ASoC: Allow choice of ac97 gpio reset line
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37
38 static DEFINE_MUTEX(pcm_mutex);
39 static DEFINE_MUTEX(io_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54
55 /*
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
59 */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63
64 /*
65 * This function forces any delayed work to be queued and run.
66 */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 int ret;
70
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
73
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
79 }
80 return ret;
81 }
82
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
86 {
87 if (codec->ac97->dev.bus)
88 device_unregister(&codec->ac97->dev);
89 return 0;
90 }
91
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
94
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
97 {
98 int err;
99
100 codec->ac97->dev.bus = &ac97_bus_type;
101 codec->ac97->dev.parent = NULL;
102 codec->ac97->dev.release = soc_ac97_device_release;
103
104 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
105 codec->card->number, 0, codec->name);
106 err = device_register(&codec->ac97->dev);
107 if (err < 0) {
108 snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 codec->ac97->dev.bus = NULL;
110 return err;
111 }
112 return 0;
113 }
114 #endif
115
116 /*
117 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
118 * then initialized and any private data can be allocated. This also calls
119 * startup for the cpu DAI, platform, machine and codec DAI.
120 */
121 static int soc_pcm_open(struct snd_pcm_substream *substream)
122 {
123 struct snd_soc_pcm_runtime *rtd = substream->private_data;
124 struct snd_soc_device *socdev = rtd->socdev;
125 struct snd_soc_card *card = socdev->card;
126 struct snd_pcm_runtime *runtime = substream->runtime;
127 struct snd_soc_dai_link *machine = rtd->dai;
128 struct snd_soc_platform *platform = card->platform;
129 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
130 struct snd_soc_dai *codec_dai = machine->codec_dai;
131 int ret = 0;
132
133 mutex_lock(&pcm_mutex);
134
135 /* startup the audio subsystem */
136 if (cpu_dai->ops->startup) {
137 ret = cpu_dai->ops->startup(substream, cpu_dai);
138 if (ret < 0) {
139 printk(KERN_ERR "asoc: can't open interface %s\n",
140 cpu_dai->name);
141 goto out;
142 }
143 }
144
145 if (platform->pcm_ops->open) {
146 ret = platform->pcm_ops->open(substream);
147 if (ret < 0) {
148 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
149 goto platform_err;
150 }
151 }
152
153 if (codec_dai->ops->startup) {
154 ret = codec_dai->ops->startup(substream, codec_dai);
155 if (ret < 0) {
156 printk(KERN_ERR "asoc: can't open codec %s\n",
157 codec_dai->name);
158 goto codec_dai_err;
159 }
160 }
161
162 if (machine->ops && machine->ops->startup) {
163 ret = machine->ops->startup(substream);
164 if (ret < 0) {
165 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
166 goto machine_err;
167 }
168 }
169
170 /* Check that the codec and cpu DAI's are compatible */
171 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 runtime->hw.rate_min =
173 max(codec_dai->playback.rate_min,
174 cpu_dai->playback.rate_min);
175 runtime->hw.rate_max =
176 min(codec_dai->playback.rate_max,
177 cpu_dai->playback.rate_max);
178 runtime->hw.channels_min =
179 max(codec_dai->playback.channels_min,
180 cpu_dai->playback.channels_min);
181 runtime->hw.channels_max =
182 min(codec_dai->playback.channels_max,
183 cpu_dai->playback.channels_max);
184 runtime->hw.formats =
185 codec_dai->playback.formats & cpu_dai->playback.formats;
186 runtime->hw.rates =
187 codec_dai->playback.rates & cpu_dai->playback.rates;
188 } else {
189 runtime->hw.rate_min =
190 max(codec_dai->capture.rate_min,
191 cpu_dai->capture.rate_min);
192 runtime->hw.rate_max =
193 min(codec_dai->capture.rate_max,
194 cpu_dai->capture.rate_max);
195 runtime->hw.channels_min =
196 max(codec_dai->capture.channels_min,
197 cpu_dai->capture.channels_min);
198 runtime->hw.channels_max =
199 min(codec_dai->capture.channels_max,
200 cpu_dai->capture.channels_max);
201 runtime->hw.formats =
202 codec_dai->capture.formats & cpu_dai->capture.formats;
203 runtime->hw.rates =
204 codec_dai->capture.rates & cpu_dai->capture.rates;
205 }
206
207 snd_pcm_limit_hw_rates(runtime);
208 if (!runtime->hw.rates) {
209 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
210 codec_dai->name, cpu_dai->name);
211 goto machine_err;
212 }
213 if (!runtime->hw.formats) {
214 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
215 codec_dai->name, cpu_dai->name);
216 goto machine_err;
217 }
218 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
219 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
220 codec_dai->name, cpu_dai->name);
221 goto machine_err;
222 }
223
224 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
225 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
226 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
227 runtime->hw.channels_max);
228 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
229 runtime->hw.rate_max);
230
231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 cpu_dai->playback.active = codec_dai->playback.active = 1;
233 else
234 cpu_dai->capture.active = codec_dai->capture.active = 1;
235 cpu_dai->active = codec_dai->active = 1;
236 cpu_dai->runtime = runtime;
237 card->codec->active++;
238 mutex_unlock(&pcm_mutex);
239 return 0;
240
241 machine_err:
242 if (machine->ops && machine->ops->shutdown)
243 machine->ops->shutdown(substream);
244
245 codec_dai_err:
246 if (platform->pcm_ops->close)
247 platform->pcm_ops->close(substream);
248
249 platform_err:
250 if (cpu_dai->ops->shutdown)
251 cpu_dai->ops->shutdown(substream, cpu_dai);
252 out:
253 mutex_unlock(&pcm_mutex);
254 return ret;
255 }
256
257 /*
258 * Power down the audio subsystem pmdown_time msecs after close is called.
259 * This is to ensure there are no pops or clicks in between any music tracks
260 * due to DAPM power cycling.
261 */
262 static void close_delayed_work(struct work_struct *work)
263 {
264 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
265 delayed_work.work);
266 struct snd_soc_device *socdev = card->socdev;
267 struct snd_soc_codec *codec = card->codec;
268 struct snd_soc_dai *codec_dai;
269 int i;
270
271 mutex_lock(&pcm_mutex);
272 for (i = 0; i < codec->num_dai; i++) {
273 codec_dai = &codec->dai[i];
274
275 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
276 codec_dai->playback.stream_name,
277 codec_dai->playback.active ? "active" : "inactive",
278 codec_dai->pop_wait ? "yes" : "no");
279
280 /* are we waiting on this codec DAI stream */
281 if (codec_dai->pop_wait == 1) {
282
283 /* Reduce power if no longer active */
284 if (codec->active == 0) {
285 pr_debug("pop wq D1 %s %s\n", codec->name,
286 codec_dai->playback.stream_name);
287 snd_soc_dapm_set_bias_level(socdev,
288 SND_SOC_BIAS_PREPARE);
289 }
290
291 codec_dai->pop_wait = 0;
292 snd_soc_dapm_stream_event(codec,
293 codec_dai->playback.stream_name,
294 SND_SOC_DAPM_STREAM_STOP);
295
296 /* Fall into standby if no longer active */
297 if (codec->active == 0) {
298 pr_debug("pop wq D3 %s %s\n", codec->name,
299 codec_dai->playback.stream_name);
300 snd_soc_dapm_set_bias_level(socdev,
301 SND_SOC_BIAS_STANDBY);
302 }
303 }
304 }
305 mutex_unlock(&pcm_mutex);
306 }
307
308 /*
309 * Called by ALSA when a PCM substream is closed. Private data can be
310 * freed here. The cpu DAI, codec DAI, machine and platform are also
311 * shutdown.
312 */
313 static int soc_codec_close(struct snd_pcm_substream *substream)
314 {
315 struct snd_soc_pcm_runtime *rtd = substream->private_data;
316 struct snd_soc_device *socdev = rtd->socdev;
317 struct snd_soc_card *card = socdev->card;
318 struct snd_soc_dai_link *machine = rtd->dai;
319 struct snd_soc_platform *platform = card->platform;
320 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
321 struct snd_soc_dai *codec_dai = machine->codec_dai;
322 struct snd_soc_codec *codec = card->codec;
323
324 mutex_lock(&pcm_mutex);
325
326 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
327 cpu_dai->playback.active = codec_dai->playback.active = 0;
328 else
329 cpu_dai->capture.active = codec_dai->capture.active = 0;
330
331 if (codec_dai->playback.active == 0 &&
332 codec_dai->capture.active == 0) {
333 cpu_dai->active = codec_dai->active = 0;
334 }
335 codec->active--;
336
337 /* Muting the DAC suppresses artifacts caused during digital
338 * shutdown, for example from stopping clocks.
