547 */
2548 int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
2549 const struct snd_kcontrol_new *controls, int num_controls)
2550 {
2551 struct snd_card *card = dai->card->snd_card;
2552
2553 return snd_soc_add_controls(card, dai->dev, controls, num_controls,
2554 NULL, dai);
2555 }
2556 EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
2557
2558 /**
2559 * snd_soc_info_enum_double - enumerated double mixer info callback
2560 * @kcontrol: mixer control
2561 * @uinfo: control element information
2562 *
2563 * Callback to provide information about a double enumerated
2564 * mixer control.
2565 *
2566 * Returns 0 for success.
2567 */
2568 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2569 struct snd_ctl_elem_info *uinfo)
2570 {
2571 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2572
2573 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2574 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2575 uinfo->value.enumerated.items = e->items;
2576
2577 if (uinfo->value.enumerated.item >= e->items)
2578 uinfo->value.enumerated.item = e->items - 1;
2579 strlcpy(uinfo->value.enumerated.name,
2580 e->texts[uinfo->value.enumerated.item],
2581 sizeof(uinfo->value.enumerated.name));
2582 return 0;
2583 }
2584 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2585
2586 /**
2587 * snd_soc_get_enum_double - enumerated double mixer get callback
2588 * @kcontrol: mixer control
2589 * @ucontrol: control element information
2590 *
2591 * Callback to get the value of a double enumerated mixer.
2592 *
2593 * Returns 0 for success.
2594 */
2595 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2596 struct snd_ctl_elem_value *ucontrol)
2597 {
2598 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2599 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2600 unsigned int val, item;
2601 unsigned int reg_val;
2602
2603 reg_val = snd_soc_read(codec, e->reg);
2604 val = (reg_val >> e->shift_l) & e->mask;
2605 item = snd_soc_enum_val_to_item(e, val);
2606 ucontrol->value.enumerated.item[0] = item;
2607 if (e->shift_l != e->shift_r) {
2608 val = (reg_val >> e->shift_l) & e->mask;
2609 item = snd_soc_enum_val_to_item(e, val);
2610 ucontrol->value.enumerated.item[1] = item;
2611 }
2612
2613 return 0;
2614 }
2615 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2616
2617 /**
2618 * snd_soc_put_enum_double - enumerated double mixer put callback
2619 * @kcontrol: mixer control
2620 * @ucontrol: control element information
2621 *
2622 * Callback to set the value of a double enumerated mixer.
2623 *
2624 * Returns 0 for success.
2625 */
2626 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2627 struct snd_ctl_elem_value *ucontrol)
2628 {
2629 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2630 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2631 unsigned int *item = ucontrol->value.enumerated.item;
2632 unsigned int val;
2633 unsigned int mask;
2634
2635 if (item[0] >= e->items)
2636 return -EINVAL;
2637 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
2638 mask = e->mask << e->shift_l;
2639 if (e->shift_l != e->shift_r) {
2640 if (item[1] >= e->items)
2641 return -EINVAL;
2642 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
2643 mask |= e->mask << e->shift_r;
2644 }
2645
2646 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2647 }
2648 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2649
2650 /**
2651 * snd_soc_read_signed - Read a codec register and interprete as signed value
2652 * @codec: codec
2653 * @reg: Register to read
2654 * @mask: Mask to use after shifting the register value
2655 * @shift: Right shift of register value
2656 * @sign_bit: Bit that describes if a number is negative or not.
2657 *
2658 * This functions reads a codec register. The register value is shifted right
2659 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
2660 * the given registervalue into a signed integer if sign_bit is non-zero.
2661 *
2662 * Returns the register value as signed int.
2663 */
2664 static int snd_soc_read_signed(struct snd_soc_codec *codec, unsigned int reg,
2665 unsigned int mask, unsigned int shift, unsigned int sign_bit)
2666 {
2667 int ret;
2668 unsigned int val;
2669
2670 val = (snd_soc_read(codec, reg) >> shift) & mask;
2671
2672 if (!sign_bit)
2673 return val;
2674
2675 /* non-negative number */
2676 if (!(val & BIT(sign_bit)))
2677 return val;
2678
2679 ret = val;
2680
2681 /*
2682 * The register most probably does not contain a full-sized int.
2683 * Instead we have an arbitrary number of bits in a signed
2684 * representation which has to be translated into a full-sized int.
2685 * This is done by filling up all bits above the sign-bit.
2686 */
2687 ret |= ~((int)(BIT(sign_bit) - 1));
2688
2689 return ret;
2690 }
2691
2692 /**
2693 * snd_soc_info_volsw - single mixer info callback
2694 * @kcontrol: mixer control
2695 * @uinfo: control element information
2696 *
2697 * Callback to provide information about a single mixer control, or a double
2698 * mixer control that spans 2 registers.
2699 *
2700 * Returns 0 for success.
2701 */
2702 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2703 struct snd_ctl_elem_info *uinfo)
2704 {
2705 struct soc_mixer_control *mc =
2706 (struct soc_mixer_control *)kcontrol->private_value;
2707 int platform_max;
2708
2709 if (!mc->platform_max)
2710 mc->platform_max = mc->max;
2711 platform_max = mc->platform_max;
2712
2713 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2714 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2715 else
2716 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2717
2718 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2719 uinfo->value.integer.min = 0;
2720 uinfo->value.integer.max = platform_max - mc->min;
2721 return 0;
2722 }
2723 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2724
2725 /**
2726 * snd_soc_get_volsw - single mixer get callback
2727 * @kcontrol: mixer control
2728 * @ucontrol: control element information
2729 *
2730 * Callback to get the value of a single mixer control, or a double mixer
2731 * control that spans 2 registers.
2732 *
2733 * Returns 0 for success.
2734 */
2735 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2736 struct snd_ctl_elem_value *ucontrol)
2737 {
2738 struct soc_mixer_control *mc =
2739 (struct soc_mixer_control *)kcontrol->private_value;
2740 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2741 unsigned int reg = mc->reg;
2742 unsigned int reg2 = mc->rreg;
2743 unsigned int shift = mc->shift;
2744 unsigned int rshift = mc->rshift;
2745 int max = mc->max;
2746 int min = mc->min;
2747 int sign_bit = mc->sign_bit;
2748 unsigned int mask = (1 << fls(max)) - 1;
2749 unsigned int invert = mc->invert;
2750
2751 if (sign_bit)
2752 mask = BIT(sign_bit + 1) - 1;
2753
2754 ucontrol->value.integer.value[0] = snd_soc_read_signed(codec, reg, mask,
2755 shift, sign_bit) - min;
2756 if (invert)
2757 ucontrol->value.integer.value[0] =
2758 max - ucontrol->value.integer.value[0];
2759
2760 if (snd_soc_volsw_is_stereo(mc)) {
2761 if (reg == reg2)
2762 ucontrol->value.integer.value[1] =
2763 snd_soc_read_signed(codec, reg, mask, rshift,
2764 sign_bit) - min;
2765 else
2766 ucontrol->value.integer.value[1] =
2767 snd_soc_read_signed(codec, reg2, mask, shift,
2768 sign_bit) - min;
2769 if (invert)
2770 ucontrol->value.integer.value[1] =
2771 max - ucontrol->value.integer.value[1];
2772 }
2773
2774 return 0;
2775 }
2776 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2777
2778 /**
2779 * snd_soc_put_volsw - single mixer put callback
2780 * @kcontrol: mixer control
2781 * @ucontrol: control element information
2782 *
2783 * Callback to set the value of a single mixer control, or a double mixer
2784 * control that spans 2 registers.
2785 *
2786 * Returns 0 for success.
2787 */
2788 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2789 struct snd_ctl_elem_value *ucontrol)
2790 {
2791 struct soc_mixer_control *mc =
2792 (struct soc_mixer_control *)kcontrol->private_value;
2793 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2794 unsigned int reg = mc->reg;
2795 unsigned int reg2 = mc->rreg;
2796 unsigned int shift = mc->shift;
2797 unsigned int rshift = mc->rshift;
2798 int max = mc->max;
2799 int min = mc->min;
2800 unsigned int sign_bit = mc->sign_bit;
2801 unsigned int mask = (1 << fls(max)) - 1;
2802 unsigned int invert = mc->invert;
2803 int err;
2804 bool type_2r = false;
2805 unsigned int val2 = 0;
2806 unsigned int val, val_mask;
2807
2808 if (sign_bit)
2809 mask = BIT(sign_bit + 1) - 1;
2810
2811 val = ((ucontrol->value.integer.value[0] + min) & mask);
2812 if (invert)
2813 val = max - val;
2814 val_mask = mask << shift;
2815 val = val << shift;
2816 if (snd_soc_volsw_is_stereo(mc)) {
2817 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
2818 if (invert)
2819 val2 = max - val2;
2820 if (reg == reg2) {
2821 val_mask |= mask << rshift;
2822 val |= val2 << rshift;
2823 } else {
2824 val2 = val2 << shift;
2825 type_2r = true;
2826 }
2827 }
2828 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2829 if (err < 0)
2830 return err;
2831
2832 if (type_2r)
2833 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2834
2835 return err;
2836 }
2837 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2838
2839 /**
2840 * snd_soc_get_volsw_sx - single mixer get callback
2841 * @kcontrol: mixer control
2842 * @ucontrol: control element information
2843 *
2844 * Callback to get the value of a single mixer control, or a double mixer
2845 * control that spans 2 registers.
