ALSA: Core - clean up snd_card_set_id* calls and remove possible id collision
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37
38 static DEFINE_MUTEX(pcm_mutex);
39 static DEFINE_MUTEX(io_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54
55 /*
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
59 */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63
64 /*
65 * This function forces any delayed work to be queued and run.
66 */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 int ret;
70
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
73
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
79 }
80 return ret;
81 }
82
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
86 {
87 if (codec->ac97->dev.bus)
88 device_unregister(&codec->ac97->dev);
89 return 0;
90 }
91
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
94
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
97 {
98 int err;
99
100 codec->ac97->dev.bus = &ac97_bus_type;
101 codec->ac97->dev.parent = codec->card->dev;
102 codec->ac97->dev.release = soc_ac97_device_release;
103
104 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
105 codec->card->number, 0, codec->name);
106 err = device_register(&codec->ac97->dev);
107 if (err < 0) {
108 snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 codec->ac97->dev.bus = NULL;
110 return err;
111 }
112 return 0;
113 }
114 #endif
115
116 /*
117 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
118 * then initialized and any private data can be allocated. This also calls
119 * startup for the cpu DAI, platform, machine and codec DAI.
120 */
121 static int soc_pcm_open(struct snd_pcm_substream *substream)
122 {
123 struct snd_soc_pcm_runtime *rtd = substream->private_data;
124 struct snd_soc_device *socdev = rtd->socdev;
125 struct snd_soc_card *card = socdev->card;
126 struct snd_pcm_runtime *runtime = substream->runtime;
127 struct snd_soc_dai_link *machine = rtd->dai;
128 struct snd_soc_platform *platform = card->platform;
129 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
130 struct snd_soc_dai *codec_dai = machine->codec_dai;
131 int ret = 0;
132
133 mutex_lock(&pcm_mutex);
134
135 /* startup the audio subsystem */
136 if (cpu_dai->ops->startup) {
137 ret = cpu_dai->ops->startup(substream, cpu_dai);
138 if (ret < 0) {
139 printk(KERN_ERR "asoc: can't open interface %s\n",
140 cpu_dai->name);
141 goto out;
142 }
143 }
144
145 if (platform->pcm_ops->open) {
146 ret = platform->pcm_ops->open(substream);
147 if (ret < 0) {
148 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
149 goto platform_err;
150 }
151 }
152
153 if (codec_dai->ops->startup) {
154 ret = codec_dai->ops->startup(substream, codec_dai);
155 if (ret < 0) {
156 printk(KERN_ERR "asoc: can't open codec %s\n",
157 codec_dai->name);
158 goto codec_dai_err;
159 }
160 }
161
162 if (machine->ops && machine->ops->startup) {
163 ret = machine->ops->startup(substream);
164 if (ret < 0) {
165 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
166 goto machine_err;
167 }
168 }
169
170 /* Check that the codec and cpu DAI's are compatible */
171 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 runtime->hw.rate_min =
173 max(codec_dai->playback.rate_min,
174 cpu_dai->playback.rate_min);
175 runtime->hw.rate_max =
176 min(codec_dai->playback.rate_max,
177 cpu_dai->playback.rate_max);
178 runtime->hw.channels_min =
179 max(codec_dai->playback.channels_min,
180 cpu_dai->playback.channels_min);
181 runtime->hw.channels_max =
182 min(codec_dai->playback.channels_max,
183 cpu_dai->playback.channels_max);
184 runtime->hw.formats =
185 codec_dai->playback.formats & cpu_dai->playback.formats;
186 runtime->hw.rates =
187 codec_dai->playback.rates & cpu_dai->playback.rates;
188 } else {
189 runtime->hw.rate_min =
190 max(codec_dai->capture.rate_min,
191 cpu_dai->capture.rate_min);
192 runtime->hw.rate_max =
193 min(codec_dai->capture.rate_max,
194 cpu_dai->capture.rate_max);
195 runtime->hw.channels_min =
196 max(codec_dai->capture.channels_min,
197 cpu_dai->capture.channels_min);
198 runtime->hw.channels_max =
199 min(codec_dai->capture.channels_max,
200 cpu_dai->capture.channels_max);
201 runtime->hw.formats =
202 codec_dai->capture.formats & cpu_dai->capture.formats;
203 runtime->hw.rates =
204 codec_dai->capture.rates & cpu_dai->capture.rates;
205 }
206
207 snd_pcm_limit_hw_rates(runtime);
208 if (!runtime->hw.rates) {
209 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
210 codec_dai->name, cpu_dai->name);
211 goto machine_err;
212 }
213 if (!runtime->hw.formats) {
214 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
215 codec_dai->name, cpu_dai->name);
216 goto machine_err;
217 }
218 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
219 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
220 codec_dai->name, cpu_dai->name);
221 goto machine_err;
222 }
223
224 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
225 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
226 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
227 runtime->hw.channels_max);
228 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
229 runtime->hw.rate_max);
230
231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 cpu_dai->playback.active = codec_dai->playback.active = 1;
233 else
234 cpu_dai->capture.active = codec_dai->capture.active = 1;
235 cpu_dai->active = codec_dai->active = 1;
236 cpu_dai->runtime = runtime;
237 card->codec->active++;
238 mutex_unlock(&pcm_mutex);
239 return 0;
240
241 machine_err:
242 if (machine->ops && machine->ops->shutdown)
243 machine->ops->shutdown(substream);
244
245 codec_dai_err:
246 if (platform->pcm_ops->close)
247 platform->pcm_ops->close(substream);
248
249 platform_err:
250 if (cpu_dai->ops->shutdown)
251 cpu_dai->ops->shutdown(substream, cpu_dai);
252 out:
253 mutex_unlock(&pcm_mutex);
254 return ret;
255 }
256
257 /*
258 * Power down the audio subsystem pmdown_time msecs after close is called.
259 * This is to ensure there are no pops or clicks in between any music tracks
260 * due to DAPM power cycling.
261 */
262 static void close_delayed_work(struct work_struct *work)
263 {
264 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
265 delayed_work.work);
266 struct snd_soc_device *socdev = card->socdev;
267 struct snd_soc_codec *codec = card->codec;
268 struct snd_soc_dai *codec_dai;
269 int i;
270
271 mutex_lock(&pcm_mutex);
272 for (i = 0; i < codec->num_dai; i++) {
273 codec_dai = &codec->dai[i];
274
275 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
276 codec_dai->playback.stream_name,
277 codec_dai->playback.active ? "active" : "inactive",
278 codec_dai->pop_wait ? "yes" : "no");
279
280 /* are we waiting on this codec DAI stream */
281 if (codec_dai->pop_wait == 1) {
282
283 /* Reduce power if no longer active */
284 if (codec->active == 0) {
285 pr_debug("pop wq D1 %s %s\n", codec->name,
286 codec_dai->playback.stream_name);
287 snd_soc_dapm_set_bias_level(socdev,
288 SND_SOC_BIAS_PREPARE);
289 }
290
291 codec_dai->pop_wait = 0;
292 snd_soc_dapm_stream_event(codec,
293 codec_dai->playback.stream_name,
294 SND_SOC_DAPM_STREAM_STOP);
295
296 /* Fall into standby if no longer active */
297 if (codec->active == 0) {
298 pr_debug("pop wq D3 %s %s\n", codec->name,
299 codec_dai->playback.stream_name);
300 snd_soc_dapm_set_bias_level(socdev,
301 SND_SOC_BIAS_STANDBY);
302 }
303 }
304 }
305 mutex_unlock(&pcm_mutex);
306 }
307
308 /*
309 * Called by ALSA when a PCM substream is closed. Private data can be
310 * freed here. The cpu DAI, codec DAI, machine and platform are also
311 * shutdown.
312 */
313 static int soc_codec_close(struct snd_pcm_substream *substream)
314 {
315 struct snd_soc_pcm_runtime *rtd = substream->private_data;
316 struct snd_soc_device *socdev = rtd->socdev;
317 struct snd_soc_card *card = socdev->card;
318 struct snd_soc_dai_link *machine = rtd->dai;
319 struct snd_soc_platform *platform = card->platform;
320 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
321 struct snd_soc_dai *codec_dai = machine->codec_dai;
322 struct snd_soc_codec *codec = card->codec;
323
324 mutex_lock(&pcm_mutex);
325
326 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
327 cpu_dai->playback.active = codec_dai->playback.active = 0;
328 else
329 cpu_dai->capture.active = codec_dai->capture.active = 0;
330
331 if (codec_dai->playback.active == 0 &&
332 codec_dai->capture.active == 0) {
333 cpu_dai->active = codec_dai->active = 0;
334 }
335 codec->active--;
336
337 /* Muting the DAC suppresses artifacts caused during digital
338 * shutdown, for example from stopping clocks.
