Merge git://git.infradead.org/mtd-2.6
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37
38 static DEFINE_MUTEX(pcm_mutex);
39 static DEFINE_MUTEX(io_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54
55 /*
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
59 */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63
64 /*
65 * This function forces any delayed work to be queued and run.
66 */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 int ret;
70
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
73
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
79 }
80 return ret;
81 }
82
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
86 {
87 if (codec->ac97->dev.bus)
88 device_unregister(&codec->ac97->dev);
89 return 0;
90 }
91
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
94
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
97 {
98 int err;
99
100 codec->ac97->dev.bus = &ac97_bus_type;
101 codec->ac97->dev.parent = codec->card->dev;
102 codec->ac97->dev.release = soc_ac97_device_release;
103
104 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
105 codec->card->number, 0, codec->name);
106 err = device_register(&codec->ac97->dev);
107 if (err < 0) {
108 snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 codec->ac97->dev.bus = NULL;
110 return err;
111 }
112 return 0;
113 }
114 #endif
115
116 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
117 {
118 struct snd_soc_pcm_runtime *rtd = substream->private_data;
119 struct snd_soc_device *socdev = rtd->socdev;
120 struct snd_soc_card *card = socdev->card;
121 struct snd_soc_dai_link *machine = rtd->dai;
122 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
123 struct snd_soc_dai *codec_dai = machine->codec_dai;
124 int ret;
125
126 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
127 machine->symmetric_rates) {
128 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
129 machine->rate);
130
131 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
132 SNDRV_PCM_HW_PARAM_RATE,
133 machine->rate,
134 machine->rate);
135 if (ret < 0) {
136 dev_err(card->dev,
137 "Unable to apply rate symmetry constraint: %d\n", ret);
138 return ret;
139 }
140 }
141
142 return 0;
143 }
144
145 /*
146 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
147 * then initialized and any private data can be allocated. This also calls
148 * startup for the cpu DAI, platform, machine and codec DAI.
149 */
150 static int soc_pcm_open(struct snd_pcm_substream *substream)
151 {
152 struct snd_soc_pcm_runtime *rtd = substream->private_data;
153 struct snd_soc_device *socdev = rtd->socdev;
154 struct snd_soc_card *card = socdev->card;
155 struct snd_pcm_runtime *runtime = substream->runtime;
156 struct snd_soc_dai_link *machine = rtd->dai;
157 struct snd_soc_platform *platform = card->platform;
158 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
159 struct snd_soc_dai *codec_dai = machine->codec_dai;
160 int ret = 0;
161
162 mutex_lock(&pcm_mutex);
163
164 /* startup the audio subsystem */
165 if (cpu_dai->ops->startup) {
166 ret = cpu_dai->ops->startup(substream, cpu_dai);
167 if (ret < 0) {
168 printk(KERN_ERR "asoc: can't open interface %s\n",
169 cpu_dai->name);
170 goto out;
171 }
172 }
173
174 if (platform->pcm_ops->open) {
175 ret = platform->pcm_ops->open(substream);
176 if (ret < 0) {
177 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
178 goto platform_err;
179 }
180 }
181
182 if (codec_dai->ops->startup) {
183 ret = codec_dai->ops->startup(substream, codec_dai);
184 if (ret < 0) {
185 printk(KERN_ERR "asoc: can't open codec %s\n",
186 codec_dai->name);
187 goto codec_dai_err;
188 }
189 }
190
191 if (machine->ops && machine->ops->startup) {
192 ret = machine->ops->startup(substream);
193 if (ret < 0) {
194 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
195 goto machine_err;
196 }
197 }
198
199 /* Check that the codec and cpu DAI's are compatible */
200 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
201 runtime->hw.rate_min =
202 max(codec_dai->playback.rate_min,
203 cpu_dai->playback.rate_min);
204 runtime->hw.rate_max =
205 min(codec_dai->playback.rate_max,
206 cpu_dai->playback.rate_max);
207 runtime->hw.channels_min =
208 max(codec_dai->playback.channels_min,
209 cpu_dai->playback.channels_min);
210 runtime->hw.channels_max =
211 min(codec_dai->playback.channels_max,
212 cpu_dai->playback.channels_max);
213 runtime->hw.formats =
214 codec_dai->playback.formats & cpu_dai->playback.formats;
215 runtime->hw.rates =
216 codec_dai->playback.rates & cpu_dai->playback.rates;
217 } else {
218 runtime->hw.rate_min =
219 max(codec_dai->capture.rate_min,
220 cpu_dai->capture.rate_min);
221 runtime->hw.rate_max =
222 min(codec_dai->capture.rate_max,
223 cpu_dai->capture.rate_max);
224 runtime->hw.channels_min =
225 max(codec_dai->capture.channels_min,
226 cpu_dai->capture.channels_min);
227 runtime->hw.channels_max =
228 min(codec_dai->capture.channels_max,
229 cpu_dai->capture.channels_max);
230 runtime->hw.formats =
231 codec_dai->capture.formats & cpu_dai->capture.formats;
232 runtime->hw.rates =
233 codec_dai->capture.rates & cpu_dai->capture.rates;
234 }
235
236 snd_pcm_limit_hw_rates(runtime);
237 if (!runtime->hw.rates) {
238 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
239 codec_dai->name, cpu_dai->name);
240 goto machine_err;
241 }
242 if (!runtime->hw.formats) {
243 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
244 codec_dai->name, cpu_dai->name);
245 goto machine_err;
246 }
247 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
248 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
249 codec_dai->name, cpu_dai->name);
250 goto machine_err;
251 }
252
253 /* Symmetry only applies if we've already got an active stream. */
254 if (cpu_dai->active || codec_dai->active) {
255 ret = soc_pcm_apply_symmetry(substream);
256 if (ret != 0)
257 goto machine_err;
258 }
259
260 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
261 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
262 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
263 runtime->hw.channels_max);
264 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
265 runtime->hw.rate_max);
266
267 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
268 cpu_dai->playback.active = codec_dai->playback.active = 1;
269 else
270 cpu_dai->capture.active = codec_dai->capture.active = 1;
271 cpu_dai->active = codec_dai->active = 1;
272 cpu_dai->runtime = runtime;
273 card->codec->active++;
274 mutex_unlock(&pcm_mutex);
275 return 0;
276
277 machine_err:
278 if (machine->ops && machine->ops->shutdown)
279 machine->ops->shutdown(substream);
280
281 codec_dai_err:
282 if (platform->pcm_ops->close)
283 platform->pcm_ops->close(substream);
284
285 platform_err:
286 if (cpu_dai->ops->shutdown)
287 cpu_dai->ops->shutdown(substream, cpu_dai);
288 out:
289 mutex_unlock(&pcm_mutex);
290 return ret;
291 }
292
293 /*
294 * Power down the audio subsystem pmdown_time msecs after close is called.
295 * This is to ensure there are no pops or clicks in between any music tracks
296 * due to DAPM power cycling.
297 */
298 static void close_delayed_work(struct work_struct *work)
299 {
300 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
301 delayed_work.work);
302 struct snd_soc_codec *codec = card->codec;
303 struct snd_soc_dai *codec_dai;
304 int i;
305
306 mutex_lock(&pcm_mutex);
307 for (i = 0; i < codec->num_dai; i++) {
308 codec_dai = &codec->dai[i];
309
310 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
311 codec_dai->playback.stream_name,
312 codec_dai->playback.active ? "active" : "inactive",
313 codec_dai->pop_wait ? "yes" : "no");
314
315 /* are we waiting on this codec DAI stream */
316 if (codec_dai->pop_wait == 1) {
317 codec_dai->pop_wait = 0;
318 snd_soc_dapm_stream_event(codec,
319 codec_dai->playback.stream_name,
320 SND_SOC_DAPM_STREAM_STOP);
321 }
322 }
323 mutex_unlock(&pcm_mutex);
324 }
325
326 /*
327 * Called by ALSA when a PCM substream is closed. Private data can be
328 * freed here. The cpu DAI, codec DAI, machine and platform are also
329 * shutdown.
330 */
331 static int soc_codec_close(struct snd_pcm_substream *substream)
332 {
333 struct snd_soc_pcm_runtime *rtd = substream->private_data;
334 struct snd_soc_device *socdev = rtd->socdev;
335 struct snd_soc_card *card = socdev->card;
336 struct snd_soc_dai_link *machine = rtd->dai;
337 struct snd_soc_platform *platform = card->platform;
338 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
339 struct snd_soc_dai *codec_dai = machine->codec_dai;
340 struct snd_soc_codec *codec = card->codec;
341
342 mutex_lock(&pcm_mutex);
343
344 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
345 cpu_dai->playback.active = codec_dai->playback.active = 0;
346 else
347 cpu_dai->capture.active = codec_dai->capture.active = 0;
348
349 if (codec_dai->playback.active == 0 &&
350 codec_dai->capture.active == 0) {
351 cpu_dai->active = codec_dai->active = 0;
352 }
353 codec->active--;
354
355 /* Muting the DAC suppresses artifacts caused during digital
356 * shutdown, for example from stopping clocks.