2846 *
2847 * Returns 0 for success.
2848 */
2849 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
2850 struct snd_ctl_elem_value *ucontrol)
2851 {
2852 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2853 struct soc_mixer_control *mc =
2854 (struct soc_mixer_control *)kcontrol->private_value;
2855
2856 unsigned int reg = mc->reg;
2857 unsigned int reg2 = mc->rreg;
2858 unsigned int shift = mc->shift;
2859 unsigned int rshift = mc->rshift;
2860 int max = mc->max;
2861 int min = mc->min;
2862 int mask = (1 << (fls(min + max) - 1)) - 1;
2863
2864 ucontrol->value.integer.value[0] =
2865 ((snd_soc_read(codec, reg) >> shift) - min) & mask;
2866
2867 if (snd_soc_volsw_is_stereo(mc))
2868 ucontrol->value.integer.value[1] =
2869 ((snd_soc_read(codec, reg2) >> rshift) - min) & mask;
2870
2871 return 0;
2872 }
2873 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
2874
2875 /**
2876 * snd_soc_put_volsw_sx - double mixer set callback
2877 * @kcontrol: mixer control
2878 * @uinfo: control element information
2879 *
2880 * Callback to set the value of a double mixer control that spans 2 registers.
2881 *
2882 * Returns 0 for success.
2883 */
2884 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
2885 struct snd_ctl_elem_value *ucontrol)
2886 {
2887 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2888 struct soc_mixer_control *mc =
2889 (struct soc_mixer_control *)kcontrol->private_value;
2890
2891 unsigned int reg = mc->reg;
2892 unsigned int reg2 = mc->rreg;
2893 unsigned int shift = mc->shift;
2894 unsigned int rshift = mc->rshift;
2895 int max = mc->max;
2896 int min = mc->min;
2897 int mask = (1 << (fls(min + max) - 1)) - 1;
2898 int err = 0;
2899 unsigned short val, val_mask, val2 = 0;
2900
2901 val_mask = mask << shift;
2902 val = (ucontrol->value.integer.value[0] + min) & mask;
2903 val = val << shift;
2904
2905 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2906 if (err < 0)
2907 return err;
2908
2909 if (snd_soc_volsw_is_stereo(mc)) {
2910 val_mask = mask << rshift;
2911 val2 = (ucontrol->value.integer.value[1] + min) & mask;
2912 val2 = val2 << rshift;
2913
2914 if (snd_soc_update_bits_locked(codec, reg2, val_mask, val2))
2915 return err;
2916 }
2917 return 0;
2918 }
2919 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
2920
2921 /**
2922 * snd_soc_info_volsw_s8 - signed mixer info callback
2923 * @kcontrol: mixer control
2924 * @uinfo: control element information
2925 *
2926 * Callback to provide information about a signed mixer control.
2927 *
2928 * Returns 0 for success.
2929 */
2930 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2931 struct snd_ctl_elem_info *uinfo)
2932 {
2933 struct soc_mixer_control *mc =
2934 (struct soc_mixer_control *)kcontrol->private_value;
2935 int platform_max;
2936 int min = mc->min;
2937
2938 if (!mc->platform_max)
2939 mc->platform_max = mc->max;
2940 platform_max = mc->platform_max;
2941
2942 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2943 uinfo->count = 2;
2944 uinfo->value.integer.min = 0;
2945 uinfo->value.integer.max = platform_max - min;
2946 return 0;
2947 }
2948 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2949
2950 /**
2951 * snd_soc_get_volsw_s8 - signed mixer get callback
2952 * @kcontrol: mixer control
2953 * @ucontrol: control element information
2954 *
2955 * Callback to get the value of a signed mixer control.
2956 *
2957 * Returns 0 for success.
2958 */
2959 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2960 struct snd_ctl_elem_value *ucontrol)
2961 {
2962 struct soc_mixer_control *mc =
2963 (struct soc_mixer_control *)kcontrol->private_value;
2964 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2965 unsigned int reg = mc->reg;
2966 int min = mc->min;
2967 int val = snd_soc_read(codec, reg);
2968
2969 ucontrol->value.integer.value[0] =
2970 ((signed char)(val & 0xff))-min;
2971 ucontrol->value.integer.value[1] =
2972 ((signed char)((val >> 8) & 0xff))-min;
2973 return 0;
2974 }
2975 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2976
2977 /**
2978 * snd_soc_put_volsw_sgn - signed mixer put callback
2979 * @kcontrol: mixer control
2980 * @ucontrol: control element information
2981 *
2982 * Callback to set the value of a signed mixer control.
2983 *
2984 * Returns 0 for success.
2985 */
2986 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2987 struct snd_ctl_elem_value *ucontrol)
2988 {
2989 struct soc_mixer_control *mc =
2990 (struct soc_mixer_control *)kcontrol->private_value;
2991 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2992 unsigned int reg = mc->reg;
2993 int min = mc->min;
2994 unsigned int val;
2995
2996 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2997 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2998
2999 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
3000 }
3001 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
3002
3003 /**
3004 * snd_soc_info_volsw_range - single mixer info callback with range.
3005 * @kcontrol: mixer control
3006 * @uinfo: control element information
3007 *
3008 * Callback to provide information, within a range, about a single
3009 * mixer control.
3010 *
3011 * returns 0 for success.
3012 */
3013 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
3014 struct snd_ctl_elem_info *uinfo)
3015 {
3016 struct soc_mixer_control *mc =
3017 (struct soc_mixer_control *)kcontrol->private_value;
3018 int platform_max;
3019 int min = mc->min;
3020
3021 if (!mc->platform_max)
3022 mc->platform_max = mc->max;
3023 platform_max = mc->platform_max;
3024
3025 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3026 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
3027 uinfo->value.integer.min = 0;
3028 uinfo->value.integer.max = platform_max - min;
3029
3030 return 0;
3031 }
3032 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
3033
3034 /**
3035 * snd_soc_put_volsw_range - single mixer put value callback with range.
3036 * @kcontrol: mixer control
3037 * @ucontrol: control element information
3038 *
3039 * Callback to set the value, within a range, for a single mixer control.
3040 *
3041 * Returns 0 for success.
3042 */
3043 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
3044 struct snd_ctl_elem_value *ucontrol)
3045 {
3046 struct soc_mixer_control *mc =
3047 (struct soc_mixer_control *)kcontrol->private_value;
3048 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3049 unsigned int reg = mc->reg;
3050 unsigned int rreg = mc->rreg;
3051 unsigned int shift = mc->shift;
3052 int min = mc->min;
3053 int max = mc->max;
3054 unsigned int mask = (1 << fls(max)) - 1;
3055 unsigned int invert = mc->invert;
3056 unsigned int val, val_mask;
3057 int ret;
3058
3059 val = ((ucontrol->value.integer.value[0] + min) & mask);
3060 if (invert)
3061 val = max - val;
3062 val_mask = mask << shift;
3063 val = val << shift;
3064
3065 ret = snd_soc_update_bits_locked(codec, reg, val_mask, val);
3066 if (ret < 0)
3067 return ret;
3068
3069 if (snd_soc_volsw_is_stereo(mc)) {
3070 val = ((ucontrol->value.integer.value[1] + min) & mask);
3071 if (invert)
3072 val = max - val;
3073 val_mask = mask << shift;
3074 val = val << shift;
3075
3076 ret = snd_soc_update_bits_locked(codec, rreg, val_mask, val);
3077 }
3078
3079 return ret;
3080 }
3081 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
3082
3083 /**
3084 * snd_soc_get_volsw_range - single mixer get callback with range
3085 * @kcontrol: mixer control
3086 * @ucontrol: control element information
3087 *
3088 * Callback to get the value, within a range, of a single mixer control.
3089 *
3090 * Returns 0 for success.