339 */
340 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
341 snd_soc_dai_digital_mute(codec_dai, 1);
342
343 if (cpu_dai->ops->shutdown)
344 cpu_dai->ops->shutdown(substream, cpu_dai);
345
346 if (codec_dai->ops->shutdown)
347 codec_dai->ops->shutdown(substream, codec_dai);
348
349 if (machine->ops && machine->ops->shutdown)
350 machine->ops->shutdown(substream);
351
352 if (platform->pcm_ops->close)
353 platform->pcm_ops->close(substream);
354 cpu_dai->runtime = NULL;
355
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
357 /* start delayed pop wq here for playback streams */
358 codec_dai->pop_wait = 1;
359 schedule_delayed_work(&card->delayed_work,
360 msecs_to_jiffies(pmdown_time));
361 } else {
362 /* capture streams can be powered down now */
363 snd_soc_dapm_stream_event(codec,
364 codec_dai->capture.stream_name,
365 SND_SOC_DAPM_STREAM_STOP);
366
367 if (codec->active == 0 && codec_dai->pop_wait == 0)
368 snd_soc_dapm_set_bias_level(socdev,
369 SND_SOC_BIAS_STANDBY);
370 }
371
372 mutex_unlock(&pcm_mutex);
373 return 0;
374 }
375
376 /*
377 * Called by ALSA when the PCM substream is prepared, can set format, sample
378 * rate, etc. This function is non atomic and can be called multiple times,
379 * it can refer to the runtime info.
380 */
381 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
382 {
383 struct snd_soc_pcm_runtime *rtd = substream->private_data;
384 struct snd_soc_device *socdev = rtd->socdev;
385 struct snd_soc_card *card = socdev->card;
386 struct snd_soc_dai_link *machine = rtd->dai;
387 struct snd_soc_platform *platform = card->platform;
388 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
389 struct snd_soc_dai *codec_dai = machine->codec_dai;
390 struct snd_soc_codec *codec = card->codec;
391 int ret = 0;
392
393 mutex_lock(&pcm_mutex);
394
395 if (machine->ops && machine->ops->prepare) {
396 ret = machine->ops->prepare(substream);
397 if (ret < 0) {
398 printk(KERN_ERR "asoc: machine prepare error\n");
399 goto out;
400 }
401 }
402
403 if (platform->pcm_ops->prepare) {
404 ret = platform->pcm_ops->prepare(substream);
405 if (ret < 0) {
406 printk(KERN_ERR "asoc: platform prepare error\n");
407 goto out;
408 }
409 }
410
411 if (codec_dai->ops->prepare) {
412 ret = codec_dai->ops->prepare(substream, codec_dai);
413 if (ret < 0) {
414 printk(KERN_ERR "asoc: codec DAI prepare error\n");
415 goto out;
416 }
417 }
418
419 if (cpu_dai->ops->prepare) {
420 ret = cpu_dai->ops->prepare(substream, cpu_dai);
421 if (ret < 0) {
422 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
423 goto out;
424 }
425 }
426
427 /* cancel any delayed stream shutdown that is pending */
428 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
429 codec_dai->pop_wait) {
430 codec_dai->pop_wait = 0;
431 cancel_delayed_work(&card->delayed_work);
432 }
433
434 /* do we need to power up codec */
435 if (codec->bias_level != SND_SOC_BIAS_ON) {
436 snd_soc_dapm_set_bias_level(socdev,
437 SND_SOC_BIAS_PREPARE);
438
439 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 snd_soc_dapm_stream_event(codec,
441 codec_dai->playback.stream_name,
442 SND_SOC_DAPM_STREAM_START);
443 else
444 snd_soc_dapm_stream_event(codec,
445 codec_dai->capture.stream_name,
446 SND_SOC_DAPM_STREAM_START);
447
448 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
449 snd_soc_dai_digital_mute(codec_dai, 0);
450
451 } else {
452 /* codec already powered - power on widgets */
453 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->playback.stream_name,
456 SND_SOC_DAPM_STREAM_START);
457 else
458 snd_soc_dapm_stream_event(codec,
459 codec_dai->capture.stream_name,
460 SND_SOC_DAPM_STREAM_START);
461
462 snd_soc_dai_digital_mute(codec_dai, 0);
463 }
464
465 out:
466 mutex_unlock(&pcm_mutex);
467 return ret;
468 }
469
470 /*
471 * Called by ALSA when the hardware params are set by application. This
472 * function can also be called multiple times and can allocate buffers
473 * (using snd_pcm_lib_* ). It's non-atomic.
474 */
475 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
476 struct snd_pcm_hw_params *params)
477 {
478 struct snd_soc_pcm_runtime *rtd = substream->private_data;
479 struct snd_soc_device *socdev = rtd->socdev;
480 struct snd_soc_dai_link *machine = rtd->dai;
481 struct snd_soc_card *card = socdev->card;
482 struct snd_soc_platform *platform = card->platform;
483 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
484 struct snd_soc_dai *codec_dai = machine->codec_dai;
485 int ret = 0;
486
487 mutex_lock(&pcm_mutex);
488
489 if (machine->ops && machine->ops->hw_params) {
490 ret = machine->ops->hw_params(substream, params);
491 if (ret < 0) {
492 printk(KERN_ERR "asoc: machine hw_params failed\n");
493 goto out;
494 }
495 }
496
497 if (codec_dai->ops->hw_params) {
498 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
499 if (ret < 0) {
500 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
501 codec_dai->name);
502 goto codec_err;
503 }
504 }
505
506 if (cpu_dai->ops->hw_params) {
507 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
508 if (ret < 0) {
509 printk(KERN_ERR "asoc: interface %s hw params failed\n",
510 cpu_dai->name);
511 goto interface_err;
512 }
513 }
514
515 if (platform->pcm_ops->hw_params) {
516 ret = platform->pcm_ops->hw_params(substream, params);
517 if (ret < 0) {
518 printk(KERN_ERR "asoc: platform %s hw params failed\n",
519 platform->name);
520 goto platform_err;
521 }
522 }
523
524 out:
525 mutex_unlock(&pcm_mutex);
526 return ret;
527
528 platform_err:
529 if (cpu_dai->ops->hw_free)
530 cpu_dai->ops->hw_free(substream, cpu_dai);
531
532 interface_err:
533 if (codec_dai->ops->hw_free)
534 codec_dai->ops->hw_free(substream, codec_dai);
535
536 codec_err:
537 if (machine->ops && machine->ops->hw_free)
538 machine->ops->hw_free(substream);
539
540 mutex_unlock(&pcm_mutex);
541 return ret;
542 }
543
544 /*
545 * Free's resources allocated by hw_params, can be called multiple times
546 */
547 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
548 {
549 struct snd_soc_pcm_runtime *rtd = substream->private_data;
550 struct snd_soc_device *socdev = rtd->socdev;
551 struct snd_soc_dai_link *machine = rtd->dai;
552 struct snd_soc_card *card = socdev->card;
553 struct snd_soc_platform *platform = card->platform;
554 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
555 struct snd_soc_dai *codec_dai = machine->codec_dai;
556 struct snd_soc_codec *codec = card->codec;
557
558 mutex_lock(&pcm_mutex);
559
560 /* apply codec digital mute */
561 if (!codec->active)
562 snd_soc_dai_digital_mute(codec_dai, 1);
563
564 /* free any machine hw params */
565 if (machine->ops && machine->ops->hw_free)
566 machine->ops->hw_free(substream);
567
568 /* free any DMA resources */
569 if (platform->pcm_ops->hw_free)
570 platform->pcm_ops->hw_free(substream);
571
572 /* now free hw params for the DAI's */
573 if (codec_dai->ops->hw_free)
574 codec_dai->ops->hw_free(substream, codec_dai);
575
576 if (cpu_dai->ops->hw_free)
577 cpu_dai->ops->hw_free(substream, cpu_dai);
578
579 mutex_unlock(&pcm_mutex);
580 return 0;
581 }
582
583 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
584 {
585 struct snd_soc_pcm_runtime *rtd = substream->private_data;
586 struct snd_soc_device *socdev = rtd->socdev;
587 struct snd_soc_card *card= socdev->card;
588 struct snd_soc_dai_link *machine = rtd->dai;
589 struct snd_soc_platform *platform = card->platform;
590 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
591 struct snd_soc_dai *codec_dai = machine->codec_dai;
592 int ret;
593
594 if (codec_dai->ops->trigger) {
595 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
596 if (ret < 0)
597 return ret;
598 }
599
600 if (platform->pcm_ops->trigger) {
601 ret = platform->pcm_ops->trigger(substream, cmd);
602 if (ret < 0)
603 return ret;
604 }
605
606 if (cpu_dai->ops->trigger) {
607 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
608 if (ret < 0)
609 return ret;
610 }
611 return 0;
612 }
613
614 /* ASoC PCM operations */
615 static struct snd_pcm_ops soc_pcm_ops = {
616 .open = soc_pcm_open,
617 .close = soc_codec_close,
618 .hw_params = soc_pcm_hw_params,
619 .hw_free = soc_pcm_hw_free,
620 .prepare = soc_pcm_prepare,
621 .trigger = soc_pcm_trigger,
622 };
623
624 #ifdef CONFIG_PM
625 /* powers down audio subsystem for suspend */
626 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
627 {
628 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
629 struct snd_soc_card *card = socdev->card;
630 struct snd_soc_platform *platform = card->platform;
631 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
632 struct snd_soc_codec *codec = card->codec;
633 int i;
634
635 /* Due to the resume being scheduled into a workqueue we could
636 * suspend before that's finished - wait for it to complete.