357 */
358 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
359 snd_soc_dai_digital_mute(codec_dai, 1);
360
361 if (cpu_dai->ops->shutdown)
362 cpu_dai->ops->shutdown(substream, cpu_dai);
363
364 if (codec_dai->ops->shutdown)
365 codec_dai->ops->shutdown(substream, codec_dai);
366
367 if (machine->ops && machine->ops->shutdown)
368 machine->ops->shutdown(substream);
369
370 if (platform->pcm_ops->close)
371 platform->pcm_ops->close(substream);
372 cpu_dai->runtime = NULL;
373
374 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
375 /* start delayed pop wq here for playback streams */
376 codec_dai->pop_wait = 1;
377 schedule_delayed_work(&card->delayed_work,
378 msecs_to_jiffies(pmdown_time));
379 } else {
380 /* capture streams can be powered down now */
381 snd_soc_dapm_stream_event(codec,
382 codec_dai->capture.stream_name,
383 SND_SOC_DAPM_STREAM_STOP);
384 }
385
386 mutex_unlock(&pcm_mutex);
387 return 0;
388 }
389
390 /*
391 * Called by ALSA when the PCM substream is prepared, can set format, sample
392 * rate, etc. This function is non atomic and can be called multiple times,
393 * it can refer to the runtime info.
394 */
395 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
396 {
397 struct snd_soc_pcm_runtime *rtd = substream->private_data;
398 struct snd_soc_device *socdev = rtd->socdev;
399 struct snd_soc_card *card = socdev->card;
400 struct snd_soc_dai_link *machine = rtd->dai;
401 struct snd_soc_platform *platform = card->platform;
402 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
403 struct snd_soc_dai *codec_dai = machine->codec_dai;
404 struct snd_soc_codec *codec = card->codec;
405 int ret = 0;
406
407 mutex_lock(&pcm_mutex);
408
409 if (machine->ops && machine->ops->prepare) {
410 ret = machine->ops->prepare(substream);
411 if (ret < 0) {
412 printk(KERN_ERR "asoc: machine prepare error\n");
413 goto out;
414 }
415 }
416
417 if (platform->pcm_ops->prepare) {
418 ret = platform->pcm_ops->prepare(substream);
419 if (ret < 0) {
420 printk(KERN_ERR "asoc: platform prepare error\n");
421 goto out;
422 }
423 }
424
425 if (codec_dai->ops->prepare) {
426 ret = codec_dai->ops->prepare(substream, codec_dai);
427 if (ret < 0) {
428 printk(KERN_ERR "asoc: codec DAI prepare error\n");
429 goto out;
430 }
431 }
432
433 if (cpu_dai->ops->prepare) {
434 ret = cpu_dai->ops->prepare(substream, cpu_dai);
435 if (ret < 0) {
436 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
437 goto out;
438 }
439 }
440
441 /* cancel any delayed stream shutdown that is pending */
442 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
443 codec_dai->pop_wait) {
444 codec_dai->pop_wait = 0;
445 cancel_delayed_work(&card->delayed_work);
446 }
447
448 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
449 snd_soc_dapm_stream_event(codec,
450 codec_dai->playback.stream_name,
451 SND_SOC_DAPM_STREAM_START);
452 else
453 snd_soc_dapm_stream_event(codec,
454 codec_dai->capture.stream_name,
455 SND_SOC_DAPM_STREAM_START);
456
457 snd_soc_dai_digital_mute(codec_dai, 0);
458
459 out:
460 mutex_unlock(&pcm_mutex);
461 return ret;
462 }
463
464 /*
465 * Called by ALSA when the hardware params are set by application. This
466 * function can also be called multiple times and can allocate buffers
467 * (using snd_pcm_lib_* ). It's non-atomic.
468 */
469 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
470 struct snd_pcm_hw_params *params)
471 {
472 struct snd_soc_pcm_runtime *rtd = substream->private_data;
473 struct snd_soc_device *socdev = rtd->socdev;
474 struct snd_soc_dai_link *machine = rtd->dai;
475 struct snd_soc_card *card = socdev->card;
476 struct snd_soc_platform *platform = card->platform;
477 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
478 struct snd_soc_dai *codec_dai = machine->codec_dai;
479 int ret = 0;
480
481 mutex_lock(&pcm_mutex);
482
483 if (machine->ops && machine->ops->hw_params) {
484 ret = machine->ops->hw_params(substream, params);
485 if (ret < 0) {
486 printk(KERN_ERR "asoc: machine hw_params failed\n");
487 goto out;
488 }
489 }
490
491 if (codec_dai->ops->hw_params) {
492 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
493 if (ret < 0) {
494 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
495 codec_dai->name);
496 goto codec_err;
497 }
498 }
499
500 if (cpu_dai->ops->hw_params) {
501 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
502 if (ret < 0) {
503 printk(KERN_ERR "asoc: interface %s hw params failed\n",
504 cpu_dai->name);
505 goto interface_err;
506 }
507 }
508
509 if (platform->pcm_ops->hw_params) {
510 ret = platform->pcm_ops->hw_params(substream, params);
511 if (ret < 0) {
512 printk(KERN_ERR "asoc: platform %s hw params failed\n",
513 platform->name);
514 goto platform_err;
515 }
516 }
517
518 machine->rate = params_rate(params);
519
520 out:
521 mutex_unlock(&pcm_mutex);
522 return ret;
523
524 platform_err:
525 if (cpu_dai->ops->hw_free)
526 cpu_dai->ops->hw_free(substream, cpu_dai);
527
528 interface_err:
529 if (codec_dai->ops->hw_free)
530 codec_dai->ops->hw_free(substream, codec_dai);
531
532 codec_err:
533 if (machine->ops && machine->ops->hw_free)
534 machine->ops->hw_free(substream);
535
536 mutex_unlock(&pcm_mutex);
537 return ret;
538 }
539
540 /*
541 * Free's resources allocated by hw_params, can be called multiple times
542 */
543 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
544 {
545 struct snd_soc_pcm_runtime *rtd = substream->private_data;
546 struct snd_soc_device *socdev = rtd->socdev;
547 struct snd_soc_dai_link *machine = rtd->dai;
548 struct snd_soc_card *card = socdev->card;
549 struct snd_soc_platform *platform = card->platform;
550 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
551 struct snd_soc_dai *codec_dai = machine->codec_dai;
552 struct snd_soc_codec *codec = card->codec;
553
554 mutex_lock(&pcm_mutex);
555
556 /* apply codec digital mute */
557 if (!codec->active)
558 snd_soc_dai_digital_mute(codec_dai, 1);
559
560 /* free any machine hw params */
561 if (machine->ops && machine->ops->hw_free)
562 machine->ops->hw_free(substream);
563
564 /* free any DMA resources */
565 if (platform->pcm_ops->hw_free)
566 platform->pcm_ops->hw_free(substream);
567
568 /* now free hw params for the DAI's */
569 if (codec_dai->ops->hw_free)
570 codec_dai->ops->hw_free(substream, codec_dai);
571
572 if (cpu_dai->ops->hw_free)
573 cpu_dai->ops->hw_free(substream, cpu_dai);
574
575 mutex_unlock(&pcm_mutex);
576 return 0;
577 }
578
579 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
580 {
581 struct snd_soc_pcm_runtime *rtd = substream->private_data;
582 struct snd_soc_device *socdev = rtd->socdev;
583 struct snd_soc_card *card= socdev->card;
584 struct snd_soc_dai_link *machine = rtd->dai;
585 struct snd_soc_platform *platform = card->platform;
586 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
587 struct snd_soc_dai *codec_dai = machine->codec_dai;
588 int ret;
589
590 if (codec_dai->ops->trigger) {
591 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
592 if (ret < 0)
593 return ret;
594 }
595
596 if (platform->pcm_ops->trigger) {
597 ret = platform->pcm_ops->trigger(substream, cmd);
598 if (ret < 0)
599 return ret;
600 }
601
602 if (cpu_dai->ops->trigger) {
603 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
604 if (ret < 0)
605 return ret;
606 }
607 return 0;
608 }
609
610 /* ASoC PCM operations */
611 static struct snd_pcm_ops soc_pcm_ops = {
612 .open = soc_pcm_open,
613 .close = soc_codec_close,
614 .hw_params = soc_pcm_hw_params,
615 .hw_free = soc_pcm_hw_free,
616 .prepare = soc_pcm_prepare,
617 .trigger = soc_pcm_trigger,
618 };
619
620 #ifdef CONFIG_PM
621 /* powers down audio subsystem for suspend */
622 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
623 {
624 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
625 struct snd_soc_card *card = socdev->card;
626 struct snd_soc_platform *platform = card->platform;
627 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
628 struct snd_soc_codec *codec = card->codec;
629 int i;
630
631 /* If the initialization of this soc device failed, there is no codec
632 * associated with it. Just bail out in this case.