3091 */
3092 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
3093 struct snd_ctl_elem_value *ucontrol)
3094 {
3095 struct soc_mixer_control *mc =
3096 (struct soc_mixer_control *)kcontrol->private_value;
3097 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3098 unsigned int reg = mc->reg;
3099 unsigned int rreg = mc->rreg;
3100 unsigned int shift = mc->shift;
3101 int min = mc->min;
3102 int max = mc->max;
3103 unsigned int mask = (1 << fls(max)) - 1;
3104 unsigned int invert = mc->invert;
3105
3106 ucontrol->value.integer.value[0] =
3107 (snd_soc_read(codec, reg) >> shift) & mask;
3108 if (invert)
3109 ucontrol->value.integer.value[0] =
3110 max - ucontrol->value.integer.value[0];
3111 ucontrol->value.integer.value[0] =
3112 ucontrol->value.integer.value[0] - min;
3113
3114 if (snd_soc_volsw_is_stereo(mc)) {
3115 ucontrol->value.integer.value[1] =
3116 (snd_soc_read(codec, rreg) >> shift) & mask;
3117 if (invert)
3118 ucontrol->value.integer.value[1] =
3119 max - ucontrol->value.integer.value[1];
3120 ucontrol->value.integer.value[1] =
3121 ucontrol->value.integer.value[1] - min;
3122 }
3123
3124 return 0;
3125 }
3126 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
3127
3128 /**
3129 * snd_soc_limit_volume - Set new limit to an existing volume control.
3130 *
3131 * @codec: where to look for the control
3132 * @name: Name of the control
3133 * @max: new maximum limit
3134 *
3135 * Return 0 for success, else error.
3136 */
3137 int snd_soc_limit_volume(struct snd_soc_codec *codec,
3138 const char *name, int max)
3139 {
3140 struct snd_card *card = codec->card->snd_card;
3141 struct snd_kcontrol *kctl;
3142 struct soc_mixer_control *mc;
3143 int found = 0;
3144 int ret = -EINVAL;
3145
3146 /* Sanity check for name and max */
3147 if (unlikely(!name || max <= 0))
3148 return -EINVAL;
3149
3150 list_for_each_entry(kctl, &card->controls, list) {
3151 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
3152 found = 1;
3153 break;
3154 }
3155 }
3156 if (found) {
3157 mc = (struct soc_mixer_control *)kctl->private_value;
3158 if (max <= mc->max) {
3159 mc->platform_max = max;
3160 ret = 0;
3161 }
3162 }
3163 return ret;
3164 }
3165 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
3166
3167 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
3168 struct snd_ctl_elem_info *uinfo)
3169 {
3170 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3171 struct soc_bytes *params = (void *)kcontrol->private_value;
3172
3173 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3174 uinfo->count = params->num_regs * codec->val_bytes;
3175
3176 return 0;
3177 }
3178 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
3179
3180 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
3181 struct snd_ctl_elem_value *ucontrol)
3182 {
3183 struct soc_bytes *params = (void *)kcontrol->private_value;
3184 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3185 int ret;
3186
3187 if (codec->using_regmap)
3188 ret = regmap_raw_read(codec->control_data, params->base,
3189 ucontrol->value.bytes.data,
3190 params->num_regs * codec->val_bytes);
3191 else
3192 ret = -EINVAL;
3193
3194 /* Hide any masked bytes to ensure consistent data reporting */
3195 if (ret == 0 && params->mask) {
3196 switch (codec->val_bytes) {
3197 case 1:
3198 ucontrol->value.bytes.data[0] &= ~params->mask;
3199 break;
3200 case 2:
3201 ((u16 *)(&ucontrol->value.bytes.data))[0]
3202 &= cpu_to_be16(~params->mask);
3203 break;
3204 case 4:
3205 ((u32 *)(&ucontrol->value.bytes.data))[0]
3206 &= cpu_to_be32(~params->mask);
3207 break;
3208 default:
3209 return -EINVAL;
3210 }
3211 }
3212
3213 return ret;
3214 }
3215 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
3216
3217 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
3218 struct snd_ctl_elem_value *ucontrol)
3219 {
3220 struct soc_bytes *params = (void *)kcontrol->private_value;
3221 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3222 int ret, len;
3223 unsigned int val, mask;
3224 void *data;
3225
3226 if (!codec->using_regmap)
3227 return -EINVAL;
3228
3229 len = params->num_regs * codec->val_bytes;
3230
3231 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
3232 if (!data)
3233 return -ENOMEM;
3234
3235 /*
3236 * If we've got a mask then we need to preserve the register
3237 * bits. We shouldn't modify the incoming data so take a
3238 * copy.
3239 */
3240 if (params->mask) {
3241 ret = regmap_read(codec->control_data, params->base, &val);
3242 if (ret != 0)
3243 goto out;
3244
3245 val &= params->mask;
3246
3247 switch (codec->val_bytes) {
3248 case 1:
3249 ((u8 *)data)[0] &= ~params->mask;
3250 ((u8 *)data)[0] |= val;
3251 break;
3252 case 2:
3253 mask = ~params->mask;
3254 ret = regmap_parse_val(codec->control_data,
3255 &mask, &mask);
3256 if (ret != 0)
3257 goto out;
3258
3259 ((u16 *)data)[0] &= mask;
3260
3261 ret = regmap_parse_val(codec->control_data,
3262 &val, &val);
3263 if (ret != 0)
3264 goto out;
3265
3266 ((u16 *)data)[0] |= val;
3267 break;
3268 case 4:
3269 mask = ~params->mask;
3270 ret = regmap_parse_val(codec->control_data,
3271 &mask, &mask);
3272 if (ret != 0)
3273 goto out;
3274
3275 ((u32 *)data)[0] &= mask;
3276
3277 ret = regmap_parse_val(codec->control_data,
3278 &val, &val);
3279 if (ret != 0)
3280 goto out;
3281
3282 ((u32 *)data)[0] |= val;
3283 break;
3284 default:
3285 ret = -EINVAL;
3286 goto out;
3287 }
3288 }
3289
3290 ret = regmap_raw_write(codec->control_data, params->base,
3291 data, len);
3292
3293 out:
3294 kfree(data);
3295
3296 return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
3299
3300 /**
3301 * snd_soc_info_xr_sx - signed multi register info callback
3302 * @kcontrol: mreg control
3303 * @uinfo: control element information
3304 *
3305 * Callback to provide information of a control that can
3306 * span multiple codec registers which together
3307 * forms a single signed value in a MSB/LSB manner.
3308 *
3309 * Returns 0 for success.
3310 */
3311 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
3312 struct snd_ctl_elem_info *uinfo)
3313 {
3314 struct soc_mreg_control *mc =
3315 (struct soc_mreg_control *)kcontrol->private_value;
3316 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3317 uinfo->count = 1;
3318 uinfo->value.integer.min = mc->min;
3319 uinfo->value.integer.max = mc->max;
3320
3321 return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
3324
3325 /**
3326 * snd_soc_get_xr_sx - signed multi register get callback
3327 * @kcontrol: mreg control
3328 * @ucontrol: control element information
3329 *
3330 * Callback to get the value of a control that can span
3331 * multiple codec registers which together forms a single
3332 * signed value in a MSB/LSB manner. The control supports
3333 * specifying total no of bits used to allow for bitfields
3334 * across the multiple codec registers.
3335 *
3336 * Returns 0 for success.
3337 */
3338 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
3339 struct snd_ctl_elem_value *ucontrol)
3340 {
3341 struct soc_mreg_control *mc =
3342 (struct soc_mreg_control *)kcontrol->private_value;
3343 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3344 unsigned int regbase = mc->regbase;
3345 unsigned int regcount = mc->regcount;
3346 unsigned int regwshift = codec->driver->reg_word_size * BITS_PER_BYTE;
3347 unsigned int regwmask = (1<<regwshift)-1;
3348 unsigned int invert = mc->invert;
3349 unsigned long mask = (1UL<<mc->nbits)-1;
3350 long min = mc->min;
3351 long max = mc->max;
3352 long val = 0;
3353 unsigned long regval;
3354 unsigned int i;
3355
3356 for (i = 0; i < regcount; i++) {
3357 regval = snd_soc_read(codec, regbase+i) & regwmask;
3358 val |= regval << (regwshift*(regcount-i-1));
3359 }
3360 val &= mask;
3361 if (min < 0 && val > max)
3362 val |= ~mask;
3363 if (invert)
3364 val = max - val;
3365 ucontrol->value.integer.value[0] = val;
3366
3367 return 0;
3368 }
3369 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
3370
3371 /**
3372 * snd_soc_put_xr_sx - signed multi register get callback
3373 * @kcontrol: mreg control
3374 * @ucontrol: control element information
3375 *
3376 * Callback to set the value of a control that can span
3377 * multiple codec registers which together forms a single
3378 * signed value in a MSB/LSB manner. The control supports
3379 * specifying total no of bits used to allow for bitfields
3380 * across the multiple codec registers.
3381 *
3382 * Returns 0 for success.