637 */
638 snd_power_lock(codec->card);
639 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
640 snd_power_unlock(codec->card);
641
642 /* we're going to block userspace touching us until resume completes */
643 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
644
645 /* mute any active DAC's */
646 for (i = 0; i < card->num_links; i++) {
647 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
648 if (dai->ops->digital_mute && dai->playback.active)
649 dai->ops->digital_mute(dai, 1);
650 }
651
652 /* suspend all pcms */
653 for (i = 0; i < card->num_links; i++)
654 snd_pcm_suspend_all(card->dai_link[i].pcm);
655
656 if (card->suspend_pre)
657 card->suspend_pre(pdev, state);
658
659 for (i = 0; i < card->num_links; i++) {
660 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
661 if (cpu_dai->suspend && !cpu_dai->ac97_control)
662 cpu_dai->suspend(cpu_dai);
663 if (platform->suspend)
664 platform->suspend(cpu_dai);
665 }
666
667 /* close any waiting streams and save state */
668 run_delayed_work(&card->delayed_work);
669 codec->suspend_bias_level = codec->bias_level;
670
671 for (i = 0; i < codec->num_dai; i++) {
672 char *stream = codec->dai[i].playback.stream_name;
673 if (stream != NULL)
674 snd_soc_dapm_stream_event(codec, stream,
675 SND_SOC_DAPM_STREAM_SUSPEND);
676 stream = codec->dai[i].capture.stream_name;
677 if (stream != NULL)
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
680 }
681
682 if (codec_dev->suspend)
683 codec_dev->suspend(pdev, state);
684
685 for (i = 0; i < card->num_links; i++) {
686 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
687 if (cpu_dai->suspend && cpu_dai->ac97_control)
688 cpu_dai->suspend(cpu_dai);
689 }
690
691 if (card->suspend_post)
692 card->suspend_post(pdev, state);
693
694 return 0;
695 }
696
697 /* deferred resume work, so resume can complete before we finished
698 * setting our codec back up, which can be very slow on I2C
699 */
700 static void soc_resume_deferred(struct work_struct *work)
701 {
702 struct snd_soc_card *card = container_of(work,
703 struct snd_soc_card,
704 deferred_resume_work);
705 struct snd_soc_device *socdev = card->socdev;
706 struct snd_soc_platform *platform = card->platform;
707 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
708 struct snd_soc_codec *codec = card->codec;
709 struct platform_device *pdev = to_platform_device(socdev->dev);
710 int i;
711
712 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
713 * so userspace apps are blocked from touching us
714 */
715
716 dev_dbg(socdev->dev, "starting resume work\n");
717
718 if (card->resume_pre)
719 card->resume_pre(pdev);
720
721 for (i = 0; i < card->num_links; i++) {
722 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
723 if (cpu_dai->resume && cpu_dai->ac97_control)
724 cpu_dai->resume(cpu_dai);
725 }
726
727 if (codec_dev->resume)
728 codec_dev->resume(pdev);
729
730 for (i = 0; i < codec->num_dai; i++) {
731 char *stream = codec->dai[i].playback.stream_name;
732 if (stream != NULL)
733 snd_soc_dapm_stream_event(codec, stream,
734 SND_SOC_DAPM_STREAM_RESUME);
735 stream = codec->dai[i].capture.stream_name;
736 if (stream != NULL)
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
739 }
740
741 /* unmute any active DACs */
742 for (i = 0; i < card->num_links; i++) {
743 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
744 if (dai->ops->digital_mute && dai->playback.active)
745 dai->ops->digital_mute(dai, 0);
746 }
747
748 for (i = 0; i < card->num_links; i++) {
749 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
750 if (cpu_dai->resume && !cpu_dai->ac97_control)
751 cpu_dai->resume(cpu_dai);
752 if (platform->resume)
753 platform->resume(cpu_dai);
754 }
755
756 if (card->resume_post)
757 card->resume_post(pdev);
758
759 dev_dbg(socdev->dev, "resume work completed\n");
760
761 /* userspace can access us now we are back as we were before */
762 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
763 }
764
765 /* powers up audio subsystem after a suspend */
766 static int soc_resume(struct platform_device *pdev)
767 {
768 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
769 struct snd_soc_card *card = socdev->card;
770 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
771
772 /* AC97 devices might have other drivers hanging off them so
773 * need to resume immediately. Other drivers don't have that
774 * problem and may take a substantial amount of time to resume
775 * due to I/O costs and anti-pop so handle them out of line.
776 */
777 if (cpu_dai->ac97_control) {
778 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
779 soc_resume_deferred(&card->deferred_resume_work);
780 } else {
781 dev_dbg(socdev->dev, "Scheduling resume work\n");
782 if (!schedule_work(&card->deferred_resume_work))
783 dev_err(socdev->dev, "resume work item may be lost\n");
784 }
785
786 return 0;
787 }
788
789 #else
790 #define soc_suspend NULL
791 #define soc_resume NULL
792 #endif
793
794 static void snd_soc_instantiate_card(struct snd_soc_card *card)
795 {
796 struct platform_device *pdev = container_of(card->dev,
797 struct platform_device,
798 dev);
799 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
800 struct snd_soc_platform *platform;
801 struct snd_soc_dai *dai;
802 int i, found, ret, ac97;
803
804 if (card->instantiated)
805 return;
806
807 found = 0;
808 list_for_each_entry(platform, &platform_list, list)
809 if (card->platform == platform) {
810 found = 1;
811 break;
812 }
813 if (!found) {
814 dev_dbg(card->dev, "Platform %s not registered\n",
815 card->platform->name);
816 return;
817 }
818
819 ac97 = 0;
820 for (i = 0; i < card->num_links; i++) {
821 found = 0;
822 list_for_each_entry(dai, &dai_list, list)
823 if (card->dai_link[i].cpu_dai == dai) {
824 found = 1;
825 break;
826 }
827 if (!found) {
828 dev_dbg(card->dev, "DAI %s not registered\n",
829 card->dai_link[i].cpu_dai->name);
830 return;
831 }
832
833 if (card->dai_link[i].cpu_dai->ac97_control)
834 ac97 = 1;
835 }
836
837 /* If we have AC97 in the system then don't wait for the
838 * codec. This will need revisiting if we have to handle
839 * systems with mixed AC97 and non-AC97 parts. Only check for
840 * DAIs currently; we can't do this per link since some AC97
841 * codecs have non-AC97 DAIs.
842 */
843 if (!ac97)
844 for (i = 0; i < card->num_links; i++) {
845 found = 0;
846 list_for_each_entry(dai, &dai_list, list)
847 if (card->dai_link[i].codec_dai == dai) {
848 found = 1;
849 break;
850 }
851 if (!found) {
852 dev_dbg(card->dev, "DAI %s not registered\n",
853 card->dai_link[i].codec_dai->name);
854 return;
855 }
856 }
857
858 /* Note that we do not current check for codec components */
859
860 dev_dbg(card->dev, "All components present, instantiating\n");
861
862 /* Found everything, bring it up */
863 if (card->probe) {
864 ret = card->probe(pdev);
865 if (ret < 0)
866 return;
867 }
868
869 for (i = 0; i < card->num_links; i++) {
870 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
871 if (cpu_dai->probe) {
872 ret = cpu_dai->probe(pdev, cpu_dai);
873 if (ret < 0)
874 goto cpu_dai_err;
875 }
876 }
877
878 if (codec_dev->probe) {
879 ret = codec_dev->probe(pdev);
880 if (ret < 0)
881 goto cpu_dai_err;
882 }
883
884 if (platform->probe) {
885 ret = platform->probe(pdev);
886 if (ret < 0)
887 goto platform_err;
888 }
889
890 /* DAPM stream work */
891 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
892 #ifdef CONFIG_PM
893 /* deferred resume work */
894 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
895 #endif
896
897 card->instantiated = 1;
898
899 return;
900
901 platform_err:
902 if (codec_dev->remove)
903 codec_dev->remove(pdev);
904
905 cpu_dai_err:
906 for (i--; i >= 0; i--) {
907 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
908 if (cpu_dai->remove)
909 cpu_dai->remove(pdev, cpu_dai);
910 }
911
912 if (card->remove)
913 card->remove(pdev);
914 }
915
916 /*
917 * Attempt to initialise any uninitalised cards. Must be called with
918 * client_mutex.