633 */
634 if (!codec)
635 return 0;
636
637 /* Due to the resume being scheduled into a workqueue we could
638 * suspend before that's finished - wait for it to complete.
639 */
640 snd_power_lock(codec->card);
641 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
642 snd_power_unlock(codec->card);
643
644 /* we're going to block userspace touching us until resume completes */
645 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
646
647 /* mute any active DAC's */
648 for (i = 0; i < card->num_links; i++) {
649 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
650 if (dai->ops->digital_mute && dai->playback.active)
651 dai->ops->digital_mute(dai, 1);
652 }
653
654 /* suspend all pcms */
655 for (i = 0; i < card->num_links; i++)
656 snd_pcm_suspend_all(card->dai_link[i].pcm);
657
658 if (card->suspend_pre)
659 card->suspend_pre(pdev, state);
660
661 for (i = 0; i < card->num_links; i++) {
662 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
663 if (cpu_dai->suspend && !cpu_dai->ac97_control)
664 cpu_dai->suspend(cpu_dai);
665 if (platform->suspend)
666 platform->suspend(cpu_dai);
667 }
668
669 /* close any waiting streams and save state */
670 run_delayed_work(&card->delayed_work);
671 codec->suspend_bias_level = codec->bias_level;
672
673 for (i = 0; i < codec->num_dai; i++) {
674 char *stream = codec->dai[i].playback.stream_name;
675 if (stream != NULL)
676 snd_soc_dapm_stream_event(codec, stream,
677 SND_SOC_DAPM_STREAM_SUSPEND);
678 stream = codec->dai[i].capture.stream_name;
679 if (stream != NULL)
680 snd_soc_dapm_stream_event(codec, stream,
681 SND_SOC_DAPM_STREAM_SUSPEND);
682 }
683
684 if (codec_dev->suspend)
685 codec_dev->suspend(pdev, state);
686
687 for (i = 0; i < card->num_links; i++) {
688 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
689 if (cpu_dai->suspend && cpu_dai->ac97_control)
690 cpu_dai->suspend(cpu_dai);
691 }
692
693 if (card->suspend_post)
694 card->suspend_post(pdev, state);
695
696 return 0;
697 }
698
699 /* deferred resume work, so resume can complete before we finished
700 * setting our codec back up, which can be very slow on I2C
701 */
702 static void soc_resume_deferred(struct work_struct *work)
703 {
704 struct snd_soc_card *card = container_of(work,
705 struct snd_soc_card,
706 deferred_resume_work);
707 struct snd_soc_device *socdev = card->socdev;
708 struct snd_soc_platform *platform = card->platform;
709 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
710 struct snd_soc_codec *codec = card->codec;
711 struct platform_device *pdev = to_platform_device(socdev->dev);
712 int i;
713
714 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
715 * so userspace apps are blocked from touching us
716 */
717
718 dev_dbg(socdev->dev, "starting resume work\n");
719
720 if (card->resume_pre)
721 card->resume_pre(pdev);
722
723 for (i = 0; i < card->num_links; i++) {
724 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
725 if (cpu_dai->resume && cpu_dai->ac97_control)
726 cpu_dai->resume(cpu_dai);
727 }
728
729 if (codec_dev->resume)
730 codec_dev->resume(pdev);
731
732 for (i = 0; i < codec->num_dai; i++) {
733 char *stream = codec->dai[i].playback.stream_name;
734 if (stream != NULL)
735 snd_soc_dapm_stream_event(codec, stream,
736 SND_SOC_DAPM_STREAM_RESUME);
737 stream = codec->dai[i].capture.stream_name;
738 if (stream != NULL)
739 snd_soc_dapm_stream_event(codec, stream,
740 SND_SOC_DAPM_STREAM_RESUME);
741 }
742
743 /* unmute any active DACs */
744 for (i = 0; i < card->num_links; i++) {
745 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
746 if (dai->ops->digital_mute && dai->playback.active)
747 dai->ops->digital_mute(dai, 0);
748 }
749
750 for (i = 0; i < card->num_links; i++) {
751 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
752 if (cpu_dai->resume && !cpu_dai->ac97_control)
753 cpu_dai->resume(cpu_dai);
754 if (platform->resume)
755 platform->resume(cpu_dai);
756 }
757
758 if (card->resume_post)
759 card->resume_post(pdev);
760
761 dev_dbg(socdev->dev, "resume work completed\n");
762
763 /* userspace can access us now we are back as we were before */
764 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
765 }
766
767 /* powers up audio subsystem after a suspend */
768 static int soc_resume(struct platform_device *pdev)
769 {
770 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
771 struct snd_soc_card *card = socdev->card;
772 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
773
774 /* AC97 devices might have other drivers hanging off them so
775 * need to resume immediately. Other drivers don't have that
776 * problem and may take a substantial amount of time to resume
777 * due to I/O costs and anti-pop so handle them out of line.
778 */
779 if (cpu_dai->ac97_control) {
780 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
781 soc_resume_deferred(&card->deferred_resume_work);
782 } else {
783 dev_dbg(socdev->dev, "Scheduling resume work\n");
784 if (!schedule_work(&card->deferred_resume_work))
785 dev_err(socdev->dev, "resume work item may be lost\n");
786 }
787
788 return 0;
789 }
790
791 #else
792 #define soc_suspend NULL
793 #define soc_resume NULL
794 #endif
795
796 static void snd_soc_instantiate_card(struct snd_soc_card *card)
797 {
798 struct platform_device *pdev = container_of(card->dev,
799 struct platform_device,
800 dev);
801 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
802 struct snd_soc_platform *platform;
803 struct snd_soc_dai *dai;
804 int i, found, ret, ac97;
805
806 if (card->instantiated)
807 return;
808
809 found = 0;
810 list_for_each_entry(platform, &platform_list, list)
811 if (card->platform == platform) {
812 found = 1;
813 break;
814 }
815 if (!found) {
816 dev_dbg(card->dev, "Platform %s not registered\n",
817 card->platform->name);
818 return;
819 }
820
821 ac97 = 0;
822 for (i = 0; i < card->num_links; i++) {
823 found = 0;
824 list_for_each_entry(dai, &dai_list, list)
825 if (card->dai_link[i].cpu_dai == dai) {
826 found = 1;
827 break;
828 }
829 if (!found) {
830 dev_dbg(card->dev, "DAI %s not registered\n",
831 card->dai_link[i].cpu_dai->name);
832 return;
833 }
834
835 if (card->dai_link[i].cpu_dai->ac97_control)
836 ac97 = 1;
837 }
838
839 /* If we have AC97 in the system then don't wait for the
840 * codec. This will need revisiting if we have to handle
841 * systems with mixed AC97 and non-AC97 parts. Only check for
842 * DAIs currently; we can't do this per link since some AC97
843 * codecs have non-AC97 DAIs.
844 */
845 if (!ac97)
846 for (i = 0; i < card->num_links; i++) {
847 found = 0;
848 list_for_each_entry(dai, &dai_list, list)
849 if (card->dai_link[i].codec_dai == dai) {
850 found = 1;
851 break;
852 }
853 if (!found) {
854 dev_dbg(card->dev, "DAI %s not registered\n",
855 card->dai_link[i].codec_dai->name);
856 return;
857 }
858 }
859
860 /* Note that we do not current check for codec components */
861
862 dev_dbg(card->dev, "All components present, instantiating\n");
863
864 /* Found everything, bring it up */
865 if (card->probe) {
866 ret = card->probe(pdev);
867 if (ret < 0)
868 return;
869 }
870
871 for (i = 0; i < card->num_links; i++) {
872 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
873 if (cpu_dai->probe) {
874 ret = cpu_dai->probe(pdev, cpu_dai);
875 if (ret < 0)
876 goto cpu_dai_err;
877 }
878 }
879
880 if (codec_dev->probe) {
881 ret = codec_dev->probe(pdev);
882 if (ret < 0)
883 goto cpu_dai_err;
884 }
885
886 if (platform->probe) {
887 ret = platform->probe(pdev);
888 if (ret < 0)
889 goto platform_err;
890 }
891
892 /* DAPM stream work */
893 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
894 #ifdef CONFIG_PM
895 /* deferred resume work */
896 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
897 #endif
898
899 card->instantiated = 1;
900
901 return;
902
903 platform_err:
904 if (codec_dev->remove)
905 codec_dev->remove(pdev);
906
907 cpu_dai_err:
908 for (i--; i >= 0; i--) {
909 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
910 if (cpu_dai->remove)
911 cpu_dai->remove(pdev, cpu_dai);
912 }
913
914 if (card->remove)
915 card->remove(pdev);
916 }
917
918 /*
919 * Attempt to initialise any uninitalised cards. Must be called with
920 * client_mutex.