3383 */
3384 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
3385 struct snd_ctl_elem_value *ucontrol)
3386 {
3387 struct soc_mreg_control *mc =
3388 (struct soc_mreg_control *)kcontrol->private_value;
3389 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3390 unsigned int regbase = mc->regbase;
3391 unsigned int regcount = mc->regcount;
3392 unsigned int regwshift = codec->driver->reg_word_size * BITS_PER_BYTE;
3393 unsigned int regwmask = (1<<regwshift)-1;
3394 unsigned int invert = mc->invert;
3395 unsigned long mask = (1UL<<mc->nbits)-1;
3396 long max = mc->max;
3397 long val = ucontrol->value.integer.value[0];
3398 unsigned int i, regval, regmask;
3399 int err;
3400
3401 if (invert)
3402 val = max - val;
3403 val &= mask;
3404 for (i = 0; i < regcount; i++) {
3405 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
3406 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
3407 err = snd_soc_update_bits_locked(codec, regbase+i,
3408 regmask, regval);
3409 if (err < 0)
3410 return err;
3411 }
3412
3413 return 0;
3414 }
3415 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
3416
3417 /**
3418 * snd_soc_get_strobe - strobe get callback
3419 * @kcontrol: mixer control
3420 * @ucontrol: control element information
3421 *
3422 * Callback get the value of a strobe mixer control.
3423 *
3424 * Returns 0 for success.
3425 */
3426 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
3427 struct snd_ctl_elem_value *ucontrol)
3428 {
3429 struct soc_mixer_control *mc =
3430 (struct soc_mixer_control *)kcontrol->private_value;
3431 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3432 unsigned int reg = mc->reg;
3433 unsigned int shift = mc->shift;
3434 unsigned int mask = 1 << shift;
3435 unsigned int invert = mc->invert != 0;
3436 unsigned int val = snd_soc_read(codec, reg) & mask;
3437
3438 if (shift != 0 && val != 0)
3439 val = val >> shift;
3440 ucontrol->value.enumerated.item[0] = val ^ invert;
3441
3442 return 0;
3443 }
3444 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
3445
3446 /**
3447 * snd_soc_put_strobe - strobe put callback
3448 * @kcontrol: mixer control
3449 * @ucontrol: control element information
3450 *
3451 * Callback strobe a register bit to high then low (or the inverse)
3452 * in one pass of a single mixer enum control.
3453 *
3454 * Returns 1 for success.
3455 */
3456 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
3457 struct snd_ctl_elem_value *ucontrol)
3458 {
3459 struct soc_mixer_control *mc =
3460 (struct soc_mixer_control *)kcontrol->private_value;
3461 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3462 unsigned int reg = mc->reg;
3463 unsigned int shift = mc->shift;
3464 unsigned int mask = 1 << shift;
3465 unsigned int invert = mc->invert != 0;
3466 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
3467 unsigned int val1 = (strobe ^ invert) ? mask : 0;
3468 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
3469 int err;
3470
3471 err = snd_soc_update_bits_locked(codec, reg, mask, val1);
3472 if (err < 0)
3473 return err;
3474
3475 err = snd_soc_update_bits_locked(codec, reg, mask, val2);
3476 return err;
3477 }
3478 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
3479
3480 /**
3481 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3482 * @dai: DAI
3483 * @clk_id: DAI specific clock ID
3484 * @freq: new clock frequency in Hz
3485 * @dir: new clock direction - input/output.
3486 *
3487 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3488 */
3489 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3490 unsigned int freq, int dir)
3491 {
3492 if (dai->driver && dai->driver->ops->set_sysclk)
3493 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3494 else if (dai->codec && dai->codec->driver->set_sysclk)
3495 return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0,
3496 freq, dir);
3497 else
3498 return -ENOTSUPP;
3499 }
3500 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3501
3502 /**
3503 * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3504 * @codec: CODEC
3505 * @clk_id: DAI specific clock ID
3506 * @source: Source for the clock
3507 * @freq: new clock frequency in Hz
3508 * @dir: new clock direction - input/output.
3509 *
3510 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3511 */
3512 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3513 int source, unsigned int freq, int dir)
3514 {
3515 if (codec->driver->set_sysclk)
3516 return codec->driver->set_sysclk(codec, clk_id, source,
3517 freq, dir);
3518 else
3519 return -ENOTSUPP;
3520 }
3521 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3522
3523 /**
3524 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3525 * @dai: DAI
3526 * @div_id: DAI specific clock divider ID
3527 * @div: new clock divisor.
3528 *
3529 * Configures the clock dividers. This is used to derive the best DAI bit and
3530 * frame clocks from the system or master clock. It's best to set the DAI bit
3531 * and frame clocks as low as possible to save system power.
3532 */
3533 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3534 int div_id, int div)
3535 {
3536 if (dai->driver && dai->driver->ops->set_clkdiv)
3537 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3538 else
3539 return -EINVAL;
3540 }
3541 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3542
3543 /**
3544 * snd_soc_dai_set_pll - configure DAI PLL.
3545 * @dai: DAI
3546 * @pll_id: DAI specific PLL ID
3547 * @source: DAI specific source for the PLL
3548 * @freq_in: PLL input clock frequency in Hz
3549 * @freq_out: requested PLL output clock frequency in Hz
3550 *
3551 * Configures and enables PLL to generate output clock based on input clock.
3552 */
3553 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3554 unsigned int freq_in, unsigned int freq_out)
3555 {
3556 if (dai->driver && dai->driver->ops->set_pll)
3557 return dai->driver->ops->set_pll(dai, pll_id, source,
3558 freq_in, freq_out);
3559 else if (dai->codec && dai->codec->driver->set_pll)
3560 return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3561 freq_in, freq_out);
3562 else
3563 return -EINVAL;
3564 }
3565 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3566
3567 /*
3568 * snd_soc_codec_set_pll - configure codec PLL.
3569 * @codec: CODEC
3570 * @pll_id: DAI specific PLL ID
3571 * @source: DAI specific source for the PLL
3572 * @freq_in: PLL input clock frequency in Hz
3573 * @freq_out: requested PLL output clock frequency in Hz
3574 *
3575 * Configures and enables PLL to generate output clock based on input clock.
3576 */
3577 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3578 unsigned int freq_in, unsigned int freq_out)
3579 {
3580 if (codec->driver->set_pll)
3581 return codec->driver->set_pll(codec, pll_id, source,
3582 freq_in, freq_out);
3583 else
3584 return -EINVAL;
3585 }
3586 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3587
3588 /**
3589 * snd_soc_dai_set_bclk_ratio - configure BCLK to sample rate ratio.
3590 * @dai: DAI
3591 * @ratio Ratio of BCLK to Sample rate.
3592 *
3593 * Configures the DAI for a preset BCLK to sample rate ratio.
3594 */
3595 int snd_soc_dai_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio)
3596 {
3597 if (dai->driver && dai->driver->ops->set_bclk_ratio)
3598 return dai->driver->ops->set_bclk_ratio(dai, ratio);
3599 else
3600 return -EINVAL;
3601 }
3602 EXPORT_SYMBOL_GPL(snd_soc_dai_set_bclk_ratio);
3603
3604 /**
3605 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3606 * @dai: DAI
3607 * @fmt: SND_SOC_DAIFMT_ format value.
3608 *
3609 * Configures the DAI hardware format and clocking.
3610 */
3611 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3612 {
3613 if (dai->driver == NULL)
3614 return -EINVAL;
3615 if (dai->driver->ops->set_fmt == NULL)
3616 return -ENOTSUPP;
3617 return dai->driver->ops->set_fmt(dai, fmt);
3618 }
3619 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3620
3621 /**
3622 * snd_soc_xlate_tdm_slot - generate tx/rx slot mask.
3623 * @slots: Number of slots in use.
3624 * @tx_mask: bitmask representing active TX slots.
3625 * @rx_mask: bitmask representing active RX slots.
3626 *
3627 * Generates the TDM tx and rx slot default masks for DAI.
3628 */
3629 static int snd_soc_xlate_tdm_slot_mask(unsigned int slots,
3630 unsigned int *tx_mask,
3631 unsigned int *rx_mask)
3632 {
3633 if (*tx_mask || *rx_mask)
3634 return 0;
3635
3636 if (!slots)
3637 return -EINVAL;
3638
3639 *tx_mask = (1 << slots) - 1;
3640 *rx_mask = (1 << slots) - 1;
3641
3642 return 0;
3643 }
3644
3645 /**
3646 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3647 * @dai: DAI
3648 * @tx_mask: bitmask representing active TX slots.
3649 * @rx_mask: bitmask representing active RX slots.
3650 * @slots: Number of slots in use.
3651 * @slot_width: Width in bits for each slot.
3652 *
3653 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3654 * specific.