919 */
920 static void snd_soc_instantiate_cards(void)
921 {
922 struct snd_soc_card *card;
923 list_for_each_entry(card, &card_list, list)
924 snd_soc_instantiate_card(card);
925 }
926
927 /* probes a new socdev */
928 static int soc_probe(struct platform_device *pdev)
929 {
930 int ret = 0;
931 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
932 struct snd_soc_card *card = socdev->card;
933
934 /* Bodge while we push things out of socdev */
935 card->socdev = socdev;
936
937 /* Bodge while we unpick instantiation */
938 card->dev = &pdev->dev;
939 ret = snd_soc_register_card(card);
940 if (ret != 0) {
941 dev_err(&pdev->dev, "Failed to register card\n");
942 return ret;
943 }
944
945 return 0;
946 }
947
948 /* removes a socdev */
949 static int soc_remove(struct platform_device *pdev)
950 {
951 int i;
952 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
953 struct snd_soc_card *card = socdev->card;
954 struct snd_soc_platform *platform = card->platform;
955 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
956
957 if (!card->instantiated)
958 return 0;
959
960 run_delayed_work(&card->delayed_work);
961
962 if (platform->remove)
963 platform->remove(pdev);
964
965 if (codec_dev->remove)
966 codec_dev->remove(pdev);
967
968 for (i = 0; i < card->num_links; i++) {
969 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
970 if (cpu_dai->remove)
971 cpu_dai->remove(pdev, cpu_dai);
972 }
973
974 if (card->remove)
975 card->remove(pdev);
976
977 snd_soc_unregister_card(card);
978
979 return 0;
980 }
981
982 /* ASoC platform driver */
983 static struct platform_driver soc_driver = {
984 .driver = {
985 .name = "soc-audio",
986 .owner = THIS_MODULE,
987 },
988 .probe = soc_probe,
989 .remove = soc_remove,
990 .suspend = soc_suspend,
991 .resume = soc_resume,
992 };
993
994 /* create a new pcm */
995 static int soc_new_pcm(struct snd_soc_device *socdev,
996 struct snd_soc_dai_link *dai_link, int num)
997 {
998 struct snd_soc_card *card = socdev->card;
999 struct snd_soc_codec *codec = card->codec;
1000 struct snd_soc_platform *platform = card->platform;
1001 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1002 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1003 struct snd_soc_pcm_runtime *rtd;
1004 struct snd_pcm *pcm;
1005 char new_name[64];
1006 int ret = 0, playback = 0, capture = 0;
1007
1008 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1009 if (rtd == NULL)
1010 return -ENOMEM;
1011
1012 rtd->dai = dai_link;
1013 rtd->socdev = socdev;
1014 codec_dai->codec = card->codec;
1015
1016 /* check client and interface hw capabilities */
1017 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1018 num);
1019
1020 if (codec_dai->playback.channels_min)
1021 playback = 1;
1022 if (codec_dai->capture.channels_min)
1023 capture = 1;
1024
1025 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1026 capture, &pcm);
1027 if (ret < 0) {
1028 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1029 codec->name);
1030 kfree(rtd);
1031 return ret;
1032 }
1033
1034 dai_link->pcm = pcm;
1035 pcm->private_data = rtd;
1036 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1037 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1038 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1039 soc_pcm_ops.copy = platform->pcm_ops->copy;
1040 soc_pcm_ops.silence = platform->pcm_ops->silence;
1041 soc_pcm_ops.ack = platform->pcm_ops->ack;
1042 soc_pcm_ops.page = platform->pcm_ops->page;
1043
1044 if (playback)
1045 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1046
1047 if (capture)
1048 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1049
1050 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1051 if (ret < 0) {
1052 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1053 kfree(rtd);
1054 return ret;
1055 }
1056
1057 pcm->private_free = platform->pcm_free;
1058 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1059 cpu_dai->name);
1060 return ret;
1061 }
1062
1063 /* codec register dump */
1064 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1065 {
1066 int i, step = 1, count = 0;
1067
1068 if (!codec->reg_cache_size)
1069 return 0;
1070
1071 if (codec->reg_cache_step)
1072 step = codec->reg_cache_step;
1073
1074 count += sprintf(buf, "%s registers\n", codec->name);
1075 for (i = 0; i < codec->reg_cache_size; i += step) {
1076 count += sprintf(buf + count, "%2x: ", i);
1077 if (count >= PAGE_SIZE - 1)
1078 break;
1079
1080 if (codec->display_register)
1081 count += codec->display_register(codec, buf + count,
1082 PAGE_SIZE - count, i);
1083 else
1084 count += snprintf(buf + count, PAGE_SIZE - count,
1085 "%4x", codec->read(codec, i));
1086
1087 if (count >= PAGE_SIZE - 1)
1088 break;
1089
1090 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1091 if (count >= PAGE_SIZE - 1)
1092 break;
1093 }
1094
1095 /* Truncate count; min() would cause a warning */
1096 if (count >= PAGE_SIZE)
1097 count = PAGE_SIZE - 1;
1098
1099 return count;
1100 }
1101 static ssize_t codec_reg_show(struct device *dev,
1102 struct device_attribute *attr, char *buf)
1103 {
1104 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1105 return soc_codec_reg_show(devdata->card->codec, buf);
1106 }
1107
1108 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1109
1110 #ifdef CONFIG_DEBUG_FS
1111 static int codec_reg_open_file(struct inode *inode, struct file *file)
1112 {
1113 file->private_data = inode->i_private;
1114 return 0;
1115 }
1116
1117 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1118 size_t count, loff_t *ppos)
1119 {
1120 ssize_t ret;
1121 struct snd_soc_codec *codec = file->private_data;
1122 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1123 if (!buf)
1124 return -ENOMEM;
1125 ret = soc_codec_reg_show(codec, buf);
1126 if (ret >= 0)
1127 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1128 kfree(buf);
1129 return ret;
1130 }
1131
1132 static ssize_t codec_reg_write_file(struct file *file,
1133 const char __user *user_buf, size_t count, loff_t *ppos)
1134 {
1135 char buf[32];
1136 int buf_size;
1137 char *start = buf;
1138 unsigned long reg, value;
1139 int step = 1;
1140 struct snd_soc_codec *codec = file->private_data;
1141
1142 buf_size = min(count, (sizeof(buf)-1));
1143 if (copy_from_user(buf, user_buf, buf_size))
1144 return -EFAULT;
1145 buf[buf_size] = 0;
1146
1147 if (codec->reg_cache_step)
1148 step = codec->reg_cache_step;
1149
1150 while (*start == ' ')
1151 start++;
1152 reg = simple_strtoul(start, &start, 16);
1153 if ((reg >= codec->reg_cache_size) || (reg % step))
1154 return -EINVAL;
1155 while (*start == ' ')
1156 start++;
1157 if (strict_strtoul(start, 16, &value))
1158 return -EINVAL;
1159 codec->write(codec, reg, value);
1160 return buf_size;
1161 }
1162
1163 static const struct file_operations codec_reg_fops = {
1164 .open = codec_reg_open_file,
1165 .read = codec_reg_read_file,
1166 .write = codec_reg_write_file,
1167 };
1168
1169 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1170 {
1171 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1172 debugfs_root, codec,
1173 &codec_reg_fops);
1174 if (!codec->debugfs_reg)
1175 printk(KERN_WARNING
1176 "ASoC: Failed to create codec register debugfs file\n");
1177
1178 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1179 debugfs_root,
1180 &codec->pop_time);
1181 if (!codec->debugfs_pop_time)
1182 printk(KERN_WARNING
1183 "Failed to create pop time debugfs file\n");
1184 }
1185
1186 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1187 {
1188 debugfs_remove(codec->debugfs_pop_time);
1189 debugfs_remove(codec->debugfs_reg);
1190 }
1191
1192 #else
1193
1194 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1195 {
1196 }
1197
1198 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1199 {
1200 }
1201 #endif
1202
1203 /**
1204 * snd_soc_new_ac97_codec - initailise AC97 device
1205 * @codec: audio codec
1206 * @ops: AC97 bus operations
1207 * @num: AC97 codec number
1208 *
1209 * Initialises AC97 codec resources for use by ad-hoc devices only.