339 */
340 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
341 snd_soc_dai_digital_mute(codec_dai, 1);
342
343 if (cpu_dai->ops->shutdown)
344 cpu_dai->ops->shutdown(substream, cpu_dai);
345
346 if (codec_dai->ops->shutdown)
347 codec_dai->ops->shutdown(substream, codec_dai);
348
349 if (machine->ops && machine->ops->shutdown)
350 machine->ops->shutdown(substream);
351
352 if (platform->pcm_ops->close)
353 platform->pcm_ops->close(substream);
354 cpu_dai->runtime = NULL;
355
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
357 /* start delayed pop wq here for playback streams */
358 codec_dai->pop_wait = 1;
359 schedule_delayed_work(&card->delayed_work,
360 msecs_to_jiffies(pmdown_time));
361 } else {
362 /* capture streams can be powered down now */
363 snd_soc_dapm_stream_event(codec,
364 codec_dai->capture.stream_name,
365 SND_SOC_DAPM_STREAM_STOP);
366
367 if (codec->active == 0 && codec_dai->pop_wait == 0)
368 snd_soc_dapm_set_bias_level(socdev,
369 SND_SOC_BIAS_STANDBY);
370 }
371
372 mutex_unlock(&pcm_mutex);
373 return 0;
374 }
375
376 /*
377 * Called by ALSA when the PCM substream is prepared, can set format, sample
378 * rate, etc. This function is non atomic and can be called multiple times,
379 * it can refer to the runtime info.
380 */
381 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
382 {
383 struct snd_soc_pcm_runtime *rtd = substream->private_data;
384 struct snd_soc_device *socdev = rtd->socdev;
385 struct snd_soc_card *card = socdev->card;
386 struct snd_soc_dai_link *machine = rtd->dai;
387 struct snd_soc_platform *platform = card->platform;
388 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
389 struct snd_soc_dai *codec_dai = machine->codec_dai;
390 struct snd_soc_codec *codec = card->codec;
391 int ret = 0;
392
393 mutex_lock(&pcm_mutex);
394
395 if (machine->ops && machine->ops->prepare) {
396 ret = machine->ops->prepare(substream);
397 if (ret < 0) {
398 printk(KERN_ERR "asoc: machine prepare error\n");
399 goto out;
400 }
401 }
402
403 if (platform->pcm_ops->prepare) {
404 ret = platform->pcm_ops->prepare(substream);
405 if (ret < 0) {
406 printk(KERN_ERR "asoc: platform prepare error\n");
407 goto out;
408 }
409 }
410
411 if (codec_dai->ops->prepare) {
412 ret = codec_dai->ops->prepare(substream, codec_dai);
413 if (ret < 0) {
414 printk(KERN_ERR "asoc: codec DAI prepare error\n");
415 goto out;
416 }
417 }
418
419 if (cpu_dai->ops->prepare) {
420 ret = cpu_dai->ops->prepare(substream, cpu_dai);
421 if (ret < 0) {
422 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
423 goto out;
424 }
425 }
426
427 /* cancel any delayed stream shutdown that is pending */
428 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
429 codec_dai->pop_wait) {
430 codec_dai->pop_wait = 0;
431 cancel_delayed_work(&card->delayed_work);
432 }
433
434 /* do we need to power up codec */
435 if (codec->bias_level != SND_SOC_BIAS_ON) {
436 snd_soc_dapm_set_bias_level(socdev,
437 SND_SOC_BIAS_PREPARE);
438
439 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 snd_soc_dapm_stream_event(codec,
441 codec_dai->playback.stream_name,
442 SND_SOC_DAPM_STREAM_START);
443 else
444 snd_soc_dapm_stream_event(codec,
445 codec_dai->capture.stream_name,
446 SND_SOC_DAPM_STREAM_START);
447
448 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
449 snd_soc_dai_digital_mute(codec_dai, 0);
450
451 } else {
452 /* codec already powered - power on widgets */
453 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->playback.stream_name,
456 SND_SOC_DAPM_STREAM_START);
457 else
458 snd_soc_dapm_stream_event(codec,
459 codec_dai->capture.stream_name,
460 SND_SOC_DAPM_STREAM_START);
461
462 snd_soc_dai_digital_mute(codec_dai, 0);
463 }
464
465 out:
466 mutex_unlock(&pcm_mutex);
467 return ret;
468 }
469
470 /*
471 * Called by ALSA when the hardware params are set by application. This
472 * function can also be called multiple times and can allocate buffers
473 * (using snd_pcm_lib_* ). It's non-atomic.
474 */
475 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
476 struct snd_pcm_hw_params *params)
477 {
478 struct snd_soc_pcm_runtime *rtd = substream->private_data;
479 struct snd_soc_device *socdev = rtd->socdev;
480 struct snd_soc_dai_link *machine = rtd->dai;
481 struct snd_soc_card *card = socdev->card;
482 struct snd_soc_platform *platform = card->platform;
483 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
484 struct snd_soc_dai *codec_dai = machine->codec_dai;
485 int ret = 0;
486
487 mutex_lock(&pcm_mutex);
488
489 if (machine->ops && machine->ops->hw_params) {
490 ret = machine->ops->hw_params(substream, params);
491 if (ret < 0) {
492 printk(KERN_ERR "asoc: machine hw_params failed\n");
493 goto out;
494 }
495 }
496
497 if (codec_dai->ops->hw_params) {
498 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
499 if (ret < 0) {
500 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
501 codec_dai->name);
502 goto codec_err;
503 }
504 }
505
506 if (cpu_dai->ops->hw_params) {
507 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
508 if (ret < 0) {
509 printk(KERN_ERR "asoc: interface %s hw params failed\n",
510 cpu_dai->name);
511 goto interface_err;
512 }
513 }
514
515 if (platform->pcm_ops->hw_params) {
516 ret = platform->pcm_ops->hw_params(substream, params);
517 if (ret < 0) {
518 printk(KERN_ERR "asoc: platform %s hw params failed\n",
519 platform->name);
520 goto platform_err;
521 }
522 }
523
524 out:
525 mutex_unlock(&pcm_mutex);
526 return ret;
527
528 platform_err:
529 if (cpu_dai->ops->hw_free)
530 cpu_dai->ops->hw_free(substream, cpu_dai);
531
532 interface_err:
533 if (codec_dai->ops->hw_free)
534 codec_dai->ops->hw_free(substream, codec_dai);
535
536 codec_err:
537 if (machine->ops && machine->ops->hw_free)
538 machine->ops->hw_free(substream);
539
540 mutex_unlock(&pcm_mutex);
541 return ret;
542 }
543
544 /*
545 * Free's resources allocated by hw_params, can be called multiple times
546 */
547 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
548 {
549 struct snd_soc_pcm_runtime *rtd = substream->private_data;
550 struct snd_soc_device *socdev = rtd->socdev;
551 struct snd_soc_dai_link *machine = rtd->dai;
552 struct snd_soc_card *card = socdev->card;
553 struct snd_soc_platform *platform = card->platform;
554 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
555 struct snd_soc_dai *codec_dai = machine->codec_dai;
556 struct snd_soc_codec *codec = card->codec;
557
558 mutex_lock(&pcm_mutex);
559
560 /* apply codec digital mute */
561 if (!codec->active)
562 snd_soc_dai_digital_mute(codec_dai, 1);
563
564 /* free any machine hw params */
565 if (machine->ops && machine->ops->hw_free)
566 machine->ops->hw_free(substream);
567
568 /* free any DMA resources */
569 if (platform->pcm_ops->hw_free)
570 platform->pcm_ops->hw_free(substream);
571
572 /* now free hw params for the DAI's */
573 if (codec_dai->ops->hw_free)
574 codec_dai->ops->hw_free(substream, codec_dai);
575
576 if (cpu_dai->ops->hw_free)
577 cpu_dai->ops->hw_free(substream, cpu_dai);
578
579 mutex_unlock(&pcm_mutex);
580 return 0;
581 }
582
583 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
584 {
585 struct snd_soc_pcm_runtime *rtd = substream->private_data;
586 struct snd_soc_device *socdev = rtd->socdev;
587 struct snd_soc_card *card= socdev->card;
588 struct snd_soc_dai_link *machine = rtd->dai;
589 struct snd_soc_platform *platform = card->platform;
590 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
591 struct snd_soc_dai *codec_dai = machine->codec_dai;
592 int ret;
593
594 if (codec_dai->ops->trigger) {
595 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
596 if (ret < 0)
597 return ret;
598 }
599
600 if (platform->pcm_ops->trigger) {
601 ret = platform->pcm_ops->trigger(substream, cmd);
602 if (ret < 0)
603 return ret;
604 }
605
606 if (cpu_dai->ops->trigger) {
607 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
608 if (ret < 0)
609 return ret;
610 }
611 return 0;
612 }
613
614 /* ASoC PCM operations */
615 static struct snd_pcm_ops soc_pcm_ops = {
616 .open = soc_pcm_open,
617 .close = soc_codec_close,
618 .hw_params = soc_pcm_hw_params,
619 .hw_free = soc_pcm_hw_free,
620 .prepare = soc_pcm_prepare,
621 .trigger = soc_pcm_trigger,
622 };
623
624 #ifdef CONFIG_PM
625 /* powers down audio subsystem for suspend */
626 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
627 {
628 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
629 struct snd_soc_card *card = socdev->card;
630 struct snd_soc_platform *platform = card->platform;
631 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
632 struct snd_soc_codec *codec = card->codec;
633 int i;
634
635 /* Due to the resume being scheduled into a workqueue we could
636 * suspend before that's finished - wait for it to complete.