3655 */
3656 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3657 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3658 {
3659 if (dai->driver && dai->driver->ops->xlate_tdm_slot_mask)
3660 dai->driver->ops->xlate_tdm_slot_mask(slots,
3661 &tx_mask, &rx_mask);
3662 else
3663 snd_soc_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask);
3664
3665 if (dai->driver && dai->driver->ops->set_tdm_slot)
3666 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3667 slots, slot_width);
3668 else
3669 return -ENOTSUPP;
3670 }
3671 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3672
3673 /**
3674 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3675 * @dai: DAI
3676 * @tx_num: how many TX channels
3677 * @tx_slot: pointer to an array which imply the TX slot number channel
3678 * 0~num-1 uses
3679 * @rx_num: how many RX channels
3680 * @rx_slot: pointer to an array which imply the RX slot number channel
3681 * 0~num-1 uses
3682 *
3683 * configure the relationship between channel number and TDM slot number.
3684 */
3685 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3686 unsigned int tx_num, unsigned int *tx_slot,
3687 unsigned int rx_num, unsigned int *rx_slot)
3688 {
3689 if (dai->driver && dai->driver->ops->set_channel_map)
3690 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3691 rx_num, rx_slot);
3692 else
3693 return -EINVAL;
3694 }
3695 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3696
3697 /**
3698 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3699 * @dai: DAI
3700 * @tristate: tristate enable
3701 *
3702 * Tristates the DAI so that others can use it.
3703 */
3704 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3705 {
3706 if (dai->driver && dai->driver->ops->set_tristate)
3707 return dai->driver->ops->set_tristate(dai, tristate);
3708 else
3709 return -EINVAL;
3710 }
3711 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3712
3713 /**
3714 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3715 * @dai: DAI
3716 * @mute: mute enable
3717 * @direction: stream to mute
3718 *
3719 * Mutes the DAI DAC.
3720 */
3721 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute,
3722 int direction)
3723 {
3724 if (!dai->driver)
3725 return -ENOTSUPP;
3726
3727 if (dai->driver->ops->mute_stream)
3728 return dai->driver->ops->mute_stream(dai, mute, direction);
3729 else if (direction == SNDRV_PCM_STREAM_PLAYBACK &&
3730 dai->driver->ops->digital_mute)
3731 return dai->driver->ops->digital_mute(dai, mute);
3732 else
3733 return -ENOTSUPP;
3734 }
3735 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3736
3737 /**
3738 * snd_soc_register_card - Register a card with the ASoC core
3739 *
3740 * @card: Card to register
3741 *
3742 */
3743 int snd_soc_register_card(struct snd_soc_card *card)
3744 {
3745 int i, ret;
3746
3747 if (!card->name || !card->dev)
3748 return -EINVAL;
3749
3750 for (i = 0; i < card->num_links; i++) {
3751 struct snd_soc_dai_link *link = &card->dai_link[i];
3752
3753 /*
3754 * Codec must be specified by 1 of name or OF node,
3755 * not both or neither.
3756 */
3757 if (!!link->codec_name == !!link->codec_of_node) {
3758 dev_err(card->dev,
3759 "ASoC: Neither/both codec name/of_node are set for %s\n",
3760 link->name);
3761 return -EINVAL;
3762 }
3763 /* Codec DAI name must be specified */
3764 if (!link->codec_dai_name) {
3765 dev_err(card->dev,
3766 "ASoC: codec_dai_name not set for %s\n",
3767 link->name);
3768 return -EINVAL;
3769 }
3770
3771 /*
3772 * Platform may be specified by either name or OF node, but
3773 * can be left unspecified, and a dummy platform will be used.
3774 */
3775 if (link->platform_name && link->platform_of_node) {
3776 dev_err(card->dev,
3777 "ASoC: Both platform name/of_node are set for %s\n",
3778 link->name);
3779 return -EINVAL;
3780 }
3781
3782 /*
3783 * CPU device may be specified by either name or OF node, but
3784 * can be left unspecified, and will be matched based on DAI
3785 * name alone..
3786 */
3787 if (link->cpu_name && link->cpu_of_node) {
3788 dev_err(card->dev,
3789 "ASoC: Neither/both cpu name/of_node are set for %s\n",
3790 link->name);
3791 return -EINVAL;
3792 }
3793 /*
3794 * At least one of CPU DAI name or CPU device name/node must be
3795 * specified
3796 */
3797 if (!link->cpu_dai_name &&
3798 !(link->cpu_name || link->cpu_of_node)) {
3799 dev_err(card->dev,
3800 "ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n",
3801 link->name);
3802 return -EINVAL;
3803 }
3804 }
3805
3806 dev_set_drvdata(card->dev, card);
3807
3808 snd_soc_initialize_card_lists(card);
3809
3810 soc_init_card_debugfs(card);
3811
3812 card->rtd = devm_kzalloc(card->dev,
3813 sizeof(struct snd_soc_pcm_runtime) *
3814 (card->num_links + card->num_aux_devs),
3815 GFP_KERNEL);
3816 if (card->rtd == NULL)
3817 return -ENOMEM;
3818 card->num_rtd = 0;
3819 card->rtd_aux = &card->rtd[card->num_links];
3820
3821 for (i = 0; i < card->num_links; i++)
3822 card->rtd[i].dai_link = &card->dai_link[i];
3823
3824 INIT_LIST_HEAD(&card->list);
3825 INIT_LIST_HEAD(&card->dapm_dirty);
3826 card->instantiated = 0;
3827 mutex_init(&card->mutex);
3828 mutex_init(&card->dapm_mutex);
3829
3830 ret = snd_soc_instantiate_card(card);
3831 if (ret != 0)
3832 soc_cleanup_card_debugfs(card);
3833
3834 /* deactivate pins to sleep state */
3835 for (i = 0; i < card->num_rtd; i++) {
3836 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
3837 struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai;
3838 if (!codec_dai->active)
3839 pinctrl_pm_select_sleep_state(codec_dai->dev);
3840 if (!cpu_dai->active)
3841 pinctrl_pm_select_sleep_state(cpu_dai->dev);
3842 }
3843
3844 return ret;
3845 }
3846 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3847
3848 /**
3849 * snd_soc_unregister_card - Unregister a card with the ASoC core
3850 *
3851 * @card: Card to unregister
3852 *
3853 */
3854 int snd_soc_unregister_card(struct snd_soc_card *card)
3855 {
3856 if (card->instantiated)
3857 soc_cleanup_card_resources(card);
3858 dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name);
3859
3860 return 0;
3861 }
3862 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3863
3864 /*
3865 * Simplify DAI link configuration by removing ".-1" from device names
3866 * and sanitizing names.
3867 */
3868 static char *fmt_single_name(struct device *dev, int *id)
3869 {
3870 char *found, name[NAME_SIZE];
3871 int id1, id2;
3872
3873 if (dev_name(dev) == NULL)
3874 return NULL;
3875
3876 strlcpy(name, dev_name(dev), NAME_SIZE);
3877
3878 /* are we a "%s.%d" name (platform and SPI components) */
3879 found = strstr(name, dev->driver->name);
3880 if (found) {
3881 /* get ID */
3882 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3883
3884 /* discard ID from name if ID == -1 */
3885 if (*id == -1)
3886 found[strlen(dev->driver->name)] = '\0';
3887 }
3888
3889 } else {
3890 /* I2C component devices are named "bus-addr" */
3891 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3892 char tmp[NAME_SIZE];
3893
3894 /* create unique ID number from I2C addr and bus */
3895 *id = ((id1 & 0xffff) << 16) + id2;
3896
3897 /* sanitize component name for DAI link creation */
3898 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3899 strlcpy(name, tmp, NAME_SIZE);
3900 } else
3901 *id = 0;
3902 }
3903
3904 return kstrdup(name, GFP_KERNEL);
3905 }
3906
3907 /*
3908 * Simplify DAI link naming for single devices with multiple DAIs by removing
3909 * any ".-1" and using the DAI name (instead of device name).
3910 */
3911 static inline char *fmt_multiple_name(struct device *dev,
3912 struct snd_soc_dai_driver *dai_drv)
3913 {
3914 if (dai_drv->name == NULL) {
3915 dev_err(dev,
3916 "ASoC: error - multiple DAI %s registered with no name\n",
3917 dev_name(dev));
3918 return NULL;
3919 }
3920
3921 return kstrdup(dai_drv->name, GFP_KERNEL);
3922 }
3923
3924 /**
3925 * snd_soc_unregister_dai - Unregister DAIs from the ASoC core
3926 *
3927 * @component: The component for which the DAIs should be unregistered
3928 */
3929 static void snd_soc_unregister_dais(struct snd_soc_component *component)
3930 {
3931 struct snd_soc_dai *dai, *_dai;
3932
3933 list_for_each_entry_safe(dai, _dai, &component->dai_list, list) {
3934 dev_dbg(component->dev, "ASoC: Unregistered DAI '%s'\n",
3935 dai->name);
3936 list_del(&dai->list);
3937 kfree(dai->name);
3938 kfree(dai);
3939 }
3940 }
3941
3942 /**
3943 * snd_soc_register_dais - Register a DAI with the ASoC core
3944 *
3945 * @component: The component the DAIs are registered for
3946 * @codec: The CODEC that the DAIs are registered for, NULL if the component is
3947 * not a CODEC.