1210 */
1211 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1212 struct snd_ac97_bus_ops *ops, int num)
1213 {
1214 mutex_lock(&codec->mutex);
1215
1216 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1217 if (codec->ac97 == NULL) {
1218 mutex_unlock(&codec->mutex);
1219 return -ENOMEM;
1220 }
1221
1222 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1223 if (codec->ac97->bus == NULL) {
1224 kfree(codec->ac97);
1225 codec->ac97 = NULL;
1226 mutex_unlock(&codec->mutex);
1227 return -ENOMEM;
1228 }
1229
1230 codec->ac97->bus->ops = ops;
1231 codec->ac97->num = num;
1232 mutex_unlock(&codec->mutex);
1233 return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1236
1237 /**
1238 * snd_soc_free_ac97_codec - free AC97 codec device
1239 * @codec: audio codec
1240 *
1241 * Frees AC97 codec device resources.
1242 */
1243 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1244 {
1245 mutex_lock(&codec->mutex);
1246 kfree(codec->ac97->bus);
1247 kfree(codec->ac97);
1248 codec->ac97 = NULL;
1249 mutex_unlock(&codec->mutex);
1250 }
1251 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1252
1253 /**
1254 * snd_soc_update_bits - update codec register bits
1255 * @codec: audio codec
1256 * @reg: codec register
1257 * @mask: register mask
1258 * @value: new value
1259 *
1260 * Writes new register value.
1261 *
1262 * Returns 1 for change else 0.
1263 */
1264 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1265 unsigned short mask, unsigned short value)
1266 {
1267 int change;
1268 unsigned short old, new;
1269
1270 mutex_lock(&io_mutex);
1271 old = snd_soc_read(codec, reg);
1272 new = (old & ~mask) | value;
1273 change = old != new;
1274 if (change)
1275 snd_soc_write(codec, reg, new);
1276
1277 mutex_unlock(&io_mutex);
1278 return change;
1279 }
1280 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1281
1282 /**
1283 * snd_soc_test_bits - test register for change
1284 * @codec: audio codec
1285 * @reg: codec register
1286 * @mask: register mask
1287 * @value: new value
1288 *
1289 * Tests a register with a new value and checks if the new value is
1290 * different from the old value.
1291 *
1292 * Returns 1 for change else 0.
1293 */
1294 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1295 unsigned short mask, unsigned short value)
1296 {
1297 int change;
1298 unsigned short old, new;
1299
1300 mutex_lock(&io_mutex);
1301 old = snd_soc_read(codec, reg);
1302 new = (old & ~mask) | value;
1303 change = old != new;
1304 mutex_unlock(&io_mutex);
1305
1306 return change;
1307 }
1308 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1309
1310 /**
1311 * snd_soc_new_pcms - create new sound card and pcms
1312 * @socdev: the SoC audio device
1313 * @idx: ALSA card index
1314 * @xid: card identification
1315 *
1316 * Create a new sound card based upon the codec and interface pcms.
1317 *
1318 * Returns 0 for success, else error.
1319 */
1320 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1321 {
1322 struct snd_soc_card *card = socdev->card;
1323 struct snd_soc_codec *codec = card->codec;
1324 int ret, i;
1325
1326 mutex_lock(&codec->mutex);
1327
1328 /* register a sound card */
1329 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1330 if (ret < 0) {
1331 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1332 codec->name);
1333 mutex_unlock(&codec->mutex);
1334 return ret;
1335 }
1336
1337 codec->card->dev = socdev->dev;
1338 codec->card->private_data = codec;
1339 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1340
1341 /* create the pcms */
1342 for (i = 0; i < card->num_links; i++) {
1343 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1344 if (ret < 0) {
1345 printk(KERN_ERR "asoc: can't create pcm %s\n",
1346 card->dai_link[i].stream_name);
1347 mutex_unlock(&codec->mutex);
1348 return ret;
1349 }
1350 }
1351
1352 mutex_unlock(&codec->mutex);
1353 return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1356
1357 /**
1358 * snd_soc_init_card - register sound card
1359 * @socdev: the SoC audio device
1360 *
1361 * Register a SoC sound card. Also registers an AC97 device if the
1362 * codec is AC97 for ad hoc devices.
1363 *
1364 * Returns 0 for success, else error.
1365 */
1366 int snd_soc_init_card(struct snd_soc_device *socdev)
1367 {
1368 struct snd_soc_card *card = socdev->card;
1369 struct snd_soc_codec *codec = card->codec;
1370 int ret = 0, i, ac97 = 0, err = 0;
1371
1372 for (i = 0; i < card->num_links; i++) {
1373 if (card->dai_link[i].init) {
1374 err = card->dai_link[i].init(codec);
1375 if (err < 0) {
1376 printk(KERN_ERR "asoc: failed to init %s\n",
1377 card->dai_link[i].stream_name);
1378 continue;
1379 }
1380 }
1381 if (card->dai_link[i].codec_dai->ac97_control)
1382 ac97 = 1;
1383 }
1384 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1385 "%s", card->name);
1386 snprintf(codec->card->longname, sizeof(codec->card->longname),
1387 "%s (%s)", card->name, codec->name);
1388
1389 ret = snd_card_register(codec->card);
1390 if (ret < 0) {
1391 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1392 codec->name);
1393 goto out;
1394 }
1395
1396 mutex_lock(&codec->mutex);
1397 #ifdef CONFIG_SND_SOC_AC97_BUS
1398 /* Only instantiate AC97 if not already done by the adaptor
1399 * for the generic AC97 subsystem.
1400 */
1401 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1402 ret = soc_ac97_dev_register(codec);
1403 if (ret < 0) {
1404 printk(KERN_ERR "asoc: AC97 device register failed\n");
1405 snd_card_free(codec->card);
1406 mutex_unlock(&codec->mutex);
1407 goto out;
1408 }
1409 }
1410 #endif
1411
1412 err = snd_soc_dapm_sys_add(socdev->dev);
1413 if (err < 0)
1414 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1415
1416 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1417 if (err < 0)
1418 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1419
1420 soc_init_codec_debugfs(codec);
1421 mutex_unlock(&codec->mutex);
1422
1423 out:
1424 return ret;
1425 }
1426 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1427
1428 /**
1429 * snd_soc_free_pcms - free sound card and pcms
1430 * @socdev: the SoC audio device
1431 *
1432 * Frees sound card and pcms associated with the socdev.
1433 * Also unregister the codec if it is an AC97 device.
1434 */
1435 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1436 {
1437 struct snd_soc_codec *codec = socdev->card->codec;
1438 #ifdef CONFIG_SND_SOC_AC97_BUS
1439 struct snd_soc_dai *codec_dai;
1440 int i;
1441 #endif
1442
1443 mutex_lock(&codec->mutex);
1444 soc_cleanup_codec_debugfs(codec);
1445 #ifdef CONFIG_SND_SOC_AC97_BUS
1446 for (i = 0; i < codec->num_dai; i++) {
1447 codec_dai = &codec->dai[i];
1448 if (codec_dai->ac97_control && codec->ac97 &&
1449 strcmp(codec->name, "AC97") != 0) {
1450 soc_ac97_dev_unregister(codec);
1451 goto free_card;
1452 }
1453 }
1454 free_card:
1455 #endif
1456
1457 if (codec->card)
1458 snd_card_free(codec->card);
1459 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1460 mutex_unlock(&codec->mutex);
1461 }
1462 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1463
1464 /**
1465 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1466 * @substream: the pcm substream
1467 * @hw: the hardware parameters
1468 *
1469 * Sets the substream runtime hardware parameters.
1470 */
1471 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1472 const struct snd_pcm_hardware *hw)
1473 {
1474 struct snd_pcm_runtime *runtime = substream->runtime;
1475 runtime->hw.info = hw->info;
1476 runtime->hw.formats = hw->formats;
1477 runtime->hw.period_bytes_min = hw->period_bytes_min;
1478 runtime->hw.period_bytes_max = hw->period_bytes_max;
1479 runtime->hw.periods_min = hw->periods_min;
1480 runtime->hw.periods_max = hw->periods_max;
1481 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1482 runtime->hw.fifo_size = hw->fifo_size;
1483 return 0;
1484 }
1485 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1486
1487 /**
1488 * snd_soc_cnew - create new control
1489 * @_template: control template
1490 * @data: control private data
1491 * @long_name: control long name
1492 *
1493 * Create a new mixer control from a template control.
1494 *
1495 * Returns 0 for success, else error.
1496 */
1497 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1498 void *data, char *long_name)
1499 {
1500 struct snd_kcontrol_new template;
1501
1502 memcpy(&template, _template, sizeof(template));
1503 if (long_name)
1504 template.name = long_name;
1505 template.index = 0;
1506
1507 return snd_ctl_new1(&template, data);
1508 }
1509 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1510
1511 /**
1512 * snd_soc_add_controls - add an array of controls to a codec.