637 */
638 snd_power_lock(codec->card);
639 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
640 snd_power_unlock(codec->card);
641
642 /* we're going to block userspace touching us until resume completes */
643 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
644
645 /* mute any active DAC's */
646 for (i = 0; i < card->num_links; i++) {
647 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
648 if (dai->ops->digital_mute && dai->playback.active)
649 dai->ops->digital_mute(dai, 1);
650 }
651
652 /* suspend all pcms */
653 for (i = 0; i < card->num_links; i++)
654 snd_pcm_suspend_all(card->dai_link[i].pcm);
655
656 if (card->suspend_pre)
657 card->suspend_pre(pdev, state);
658
659 for (i = 0; i < card->num_links; i++) {
660 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
661 if (cpu_dai->suspend && !cpu_dai->ac97_control)
662 cpu_dai->suspend(cpu_dai);
663 if (platform->suspend)
664 platform->suspend(cpu_dai);
665 }
666
667 /* close any waiting streams and save state */
668 run_delayed_work(&card->delayed_work);
669 codec->suspend_bias_level = codec->bias_level;
670
671 for (i = 0; i < codec->num_dai; i++) {
672 char *stream = codec->dai[i].playback.stream_name;
673 if (stream != NULL)
674 snd_soc_dapm_stream_event(codec, stream,
675 SND_SOC_DAPM_STREAM_SUSPEND);
676 stream = codec->dai[i].capture.stream_name;
677 if (stream != NULL)
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
680 }
681
682 if (codec_dev->suspend)
683 codec_dev->suspend(pdev, state);
684
685 for (i = 0; i < card->num_links; i++) {
686 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
687 if (cpu_dai->suspend && cpu_dai->ac97_control)
688 cpu_dai->suspend(cpu_dai);
689 }
690
691 if (card->suspend_post)
692 card->suspend_post(pdev, state);
693
694 return 0;
695 }
696
697 /* deferred resume work, so resume can complete before we finished
698 * setting our codec back up, which can be very slow on I2C
699 */
700 static void soc_resume_deferred(struct work_struct *work)
701 {
702 struct snd_soc_card *card = container_of(work,
703 struct snd_soc_card,
704 deferred_resume_work);
705 struct snd_soc_device *socdev = card->socdev;
706 struct snd_soc_platform *platform = card->platform;
707 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
708 struct snd_soc_codec *codec = card->codec;
709 struct platform_device *pdev = to_platform_device(socdev->dev);
710 int i;
711
712 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
713 * so userspace apps are blocked from touching us
714 */
715
716 dev_dbg(socdev->dev, "starting resume work\n");
717
718 if (card->resume_pre)
719 card->resume_pre(pdev);
720
721 for (i = 0; i < card->num_links; i++) {
722 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
723 if (cpu_dai->resume && cpu_dai->ac97_control)
724 cpu_dai->resume(cpu_dai);
725 }
726
727 if (codec_dev->resume)
728 codec_dev->resume(pdev);
729
730 for (i = 0; i < codec->num_dai; i++) {
731 char *stream = codec->dai[i].playback.stream_name;
732 if (stream != NULL)
733 snd_soc_dapm_stream_event(codec, stream,
734 SND_SOC_DAPM_STREAM_RESUME);
735 stream = codec->dai[i].capture.stream_name;
736 if (stream != NULL)
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
739 }
740
741 /* unmute any active DACs */
742 for (i = 0; i < card->num_links; i++) {
743 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
744 if (dai->ops->digital_mute && dai->playback.active)
745 dai->ops->digital_mute(dai, 0);
746 }
747
748 for (i = 0; i < card->num_links; i++) {
749 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
750 if (cpu_dai->resume && !cpu_dai->ac97_control)
751 cpu_dai->resume(cpu_dai);
752 if (platform->resume)
753 platform->resume(cpu_dai);
754 }
755
756 if (card->resume_post)
757 card->resume_post(pdev);
758
759 dev_dbg(socdev->dev, "resume work completed\n");
760
761 /* userspace can access us now we are back as we were before */
762 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
763 }
764
765 /* powers up audio subsystem after a suspend */
766 static int soc_resume(struct platform_device *pdev)
767 {
768 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
769 struct snd_soc_card *card = socdev->card;
770
771 dev_dbg(socdev->dev, "scheduling resume work\n");
772
773 if (!schedule_work(&card->deferred_resume_work))
774 dev_err(socdev->dev, "resume work item may be lost\n");
775
776 return 0;
777 }
778
779 #else
780 #define soc_suspend NULL
781 #define soc_resume NULL
782 #endif
783
784 static void snd_soc_instantiate_card(struct snd_soc_card *card)
785 {
786 struct platform_device *pdev = container_of(card->dev,
787 struct platform_device,
788 dev);
789 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
790 struct snd_soc_platform *platform;
791 struct snd_soc_dai *dai;
792 int i, found, ret, ac97;
793
794 if (card->instantiated)
795 return;
796
797 found = 0;
798 list_for_each_entry(platform, &platform_list, list)
799 if (card->platform == platform) {
800 found = 1;
801 break;
802 }
803 if (!found) {
804 dev_dbg(card->dev, "Platform %s not registered\n",
805 card->platform->name);
806 return;
807 }
808
809 ac97 = 0;
810 for (i = 0; i < card->num_links; i++) {
811 found = 0;
812 list_for_each_entry(dai, &dai_list, list)
813 if (card->dai_link[i].cpu_dai == dai) {
814 found = 1;
815 break;
816 }
817 if (!found) {
818 dev_dbg(card->dev, "DAI %s not registered\n",
819 card->dai_link[i].cpu_dai->name);
820 return;
821 }
822
823 if (card->dai_link[i].cpu_dai->ac97_control)
824 ac97 = 1;
825 }
826
827 /* If we have AC97 in the system then don't wait for the
828 * codec. This will need revisiting if we have to handle
829 * systems with mixed AC97 and non-AC97 parts. Only check for
830 * DAIs currently; we can't do this per link since some AC97
831 * codecs have non-AC97 DAIs.
832 */
833 if (!ac97)
834 for (i = 0; i < card->num_links; i++) {
835 found = 0;
836 list_for_each_entry(dai, &dai_list, list)
837 if (card->dai_link[i].codec_dai == dai) {
838 found = 1;
839 break;
840 }
841 if (!found) {
842 dev_dbg(card->dev, "DAI %s not registered\n",
843 card->dai_link[i].codec_dai->name);
844 return;
845 }
846 }
847
848 /* Note that we do not current check for codec components */
849
850 dev_dbg(card->dev, "All components present, instantiating\n");
851
852 /* Found everything, bring it up */
853 if (card->probe) {
854 ret = card->probe(pdev);
855 if (ret < 0)
856 return;
857 }
858
859 for (i = 0; i < card->num_links; i++) {
860 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
861 if (cpu_dai->probe) {
862 ret = cpu_dai->probe(pdev, cpu_dai);
863 if (ret < 0)
864 goto cpu_dai_err;
865 }
866 }
867
868 if (codec_dev->probe) {
869 ret = codec_dev->probe(pdev);
870 if (ret < 0)
871 goto cpu_dai_err;
872 }
873
874 if (platform->probe) {
875 ret = platform->probe(pdev);
876 if (ret < 0)
877 goto platform_err;
878 }
879
880 /* DAPM stream work */
881 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
882 #ifdef CONFIG_PM
883 /* deferred resume work */
884 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
885 #endif
886
887 card->instantiated = 1;
888
889 return;
890
891 platform_err:
892 if (codec_dev->remove)
893 codec_dev->remove(pdev);
894
895 cpu_dai_err:
896 for (i--; i >= 0; i--) {
897 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
898 if (cpu_dai->remove)
899 cpu_dai->remove(pdev, cpu_dai);
900 }
901
902 if (card->remove)
903 card->remove(pdev);
904 }
905
906 /*
907 * Attempt to initialise any uninitalised cards. Must be called with
908 * client_mutex.