3948 * @dai_drv: DAI driver to use for the DAIs
3949 * @count: Number of DAIs
3950 * @legacy_dai_naming: Use the legacy naming scheme and let the DAI inherit the
3951 * parent's name.
3952 */
3953 static int snd_soc_register_dais(struct snd_soc_component *component,
3954 struct snd_soc_codec *codec, struct snd_soc_dai_driver *dai_drv,
3955 size_t count, bool legacy_dai_naming)
3956 {
3957 struct device *dev = component->dev;
3958 struct snd_soc_dai *dai;
3959 unsigned int i;
3960 int ret;
3961
3962 dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count);
3963
3964 for (i = 0; i < count; i++) {
3965
3966 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3967 if (dai == NULL) {
3968 ret = -ENOMEM;
3969 goto err;
3970 }
3971
3972 /*
3973 * Back in the old days when we still had component-less DAIs,
3974 * instead of having a static name, component-less DAIs would
3975 * inherit the name of the parent device so it is possible to
3976 * register multiple instances of the DAI. We still need to keep
3977 * the same naming style even though those DAIs are not
3978 * component-less anymore.
3979 */
3980 if (count == 1 && legacy_dai_naming) {
3981 dai->name = fmt_single_name(dev, &dai->id);
3982 } else {
3983 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3984 if (dai_drv[i].id)
3985 dai->id = dai_drv[i].id;
3986 else
3987 dai->id = i;
3988 }
3989 if (dai->name == NULL) {
3990 kfree(dai);
3991 ret = -ENOMEM;
3992 goto err;
3993 }
3994
3995 dai->component = component;
3996 dai->codec = codec;
3997 dai->dev = dev;
3998 dai->driver = &dai_drv[i];
3999 dai->dapm.dev = dev;
4000 if (!dai->driver->ops)
4001 dai->driver->ops = &null_dai_ops;
4002
4003 if (!dai->codec)
4004 dai->dapm.idle_bias_off = 1;
4005
4006 list_add(&dai->list, &component->dai_list);
4007
4008 dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name);
4009 }
4010
4011 return 0;
4012
4013 err:
4014 snd_soc_unregister_dais(component);
4015
4016 return ret;
4017 }
4018
4019 /**
4020 * snd_soc_register_component - Register a component with the ASoC core
4021 *
4022 */
4023 static int
4024 __snd_soc_register_component(struct device *dev,
4025 struct snd_soc_component *cmpnt,
4026 const struct snd_soc_component_driver *cmpnt_drv,
4027 struct snd_soc_codec *codec,
4028 struct snd_soc_dai_driver *dai_drv,
4029 int num_dai, bool allow_single_dai)
4030 {
4031 int ret;
4032
4033 dev_dbg(dev, "component register %s\n", dev_name(dev));
4034
4035 if (!cmpnt) {
4036 dev_err(dev, "ASoC: Failed to connecting component\n");
4037 return -ENOMEM;
4038 }
4039
4040 cmpnt->name = fmt_single_name(dev, &cmpnt->id);
4041 if (!cmpnt->name) {
4042 dev_err(dev, "ASoC: Failed to simplifying name\n");
4043 return -ENOMEM;
4044 }
4045
4046 cmpnt->dev = dev;
4047 cmpnt->driver = cmpnt_drv;
4048 cmpnt->dai_drv = dai_drv;
4049 cmpnt->num_dai = num_dai;
4050 INIT_LIST_HEAD(&cmpnt->dai_list);
4051
4052 ret = snd_soc_register_dais(cmpnt, codec, dai_drv, num_dai,
4053 allow_single_dai);
4054 if (ret < 0) {
4055 dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4056 goto error_component_name;
4057 }
4058
4059 mutex_lock(&client_mutex);
4060 list_add(&cmpnt->list, &component_list);
4061 mutex_unlock(&client_mutex);
4062
4063 dev_dbg(cmpnt->dev, "ASoC: Registered component '%s'\n", cmpnt->name);
4064
4065 return ret;
4066
4067 error_component_name:
4068 kfree(cmpnt->name);
4069
4070 return ret;
4071 }
4072
4073 int snd_soc_register_component(struct device *dev,
4074 const struct snd_soc_component_driver *cmpnt_drv,
4075 struct snd_soc_dai_driver *dai_drv,
4076 int num_dai)
4077 {
4078 struct snd_soc_component *cmpnt;
4079
4080 cmpnt = devm_kzalloc(dev, sizeof(*cmpnt), GFP_KERNEL);
4081 if (!cmpnt) {
4082 dev_err(dev, "ASoC: Failed to allocate memory\n");
4083 return -ENOMEM;
4084 }
4085
4086 cmpnt->ignore_pmdown_time = true;
4087
4088 return __snd_soc_register_component(dev, cmpnt, cmpnt_drv, NULL,
4089 dai_drv, num_dai, true);
4090 }
4091 EXPORT_SYMBOL_GPL(snd_soc_register_component);
4092
4093 /**
4094 * snd_soc_unregister_component - Unregister a component from the ASoC core
4095 *
4096 */
4097 void snd_soc_unregister_component(struct device *dev)
4098 {
4099 struct snd_soc_component *cmpnt;
4100
4101 list_for_each_entry(cmpnt, &component_list, list) {
4102 if (dev == cmpnt->dev)
4103 goto found;
4104 }
4105 return;
4106
4107 found:
4108 snd_soc_unregister_dais(cmpnt);
4109
4110 mutex_lock(&client_mutex);
4111 list_del(&cmpnt->list);
4112 mutex_unlock(&client_mutex);
4113
4114 dev_dbg(dev, "ASoC: Unregistered component '%s'\n", cmpnt->name);
4115 kfree(cmpnt->name);
4116 }
4117 EXPORT_SYMBOL_GPL(snd_soc_unregister_component);
4118
4119 /**
4120 * snd_soc_add_platform - Add a platform to the ASoC core
4121 * @dev: The parent device for the platform
4122 * @platform: The platform to add
4123 * @platform_driver: The driver for the platform
4124 */
4125 int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform,
4126 const struct snd_soc_platform_driver *platform_drv)
4127 {
4128 /* create platform component name */
4129 platform->name = fmt_single_name(dev, &platform->id);
4130 if (platform->name == NULL)
4131 return -ENOMEM;
4132
4133 platform->dev = dev;
4134 platform->driver = platform_drv;
4135 platform->dapm.dev = dev;
4136 platform->dapm.platform = platform;
4137 platform->dapm.stream_event = platform_drv->stream_event;
4138 mutex_init(&platform->mutex);
4139
4140 mutex_lock(&client_mutex);
4141 list_add(&platform->list, &platform_list);
4142 mutex_unlock(&client_mutex);
4143
4144 dev_dbg(dev, "ASoC: Registered platform '%s'\n", platform->name);
4145
4146 return 0;
4147 }
4148 EXPORT_SYMBOL_GPL(snd_soc_add_platform);
4149
4150 /**
4151 * snd_soc_register_platform - Register a platform with the ASoC core
4152 *
4153 * @platform: platform to register
4154 */
4155 int snd_soc_register_platform(struct device *dev,
4156 const struct snd_soc_platform_driver *platform_drv)
4157 {
4158 struct snd_soc_platform *platform;
4159 int ret;
4160
4161 dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev));
4162
4163 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
4164 if (platform == NULL)
4165 return -ENOMEM;
4166
4167 ret = snd_soc_add_platform(dev, platform, platform_drv);
4168 if (ret)
4169 kfree(platform);
4170
4171 return ret;
4172 }
4173 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
4174
4175 /**
4176 * snd_soc_remove_platform - Remove a platform from the ASoC core
4177 * @platform: the platform to remove
4178 */
4179 void snd_soc_remove_platform(struct snd_soc_platform *platform)
4180 {
4181 mutex_lock(&client_mutex);
4182 list_del(&platform->list);
4183 mutex_unlock(&client_mutex);
4184
4185 dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n",
4186 platform->name);
4187 kfree(platform->name);
4188 }
4189 EXPORT_SYMBOL_GPL(snd_soc_remove_platform);
4190
4191 struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev)
4192 {
4193 struct snd_soc_platform *platform;
4194
4195 list_for_each_entry(platform, &platform_list, list) {
4196 if (dev == platform->dev)
4197 return platform;
4198 }
4199
4200 return NULL;
4201 }
4202 EXPORT_SYMBOL_GPL(snd_soc_lookup_platform);
4203
4204 /**
4205 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
4206 *
4207 * @platform: platform to unregister
4208 */
4209 void snd_soc_unregister_platform(struct device *dev)
4210 {
4211 struct snd_soc_platform *platform;
4212
4213 platform = snd_soc_lookup_platform(dev);
4214 if (!platform)
4215 return;
4216
4217 snd_soc_remove_platform(platform);
4218 kfree(platform);
4219 }
4220 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
4221
4222 static u64 codec_format_map[] = {
4223 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
4224 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
4225 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
4226 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
4227 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
4228 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
4229 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4230 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4231 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
4232 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
4233 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
4234 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
4235 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
4236 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
4237 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
4238 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
4239 };
4240
4241 /* Fix up the DAI formats for endianness: codecs don't actually see
4242 * the endianness of the data but we're using the CPU format
4243 * definitions which do need to include endianness so we ensure that
4244 * codec DAIs always have both big and little endian variants set.