921 */
922 static void snd_soc_instantiate_cards(void)
923 {
924 struct snd_soc_card *card;
925 list_for_each_entry(card, &card_list, list)
926 snd_soc_instantiate_card(card);
927 }
928
929 /* probes a new socdev */
930 static int soc_probe(struct platform_device *pdev)
931 {
932 int ret = 0;
933 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
934 struct snd_soc_card *card = socdev->card;
935
936 /* Bodge while we push things out of socdev */
937 card->socdev = socdev;
938
939 /* Bodge while we unpick instantiation */
940 card->dev = &pdev->dev;
941 ret = snd_soc_register_card(card);
942 if (ret != 0) {
943 dev_err(&pdev->dev, "Failed to register card\n");
944 return ret;
945 }
946
947 return 0;
948 }
949
950 /* removes a socdev */
951 static int soc_remove(struct platform_device *pdev)
952 {
953 int i;
954 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
955 struct snd_soc_card *card = socdev->card;
956 struct snd_soc_platform *platform = card->platform;
957 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
958
959 if (!card->instantiated)
960 return 0;
961
962 run_delayed_work(&card->delayed_work);
963
964 if (platform->remove)
965 platform->remove(pdev);
966
967 if (codec_dev->remove)
968 codec_dev->remove(pdev);
969
970 for (i = 0; i < card->num_links; i++) {
971 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
972 if (cpu_dai->remove)
973 cpu_dai->remove(pdev, cpu_dai);
974 }
975
976 if (card->remove)
977 card->remove(pdev);
978
979 snd_soc_unregister_card(card);
980
981 return 0;
982 }
983
984 /* ASoC platform driver */
985 static struct platform_driver soc_driver = {
986 .driver = {
987 .name = "soc-audio",
988 .owner = THIS_MODULE,
989 },
990 .probe = soc_probe,
991 .remove = soc_remove,
992 .suspend = soc_suspend,
993 .resume = soc_resume,
994 };
995
996 /* create a new pcm */
997 static int soc_new_pcm(struct snd_soc_device *socdev,
998 struct snd_soc_dai_link *dai_link, int num)
999 {
1000 struct snd_soc_card *card = socdev->card;
1001 struct snd_soc_codec *codec = card->codec;
1002 struct snd_soc_platform *platform = card->platform;
1003 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1004 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1005 struct snd_soc_pcm_runtime *rtd;
1006 struct snd_pcm *pcm;
1007 char new_name[64];
1008 int ret = 0, playback = 0, capture = 0;
1009
1010 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1011 if (rtd == NULL)
1012 return -ENOMEM;
1013
1014 rtd->dai = dai_link;
1015 rtd->socdev = socdev;
1016 codec_dai->codec = card->codec;
1017
1018 /* check client and interface hw capabilities */
1019 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1020 num);
1021
1022 if (codec_dai->playback.channels_min)
1023 playback = 1;
1024 if (codec_dai->capture.channels_min)
1025 capture = 1;
1026
1027 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1028 capture, &pcm);
1029 if (ret < 0) {
1030 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1031 codec->name);
1032 kfree(rtd);
1033 return ret;
1034 }
1035
1036 dai_link->pcm = pcm;
1037 pcm->private_data = rtd;
1038 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1039 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1040 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1041 soc_pcm_ops.copy = platform->pcm_ops->copy;
1042 soc_pcm_ops.silence = platform->pcm_ops->silence;
1043 soc_pcm_ops.ack = platform->pcm_ops->ack;
1044 soc_pcm_ops.page = platform->pcm_ops->page;
1045
1046 if (playback)
1047 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1048
1049 if (capture)
1050 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1051
1052 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1053 if (ret < 0) {
1054 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1055 kfree(rtd);
1056 return ret;
1057 }
1058
1059 pcm->private_free = platform->pcm_free;
1060 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1061 cpu_dai->name);
1062 return ret;
1063 }
1064
1065 /* codec register dump */
1066 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1067 {
1068 int i, step = 1, count = 0;
1069
1070 if (!codec->reg_cache_size)
1071 return 0;
1072
1073 if (codec->reg_cache_step)
1074 step = codec->reg_cache_step;
1075
1076 count += sprintf(buf, "%s registers\n", codec->name);
1077 for (i = 0; i < codec->reg_cache_size; i += step) {
1078 count += sprintf(buf + count, "%2x: ", i);
1079 if (count >= PAGE_SIZE - 1)
1080 break;
1081
1082 if (codec->display_register)
1083 count += codec->display_register(codec, buf + count,
1084 PAGE_SIZE - count, i);
1085 else
1086 count += snprintf(buf + count, PAGE_SIZE - count,
1087 "%4x", codec->read(codec, i));
1088
1089 if (count >= PAGE_SIZE - 1)
1090 break;
1091
1092 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1093 if (count >= PAGE_SIZE - 1)
1094 break;
1095 }
1096
1097 /* Truncate count; min() would cause a warning */
1098 if (count >= PAGE_SIZE)
1099 count = PAGE_SIZE - 1;
1100
1101 return count;
1102 }
1103 static ssize_t codec_reg_show(struct device *dev,
1104 struct device_attribute *attr, char *buf)
1105 {
1106 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1107 return soc_codec_reg_show(devdata->card->codec, buf);
1108 }
1109
1110 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1111
1112 #ifdef CONFIG_DEBUG_FS
1113 static int codec_reg_open_file(struct inode *inode, struct file *file)
1114 {
1115 file->private_data = inode->i_private;
1116 return 0;
1117 }
1118
1119 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1120 size_t count, loff_t *ppos)
1121 {
1122 ssize_t ret;
1123 struct snd_soc_codec *codec = file->private_data;
1124 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1125 if (!buf)
1126 return -ENOMEM;
1127 ret = soc_codec_reg_show(codec, buf);
1128 if (ret >= 0)
1129 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1130 kfree(buf);
1131 return ret;
1132 }
1133
1134 static ssize_t codec_reg_write_file(struct file *file,
1135 const char __user *user_buf, size_t count, loff_t *ppos)
1136 {
1137 char buf[32];
1138 int buf_size;
1139 char *start = buf;
1140 unsigned long reg, value;
1141 int step = 1;
1142 struct snd_soc_codec *codec = file->private_data;
1143
1144 buf_size = min(count, (sizeof(buf)-1));
1145 if (copy_from_user(buf, user_buf, buf_size))
1146 return -EFAULT;
1147 buf[buf_size] = 0;
1148
1149 if (codec->reg_cache_step)
1150 step = codec->reg_cache_step;
1151
1152 while (*start == ' ')
1153 start++;
1154 reg = simple_strtoul(start, &start, 16);
1155 if ((reg >= codec->reg_cache_size) || (reg % step))
1156 return -EINVAL;
1157 while (*start == ' ')
1158 start++;
1159 if (strict_strtoul(start, 16, &value))
1160 return -EINVAL;
1161 codec->write(codec, reg, value);
1162 return buf_size;
1163 }
1164
1165 static const struct file_operations codec_reg_fops = {
1166 .open = codec_reg_open_file,
1167 .read = codec_reg_read_file,
1168 .write = codec_reg_write_file,
1169 };
1170
1171 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1172 {
1173 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1174 debugfs_root, codec,
1175 &codec_reg_fops);
1176 if (!codec->debugfs_reg)
1177 printk(KERN_WARNING
1178 "ASoC: Failed to create codec register debugfs file\n");
1179
1180 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1181 debugfs_root,
1182 &codec->pop_time);
1183 if (!codec->debugfs_pop_time)
1184 printk(KERN_WARNING
1185 "Failed to create pop time debugfs file\n");
1186 }
1187
1188 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1189 {
1190 debugfs_remove(codec->debugfs_pop_time);
1191 debugfs_remove(codec->debugfs_reg);
1192 }
1193
1194 #else
1195
1196 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1197 {
1198 }
1199
1200 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1201 {
1202 }
1203 #endif
1204
1205 /**
1206 * snd_soc_new_ac97_codec - initailise AC97 device
1207 * @codec: audio codec
1208 * @ops: AC97 bus operations
1209 * @num: AC97 codec number
1210 *
1211 * Initialises AC97 codec resources for use by ad-hoc devices only.