1513 * Convienience function to add a list of controls. Many codecs were
1514 * duplicating this code.
1515 *
1516 * @codec: codec to add controls to
1517 * @controls: array of controls to add
1518 * @num_controls: number of elements in the array
1519 *
1520 * Return 0 for success, else error.
1521 */
1522 int snd_soc_add_controls(struct snd_soc_codec *codec,
1523 const struct snd_kcontrol_new *controls, int num_controls)
1524 {
1525 struct snd_card *card = codec->card;
1526 int err, i;
1527
1528 for (i = 0; i < num_controls; i++) {
1529 const struct snd_kcontrol_new *control = &controls[i];
1530 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1531 if (err < 0) {
1532 dev_err(codec->dev, "%s: Failed to add %s\n",
1533 codec->name, control->name);
1534 return err;
1535 }
1536 }
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1541
1542 /**
1543 * snd_soc_info_enum_double - enumerated double mixer info callback
1544 * @kcontrol: mixer control
1545 * @uinfo: control element information
1546 *
1547 * Callback to provide information about a double enumerated
1548 * mixer control.
1549 *
1550 * Returns 0 for success.
1551 */
1552 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1553 struct snd_ctl_elem_info *uinfo)
1554 {
1555 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1556
1557 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1558 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1559 uinfo->value.enumerated.items = e->max;
1560
1561 if (uinfo->value.enumerated.item > e->max - 1)
1562 uinfo->value.enumerated.item = e->max - 1;
1563 strcpy(uinfo->value.enumerated.name,
1564 e->texts[uinfo->value.enumerated.item]);
1565 return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1568
1569 /**
1570 * snd_soc_get_enum_double - enumerated double mixer get callback
1571 * @kcontrol: mixer control
1572 * @ucontrol: control element information
1573 *
1574 * Callback to get the value of a double enumerated mixer.
1575 *
1576 * Returns 0 for success.
1577 */
1578 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1579 struct snd_ctl_elem_value *ucontrol)
1580 {
1581 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1582 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1583 unsigned short val, bitmask;
1584
1585 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1586 ;
1587 val = snd_soc_read(codec, e->reg);
1588 ucontrol->value.enumerated.item[0]
1589 = (val >> e->shift_l) & (bitmask - 1);
1590 if (e->shift_l != e->shift_r)
1591 ucontrol->value.enumerated.item[1] =
1592 (val >> e->shift_r) & (bitmask - 1);
1593
1594 return 0;
1595 }
1596 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1597
1598 /**
1599 * snd_soc_put_enum_double - enumerated double mixer put callback
1600 * @kcontrol: mixer control
1601 * @ucontrol: control element information
1602 *
1603 * Callback to set the value of a double enumerated mixer.
1604 *
1605 * Returns 0 for success.
1606 */
1607 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1608 struct snd_ctl_elem_value *ucontrol)
1609 {
1610 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1611 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1612 unsigned short val;
1613 unsigned short mask, bitmask;
1614
1615 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1616 ;
1617 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1618 return -EINVAL;
1619 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1620 mask = (bitmask - 1) << e->shift_l;
1621 if (e->shift_l != e->shift_r) {
1622 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1623 return -EINVAL;
1624 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1625 mask |= (bitmask - 1) << e->shift_r;
1626 }
1627
1628 return snd_soc_update_bits(codec, e->reg, mask, val);
1629 }
1630 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1631
1632 /**
1633 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1634 * @kcontrol: mixer control
1635 * @ucontrol: control element information
1636 *
1637 * Callback to get the value of a double semi enumerated mixer.
1638 *
1639 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1640 * used for handling bitfield coded enumeration for example.
1641 *
1642 * Returns 0 for success.
1643 */
1644 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1645 struct snd_ctl_elem_value *ucontrol)
1646 {
1647 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1648 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1649 unsigned short reg_val, val, mux;
1650
1651 reg_val = snd_soc_read(codec, e->reg);
1652 val = (reg_val >> e->shift_l) & e->mask;
1653 for (mux = 0; mux < e->max; mux++) {
1654 if (val == e->values[mux])
1655 break;
1656 }
1657 ucontrol->value.enumerated.item[0] = mux;
1658 if (e->shift_l != e->shift_r) {
1659 val = (reg_val >> e->shift_r) & e->mask;
1660 for (mux = 0; mux < e->max; mux++) {
1661 if (val == e->values[mux])
1662 break;
1663 }
1664 ucontrol->value.enumerated.item[1] = mux;
1665 }
1666
1667 return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1670
1671 /**
1672 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1673 * @kcontrol: mixer control
1674 * @ucontrol: control element information
1675 *
1676 * Callback to set the value of a double semi enumerated mixer.
1677 *
1678 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1679 * used for handling bitfield coded enumeration for example.
1680 *
1681 * Returns 0 for success.
1682 */
1683 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1684 struct snd_ctl_elem_value *ucontrol)
1685 {
1686 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1687 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1688 unsigned short val;
1689 unsigned short mask;
1690
1691 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1692 return -EINVAL;
1693 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1694 mask = e->mask << e->shift_l;
1695 if (e->shift_l != e->shift_r) {
1696 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1697 return -EINVAL;
1698 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1699 mask |= e->mask << e->shift_r;
1700 }
1701
1702 return snd_soc_update_bits(codec, e->reg, mask, val);
1703 }
1704 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1705
1706 /**
1707 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1708 * @kcontrol: mixer control
1709 * @uinfo: control element information
1710 *
1711 * Callback to provide information about an external enumerated
1712 * single mixer.
1713 *
1714 * Returns 0 for success.
1715 */
1716 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1717 struct snd_ctl_elem_info *uinfo)
1718 {
1719 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1720
1721 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1722 uinfo->count = 1;
1723 uinfo->value.enumerated.items = e->max;
1724
1725 if (uinfo->value.enumerated.item > e->max - 1)
1726 uinfo->value.enumerated.item = e->max - 1;
1727 strcpy(uinfo->value.enumerated.name,
1728 e->texts[uinfo->value.enumerated.item]);
1729 return 0;
1730 }
1731 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1732
1733 /**
1734 * snd_soc_info_volsw_ext - external single mixer info callback
1735 * @kcontrol: mixer control
1736 * @uinfo: control element information
1737 *
1738 * Callback to provide information about a single external mixer control.
1739 *
1740 * Returns 0 for success.
1741 */
1742 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1743 struct snd_ctl_elem_info *uinfo)
1744 {
1745 int max = kcontrol->private_value;
1746
1747 if (max == 1)
1748 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1749 else
1750 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1751
1752 uinfo->count = 1;
1753 uinfo->value.integer.min = 0;
1754 uinfo->value.integer.max = max;
1755 return 0;
1756 }
1757 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1758
1759 /**
1760 * snd_soc_info_volsw - single mixer info callback
1761 * @kcontrol: mixer control
1762 * @uinfo: control element information
1763 *
1764 * Callback to provide information about a single mixer control.
1765 *
1766 * Returns 0 for success.
1767 */
1768 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1769 struct snd_ctl_elem_info *uinfo)
1770 {
1771 struct soc_mixer_control *mc =
1772 (struct soc_mixer_control *)kcontrol->private_value;
1773 int max = mc->max;
1774 unsigned int shift = mc->shift;
1775 unsigned int rshift = mc->rshift;
1776
1777 if (max == 1)
1778 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1779 else
1780 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1781
1782 uinfo->count = shift == rshift ? 1 : 2;
1783 uinfo->value.integer.min = 0;
1784 uinfo->value.integer.max = max;
1785 return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1788
1789 /**
1790 * snd_soc_get_volsw - single mixer get callback
1791 * @kcontrol: mixer control
1792 * @ucontrol: control element information
1793 *
1794 * Callback to get the value of a single mixer control.
1795 *
1796 * Returns 0 for success.
1797 */
1798 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1799 struct snd_ctl_elem_value *ucontrol)
1800 {
1801 struct soc_mixer_control *mc =
1802 (struct soc_mixer_control *)kcontrol->private_value;
1803 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1804 unsigned int reg = mc->reg;
1805 unsigned int shift = mc->shift;
1806 unsigned int rshift = mc->rshift;
1807 int max = mc->max;
1808 unsigned int mask = (1 << fls(max)) - 1;
1809 unsigned int invert = mc->invert;
1810
1811 ucontrol->value.integer.value[0] =
1812 (snd_soc_read(codec, reg) >> shift) & mask;
1813 if (shift != rshift)
1814 ucontrol->value.integer.value[1] =
1815 (snd_soc_read(codec, reg) >> rshift) & mask;
1816 if (invert) {
1817 ucontrol->value.integer.value[0] =
1818 max - ucontrol->value.integer.value[0];
1819 if (shift != rshift)
1820 ucontrol->value.integer.value[1] =
1821 max - ucontrol->value.integer.value[1];
1822 }
1823
1824 return 0;
1825 }
1826 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1827
1828 /**
1829 * snd_soc_put_volsw - single mixer put callback
1830 * @kcontrol: mixer control
1831 * @ucontrol: control element information
1832 *
1833 * Callback to set the value of a single mixer control.