4245 */
4246 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
4247 {
4248 int i;
4249
4250 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
4251 if (stream->formats & codec_format_map[i])
4252 stream->formats |= codec_format_map[i];
4253 }
4254
4255 /**
4256 * snd_soc_register_codec - Register a codec with the ASoC core
4257 *
4258 * @codec: codec to register
4259 */
4260 int snd_soc_register_codec(struct device *dev,
4261 const struct snd_soc_codec_driver *codec_drv,
4262 struct snd_soc_dai_driver *dai_drv,
4263 int num_dai)
4264 {
4265 struct snd_soc_codec *codec;
4266 int ret, i;
4267
4268 dev_dbg(dev, "codec register %s\n", dev_name(dev));
4269
4270 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
4271 if (codec == NULL)
4272 return -ENOMEM;
4273
4274 /* create CODEC component name */
4275 codec->name = fmt_single_name(dev, &codec->id);
4276 if (codec->name == NULL) {
4277 ret = -ENOMEM;
4278 goto fail_codec;
4279 }
4280
4281 codec->write = codec_drv->write;
4282 codec->read = codec_drv->read;
4283 codec->volatile_register = codec_drv->volatile_register;
4284 codec->readable_register = codec_drv->readable_register;
4285 codec->writable_register = codec_drv->writable_register;
4286 codec->component.ignore_pmdown_time = codec_drv->ignore_pmdown_time;
4287 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
4288 codec->dapm.dev = dev;
4289 codec->dapm.codec = codec;
4290 codec->dapm.seq_notifier = codec_drv->seq_notifier;
4291 codec->dapm.stream_event = codec_drv->stream_event;
4292 codec->dev = dev;
4293 codec->driver = codec_drv;
4294 codec->num_dai = num_dai;
4295 mutex_init(&codec->mutex);
4296
4297 for (i = 0; i < num_dai; i++) {
4298 fixup_codec_formats(&dai_drv[i].playback);
4299 fixup_codec_formats(&dai_drv[i].capture);
4300 }
4301
4302 mutex_lock(&client_mutex);
4303 list_add(&codec->list, &codec_list);
4304 mutex_unlock(&client_mutex);
4305
4306 /* register component */
4307 ret = __snd_soc_register_component(dev, &codec->component,
4308 &codec_drv->component_driver,
4309 codec, dai_drv, num_dai, false);
4310 if (ret < 0) {
4311 dev_err(codec->dev, "ASoC: Failed to regster component: %d\n", ret);
4312 goto fail_codec_name;
4313 }
4314
4315 dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n", codec->name);
4316 return 0;
4317
4318 fail_codec_name:
4319 mutex_lock(&client_mutex);
4320 list_del(&codec->list);
4321 mutex_unlock(&client_mutex);
4322
4323 kfree(codec->name);
4324 fail_codec:
4325 kfree(codec);
4326 return ret;
4327 }
4328 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
4329
4330 /**
4331 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
4332 *
4333 * @codec: codec to unregister
4334 */
4335 void snd_soc_unregister_codec(struct device *dev)
4336 {
4337 struct snd_soc_codec *codec;
4338
4339 list_for_each_entry(codec, &codec_list, list) {
4340 if (dev == codec->dev)
4341 goto found;
4342 }
4343 return;
4344
4345 found:
4346 snd_soc_unregister_component(dev);
4347
4348 mutex_lock(&client_mutex);
4349 list_del(&codec->list);
4350 mutex_unlock(&client_mutex);
4351
4352 dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n", codec->name);
4353
4354 snd_soc_cache_exit(codec);
4355 kfree(codec->name);
4356 kfree(codec);
4357 }
4358 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
4359
4360 /* Retrieve a card's name from device tree */
4361 int snd_soc_of_parse_card_name(struct snd_soc_card *card,
4362 const char *propname)
4363 {
4364 struct device_node *np = card->dev->of_node;
4365 int ret;
4366
4367 ret = of_property_read_string_index(np, propname, 0, &card->name);
4368 /*
4369 * EINVAL means the property does not exist. This is fine providing
4370 * card->name was previously set, which is checked later in
4371 * snd_soc_register_card.
4372 */
4373 if (ret < 0 && ret != -EINVAL) {
4374 dev_err(card->dev,
4375 "ASoC: Property '%s' could not be read: %d\n",
4376 propname, ret);
4377 return ret;
4378 }
4379
4380 return 0;
4381 }
4382 EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name);
4383
4384 static const struct snd_soc_dapm_widget simple_widgets[] = {
4385 SND_SOC_DAPM_MIC("Microphone", NULL),
4386 SND_SOC_DAPM_LINE("Line", NULL),
4387 SND_SOC_DAPM_HP("Headphone", NULL),
4388 SND_SOC_DAPM_SPK("Speaker", NULL),
4389 };
4390
4391 int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card,
4392 const char *propname)
4393 {
4394 struct device_node *np = card->dev->of_node;
4395 struct snd_soc_dapm_widget *widgets;
4396 const char *template, *wname;
4397 int i, j, num_widgets, ret;
4398
4399 num_widgets = of_property_count_strings(np, propname);
4400 if (num_widgets < 0) {
4401 dev_err(card->dev,
4402 "ASoC: Property '%s' does not exist\n", propname);
4403 return -EINVAL;
4404 }
4405 if (num_widgets & 1) {
4406 dev_err(card->dev,
4407 "ASoC: Property '%s' length is not even\n", propname);
4408 return -EINVAL;
4409 }
4410
4411 num_widgets /= 2;
4412 if (!num_widgets) {
4413 dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4414 propname);
4415 return -EINVAL;
4416 }
4417
4418 widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets),
4419 GFP_KERNEL);
4420 if (!widgets) {
4421 dev_err(card->dev,
4422 "ASoC: Could not allocate memory for widgets\n");
4423 return -ENOMEM;
4424 }
4425
4426 for (i = 0; i < num_widgets; i++) {
4427 ret = of_property_read_string_index(np, propname,
4428 2 * i, &template);
4429 if (ret) {
4430 dev_err(card->dev,
4431 "ASoC: Property '%s' index %d read error:%d\n",
4432 propname, 2 * i, ret);
4433 return -EINVAL;
4434 }
4435
4436 for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) {
4437 if (!strncmp(template, simple_widgets[j].name,
4438 strlen(simple_widgets[j].name))) {
4439 widgets[i] = simple_widgets[j];
4440 break;
4441 }
4442 }
4443
4444 if (j >= ARRAY_SIZE(simple_widgets)) {
4445 dev_err(card->dev,
4446 "ASoC: DAPM widget '%s' is not supported\n",
4447 template);
4448 return -EINVAL;
4449 }
4450
4451 ret = of_property_read_string_index(np, propname,
4452 (2 * i) + 1,
4453 &wname);
4454 if (ret) {
4455 dev_err(card->dev,
4456 "ASoC: Property '%s' index %d read error:%d\n",
4457 propname, (2 * i) + 1, ret);
4458 return -EINVAL;
4459 }
4460
4461 widgets[i].name = wname;
4462 }
4463
4464 card->dapm_widgets = widgets;
4465 card->num_dapm_widgets = num_widgets;
4466
4467 return 0;
4468 }
4469 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets);
4470
4471 int snd_soc_of_parse_tdm_slot(struct device_node *np,
4472 unsigned int *slots,
4473 unsigned int *slot_width)
4474 {
4475 u32 val;
4476 int ret;
4477
4478 if (of_property_read_bool(np, "dai-tdm-slot-num")) {
4479 ret = of_property_read_u32(np, "dai-tdm-slot-num", &val);
4480 if (ret)
4481 return ret;
4482
4483 if (slots)
4484 *slots = val;
4485 }
4486
4487 if (of_property_read_bool(np, "dai-tdm-slot-width")) {
4488 ret = of_property_read_u32(np, "dai-tdm-slot-width", &val);
4489 if (ret)
4490 return ret;
4491
4492 if (slot_width)
4493 *slot_width = val;
4494 }
4495
4496 return 0;
4497 }
4498 EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot);