1212 */
1213 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1214 struct snd_ac97_bus_ops *ops, int num)
1215 {
1216 mutex_lock(&codec->mutex);
1217
1218 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1219 if (codec->ac97 == NULL) {
1220 mutex_unlock(&codec->mutex);
1221 return -ENOMEM;
1222 }
1223
1224 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1225 if (codec->ac97->bus == NULL) {
1226 kfree(codec->ac97);
1227 codec->ac97 = NULL;
1228 mutex_unlock(&codec->mutex);
1229 return -ENOMEM;
1230 }
1231
1232 codec->ac97->bus->ops = ops;
1233 codec->ac97->num = num;
1234 mutex_unlock(&codec->mutex);
1235 return 0;
1236 }
1237 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1238
1239 /**
1240 * snd_soc_free_ac97_codec - free AC97 codec device
1241 * @codec: audio codec
1242 *
1243 * Frees AC97 codec device resources.
1244 */
1245 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1246 {
1247 mutex_lock(&codec->mutex);
1248 kfree(codec->ac97->bus);
1249 kfree(codec->ac97);
1250 codec->ac97 = NULL;
1251 mutex_unlock(&codec->mutex);
1252 }
1253 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1254
1255 /**
1256 * snd_soc_update_bits - update codec register bits
1257 * @codec: audio codec
1258 * @reg: codec register
1259 * @mask: register mask
1260 * @value: new value
1261 *
1262 * Writes new register value.
1263 *
1264 * Returns 1 for change else 0.
1265 */
1266 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1267 unsigned short mask, unsigned short value)
1268 {
1269 int change;
1270 unsigned short old, new;
1271
1272 mutex_lock(&io_mutex);
1273 old = snd_soc_read(codec, reg);
1274 new = (old & ~mask) | value;
1275 change = old != new;
1276 if (change)
1277 snd_soc_write(codec, reg, new);
1278
1279 mutex_unlock(&io_mutex);
1280 return change;
1281 }
1282 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1283
1284 /**
1285 * snd_soc_test_bits - test register for change
1286 * @codec: audio codec
1287 * @reg: codec register
1288 * @mask: register mask
1289 * @value: new value
1290 *
1291 * Tests a register with a new value and checks if the new value is
1292 * different from the old value.
1293 *
1294 * Returns 1 for change else 0.
1295 */
1296 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1297 unsigned short mask, unsigned short value)
1298 {
1299 int change;
1300 unsigned short old, new;
1301
1302 mutex_lock(&io_mutex);
1303 old = snd_soc_read(codec, reg);
1304 new = (old & ~mask) | value;
1305 change = old != new;
1306 mutex_unlock(&io_mutex);
1307
1308 return change;
1309 }
1310 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1311
1312 /**
1313 * snd_soc_new_pcms - create new sound card and pcms
1314 * @socdev: the SoC audio device
1315 * @idx: ALSA card index
1316 * @xid: card identification
1317 *
1318 * Create a new sound card based upon the codec and interface pcms.
1319 *
1320 * Returns 0 for success, else error.
1321 */
1322 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1323 {
1324 struct snd_soc_card *card = socdev->card;
1325 struct snd_soc_codec *codec = card->codec;
1326 int ret, i;
1327
1328 mutex_lock(&codec->mutex);
1329
1330 /* register a sound card */
1331 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1332 if (ret < 0) {
1333 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1334 codec->name);
1335 mutex_unlock(&codec->mutex);
1336 return ret;
1337 }
1338
1339 codec->socdev = socdev;
1340 codec->card->dev = socdev->dev;
1341 codec->card->private_data = codec;
1342 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1343
1344 /* create the pcms */
1345 for (i = 0; i < card->num_links; i++) {
1346 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1347 if (ret < 0) {
1348 printk(KERN_ERR "asoc: can't create pcm %s\n",
1349 card->dai_link[i].stream_name);
1350 mutex_unlock(&codec->mutex);
1351 return ret;
1352 }
1353 }
1354
1355 mutex_unlock(&codec->mutex);
1356 return ret;
1357 }
1358 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1359
1360 /**
1361 * snd_soc_init_card - register sound card
1362 * @socdev: the SoC audio device
1363 *
1364 * Register a SoC sound card. Also registers an AC97 device if the
1365 * codec is AC97 for ad hoc devices.
1366 *
1367 * Returns 0 for success, else error.
1368 */
1369 int snd_soc_init_card(struct snd_soc_device *socdev)
1370 {
1371 struct snd_soc_card *card = socdev->card;
1372 struct snd_soc_codec *codec = card->codec;
1373 int ret = 0, i, ac97 = 0, err = 0;
1374
1375 for (i = 0; i < card->num_links; i++) {
1376 if (card->dai_link[i].init) {
1377 err = card->dai_link[i].init(codec);
1378 if (err < 0) {
1379 printk(KERN_ERR "asoc: failed to init %s\n",
1380 card->dai_link[i].stream_name);
1381 continue;
1382 }
1383 }
1384 if (card->dai_link[i].codec_dai->ac97_control)
1385 ac97 = 1;
1386 }
1387 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1388 "%s", card->name);
1389 snprintf(codec->card->longname, sizeof(codec->card->longname),
1390 "%s (%s)", card->name, codec->name);
1391
1392 /* Make sure all DAPM widgets are instantiated */
1393 snd_soc_dapm_new_widgets(codec);
1394
1395 ret = snd_card_register(codec->card);
1396 if (ret < 0) {
1397 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1398 codec->name);
1399 goto out;
1400 }
1401
1402 mutex_lock(&codec->mutex);
1403 #ifdef CONFIG_SND_SOC_AC97_BUS
1404 /* Only instantiate AC97 if not already done by the adaptor
1405 * for the generic AC97 subsystem.
1406 */
1407 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1408 ret = soc_ac97_dev_register(codec);
1409 if (ret < 0) {
1410 printk(KERN_ERR "asoc: AC97 device register failed\n");
1411 snd_card_free(codec->card);
1412 mutex_unlock(&codec->mutex);
1413 goto out;
1414 }
1415 }
1416 #endif
1417
1418 err = snd_soc_dapm_sys_add(socdev->dev);
1419 if (err < 0)
1420 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1421
1422 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1423 if (err < 0)
1424 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1425
1426 soc_init_codec_debugfs(codec);
1427 mutex_unlock(&codec->mutex);
1428
1429 out:
1430 return ret;
1431 }
1432 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1433
1434 /**
1435 * snd_soc_free_pcms - free sound card and pcms
1436 * @socdev: the SoC audio device
1437 *
1438 * Frees sound card and pcms associated with the socdev.
1439 * Also unregister the codec if it is an AC97 device.
1440 */
1441 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1442 {
1443 struct snd_soc_codec *codec = socdev->card->codec;
1444 #ifdef CONFIG_SND_SOC_AC97_BUS
1445 struct snd_soc_dai *codec_dai;
1446 int i;
1447 #endif
1448
1449 mutex_lock(&codec->mutex);
1450 soc_cleanup_codec_debugfs(codec);
1451 #ifdef CONFIG_SND_SOC_AC97_BUS
1452 for (i = 0; i < codec->num_dai; i++) {
1453 codec_dai = &codec->dai[i];
1454 if (codec_dai->ac97_control && codec->ac97 &&
1455 strcmp(codec->name, "AC97") != 0) {
1456 soc_ac97_dev_unregister(codec);
1457 goto free_card;
1458 }
1459 }
1460 free_card:
1461 #endif
1462
1463 if (codec->card)
1464 snd_card_free(codec->card);
1465 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1466 mutex_unlock(&codec->mutex);
1467 }
1468 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1469
1470 /**
1471 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1472 * @substream: the pcm substream
1473 * @hw: the hardware parameters
1474 *
1475 * Sets the substream runtime hardware parameters.
1476 */
1477 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1478 const struct snd_pcm_hardware *hw)
1479 {
1480 struct snd_pcm_runtime *runtime = substream->runtime;
1481 runtime->hw.info = hw->info;
1482 runtime->hw.formats = hw->formats;
1483 runtime->hw.period_bytes_min = hw->period_bytes_min;
1484 runtime->hw.period_bytes_max = hw->period_bytes_max;
1485 runtime->hw.periods_min = hw->periods_min;
1486 runtime->hw.periods_max = hw->periods_max;
1487 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1488 runtime->hw.fifo_size = hw->fifo_size;
1489 return 0;
1490 }
1491 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1492
1493 /**
1494 * snd_soc_cnew - create new control
1495 * @_template: control template
1496 * @data: control private data
1497 * @long_name: control long name
1498 *
1499 * Create a new mixer control from a template control.
1500 *
1501 * Returns 0 for success, else error.
1502 */
1503 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1504 void *data, char *long_name)
1505 {
1506 struct snd_kcontrol_new template;
1507
1508 memcpy(&template, _template, sizeof(template));
1509 if (long_name)
1510 template.name = long_name;
1511 template.index = 0;
1512
1513 return snd_ctl_new1(&template, data);
1514 }
1515 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1516
1517 /**
1518 * snd_soc_add_controls - add an array of controls to a codec.