1834 *
1835 * Returns 0 for success.
1836 */
1837 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1838 struct snd_ctl_elem_value *ucontrol)
1839 {
1840 struct soc_mixer_control *mc =
1841 (struct soc_mixer_control *)kcontrol->private_value;
1842 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1843 unsigned int reg = mc->reg;
1844 unsigned int shift = mc->shift;
1845 unsigned int rshift = mc->rshift;
1846 int max = mc->max;
1847 unsigned int mask = (1 << fls(max)) - 1;
1848 unsigned int invert = mc->invert;
1849 unsigned short val, val2, val_mask;
1850
1851 val = (ucontrol->value.integer.value[0] & mask);
1852 if (invert)
1853 val = max - val;
1854 val_mask = mask << shift;
1855 val = val << shift;
1856 if (shift != rshift) {
1857 val2 = (ucontrol->value.integer.value[1] & mask);
1858 if (invert)
1859 val2 = max - val2;
1860 val_mask |= mask << rshift;
1861 val |= val2 << rshift;
1862 }
1863 return snd_soc_update_bits(codec, reg, val_mask, val);
1864 }
1865 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1866
1867 /**
1868 * snd_soc_info_volsw_2r - double mixer info callback
1869 * @kcontrol: mixer control
1870 * @uinfo: control element information
1871 *
1872 * Callback to provide information about a double mixer control that
1873 * spans 2 codec registers.
1874 *
1875 * Returns 0 for success.
1876 */
1877 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1878 struct snd_ctl_elem_info *uinfo)
1879 {
1880 struct soc_mixer_control *mc =
1881 (struct soc_mixer_control *)kcontrol->private_value;
1882 int max = mc->max;
1883
1884 if (max == 1)
1885 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1886 else
1887 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1888
1889 uinfo->count = 2;
1890 uinfo->value.integer.min = 0;
1891 uinfo->value.integer.max = max;
1892 return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1895
1896 /**
1897 * snd_soc_get_volsw_2r - double mixer get callback
1898 * @kcontrol: mixer control
1899 * @ucontrol: control element information
1900 *
1901 * Callback to get the value of a double mixer control that spans 2 registers.
1902 *
1903 * Returns 0 for success.
1904 */
1905 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1906 struct snd_ctl_elem_value *ucontrol)
1907 {
1908 struct soc_mixer_control *mc =
1909 (struct soc_mixer_control *)kcontrol->private_value;
1910 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1911 unsigned int reg = mc->reg;
1912 unsigned int reg2 = mc->rreg;
1913 unsigned int shift = mc->shift;
1914 int max = mc->max;
1915 unsigned int mask = (1<<fls(max))-1;
1916 unsigned int invert = mc->invert;
1917
1918 ucontrol->value.integer.value[0] =
1919 (snd_soc_read(codec, reg) >> shift) & mask;
1920 ucontrol->value.integer.value[1] =
1921 (snd_soc_read(codec, reg2) >> shift) & mask;
1922 if (invert) {
1923 ucontrol->value.integer.value[0] =
1924 max - ucontrol->value.integer.value[0];
1925 ucontrol->value.integer.value[1] =
1926 max - ucontrol->value.integer.value[1];
1927 }
1928
1929 return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1932
1933 /**
1934 * snd_soc_put_volsw_2r - double mixer set callback
1935 * @kcontrol: mixer control
1936 * @ucontrol: control element information
1937 *
1938 * Callback to set the value of a double mixer control that spans 2 registers.
1939 *
1940 * Returns 0 for success.
1941 */
1942 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1943 struct snd_ctl_elem_value *ucontrol)
1944 {
1945 struct soc_mixer_control *mc =
1946 (struct soc_mixer_control *)kcontrol->private_value;
1947 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1948 unsigned int reg = mc->reg;
1949 unsigned int reg2 = mc->rreg;
1950 unsigned int shift = mc->shift;
1951 int max = mc->max;
1952 unsigned int mask = (1 << fls(max)) - 1;
1953 unsigned int invert = mc->invert;
1954 int err;
1955 unsigned short val, val2, val_mask;
1956
1957 val_mask = mask << shift;
1958 val = (ucontrol->value.integer.value[0] & mask);
1959 val2 = (ucontrol->value.integer.value[1] & mask);
1960
1961 if (invert) {
1962 val = max - val;
1963 val2 = max - val2;
1964 }
1965
1966 val = val << shift;
1967 val2 = val2 << shift;
1968
1969 err = snd_soc_update_bits(codec, reg, val_mask, val);
1970 if (err < 0)
1971 return err;
1972
1973 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1974 return err;
1975 }
1976 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1977
1978 /**
1979 * snd_soc_info_volsw_s8 - signed mixer info callback
1980 * @kcontrol: mixer control
1981 * @uinfo: control element information
1982 *
1983 * Callback to provide information about a signed mixer control.
1984 *
1985 * Returns 0 for success.
1986 */
1987 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1988 struct snd_ctl_elem_info *uinfo)
1989 {
1990 struct soc_mixer_control *mc =
1991 (struct soc_mixer_control *)kcontrol->private_value;
1992 int max = mc->max;
1993 int min = mc->min;
1994
1995 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1996 uinfo->count = 2;
1997 uinfo->value.integer.min = 0;
1998 uinfo->value.integer.max = max-min;
1999 return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2002
2003 /**
2004 * snd_soc_get_volsw_s8 - signed mixer get callback
2005 * @kcontrol: mixer control
2006 * @ucontrol: control element information
2007 *
2008 * Callback to get the value of a signed mixer control.
2009 *
2010 * Returns 0 for success.
2011 */
2012 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2013 struct snd_ctl_elem_value *ucontrol)
2014 {
2015 struct soc_mixer_control *mc =
2016 (struct soc_mixer_control *)kcontrol->private_value;
2017 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2018 unsigned int reg = mc->reg;
2019 int min = mc->min;
2020 int val = snd_soc_read(codec, reg);
2021
2022 ucontrol->value.integer.value[0] =
2023 ((signed char)(val & 0xff))-min;
2024 ucontrol->value.integer.value[1] =
2025 ((signed char)((val >> 8) & 0xff))-min;
2026 return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2029
2030 /**
2031 * snd_soc_put_volsw_sgn - signed mixer put callback
2032 * @kcontrol: mixer control
2033 * @ucontrol: control element information
2034 *
2035 * Callback to set the value of a signed mixer control.
2036 *
2037 * Returns 0 for success.
2038 */
2039 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2040 struct snd_ctl_elem_value *ucontrol)
2041 {
2042 struct soc_mixer_control *mc =
2043 (struct soc_mixer_control *)kcontrol->private_value;
2044 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2045 unsigned int reg = mc->reg;
2046 int min = mc->min;
2047 unsigned short val;
2048
2049 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2050 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2051
2052 return snd_soc_update_bits(codec, reg, 0xffff, val);
2053 }
2054 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2055
2056 /**
2057 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2058 * @dai: DAI
2059 * @clk_id: DAI specific clock ID
2060 * @freq: new clock frequency in Hz
2061 * @dir: new clock direction - input/output.
2062 *
2063 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2064 */
2065 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2066 unsigned int freq, int dir)
2067 {
2068 if (dai->ops->set_sysclk)
2069 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2070 else
2071 return -EINVAL;
2072 }
2073 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2074
2075 /**
2076 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2077 * @dai: DAI
2078 * @div_id: DAI specific clock divider ID
2079 * @div: new clock divisor.
2080 *
2081 * Configures the clock dividers. This is used to derive the best DAI bit and
2082 * frame clocks from the system or master clock. It's best to set the DAI bit
2083 * and frame clocks as low as possible to save system power.
2084 */
2085 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2086 int div_id, int div)
2087 {
2088 if (dai->ops->set_clkdiv)
2089 return dai->ops->set_clkdiv(dai, div_id, div);
2090 else
2091 return -EINVAL;
2092 }
2093 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2094
2095 /**
2096 * snd_soc_dai_set_pll - configure DAI PLL.
2097 * @dai: DAI
2098 * @pll_id: DAI specific PLL ID
2099 * @freq_in: PLL input clock frequency in Hz
2100 * @freq_out: requested PLL output clock frequency in Hz
2101 *
2102 * Configures and enables PLL to generate output clock based on input clock.