909 */
910 static void snd_soc_instantiate_cards(void)
911 {
912 struct snd_soc_card *card;
913 list_for_each_entry(card, &card_list, list)
914 snd_soc_instantiate_card(card);
915 }
916
917 /* probes a new socdev */
918 static int soc_probe(struct platform_device *pdev)
919 {
920 int ret = 0;
921 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
922 struct snd_soc_card *card = socdev->card;
923
924 /* Bodge while we push things out of socdev */
925 card->socdev = socdev;
926
927 /* Bodge while we unpick instantiation */
928 card->dev = &pdev->dev;
929 ret = snd_soc_register_card(card);
930 if (ret != 0) {
931 dev_err(&pdev->dev, "Failed to register card\n");
932 return ret;
933 }
934
935 return 0;
936 }
937
938 /* removes a socdev */
939 static int soc_remove(struct platform_device *pdev)
940 {
941 int i;
942 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
943 struct snd_soc_card *card = socdev->card;
944 struct snd_soc_platform *platform = card->platform;
945 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
946
947 run_delayed_work(&card->delayed_work);
948
949 if (platform->remove)
950 platform->remove(pdev);
951
952 if (codec_dev->remove)
953 codec_dev->remove(pdev);
954
955 for (i = 0; i < card->num_links; i++) {
956 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
957 if (cpu_dai->remove)
958 cpu_dai->remove(pdev, cpu_dai);
959 }
960
961 if (card->remove)
962 card->remove(pdev);
963
964 snd_soc_unregister_card(card);
965
966 return 0;
967 }
968
969 /* ASoC platform driver */
970 static struct platform_driver soc_driver = {
971 .driver = {
972 .name = "soc-audio",
973 .owner = THIS_MODULE,
974 },
975 .probe = soc_probe,
976 .remove = soc_remove,
977 .suspend = soc_suspend,
978 .resume = soc_resume,
979 };
980
981 /* create a new pcm */
982 static int soc_new_pcm(struct snd_soc_device *socdev,
983 struct snd_soc_dai_link *dai_link, int num)
984 {
985 struct snd_soc_card *card = socdev->card;
986 struct snd_soc_codec *codec = card->codec;
987 struct snd_soc_platform *platform = card->platform;
988 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
989 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
990 struct snd_soc_pcm_runtime *rtd;
991 struct snd_pcm *pcm;
992 char new_name[64];
993 int ret = 0, playback = 0, capture = 0;
994
995 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
996 if (rtd == NULL)
997 return -ENOMEM;
998
999 rtd->dai = dai_link;
1000 rtd->socdev = socdev;
1001 codec_dai->codec = card->codec;
1002
1003 /* check client and interface hw capabilities */
1004 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1005 num);
1006
1007 if (codec_dai->playback.channels_min)
1008 playback = 1;
1009 if (codec_dai->capture.channels_min)
1010 capture = 1;
1011
1012 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1013 capture, &pcm);
1014 if (ret < 0) {
1015 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1016 codec->name);
1017 kfree(rtd);
1018 return ret;
1019 }
1020
1021 dai_link->pcm = pcm;
1022 pcm->private_data = rtd;
1023 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1024 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1025 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1026 soc_pcm_ops.copy = platform->pcm_ops->copy;
1027 soc_pcm_ops.silence = platform->pcm_ops->silence;
1028 soc_pcm_ops.ack = platform->pcm_ops->ack;
1029 soc_pcm_ops.page = platform->pcm_ops->page;
1030
1031 if (playback)
1032 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1033
1034 if (capture)
1035 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1036
1037 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1038 if (ret < 0) {
1039 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1040 kfree(rtd);
1041 return ret;
1042 }
1043
1044 pcm->private_free = platform->pcm_free;
1045 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1046 cpu_dai->name);
1047 return ret;
1048 }
1049
1050 /* codec register dump */
1051 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1052 {
1053 int i, step = 1, count = 0;
1054
1055 if (!codec->reg_cache_size)
1056 return 0;
1057
1058 if (codec->reg_cache_step)
1059 step = codec->reg_cache_step;
1060
1061 count += sprintf(buf, "%s registers\n", codec->name);
1062 for (i = 0; i < codec->reg_cache_size; i += step) {
1063 count += sprintf(buf + count, "%2x: ", i);
1064 if (count >= PAGE_SIZE - 1)
1065 break;
1066
1067 if (codec->display_register)
1068 count += codec->display_register(codec, buf + count,
1069 PAGE_SIZE - count, i);
1070 else
1071 count += snprintf(buf + count, PAGE_SIZE - count,
1072 "%4x", codec->read(codec, i));
1073
1074 if (count >= PAGE_SIZE - 1)
1075 break;
1076
1077 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1078 if (count >= PAGE_SIZE - 1)
1079 break;
1080 }
1081
1082 /* Truncate count; min() would cause a warning */
1083 if (count >= PAGE_SIZE)
1084 count = PAGE_SIZE - 1;
1085
1086 return count;
1087 }
1088 static ssize_t codec_reg_show(struct device *dev,
1089 struct device_attribute *attr, char *buf)
1090 {
1091 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1092 return soc_codec_reg_show(devdata->card->codec, buf);
1093 }
1094
1095 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1096
1097 #ifdef CONFIG_DEBUG_FS
1098 static int codec_reg_open_file(struct inode *inode, struct file *file)
1099 {
1100 file->private_data = inode->i_private;
1101 return 0;
1102 }
1103
1104 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1105 size_t count, loff_t *ppos)
1106 {
1107 ssize_t ret;
1108 struct snd_soc_codec *codec = file->private_data;
1109 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1110 if (!buf)
1111 return -ENOMEM;
1112 ret = soc_codec_reg_show(codec, buf);
1113 if (ret >= 0)
1114 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1115 kfree(buf);
1116 return ret;
1117 }
1118
1119 static ssize_t codec_reg_write_file(struct file *file,
1120 const char __user *user_buf, size_t count, loff_t *ppos)
1121 {
1122 char buf[32];
1123 int buf_size;
1124 char *start = buf;
1125 unsigned long reg, value;
1126 int step = 1;
1127 struct snd_soc_codec *codec = file->private_data;
1128
1129 buf_size = min(count, (sizeof(buf)-1));
1130 if (copy_from_user(buf, user_buf, buf_size))
1131 return -EFAULT;
1132 buf[buf_size] = 0;
1133
1134 if (codec->reg_cache_step)
1135 step = codec->reg_cache_step;
1136
1137 while (*start == ' ')
1138 start++;
1139 reg = simple_strtoul(start, &start, 16);
1140 if ((reg >= codec->reg_cache_size) || (reg % step))
1141 return -EINVAL;
1142 while (*start == ' ')
1143 start++;
1144 if (strict_strtoul(start, 16, &value))
1145 return -EINVAL;
1146 codec->write(codec, reg, value);
1147 return buf_size;
1148 }
1149
1150 static const struct file_operations codec_reg_fops = {
1151 .open = codec_reg_open_file,
1152 .read = codec_reg_read_file,
1153 .write = codec_reg_write_file,
1154 };
1155
1156 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1157 {
1158 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1159 debugfs_root, codec,
1160 &codec_reg_fops);
1161 if (!codec->debugfs_reg)
1162 printk(KERN_WARNING
1163 "ASoC: Failed to create codec register debugfs file\n");
1164
1165 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1166 debugfs_root,
1167 &codec->pop_time);
1168 if (!codec->debugfs_pop_time)
1169 printk(KERN_WARNING
1170 "Failed to create pop time debugfs file\n");
1171 }
1172
1173 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1174 {
1175 debugfs_remove(codec->debugfs_pop_time);
1176 debugfs_remove(codec->debugfs_reg);
1177 }
1178
1179 #else
1180
1181 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1182 {
1183 }
1184
1185 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1186 {
1187 }
1188 #endif
1189
1190 /**
1191 * snd_soc_new_ac97_codec - initailise AC97 device
1192 * @codec: audio codec
1193 * @ops: AC97 bus operations
1194 * @num: AC97 codec number
1195 *
1196 * Initialises AC97 codec resources for use by ad-hoc devices only.