1519 * Convienience function to add a list of controls. Many codecs were
1520 * duplicating this code.
1521 *
1522 * @codec: codec to add controls to
1523 * @controls: array of controls to add
1524 * @num_controls: number of elements in the array
1525 *
1526 * Return 0 for success, else error.
1527 */
1528 int snd_soc_add_controls(struct snd_soc_codec *codec,
1529 const struct snd_kcontrol_new *controls, int num_controls)
1530 {
1531 struct snd_card *card = codec->card;
1532 int err, i;
1533
1534 for (i = 0; i < num_controls; i++) {
1535 const struct snd_kcontrol_new *control = &controls[i];
1536 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1537 if (err < 0) {
1538 dev_err(codec->dev, "%s: Failed to add %s\n",
1539 codec->name, control->name);
1540 return err;
1541 }
1542 }
1543
1544 return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1547
1548 /**
1549 * snd_soc_info_enum_double - enumerated double mixer info callback
1550 * @kcontrol: mixer control
1551 * @uinfo: control element information
1552 *
1553 * Callback to provide information about a double enumerated
1554 * mixer control.
1555 *
1556 * Returns 0 for success.
1557 */
1558 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1559 struct snd_ctl_elem_info *uinfo)
1560 {
1561 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1562
1563 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1564 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1565 uinfo->value.enumerated.items = e->max;
1566
1567 if (uinfo->value.enumerated.item > e->max - 1)
1568 uinfo->value.enumerated.item = e->max - 1;
1569 strcpy(uinfo->value.enumerated.name,
1570 e->texts[uinfo->value.enumerated.item]);
1571 return 0;
1572 }
1573 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1574
1575 /**
1576 * snd_soc_get_enum_double - enumerated double mixer get callback
1577 * @kcontrol: mixer control
1578 * @ucontrol: control element information
1579 *
1580 * Callback to get the value of a double enumerated mixer.
1581 *
1582 * Returns 0 for success.
1583 */
1584 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1585 struct snd_ctl_elem_value *ucontrol)
1586 {
1587 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1588 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1589 unsigned short val, bitmask;
1590
1591 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1592 ;
1593 val = snd_soc_read(codec, e->reg);
1594 ucontrol->value.enumerated.item[0]
1595 = (val >> e->shift_l) & (bitmask - 1);
1596 if (e->shift_l != e->shift_r)
1597 ucontrol->value.enumerated.item[1] =
1598 (val >> e->shift_r) & (bitmask - 1);
1599
1600 return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1603
1604 /**
1605 * snd_soc_put_enum_double - enumerated double mixer put callback
1606 * @kcontrol: mixer control
1607 * @ucontrol: control element information
1608 *
1609 * Callback to set the value of a double enumerated mixer.
1610 *
1611 * Returns 0 for success.
1612 */
1613 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1614 struct snd_ctl_elem_value *ucontrol)
1615 {
1616 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1617 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1618 unsigned short val;
1619 unsigned short mask, bitmask;
1620
1621 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1622 ;
1623 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1624 return -EINVAL;
1625 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1626 mask = (bitmask - 1) << e->shift_l;
1627 if (e->shift_l != e->shift_r) {
1628 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1629 return -EINVAL;
1630 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1631 mask |= (bitmask - 1) << e->shift_r;
1632 }
1633
1634 return snd_soc_update_bits(codec, e->reg, mask, val);
1635 }
1636 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1637
1638 /**
1639 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1640 * @kcontrol: mixer control
1641 * @ucontrol: control element information
1642 *
1643 * Callback to get the value of a double semi enumerated mixer.
1644 *
1645 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1646 * used for handling bitfield coded enumeration for example.
1647 *
1648 * Returns 0 for success.
1649 */
1650 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1651 struct snd_ctl_elem_value *ucontrol)
1652 {
1653 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1654 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1655 unsigned short reg_val, val, mux;
1656
1657 reg_val = snd_soc_read(codec, e->reg);
1658 val = (reg_val >> e->shift_l) & e->mask;
1659 for (mux = 0; mux < e->max; mux++) {
1660 if (val == e->values[mux])
1661 break;
1662 }
1663 ucontrol->value.enumerated.item[0] = mux;
1664 if (e->shift_l != e->shift_r) {
1665 val = (reg_val >> e->shift_r) & e->mask;
1666 for (mux = 0; mux < e->max; mux++) {
1667 if (val == e->values[mux])
1668 break;
1669 }
1670 ucontrol->value.enumerated.item[1] = mux;
1671 }
1672
1673 return 0;
1674 }
1675 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1676
1677 /**
1678 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1679 * @kcontrol: mixer control
1680 * @ucontrol: control element information
1681 *
1682 * Callback to set the value of a double semi enumerated mixer.
1683 *
1684 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1685 * used for handling bitfield coded enumeration for example.
1686 *
1687 * Returns 0 for success.
1688 */
1689 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1690 struct snd_ctl_elem_value *ucontrol)
1691 {
1692 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1693 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1694 unsigned short val;
1695 unsigned short mask;
1696
1697 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1698 return -EINVAL;
1699 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1700 mask = e->mask << e->shift_l;
1701 if (e->shift_l != e->shift_r) {
1702 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1703 return -EINVAL;
1704 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1705 mask |= e->mask << e->shift_r;
1706 }
1707
1708 return snd_soc_update_bits(codec, e->reg, mask, val);
1709 }
1710 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1711
1712 /**
1713 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1714 * @kcontrol: mixer control
1715 * @uinfo: control element information
1716 *
1717 * Callback to provide information about an external enumerated
1718 * single mixer.
1719 *
1720 * Returns 0 for success.
1721 */
1722 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1723 struct snd_ctl_elem_info *uinfo)
1724 {
1725 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1726
1727 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1728 uinfo->count = 1;
1729 uinfo->value.enumerated.items = e->max;
1730
1731 if (uinfo->value.enumerated.item > e->max - 1)
1732 uinfo->value.enumerated.item = e->max - 1;
1733 strcpy(uinfo->value.enumerated.name,
1734 e->texts[uinfo->value.enumerated.item]);
1735 return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1738
1739 /**
1740 * snd_soc_info_volsw_ext - external single mixer info callback
1741 * @kcontrol: mixer control
1742 * @uinfo: control element information
1743 *
1744 * Callback to provide information about a single external mixer control.
1745 *
1746 * Returns 0 for success.
1747 */
1748 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1749 struct snd_ctl_elem_info *uinfo)
1750 {
1751 int max = kcontrol->private_value;
1752
1753 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1754 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1755 else
1756 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1757
1758 uinfo->count = 1;
1759 uinfo->value.integer.min = 0;
1760 uinfo->value.integer.max = max;
1761 return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1764
1765 /**
1766 * snd_soc_info_volsw - single mixer info callback
1767 * @kcontrol: mixer control
1768 * @uinfo: control element information
1769 *
1770 * Callback to provide information about a single mixer control.
1771 *
1772 * Returns 0 for success.
1773 */
1774 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1775 struct snd_ctl_elem_info *uinfo)
1776 {
1777 struct soc_mixer_control *mc =
1778 (struct soc_mixer_control *)kcontrol->private_value;
1779 int max = mc->max;
1780 unsigned int shift = mc->shift;
1781 unsigned int rshift = mc->rshift;
1782
1783 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1784 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1785 else
1786 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1787
1788 uinfo->count = shift == rshift ? 1 : 2;
1789 uinfo->value.integer.min = 0;
1790 uinfo->value.integer.max = max;
1791 return 0;
1792 }
1793 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1794
1795 /**
1796 * snd_soc_get_volsw - single mixer get callback
1797 * @kcontrol: mixer control
1798 * @ucontrol: control element information
1799 *
1800 * Callback to get the value of a single mixer control.
1801 *
1802 * Returns 0 for success.
1803 */
1804 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1805 struct snd_ctl_elem_value *ucontrol)
1806 {
1807 struct soc_mixer_control *mc =
1808 (struct soc_mixer_control *)kcontrol->private_value;
1809 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1810 unsigned int reg = mc->reg;
1811 unsigned int shift = mc->shift;
1812 unsigned int rshift = mc->rshift;
1813 int max = mc->max;
1814 unsigned int mask = (1 << fls(max)) - 1;
1815 unsigned int invert = mc->invert;
1816
1817 ucontrol->value.integer.value[0] =
1818 (snd_soc_read(codec, reg) >> shift) & mask;
1819 if (shift != rshift)
1820 ucontrol->value.integer.value[1] =
1821 (snd_soc_read(codec, reg) >> rshift) & mask;
1822 if (invert) {
1823 ucontrol->value.integer.value[0] =
1824 max - ucontrol->value.integer.value[0];
1825 if (shift != rshift)
1826 ucontrol->value.integer.value[1] =
1827 max - ucontrol->value.integer.value[1];
1828 }
1829
1830 return 0;
1831 }
1832 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1833
1834 /**
1835 * snd_soc_put_volsw - single mixer put callback
1836 * @kcontrol: mixer control
1837 * @ucontrol: control element information
1838 *
1839 * Callback to set the value of a single mixer control.