2103 */
2104 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2105 int pll_id, unsigned int freq_in, unsigned int freq_out)
2106 {
2107 if (dai->ops->set_pll)
2108 return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
2109 else
2110 return -EINVAL;
2111 }
2112 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2113
2114 /**
2115 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2116 * @dai: DAI
2117 * @fmt: SND_SOC_DAIFMT_ format value.
2118 *
2119 * Configures the DAI hardware format and clocking.
2120 */
2121 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2122 {
2123 if (dai->ops->set_fmt)
2124 return dai->ops->set_fmt(dai, fmt);
2125 else
2126 return -EINVAL;
2127 }
2128 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2129
2130 /**
2131 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2132 * @dai: DAI
2133 * @mask: DAI specific mask representing used slots.
2134 * @slots: Number of slots in use.
2135 *
2136 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2137 * specific.
2138 */
2139 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2140 unsigned int mask, int slots)
2141 {
2142 if (dai->ops->set_sysclk)
2143 return dai->ops->set_tdm_slot(dai, mask, slots);
2144 else
2145 return -EINVAL;
2146 }
2147 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2148
2149 /**
2150 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2151 * @dai: DAI
2152 * @tristate: tristate enable
2153 *
2154 * Tristates the DAI so that others can use it.
2155 */
2156 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2157 {
2158 if (dai->ops->set_sysclk)
2159 return dai->ops->set_tristate(dai, tristate);
2160 else
2161 return -EINVAL;
2162 }
2163 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2164
2165 /**
2166 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2167 * @dai: DAI
2168 * @mute: mute enable
2169 *
2170 * Mutes the DAI DAC.
2171 */
2172 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2173 {
2174 if (dai->ops->digital_mute)
2175 return dai->ops->digital_mute(dai, mute);
2176 else
2177 return -EINVAL;
2178 }
2179 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2180
2181 /**
2182 * snd_soc_register_card - Register a card with the ASoC core
2183 *
2184 * @card: Card to register
2185 *
2186 * Note that currently this is an internal only function: it will be
2187 * exposed to machine drivers after further backporting of ASoC v2
2188 * registration APIs.
2189 */
2190 static int snd_soc_register_card(struct snd_soc_card *card)
2191 {
2192 if (!card->name || !card->dev)
2193 return -EINVAL;
2194
2195 INIT_LIST_HEAD(&card->list);
2196 card->instantiated = 0;
2197
2198 mutex_lock(&client_mutex);
2199 list_add(&card->list, &card_list);
2200 snd_soc_instantiate_cards();
2201 mutex_unlock(&client_mutex);
2202
2203 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2204
2205 return 0;
2206 }
2207
2208 /**
2209 * snd_soc_unregister_card - Unregister a card with the ASoC core
2210 *
2211 * @card: Card to unregister
2212 *
2213 * Note that currently this is an internal only function: it will be
2214 * exposed to machine drivers after further backporting of ASoC v2
2215 * registration APIs.
2216 */
2217 static int snd_soc_unregister_card(struct snd_soc_card *card)
2218 {
2219 mutex_lock(&client_mutex);
2220 list_del(&card->list);
2221 mutex_unlock(&client_mutex);
2222
2223 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2224
2225 return 0;
2226 }
2227
2228 static struct snd_soc_dai_ops null_dai_ops = {
2229 };
2230
2231 /**
2232 * snd_soc_register_dai - Register a DAI with the ASoC core
2233 *
2234 * @dai: DAI to register
2235 */
2236 int snd_soc_register_dai(struct snd_soc_dai *dai)
2237 {
2238 if (!dai->name)
2239 return -EINVAL;
2240
2241 /* The device should become mandatory over time */
2242 if (!dai->dev)
2243 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2244
2245 if (!dai->ops)
2246 dai->ops = &null_dai_ops;
2247
2248 INIT_LIST_HEAD(&dai->list);
2249
2250 mutex_lock(&client_mutex);
2251 list_add(&dai->list, &dai_list);
2252 snd_soc_instantiate_cards();
2253 mutex_unlock(&client_mutex);
2254
2255 pr_debug("Registered DAI '%s'\n", dai->name);
2256
2257 return 0;
2258 }
2259 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2260
2261 /**
2262 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2263 *
2264 * @dai: DAI to unregister
2265 */
2266 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2267 {
2268 mutex_lock(&client_mutex);
2269 list_del(&dai->list);
2270 mutex_unlock(&client_mutex);
2271
2272 pr_debug("Unregistered DAI '%s'\n", dai->name);
2273 }
2274 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2275
2276 /**
2277 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2278 *
2279 * @dai: Array of DAIs to register
2280 * @count: Number of DAIs
2281 */
2282 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2283 {
2284 int i, ret;
2285
2286 for (i = 0; i < count; i++) {
2287 ret = snd_soc_register_dai(&dai[i]);
2288 if (ret != 0)
2289 goto err;
2290 }
2291
2292 return 0;
2293
2294 err:
2295 for (i--; i >= 0; i--)
2296 snd_soc_unregister_dai(&dai[i]);
2297
2298 return ret;
2299 }
2300 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2301
2302 /**
2303 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2304 *
2305 * @dai: Array of DAIs to unregister
2306 * @count: Number of DAIs
2307 */
2308 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2309 {
2310 int i;
2311
2312 for (i = 0; i < count; i++)
2313 snd_soc_unregister_dai(&dai[i]);
2314 }
2315 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2316
2317 /**
2318 * snd_soc_register_platform - Register a platform with the ASoC core
2319 *
2320 * @platform: platform to register
2321 */
2322 int snd_soc_register_platform(struct snd_soc_platform *platform)
2323 {
2324 if (!platform->name)
2325 return -EINVAL;
2326
2327 INIT_LIST_HEAD(&platform->list);
2328
2329 mutex_lock(&client_mutex);
2330 list_add(&platform->list, &platform_list);
2331 snd_soc_instantiate_cards();
2332 mutex_unlock(&client_mutex);
2333
2334 pr_debug("Registered platform '%s'\n", platform->name);
2335
2336 return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2339
2340 /**
2341 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2342 *
2343 * @platform: platform to unregister
2344 */
2345 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2346 {
2347 mutex_lock(&client_mutex);
2348 list_del(&platform->list);
2349 mutex_unlock(&client_mutex);
2350
2351 pr_debug("Unregistered platform '%s'\n", platform->name);
2352 }
2353 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2354
2355 /**
2356 * snd_soc_register_codec - Register a codec with the ASoC core
2357 *
2358 * @codec: codec to register
2359 */
2360 int snd_soc_register_codec(struct snd_soc_codec *codec)
2361 {
2362 if (!codec->name)
2363 return -EINVAL;
2364
2365 /* The device should become mandatory over time */
2366 if (!codec->dev)
2367 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2368
2369 INIT_LIST_HEAD(&codec->list);
2370
2371 mutex_lock(&client_mutex);
2372 list_add(&codec->list, &codec_list);
2373 snd_soc_instantiate_cards();
2374 mutex_unlock(&client_mutex);
2375
2376 pr_debug("Registered codec '%s'\n", codec->name);
2377
2378 return 0;
2379 }
2380 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2381
2382 /**
2383 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2384 *
2385 * @codec: codec to unregister
2386 */
2387 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2388 {
2389 mutex_lock(&client_mutex);
2390 list_del(&codec->list);
2391 mutex_unlock(&client_mutex);
2392
2393 pr_debug("Unregistered codec '%s'\n", codec->name);
2394 }
2395 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2396
2397 static int __init snd_soc_init(void)
2398 {
2399 #ifdef CONFIG_DEBUG_FS
2400 debugfs_root = debugfs_create_dir("asoc", NULL);
2401 if (IS_ERR(debugfs_root) || !debugfs_root) {
2402 printk(KERN_WARNING
2403 "ASoC: Failed to create debugfs directory\n");
2404 debugfs_root = NULL;
2405 }
2406 #endif
2407
2408 return platform_driver_register(&soc_driver);
2409 }
2410
2411 static void __exit snd_soc_exit(void)
2412 {
2413 #ifdef CONFIG_DEBUG_FS
2414 debugfs_remove_recursive(debugfs_root);
2415 #endif
2416 platform_driver_unregister(&soc_driver);
2417 }
2418
2419 module_init(snd_soc_init);
2420 module_exit(snd_soc_exit);
2421
2422 /* Module information */
2423 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2424 MODULE_DESCRIPTION("ALSA SoC Core");
2425 MODULE_LICENSE("GPL");
2426 MODULE_ALIAS("platform:soc-audio");
This page took 0.084053 seconds and 5 git commands to generate.