1197 */
1198 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1199 struct snd_ac97_bus_ops *ops, int num)
1200 {
1201 mutex_lock(&codec->mutex);
1202
1203 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1204 if (codec->ac97 == NULL) {
1205 mutex_unlock(&codec->mutex);
1206 return -ENOMEM;
1207 }
1208
1209 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1210 if (codec->ac97->bus == NULL) {
1211 kfree(codec->ac97);
1212 codec->ac97 = NULL;
1213 mutex_unlock(&codec->mutex);
1214 return -ENOMEM;
1215 }
1216
1217 codec->ac97->bus->ops = ops;
1218 codec->ac97->num = num;
1219 mutex_unlock(&codec->mutex);
1220 return 0;
1221 }
1222 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1223
1224 /**
1225 * snd_soc_free_ac97_codec - free AC97 codec device
1226 * @codec: audio codec
1227 *
1228 * Frees AC97 codec device resources.
1229 */
1230 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1231 {
1232 mutex_lock(&codec->mutex);
1233 kfree(codec->ac97->bus);
1234 kfree(codec->ac97);
1235 codec->ac97 = NULL;
1236 mutex_unlock(&codec->mutex);
1237 }
1238 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1239
1240 /**
1241 * snd_soc_update_bits - update codec register bits
1242 * @codec: audio codec
1243 * @reg: codec register
1244 * @mask: register mask
1245 * @value: new value
1246 *
1247 * Writes new register value.
1248 *
1249 * Returns 1 for change else 0.
1250 */
1251 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1252 unsigned short mask, unsigned short value)
1253 {
1254 int change;
1255 unsigned short old, new;
1256
1257 mutex_lock(&io_mutex);
1258 old = snd_soc_read(codec, reg);
1259 new = (old & ~mask) | value;
1260 change = old != new;
1261 if (change)
1262 snd_soc_write(codec, reg, new);
1263
1264 mutex_unlock(&io_mutex);
1265 return change;
1266 }
1267 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1268
1269 /**
1270 * snd_soc_test_bits - test register for change
1271 * @codec: audio codec
1272 * @reg: codec register
1273 * @mask: register mask
1274 * @value: new value
1275 *
1276 * Tests a register with a new value and checks if the new value is
1277 * different from the old value.
1278 *
1279 * Returns 1 for change else 0.
1280 */
1281 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1282 unsigned short mask, unsigned short value)
1283 {
1284 int change;
1285 unsigned short old, new;
1286
1287 mutex_lock(&io_mutex);
1288 old = snd_soc_read(codec, reg);
1289 new = (old & ~mask) | value;
1290 change = old != new;
1291 mutex_unlock(&io_mutex);
1292
1293 return change;
1294 }
1295 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1296
1297 /**
1298 * snd_soc_new_pcms - create new sound card and pcms
1299 * @socdev: the SoC audio device
1300 * @idx: ALSA card index
1301 * @xid: card identification
1302 *
1303 * Create a new sound card based upon the codec and interface pcms.
1304 *
1305 * Returns 0 for success, else error.
1306 */
1307 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1308 {
1309 struct snd_soc_card *card = socdev->card;
1310 struct snd_soc_codec *codec = card->codec;
1311 int ret, i;
1312
1313 mutex_lock(&codec->mutex);
1314
1315 /* register a sound card */
1316 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1317 if (ret < 0) {
1318 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1319 codec->name);
1320 mutex_unlock(&codec->mutex);
1321 return ret;
1322 }
1323
1324 codec->card->dev = socdev->dev;
1325 codec->card->private_data = codec;
1326 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1327
1328 /* create the pcms */
1329 for (i = 0; i < card->num_links; i++) {
1330 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1331 if (ret < 0) {
1332 printk(KERN_ERR "asoc: can't create pcm %s\n",
1333 card->dai_link[i].stream_name);
1334 mutex_unlock(&codec->mutex);
1335 return ret;
1336 }
1337 }
1338
1339 mutex_unlock(&codec->mutex);
1340 return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1343
1344 /**
1345 * snd_soc_init_card - register sound card
1346 * @socdev: the SoC audio device
1347 *
1348 * Register a SoC sound card. Also registers an AC97 device if the
1349 * codec is AC97 for ad hoc devices.
1350 *
1351 * Returns 0 for success, else error.
1352 */
1353 int snd_soc_init_card(struct snd_soc_device *socdev)
1354 {
1355 struct snd_soc_card *card = socdev->card;
1356 struct snd_soc_codec *codec = card->codec;
1357 int ret = 0, i, ac97 = 0, err = 0;
1358
1359 for (i = 0; i < card->num_links; i++) {
1360 if (card->dai_link[i].init) {
1361 err = card->dai_link[i].init(codec);
1362 if (err < 0) {
1363 printk(KERN_ERR "asoc: failed to init %s\n",
1364 card->dai_link[i].stream_name);
1365 continue;
1366 }
1367 }
1368 if (card->dai_link[i].codec_dai->ac97_control)
1369 ac97 = 1;
1370 }
1371 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1372 "%s", card->name);
1373 snprintf(codec->card->longname, sizeof(codec->card->longname),
1374 "%s (%s)", card->name, codec->name);
1375
1376 ret = snd_card_register(codec->card);
1377 if (ret < 0) {
1378 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1379 codec->name);
1380 goto out;
1381 }
1382
1383 mutex_lock(&codec->mutex);
1384 #ifdef CONFIG_SND_SOC_AC97_BUS
1385 /* Only instantiate AC97 if not already done by the adaptor
1386 * for the generic AC97 subsystem.
1387 */
1388 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1389 ret = soc_ac97_dev_register(codec);
1390 if (ret < 0) {
1391 printk(KERN_ERR "asoc: AC97 device register failed\n");
1392 snd_card_free(codec->card);
1393 mutex_unlock(&codec->mutex);
1394 goto out;
1395 }
1396 }
1397 #endif
1398
1399 err = snd_soc_dapm_sys_add(socdev->dev);
1400 if (err < 0)
1401 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1402
1403 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1404 if (err < 0)
1405 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1406
1407 soc_init_codec_debugfs(codec);
1408 mutex_unlock(&codec->mutex);
1409
1410 out:
1411 return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1414
1415 /**
1416 * snd_soc_free_pcms - free sound card and pcms
1417 * @socdev: the SoC audio device
1418 *
1419 * Frees sound card and pcms associated with the socdev.
1420 * Also unregister the codec if it is an AC97 device.
1421 */
1422 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1423 {
1424 struct snd_soc_codec *codec = socdev->card->codec;
1425 #ifdef CONFIG_SND_SOC_AC97_BUS
1426 struct snd_soc_dai *codec_dai;
1427 int i;
1428 #endif
1429
1430 mutex_lock(&codec->mutex);
1431 soc_cleanup_codec_debugfs(codec);
1432 #ifdef CONFIG_SND_SOC_AC97_BUS
1433 for (i = 0; i < codec->num_dai; i++) {
1434 codec_dai = &codec->dai[i];
1435 if (codec_dai->ac97_control && codec->ac97) {
1436 soc_ac97_dev_unregister(codec);
1437 goto free_card;
1438 }
1439 }
1440 free_card:
1441 #endif
1442
1443 if (codec->card)
1444 snd_card_free(codec->card);
1445 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1446 mutex_unlock(&codec->mutex);
1447 }
1448 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1449
1450 /**
1451 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1452 * @substream: the pcm substream
1453 * @hw: the hardware parameters
1454 *
1455 * Sets the substream runtime hardware parameters.
1456 */
1457 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1458 const struct snd_pcm_hardware *hw)
1459 {
1460 struct snd_pcm_runtime *runtime = substream->runtime;
1461 runtime->hw.info = hw->info;
1462 runtime->hw.formats = hw->formats;
1463 runtime->hw.period_bytes_min = hw->period_bytes_min;
1464 runtime->hw.period_bytes_max = hw->period_bytes_max;
1465 runtime->hw.periods_min = hw->periods_min;
1466 runtime->hw.periods_max = hw->periods_max;
1467 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1468 runtime->hw.fifo_size = hw->fifo_size;
1469 return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1472
1473 /**
1474 * snd_soc_cnew - create new control
1475 * @_template: control template
1476 * @data: control private data
1477 * @long_name: control long name
1478 *
1479 * Create a new mixer control from a template control.
1480 *
1481 * Returns 0 for success, else error.
1482 */
1483 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1484 void *data, char *long_name)
1485 {
1486 struct snd_kcontrol_new template;
1487
1488 memcpy(&template, _template, sizeof(template));
1489 if (long_name)
1490 template.name = long_name;
1491 template.index = 0;
1492
1493 return snd_ctl_new1(&template, data);
1494 }
1495 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1496
1497 /**
1498 * snd_soc_add_controls - add an array of controls to a codec.
1499 * Convienience function to add a list of controls. Many codecs were
1500 * duplicating this code.