1840 *
1841 * Returns 0 for success.
1842 */
1843 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1844 struct snd_ctl_elem_value *ucontrol)
1845 {
1846 struct soc_mixer_control *mc =
1847 (struct soc_mixer_control *)kcontrol->private_value;
1848 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1849 unsigned int reg = mc->reg;
1850 unsigned int shift = mc->shift;
1851 unsigned int rshift = mc->rshift;
1852 int max = mc->max;
1853 unsigned int mask = (1 << fls(max)) - 1;
1854 unsigned int invert = mc->invert;
1855 unsigned short val, val2, val_mask;
1856
1857 val = (ucontrol->value.integer.value[0] & mask);
1858 if (invert)
1859 val = max - val;
1860 val_mask = mask << shift;
1861 val = val << shift;
1862 if (shift != rshift) {
1863 val2 = (ucontrol->value.integer.value[1] & mask);
1864 if (invert)
1865 val2 = max - val2;
1866 val_mask |= mask << rshift;
1867 val |= val2 << rshift;
1868 }
1869 return snd_soc_update_bits(codec, reg, val_mask, val);
1870 }
1871 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1872
1873 /**
1874 * snd_soc_info_volsw_2r - double mixer info callback
1875 * @kcontrol: mixer control
1876 * @uinfo: control element information
1877 *
1878 * Callback to provide information about a double mixer control that
1879 * spans 2 codec registers.
1880 *
1881 * Returns 0 for success.
1882 */
1883 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1884 struct snd_ctl_elem_info *uinfo)
1885 {
1886 struct soc_mixer_control *mc =
1887 (struct soc_mixer_control *)kcontrol->private_value;
1888 int max = mc->max;
1889
1890 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1891 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1892 else
1893 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1894
1895 uinfo->count = 2;
1896 uinfo->value.integer.min = 0;
1897 uinfo->value.integer.max = max;
1898 return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1901
1902 /**
1903 * snd_soc_get_volsw_2r - double mixer get callback
1904 * @kcontrol: mixer control
1905 * @ucontrol: control element information
1906 *
1907 * Callback to get the value of a double mixer control that spans 2 registers.
1908 *
1909 * Returns 0 for success.
1910 */
1911 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1912 struct snd_ctl_elem_value *ucontrol)
1913 {
1914 struct soc_mixer_control *mc =
1915 (struct soc_mixer_control *)kcontrol->private_value;
1916 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1917 unsigned int reg = mc->reg;
1918 unsigned int reg2 = mc->rreg;
1919 unsigned int shift = mc->shift;
1920 int max = mc->max;
1921 unsigned int mask = (1<<fls(max))-1;
1922 unsigned int invert = mc->invert;
1923
1924 ucontrol->value.integer.value[0] =
1925 (snd_soc_read(codec, reg) >> shift) & mask;
1926 ucontrol->value.integer.value[1] =
1927 (snd_soc_read(codec, reg2) >> shift) & mask;
1928 if (invert) {
1929 ucontrol->value.integer.value[0] =
1930 max - ucontrol->value.integer.value[0];
1931 ucontrol->value.integer.value[1] =
1932 max - ucontrol->value.integer.value[1];
1933 }
1934
1935 return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1938
1939 /**
1940 * snd_soc_put_volsw_2r - double mixer set callback
1941 * @kcontrol: mixer control
1942 * @ucontrol: control element information
1943 *
1944 * Callback to set the value of a double mixer control that spans 2 registers.
1945 *
1946 * Returns 0 for success.
1947 */
1948 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1949 struct snd_ctl_elem_value *ucontrol)
1950 {
1951 struct soc_mixer_control *mc =
1952 (struct soc_mixer_control *)kcontrol->private_value;
1953 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1954 unsigned int reg = mc->reg;
1955 unsigned int reg2 = mc->rreg;
1956 unsigned int shift = mc->shift;
1957 int max = mc->max;
1958 unsigned int mask = (1 << fls(max)) - 1;
1959 unsigned int invert = mc->invert;
1960 int err;
1961 unsigned short val, val2, val_mask;
1962
1963 val_mask = mask << shift;
1964 val = (ucontrol->value.integer.value[0] & mask);
1965 val2 = (ucontrol->value.integer.value[1] & mask);
1966
1967 if (invert) {
1968 val = max - val;
1969 val2 = max - val2;
1970 }
1971
1972 val = val << shift;
1973 val2 = val2 << shift;
1974
1975 err = snd_soc_update_bits(codec, reg, val_mask, val);
1976 if (err < 0)
1977 return err;
1978
1979 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1980 return err;
1981 }
1982 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1983
1984 /**
1985 * snd_soc_info_volsw_s8 - signed mixer info callback
1986 * @kcontrol: mixer control
1987 * @uinfo: control element information
1988 *
1989 * Callback to provide information about a signed mixer control.
1990 *
1991 * Returns 0 for success.
1992 */
1993 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1994 struct snd_ctl_elem_info *uinfo)
1995 {
1996 struct soc_mixer_control *mc =
1997 (struct soc_mixer_control *)kcontrol->private_value;
1998 int max = mc->max;
1999 int min = mc->min;
2000
2001 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2002 uinfo->count = 2;
2003 uinfo->value.integer.min = 0;
2004 uinfo->value.integer.max = max-min;
2005 return 0;
2006 }
2007 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2008
2009 /**
2010 * snd_soc_get_volsw_s8 - signed mixer get callback
2011 * @kcontrol: mixer control
2012 * @ucontrol: control element information
2013 *
2014 * Callback to get the value of a signed mixer control.
2015 *
2016 * Returns 0 for success.
2017 */
2018 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2019 struct snd_ctl_elem_value *ucontrol)
2020 {
2021 struct soc_mixer_control *mc =
2022 (struct soc_mixer_control *)kcontrol->private_value;
2023 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2024 unsigned int reg = mc->reg;
2025 int min = mc->min;
2026 int val = snd_soc_read(codec, reg);
2027
2028 ucontrol->value.integer.value[0] =
2029 ((signed char)(val & 0xff))-min;
2030 ucontrol->value.integer.value[1] =
2031 ((signed char)((val >> 8) & 0xff))-min;
2032 return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2035
2036 /**
2037 * snd_soc_put_volsw_sgn - signed mixer put callback
2038 * @kcontrol: mixer control
2039 * @ucontrol: control element information
2040 *
2041 * Callback to set the value of a signed mixer control.
2042 *
2043 * Returns 0 for success.
2044 */
2045 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2046 struct snd_ctl_elem_value *ucontrol)
2047 {
2048 struct soc_mixer_control *mc =
2049 (struct soc_mixer_control *)kcontrol->private_value;
2050 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2051 unsigned int reg = mc->reg;
2052 int min = mc->min;
2053 unsigned short val;
2054
2055 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2056 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2057
2058 return snd_soc_update_bits(codec, reg, 0xffff, val);
2059 }
2060 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2061
2062 /**
2063 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2064 * @dai: DAI
2065 * @clk_id: DAI specific clock ID
2066 * @freq: new clock frequency in Hz
2067 * @dir: new clock direction - input/output.
2068 *
2069 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2070 */
2071 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2072 unsigned int freq, int dir)
2073 {
2074 if (dai->ops && dai->ops->set_sysclk)
2075 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2076 else
2077 return -EINVAL;
2078 }
2079 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2080
2081 /**
2082 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2083 * @dai: DAI
2084 * @div_id: DAI specific clock divider ID
2085 * @div: new clock divisor.
2086 *
2087 * Configures the clock dividers. This is used to derive the best DAI bit and
2088 * frame clocks from the system or master clock. It's best to set the DAI bit
2089 * and frame clocks as low as possible to save system power.
2090 */
2091 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2092 int div_id, int div)
2093 {
2094 if (dai->ops && dai->ops->set_clkdiv)
2095 return dai->ops->set_clkdiv(dai, div_id, div);
2096 else
2097 return -EINVAL;
2098 }
2099 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2100
2101 /**
2102 * snd_soc_dai_set_pll - configure DAI PLL.
2103 * @dai: DAI
2104 * @pll_id: DAI specific PLL ID
2105 * @freq_in: PLL input clock frequency in Hz
2106 * @freq_out: requested PLL output clock frequency in Hz
2107 *
2108 * Configures and enables PLL to generate output clock based on input clock.
2109 */
2110 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2111 int pll_id, unsigned int freq_in, unsigned int freq_out)
2112 {
2113 if (dai->ops && dai->ops->set_pll)
2114 return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
2115 else
2116 return -EINVAL;
2117 }
2118 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2119
2120 /**
2121 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2122 * @dai: DAI
2123 * @fmt: SND_SOC_DAIFMT_ format value.