4499
4500 int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
4501 const char *propname)
4502 {
4503 struct device_node *np = card->dev->of_node;
4504 int num_routes;
4505 struct snd_soc_dapm_route *routes;
4506 int i, ret;
4507
4508 num_routes = of_property_count_strings(np, propname);
4509 if (num_routes < 0 || num_routes & 1) {
4510 dev_err(card->dev,
4511 "ASoC: Property '%s' does not exist or its length is not even\n",
4512 propname);
4513 return -EINVAL;
4514 }
4515 num_routes /= 2;
4516 if (!num_routes) {
4517 dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4518 propname);
4519 return -EINVAL;
4520 }
4521
4522 routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes),
4523 GFP_KERNEL);
4524 if (!routes) {
4525 dev_err(card->dev,
4526 "ASoC: Could not allocate DAPM route table\n");
4527 return -EINVAL;
4528 }
4529
4530 for (i = 0; i < num_routes; i++) {
4531 ret = of_property_read_string_index(np, propname,
4532 2 * i, &routes[i].sink);
4533 if (ret) {
4534 dev_err(card->dev,
4535 "ASoC: Property '%s' index %d could not be read: %d\n",
4536 propname, 2 * i, ret);
4537 return -EINVAL;
4538 }
4539 ret = of_property_read_string_index(np, propname,
4540 (2 * i) + 1, &routes[i].source);
4541 if (ret) {
4542 dev_err(card->dev,
4543 "ASoC: Property '%s' index %d could not be read: %d\n",
4544 propname, (2 * i) + 1, ret);
4545 return -EINVAL;
4546 }
4547 }
4548
4549 card->num_dapm_routes = num_routes;
4550 card->dapm_routes = routes;
4551
4552 return 0;
4553 }
4554 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing);
4555
4556 unsigned int snd_soc_of_parse_daifmt(struct device_node *np,
4557 const char *prefix)
4558 {
4559 int ret, i;
4560 char prop[128];
4561 unsigned int format = 0;
4562 int bit, frame;
4563 const char *str;
4564 struct {
4565 char *name;
4566 unsigned int val;
4567 } of_fmt_table[] = {
4568 { "i2s", SND_SOC_DAIFMT_I2S },
4569 { "right_j", SND_SOC_DAIFMT_RIGHT_J },
4570 { "left_j", SND_SOC_DAIFMT_LEFT_J },
4571 { "dsp_a", SND_SOC_DAIFMT_DSP_A },
4572 { "dsp_b", SND_SOC_DAIFMT_DSP_B },
4573 { "ac97", SND_SOC_DAIFMT_AC97 },
4574 { "pdm", SND_SOC_DAIFMT_PDM},
4575 { "msb", SND_SOC_DAIFMT_MSB },
4576 { "lsb", SND_SOC_DAIFMT_LSB },
4577 };
4578
4579 if (!prefix)
4580 prefix = "";
4581
4582 /*
4583 * check "[prefix]format = xxx"
4584 * SND_SOC_DAIFMT_FORMAT_MASK area
4585 */
4586 snprintf(prop, sizeof(prop), "%sformat", prefix);
4587 ret = of_property_read_string(np, prop, &str);
4588 if (ret == 0) {
4589 for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) {
4590 if (strcmp(str, of_fmt_table[i].name) == 0) {
4591 format |= of_fmt_table[i].val;
4592 break;
4593 }
4594 }
4595 }
4596
4597 /*
4598 * check "[prefix]continuous-clock"
4599 * SND_SOC_DAIFMT_CLOCK_MASK area
4600 */
4601 snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix);
4602 if (of_get_property(np, prop, NULL))
4603 format |= SND_SOC_DAIFMT_CONT;
4604 else
4605 format |= SND_SOC_DAIFMT_GATED;
4606
4607 /*
4608 * check "[prefix]bitclock-inversion"
4609 * check "[prefix]frame-inversion"
4610 * SND_SOC_DAIFMT_INV_MASK area
4611 */
4612 snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix);
4613 bit = !!of_get_property(np, prop, NULL);
4614
4615 snprintf(prop, sizeof(prop), "%sframe-inversion", prefix);
4616 frame = !!of_get_property(np, prop, NULL);
4617
4618 switch ((bit << 4) + frame) {
4619 case 0x11:
4620 format |= SND_SOC_DAIFMT_IB_IF;
4621 break;
4622 case 0x10:
4623 format |= SND_SOC_DAIFMT_IB_NF;
4624 break;
4625 case 0x01:
4626 format |= SND_SOC_DAIFMT_NB_IF;
4627 break;
4628 default:
4629 /* SND_SOC_DAIFMT_NB_NF is default */
4630 break;
4631 }
4632
4633 /*
4634 * check "[prefix]bitclock-master"
4635 * check "[prefix]frame-master"
4636 * SND_SOC_DAIFMT_MASTER_MASK area
4637 */
4638 snprintf(prop, sizeof(prop), "%sbitclock-master", prefix);
4639 bit = !!of_get_property(np, prop, NULL);
4640
4641 snprintf(prop, sizeof(prop), "%sframe-master", prefix);
4642 frame = !!of_get_property(np, prop, NULL);
4643
4644 switch ((bit << 4) + frame) {
4645 case 0x11:
4646 format |= SND_SOC_DAIFMT_CBM_CFM;
4647 break;
4648 case 0x10:
4649 format |= SND_SOC_DAIFMT_CBM_CFS;
4650 break;
4651 case 0x01:
4652 format |= SND_SOC_DAIFMT_CBS_CFM;
4653 break;
4654 default:
4655 format |= SND_SOC_DAIFMT_CBS_CFS;
4656 break;
4657 }
4658
4659 return format;
4660 }
4661 EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt);
4662
4663 int snd_soc_of_get_dai_name(struct device_node *of_node,
4664 const char **dai_name)
4665 {
4666 struct snd_soc_component *pos;
4667 struct of_phandle_args args;
4668 int ret;
4669
4670 ret = of_parse_phandle_with_args(of_node, "sound-dai",
4671 "#sound-dai-cells", 0, &args);
4672 if (ret)
4673 return ret;
4674
4675 ret = -EPROBE_DEFER;
4676
4677 mutex_lock(&client_mutex);
4678 list_for_each_entry(pos, &component_list, list) {
4679 if (pos->dev->of_node != args.np)
4680 continue;
4681
4682 if (pos->driver->of_xlate_dai_name) {
4683 ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name);
4684 } else {
4685 int id = -1;
4686
4687 switch (args.args_count) {
4688 case 0:
4689 id = 0; /* same as dai_drv[0] */
4690 break;
4691 case 1:
4692 id = args.args[0];
4693 break;
4694 default:
4695 /* not supported */
4696 break;
4697 }
4698
4699 if (id < 0 || id >= pos->num_dai) {
4700 ret = -EINVAL;
4701 break;
4702 }
4703
4704 ret = 0;
4705
4706 *dai_name = pos->dai_drv[id].name;
4707 if (!*dai_name)
4708 *dai_name = pos->name;
4709 }
4710
4711 break;
4712 }
4713 mutex_unlock(&client_mutex);
4714
4715 of_node_put(args.np);
4716
4717 return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name);
4720
4721 static int __init snd_soc_init(void)
4722 {
4723 #ifdef CONFIG_DEBUG_FS
4724 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
4725 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
4726 pr_warn("ASoC: Failed to create debugfs directory\n");
4727 snd_soc_debugfs_root = NULL;
4728 }
4729
4730 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
4731 &codec_list_fops))
4732 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
4733
4734 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
4735 &dai_list_fops))
4736 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
4737
4738 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
4739 &platform_list_fops))
4740 pr_warn("ASoC: Failed to create platform list debugfs file\n");
4741 #endif
4742
4743 snd_soc_util_init();
4744
4745 return platform_driver_register(&soc_driver);
4746 }
4747 module_init(snd_soc_init);
4748
4749 static void __exit snd_soc_exit(void)
4750 {
4751 snd_soc_util_exit();
4752
4753 #ifdef CONFIG_DEBUG_FS
4754 debugfs_remove_recursive(snd_soc_debugfs_root);
4755 #endif
4756 platform_driver_unregister(&soc_driver);
4757 }
4758 module_exit(snd_soc_exit);
4759
4760 /* Module information */
4761 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
4762 MODULE_DESCRIPTION("ALSA SoC Core");
4763 MODULE_LICENSE("GPL");
4764 MODULE_ALIAS("platform:soc-audio");
This page took 0.298282 seconds and 5 git commands to generate.