1501 *
1502 * @codec: codec to add controls to
1503 * @controls: array of controls to add
1504 * @num_controls: number of elements in the array
1505 *
1506 * Return 0 for success, else error.
1507 */
1508 int snd_soc_add_controls(struct snd_soc_codec *codec,
1509 const struct snd_kcontrol_new *controls, int num_controls)
1510 {
1511 struct snd_card *card = codec->card;
1512 int err, i;
1513
1514 for (i = 0; i < num_controls; i++) {
1515 const struct snd_kcontrol_new *control = &controls[i];
1516 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1517 if (err < 0) {
1518 dev_err(codec->dev, "%s: Failed to add %s\n",
1519 codec->name, control->name);
1520 return err;
1521 }
1522 }
1523
1524 return 0;
1525 }
1526 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1527
1528 /**
1529 * snd_soc_info_enum_double - enumerated double mixer info callback
1530 * @kcontrol: mixer control
1531 * @uinfo: control element information
1532 *
1533 * Callback to provide information about a double enumerated
1534 * mixer control.
1535 *
1536 * Returns 0 for success.
1537 */
1538 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1539 struct snd_ctl_elem_info *uinfo)
1540 {
1541 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1542
1543 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1544 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1545 uinfo->value.enumerated.items = e->max;
1546
1547 if (uinfo->value.enumerated.item > e->max - 1)
1548 uinfo->value.enumerated.item = e->max - 1;
1549 strcpy(uinfo->value.enumerated.name,
1550 e->texts[uinfo->value.enumerated.item]);
1551 return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1554
1555 /**
1556 * snd_soc_get_enum_double - enumerated double mixer get callback
1557 * @kcontrol: mixer control
1558 * @ucontrol: control element information
1559 *
1560 * Callback to get the value of a double enumerated mixer.
1561 *
1562 * Returns 0 for success.
1563 */
1564 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1565 struct snd_ctl_elem_value *ucontrol)
1566 {
1567 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1568 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1569 unsigned short val, bitmask;
1570
1571 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1572 ;
1573 val = snd_soc_read(codec, e->reg);
1574 ucontrol->value.enumerated.item[0]
1575 = (val >> e->shift_l) & (bitmask - 1);
1576 if (e->shift_l != e->shift_r)
1577 ucontrol->value.enumerated.item[1] =
1578 (val >> e->shift_r) & (bitmask - 1);
1579
1580 return 0;
1581 }
1582 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1583
1584 /**
1585 * snd_soc_put_enum_double - enumerated double mixer put callback
1586 * @kcontrol: mixer control
1587 * @ucontrol: control element information
1588 *
1589 * Callback to set the value of a double enumerated mixer.
1590 *
1591 * Returns 0 for success.
1592 */
1593 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1594 struct snd_ctl_elem_value *ucontrol)
1595 {
1596 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1597 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1598 unsigned short val;
1599 unsigned short mask, bitmask;
1600
1601 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1602 ;
1603 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1604 return -EINVAL;
1605 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1606 mask = (bitmask - 1) << e->shift_l;
1607 if (e->shift_l != e->shift_r) {
1608 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1609 return -EINVAL;
1610 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1611 mask |= (bitmask - 1) << e->shift_r;
1612 }
1613
1614 return snd_soc_update_bits(codec, e->reg, mask, val);
1615 }
1616 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1617
1618 /**
1619 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1620 * @kcontrol: mixer control
1621 * @ucontrol: control element information
1622 *
1623 * Callback to get the value of a double semi enumerated mixer.
1624 *
1625 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1626 * used for handling bitfield coded enumeration for example.
1627 *
1628 * Returns 0 for success.
1629 */
1630 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1631 struct snd_ctl_elem_value *ucontrol)
1632 {
1633 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1634 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1635 unsigned short reg_val, val, mux;
1636
1637 reg_val = snd_soc_read(codec, e->reg);
1638 val = (reg_val >> e->shift_l) & e->mask;
1639 for (mux = 0; mux < e->max; mux++) {
1640 if (val == e->values[mux])
1641 break;
1642 }
1643 ucontrol->value.enumerated.item[0] = mux;
1644 if (e->shift_l != e->shift_r) {
1645 val = (reg_val >> e->shift_r) & e->mask;
1646 for (mux = 0; mux < e->max; mux++) {
1647 if (val == e->values[mux])
1648 break;
1649 }
1650 ucontrol->value.enumerated.item[1] = mux;
1651 }
1652
1653 return 0;
1654 }
1655 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1656
1657 /**
1658 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1659 * @kcontrol: mixer control
1660 * @ucontrol: control element information
1661 *
1662 * Callback to set the value of a double semi enumerated mixer.
1663 *
1664 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1665 * used for handling bitfield coded enumeration for example.
1666 *
1667 * Returns 0 for success.
1668 */
1669 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1670 struct snd_ctl_elem_value *ucontrol)
1671 {
1672 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1673 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1674 unsigned short val;
1675 unsigned short mask;
1676
1677 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1678 return -EINVAL;
1679 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1680 mask = e->mask << e->shift_l;
1681 if (e->shift_l != e->shift_r) {
1682 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1683 return -EINVAL;
1684 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1685 mask |= e->mask << e->shift_r;
1686 }
1687
1688 return snd_soc_update_bits(codec, e->reg, mask, val);
1689 }
1690 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1691
1692 /**
1693 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1694 * @kcontrol: mixer control
1695 * @uinfo: control element information
1696 *
1697 * Callback to provide information about an external enumerated
1698 * single mixer.
1699 *
1700 * Returns 0 for success.
1701 */
1702 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1703 struct snd_ctl_elem_info *uinfo)
1704 {
1705 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1706
1707 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1708 uinfo->count = 1;
1709 uinfo->value.enumerated.items = e->max;
1710
1711 if (uinfo->value.enumerated.item > e->max - 1)
1712 uinfo->value.enumerated.item = e->max - 1;
1713 strcpy(uinfo->value.enumerated.name,
1714 e->texts[uinfo->value.enumerated.item]);
1715 return 0;
1716 }
1717 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1718
1719 /**
1720 * snd_soc_info_volsw_ext - external single mixer info callback
1721 * @kcontrol: mixer control
1722 * @uinfo: control element information
1723 *
1724 * Callback to provide information about a single external mixer control.
1725 *
1726 * Returns 0 for success.
1727 */
1728 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1729 struct snd_ctl_elem_info *uinfo)
1730 {
1731 int max = kcontrol->private_value;
1732
1733 if (max == 1)
1734 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1735 else
1736 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1737
1738 uinfo->count = 1;
1739 uinfo->value.integer.min = 0;
1740 uinfo->value.integer.max = max;
1741 return 0;
1742 }
1743 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1744
1745 /**
1746 * snd_soc_info_volsw - single mixer info callback
1747 * @kcontrol: mixer control
1748 * @uinfo: control element information
1749 *
1750 * Callback to provide information about a single mixer control.
1751 *
1752 * Returns 0 for success.
1753 */
1754 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1755 struct snd_ctl_elem_info *uinfo)
1756 {
1757 struct soc_mixer_control *mc =
1758 (struct soc_mixer_control *)kcontrol->private_value;
1759 int max = mc->max;
1760 unsigned int shift = mc->shift;
1761 unsigned int rshift = mc->rshift;
1762
1763 if (max == 1)
1764 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1765 else
1766 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1767
1768 uinfo->count = shift == rshift ? 1 : 2;
1769 uinfo->value.integer.min = 0;
1770 uinfo->value.integer.max = max;
1771 return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1774
1775 /**
1776 * snd_soc_get_volsw - single mixer get callback
1777 * @kcontrol: mixer control
1778 * @ucontrol: control element information
1779 *
1780 * Callback to get the value of a single mixer control.
1781 *
1782 * Returns 0 for success.
1783 */
1784 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1785 struct snd_ctl_elem_value *ucontrol)
1786 {
1787 struct soc_mixer_control *mc =
1788 (struct soc_mixer_control *)kcontrol->private_value;
1789 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1790 unsigned int reg = mc->reg;
1791 unsigned int shift = mc->shift;
1792 unsigned int rshift = mc->rshift;
1793 int max = mc->max;
1794 unsigned int mask = (1 << fls(max)) - 1;
1795 unsigned int invert = mc->invert;
1796
1797 ucontrol->value.integer.value[0] =
1798 (snd_soc_read(codec, reg) >> shift) & mask;
1799 if (shift != rshift)
1800 ucontrol->value.integer.value[1] =
1801 (snd_soc_read(codec, reg) >> rshift) & mask;
1802 if (invert) {
1803 ucontrol->value.integer.value[0] =
1804 max - ucontrol->value.integer.value[0];
1805 if (shift != rshift)
1806 ucontrol->value.integer.value[1] =
1807 max - ucontrol->value.integer.value[1];
1808 }
1809
1810 return 0;
1811 }
1812 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1813
1814 /**
1815 * snd_soc_put_volsw - single mixer put callback
1816 * @kcontrol: mixer control
1817 * @ucontrol: control element information
1818 *
1819 * Callback to set the value of a single mixer control.
1820 *
1821 * Returns 0 for success.
1822 */
1823 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1824 struct snd_ctl_elem_value *ucontrol)
1825 {
1826 struct soc_mixer_control *mc =
1827 (struct soc_mixer_control *)kcontrol->private_value;
1828 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1829 unsigned int reg = mc->reg;
1830 unsigned int shift = mc->shift;
1831 unsigned int rshift = mc->rshift;
1832 int max = mc->max;
1833 unsigned int mask = (1 << fls(max)) - 1;
1834 unsigned int invert = mc->invert;
1835 unsigned short val, val2, val_mask;
1836
1837 val = (ucontrol->value.integer.value[0] & mask);
1838 if (invert)
1839 val = max - val;
1840 val_mask = mask << shift;
1841 val = val << shift;
1842 if (shift != rshift) {
1843 val2 = (ucontrol->value.integer.value[1] & mask);
1844 if (invert)
1845 val2 = max - val2;
1846 val_mask |= mask << rshift;
1847 val |= val2 << rshift;
1848 }
1849 return snd_soc_update_bits(codec, reg, val_mask, val);
1850 }
1851 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1852
1853 /**
1854 * snd_soc_info_volsw_2r - double mixer info callback
1855 * @kcontrol: mixer control
1856 * @uinfo: control element information
1857 *
1858 * Callback to provide information about a double mixer control that
1859 * spans 2 codec registers.
1860 *
1861 * Returns 0 for success.
1862 */
1863 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1864 struct snd_ctl_elem_info *uinfo)
1865 {
1866 struct soc_mixer_control *mc =
1867 (struct soc_mixer_control *)kcontrol->private_value;
1868 int max = mc->max;
1869
1870 if (max == 1)
1871 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1872 else
1873 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1874
1875 uinfo->count = 2;
1876 uinfo->value.integer.min = 0;
1877 uinfo->value.integer.max = max;
1878 return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1881
1882 /**
1883 * snd_soc_get_volsw_2r - double mixer get callback
1884 * @kcontrol: mixer control
1885 * @ucontrol: control element information
1886 *
1887 * Callback to get the value of a double mixer control that spans 2 registers.
1888 *
1889 * Returns 0 for success.
1890 */
1891 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1892 struct snd_ctl_elem_value *ucontrol)
1893 {
1894 struct soc_mixer_control *mc =
1895 (struct soc_mixer_control *)kcontrol->private_value;
1896 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1897 unsigned int reg = mc->reg;
1898 unsigned int reg2 = mc->rreg;
1899 unsigned int shift = mc->shift;
1900 int max = mc->max;
1901 unsigned int mask = (1<<fls(max))-1;
1902 unsigned int invert = mc->invert;
1903
1904 ucontrol->value.integer.value[0] =
1905 (snd_soc_read(codec, reg) >> shift) & mask;
1906 ucontrol->value.integer.value[1] =
1907 (snd_soc_read(codec, reg2) >> shift) & mask;
1908 if (invert) {
1909 ucontrol->value.integer.value[0] =
1910 max - ucontrol->value.integer.value[0];
1911 ucontrol->value.integer.value[1] =
1912 max - ucontrol->value.integer.value[1];
1913 }
1914
1915 return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1918
1919 /**
1920 * snd_soc_put_volsw_2r - double mixer set callback
1921 * @kcontrol: mixer control
1922 * @ucontrol: control element information
1923 *
1924 * Callback to set the value of a double mixer control that spans 2 registers.
1925 *
1926 * Returns 0 for success.
1927 */
1928 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1929 struct snd_ctl_elem_value *ucontrol)
1930 {
1931 struct soc_mixer_control *mc =
1932 (struct soc_mixer_control *)kcontrol->private_value;
1933 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1934 unsigned int reg = mc->reg;
1935 unsigned int reg2 = mc->rreg;
1936 unsigned int shift = mc->shift;
1937 int max = mc->max;
1938 unsigned int mask = (1 << fls(max)) - 1;
1939 unsigned int invert = mc->invert;
1940 int err;
1941 unsigned short val, val2, val_mask;
1942
1943 val_mask = mask << shift;
1944 val = (ucontrol->value.integer.value[0] & mask);
1945 val2 = (ucontrol->value.integer.value[1] & mask);
1946
1947 if (invert) {
1948 val = max - val;
1949 val2 = max - val2;
1950 }
1951
1952 val = val << shift;
1953 val2 = val2 << shift;
1954
1955 err = snd_soc_update_bits(codec, reg, val_mask, val);
1956 if (err < 0)
1957 return err;
1958
1959 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1960 return err;
1961 }
1962 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1963
1964 /**
1965 * snd_soc_info_volsw_s8 - signed mixer info callback
1966 * @kcontrol: mixer control
1967 * @uinfo: control element information
1968 *
1969 * Callback to provide information about a signed mixer control.
1970 *
1971 * Returns 0 for success.
1972 */
1973 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1974 struct snd_ctl_elem_info *uinfo)
1975 {
1976 struct soc_mixer_control *mc =
1977 (struct soc_mixer_control *)kcontrol->private_value;
1978 int max = mc->max;
1979 int min = mc->min;
1980
1981 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1982 uinfo->count = 2;
1983 uinfo->value.integer.min = 0;
1984 uinfo->value.integer.max = max-min;
1985 return 0;
1986 }
1987 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1988
1989 /**
1990 * snd_soc_get_volsw_s8 - signed mixer get callback
1991 * @kcontrol: mixer control
1992 * @ucontrol: control element information
1993 *
1994 * Callback to get the value of a signed mixer control.
1995 *
1996 * Returns 0 for success.
1997 */
1998 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
1999 struct snd_ctl_elem_value *ucontrol)
2000 {
2001 struct soc_mixer_control *mc =
2002 (struct soc_mixer_control *)kcontrol->private_value;
2003 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2004 unsigned int reg = mc->reg;
2005 int min = mc->min;
2006 int val = snd_soc_read(codec, reg);
2007
2008 ucontrol->value.integer.value[0] =
2009 ((signed char)(val & 0xff))-min;
2010 ucontrol->value.integer.value[1] =
2011 ((signed char)((val >> 8) & 0xff))-min;
2012 return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2015
2016 /**
2017 * snd_soc_put_volsw_sgn - signed mixer put callback
2018 * @kcontrol: mixer control
2019 * @ucontrol: control element information
2020 *
2021 * Callback to set the value of a signed mixer control.
2022 *
2023 * Returns 0 for success.
2024 */
2025 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2026 struct snd_ctl_elem_value *ucontrol)
2027 {
2028 struct soc_mixer_control *mc =
2029 (struct soc_mixer_control *)kcontrol->private_value;
2030 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2031 unsigned int reg = mc->reg;
2032 int min = mc->min;
2033 unsigned short val;
2034
2035 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2036 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2037
2038 return snd_soc_update_bits(codec, reg, 0xffff, val);
2039 }
2040 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2041
2042 /**
2043 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2044 * @dai: DAI
2045 * @clk_id: DAI specific clock ID
2046 * @freq: new clock frequency in Hz
2047 * @dir: new clock direction - input/output.
2048 *
2049 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2050 */
2051 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2052 unsigned int freq, int dir)
2053 {
2054 if (dai->ops->set_sysclk)
2055 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2056 else
2057 return -EINVAL;
2058 }
2059 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2060
2061 /**
2062 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2063 * @dai: DAI
2064 * @div_id: DAI specific clock divider ID
2065 * @div: new clock divisor.
2066 *
2067 * Configures the clock dividers. This is used to derive the best DAI bit and
2068 * frame clocks from the system or master clock. It's best to set the DAI bit
2069 * and frame clocks as low as possible to save system power.
2070 */
2071 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2072 int div_id, int div)
2073 {
2074 if (dai->ops->set_clkdiv)
2075 return dai->ops->set_clkdiv(dai, div_id, div);
2076 else
2077 return -EINVAL;
2078 }
2079 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2080
2081 /**
2082 * snd_soc_dai_set_pll - configure DAI PLL.
2083 * @dai: DAI
2084 * @pll_id: DAI specific PLL ID
2085 * @freq_in: PLL input clock frequency in Hz
2086 * @freq_out: requested PLL output clock frequency in Hz
2087 *
2088 * Configures and enables PLL to generate output clock based on input clock.
2089 */
2090 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2091 int pll_id, unsigned int freq_in, unsigned int freq_out)
2092 {
2093 if (dai->ops->set_pll)
2094 return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
2095 else
2096 return -EINVAL;
2097 }
2098 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2099
2100 /**
2101 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2102 * @dai: DAI
2103 * @fmt: SND_SOC_DAIFMT_ format value.
2104 *
2105 * Configures the DAI hardware format and clocking.
2106 */
2107 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2108 {
2109 if (dai->ops->set_fmt)
2110 return dai->ops->set_fmt(dai, fmt);
2111 else
2112 return -EINVAL;
2113 }
2114 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2115
2116 /**
2117 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2118 * @dai: DAI
2119 * @mask: DAI specific mask representing used slots.
2120 * @slots: Number of slots in use.
2121 *
2122 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2123 * specific.
2124 */
2125 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2126 unsigned int mask, int slots)
2127 {
2128 if (dai->ops->set_sysclk)
2129 return dai->ops->set_tdm_slot(dai, mask, slots);
2130 else
2131 return -EINVAL;
2132 }
2133 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2134
2135 /**
2136 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2137 * @dai: DAI
2138 * @tristate: tristate enable
2139 *
2140 * Tristates the DAI so that others can use it.
2141 */
2142 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2143 {
2144 if (dai->ops->set_sysclk)
2145 return dai->ops->set_tristate(dai, tristate);
2146 else
2147 return -EINVAL;
2148 }
2149 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2150
2151 /**
2152 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2153 * @dai: DAI
2154 * @mute: mute enable
2155 *
2156 * Mutes the DAI DAC.
2157 */
2158 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2159 {
2160 if (dai->ops->digital_mute)
2161 return dai->ops->digital_mute(dai, mute);
2162 else
2163 return -EINVAL;
2164 }
2165 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2166
2167 /**
2168 * snd_soc_register_card - Register a card with the ASoC core
2169 *
2170 * @card: Card to register
2171 *
2172 * Note that currently this is an internal only function: it will be
2173 * exposed to machine drivers after further backporting of ASoC v2
2174 * registration APIs.
2175 */
2176 static int snd_soc_register_card(struct snd_soc_card *card)
2177 {
2178 if (!card->name || !card->dev)
2179 return -EINVAL;
2180
2181 INIT_LIST_HEAD(&card->list);
2182 card->instantiated = 0;
2183
2184 mutex_lock(&client_mutex);
2185 list_add(&card->list, &card_list);
2186 snd_soc_instantiate_cards();
2187 mutex_unlock(&client_mutex);
2188
2189 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2190
2191 return 0;
2192 }
2193
2194 /**
2195 * snd_soc_unregister_card - Unregister a card with the ASoC core
2196 *
2197 * @card: Card to unregister
2198 *
2199 * Note that currently this is an internal only function: it will be
2200 * exposed to machine drivers after further backporting of ASoC v2
2201 * registration APIs.
2202 */
2203 static int snd_soc_unregister_card(struct snd_soc_card *card)
2204 {
2205 mutex_lock(&client_mutex);
2206 list_del(&card->list);
2207 mutex_unlock(&client_mutex);
2208
2209 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2210
2211 return 0;
2212 }
2213
2214 static struct snd_soc_dai_ops null_dai_ops = {
2215 };
2216
2217 /**
2218 * snd_soc_register_dai - Register a DAI with the ASoC core
2219 *
2220 * @dai: DAI to register
2221 */
2222 int snd_soc_register_dai(struct snd_soc_dai *dai)
2223 {
2224 if (!dai->name)
2225 return -EINVAL;
2226
2227 /* The device should become mandatory over time */
2228 if (!dai->dev)
2229 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2230
2231 if (!dai->ops)
2232 dai->ops = &null_dai_ops;
2233
2234 INIT_LIST_HEAD(&dai->list);
2235
2236 mutex_lock(&client_mutex);
2237 list_add(&dai->list, &dai_list);
2238 snd_soc_instantiate_cards();
2239 mutex_unlock(&client_mutex);
2240
2241 pr_debug("Registered DAI '%s'\n", dai->name);
2242
2243 return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2246
2247 /**
2248 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2249 *
2250 * @dai: DAI to unregister
2251 */
2252 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2253 {
2254 mutex_lock(&client_mutex);
2255 list_del(&dai->list);
2256 mutex_unlock(&client_mutex);
2257
2258 pr_debug("Unregistered DAI '%s'\n", dai->name);
2259 }
2260 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2261
2262 /**
2263 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2264 *
2265 * @dai: Array of DAIs to register
2266 * @count: Number of DAIs
2267 */
2268 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2269 {
2270 int i, ret;
2271
2272 for (i = 0; i < count; i++) {
2273 ret = snd_soc_register_dai(&dai[i]);
2274 if (ret != 0)
2275 goto err;
2276 }
2277
2278 return 0;
2279
2280 err:
2281 for (i--; i >= 0; i--)
2282 snd_soc_unregister_dai(&dai[i]);
2283
2284 return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2287
2288 /**
2289 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2290 *
2291 * @dai: Array of DAIs to unregister
2292 * @count: Number of DAIs
2293 */
2294 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2295 {
2296 int i;
2297
2298 for (i = 0; i < count; i++)
2299 snd_soc_unregister_dai(&dai[i]);
2300 }
2301 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2302
2303 /**
2304 * snd_soc_register_platform - Register a platform with the ASoC core
2305 *
2306 * @platform: platform to register
2307 */
2308 int snd_soc_register_platform(struct snd_soc_platform *platform)
2309 {
2310 if (!platform->name)
2311 return -EINVAL;
2312
2313 INIT_LIST_HEAD(&platform->list);
2314
2315 mutex_lock(&client_mutex);
2316 list_add(&platform->list, &platform_list);
2317 snd_soc_instantiate_cards();
2318 mutex_unlock(&client_mutex);
2319
2320 pr_debug("Registered platform '%s'\n", platform->name);
2321
2322 return 0;
2323 }
2324 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2325
2326 /**
2327 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2328 *
2329 * @platform: platform to unregister
2330 */
2331 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2332 {
2333 mutex_lock(&client_mutex);
2334 list_del(&platform->list);
2335 mutex_unlock(&client_mutex);
2336
2337 pr_debug("Unregistered platform '%s'\n", platform->name);
2338 }
2339 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2340
2341 /**
2342 * snd_soc_register_codec - Register a codec with the ASoC core
2343 *
2344 * @codec: codec to register
2345 */
2346 int snd_soc_register_codec(struct snd_soc_codec *codec)
2347 {
2348 if (!codec->name)
2349 return -EINVAL;
2350
2351 /* The device should become mandatory over time */
2352 if (!codec->dev)
2353 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2354
2355 INIT_LIST_HEAD(&codec->list);
2356
2357 mutex_lock(&client_mutex);
2358 list_add(&codec->list, &codec_list);
2359 snd_soc_instantiate_cards();
2360 mutex_unlock(&client_mutex);
2361
2362 pr_debug("Registered codec '%s'\n", codec->name);
2363
2364 return 0;
2365 }
2366 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2367
2368 /**
2369 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2370 *
2371 * @codec: codec to unregister
2372 */
2373 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2374 {
2375 mutex_lock(&client_mutex);
2376 list_del(&codec->list);
2377 mutex_unlock(&client_mutex);
2378
2379 pr_debug("Unregistered codec '%s'\n", codec->name);
2380 }
2381 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2382
2383 static int __init snd_soc_init(void)
2384 {
2385 #ifdef CONFIG_DEBUG_FS
2386 debugfs_root = debugfs_create_dir("asoc", NULL);
2387 if (IS_ERR(debugfs_root) || !debugfs_root) {
2388 printk(KERN_WARNING
2389 "ASoC: Failed to create debugfs directory\n");
2390 debugfs_root = NULL;
2391 }
2392 #endif
2393
2394 return platform_driver_register(&soc_driver);
2395 }
2396
2397 static void __exit snd_soc_exit(void)
2398 {
2399 #ifdef CONFIG_DEBUG_FS
2400 debugfs_remove_recursive(debugfs_root);
2401 #endif
2402 platform_driver_unregister(&soc_driver);
2403 }
2404
2405 module_init(snd_soc_init);
2406 module_exit(snd_soc_exit);
2407
2408 /* Module information */
2409 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2410 MODULE_DESCRIPTION("ALSA SoC Core");
2411 MODULE_LICENSE("GPL");
2412 MODULE_ALIAS("platform:soc-audio");
This page took 0.099967 seconds and 5 git commands to generate.