2124 *
2125 * Configures the DAI hardware format and clocking.
2126 */
2127 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2128 {
2129 if (dai->ops && dai->ops->set_fmt)
2130 return dai->ops->set_fmt(dai, fmt);
2131 else
2132 return -EINVAL;
2133 }
2134 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2135
2136 /**
2137 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2138 * @dai: DAI
2139 * @mask: DAI specific mask representing used slots.
2140 * @slots: Number of slots in use.
2141 *
2142 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2143 * specific.
2144 */
2145 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2146 unsigned int mask, int slots)
2147 {
2148 if (dai->ops && dai->ops->set_tdm_slot)
2149 return dai->ops->set_tdm_slot(dai, mask, slots);
2150 else
2151 return -EINVAL;
2152 }
2153 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2154
2155 /**
2156 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2157 * @dai: DAI
2158 * @tristate: tristate enable
2159 *
2160 * Tristates the DAI so that others can use it.
2161 */
2162 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2163 {
2164 if (dai->ops && dai->ops->set_tristate)
2165 return dai->ops->set_tristate(dai, tristate);
2166 else
2167 return -EINVAL;
2168 }
2169 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2170
2171 /**
2172 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2173 * @dai: DAI
2174 * @mute: mute enable
2175 *
2176 * Mutes the DAI DAC.
2177 */
2178 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2179 {
2180 if (dai->ops && dai->ops->digital_mute)
2181 return dai->ops->digital_mute(dai, mute);
2182 else
2183 return -EINVAL;
2184 }
2185 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2186
2187 /**
2188 * snd_soc_register_card - Register a card with the ASoC core
2189 *
2190 * @card: Card to register
2191 *
2192 * Note that currently this is an internal only function: it will be
2193 * exposed to machine drivers after further backporting of ASoC v2
2194 * registration APIs.
2195 */
2196 static int snd_soc_register_card(struct snd_soc_card *card)
2197 {
2198 if (!card->name || !card->dev)
2199 return -EINVAL;
2200
2201 INIT_LIST_HEAD(&card->list);
2202 card->instantiated = 0;
2203
2204 mutex_lock(&client_mutex);
2205 list_add(&card->list, &card_list);
2206 snd_soc_instantiate_cards();
2207 mutex_unlock(&client_mutex);
2208
2209 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2210
2211 return 0;
2212 }
2213
2214 /**
2215 * snd_soc_unregister_card - Unregister a card with the ASoC core
2216 *
2217 * @card: Card to unregister
2218 *
2219 * Note that currently this is an internal only function: it will be
2220 * exposed to machine drivers after further backporting of ASoC v2
2221 * registration APIs.
2222 */
2223 static int snd_soc_unregister_card(struct snd_soc_card *card)
2224 {
2225 mutex_lock(&client_mutex);
2226 list_del(&card->list);
2227 mutex_unlock(&client_mutex);
2228
2229 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2230
2231 return 0;
2232 }
2233
2234 static struct snd_soc_dai_ops null_dai_ops = {
2235 };
2236
2237 /**
2238 * snd_soc_register_dai - Register a DAI with the ASoC core
2239 *
2240 * @dai: DAI to register
2241 */
2242 int snd_soc_register_dai(struct snd_soc_dai *dai)
2243 {
2244 if (!dai->name)
2245 return -EINVAL;
2246
2247 /* The device should become mandatory over time */
2248 if (!dai->dev)
2249 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2250
2251 if (!dai->ops)
2252 dai->ops = &null_dai_ops;
2253
2254 INIT_LIST_HEAD(&dai->list);
2255
2256 mutex_lock(&client_mutex);
2257 list_add(&dai->list, &dai_list);
2258 snd_soc_instantiate_cards();
2259 mutex_unlock(&client_mutex);
2260
2261 pr_debug("Registered DAI '%s'\n", dai->name);
2262
2263 return 0;
2264 }
2265 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2266
2267 /**
2268 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2269 *
2270 * @dai: DAI to unregister
2271 */
2272 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2273 {
2274 mutex_lock(&client_mutex);
2275 list_del(&dai->list);
2276 mutex_unlock(&client_mutex);
2277
2278 pr_debug("Unregistered DAI '%s'\n", dai->name);
2279 }
2280 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2281
2282 /**
2283 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2284 *
2285 * @dai: Array of DAIs to register
2286 * @count: Number of DAIs
2287 */
2288 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2289 {
2290 int i, ret;
2291
2292 for (i = 0; i < count; i++) {
2293 ret = snd_soc_register_dai(&dai[i]);
2294 if (ret != 0)
2295 goto err;
2296 }
2297
2298 return 0;
2299
2300 err:
2301 for (i--; i >= 0; i--)
2302 snd_soc_unregister_dai(&dai[i]);
2303
2304 return ret;
2305 }
2306 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2307
2308 /**
2309 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2310 *
2311 * @dai: Array of DAIs to unregister
2312 * @count: Number of DAIs
2313 */
2314 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2315 {
2316 int i;
2317
2318 for (i = 0; i < count; i++)
2319 snd_soc_unregister_dai(&dai[i]);
2320 }
2321 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2322
2323 /**
2324 * snd_soc_register_platform - Register a platform with the ASoC core
2325 *
2326 * @platform: platform to register
2327 */
2328 int snd_soc_register_platform(struct snd_soc_platform *platform)
2329 {
2330 if (!platform->name)
2331 return -EINVAL;
2332
2333 INIT_LIST_HEAD(&platform->list);
2334
2335 mutex_lock(&client_mutex);
2336 list_add(&platform->list, &platform_list);
2337 snd_soc_instantiate_cards();
2338 mutex_unlock(&client_mutex);
2339
2340 pr_debug("Registered platform '%s'\n", platform->name);
2341
2342 return 0;
2343 }
2344 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2345
2346 /**
2347 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2348 *
2349 * @platform: platform to unregister
2350 */
2351 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2352 {
2353 mutex_lock(&client_mutex);
2354 list_del(&platform->list);
2355 mutex_unlock(&client_mutex);
2356
2357 pr_debug("Unregistered platform '%s'\n", platform->name);
2358 }
2359 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2360
2361 static u64 codec_format_map[] = {
2362 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2363 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2364 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2365 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2366 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2367 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2368 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2369 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2370 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2371 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2372 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2373 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2374 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2375 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2376 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2377 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2378 };
2379
2380 /* Fix up the DAI formats for endianness: codecs don't actually see
2381 * the endianness of the data but we're using the CPU format
2382 * definitions which do need to include endianness so we ensure that
2383 * codec DAIs always have both big and little endian variants set.
2384 */
2385 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2386 {
2387 int i;
2388
2389 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2390 if (stream->formats & codec_format_map[i])
2391 stream->formats |= codec_format_map[i];
2392 }
2393
2394 /**
2395 * snd_soc_register_codec - Register a codec with the ASoC core
2396 *
2397 * @codec: codec to register
2398 */
2399 int snd_soc_register_codec(struct snd_soc_codec *codec)
2400 {
2401 int i;
2402
2403 if (!codec->name)
2404 return -EINVAL;
2405
2406 /* The device should become mandatory over time */
2407 if (!codec->dev)
2408 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2409
2410 INIT_LIST_HEAD(&codec->list);
2411
2412 for (i = 0; i < codec->num_dai; i++) {
2413 fixup_codec_formats(&codec->dai[i].playback);
2414 fixup_codec_formats(&codec->dai[i].capture);
2415 }
2416
2417 mutex_lock(&client_mutex);
2418 list_add(&codec->list, &codec_list);
2419 snd_soc_instantiate_cards();
2420 mutex_unlock(&client_mutex);
2421
2422 pr_debug("Registered codec '%s'\n", codec->name);
2423
2424 return 0;
2425 }
2426 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2427
2428 /**
2429 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2430 *
2431 * @codec: codec to unregister
2432 */
2433 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2434 {
2435 mutex_lock(&client_mutex);
2436 list_del(&codec->list);
2437 mutex_unlock(&client_mutex);
2438
2439 pr_debug("Unregistered codec '%s'\n", codec->name);
2440 }
2441 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2442
2443 static int __init snd_soc_init(void)
2444 {
2445 #ifdef CONFIG_DEBUG_FS
2446 debugfs_root = debugfs_create_dir("asoc", NULL);
2447 if (IS_ERR(debugfs_root) || !debugfs_root) {
2448 printk(KERN_WARNING
2449 "ASoC: Failed to create debugfs directory\n");
2450 debugfs_root = NULL;
2451 }
2452 #endif
2453
2454 return platform_driver_register(&soc_driver);
2455 }
2456
2457 static void __exit snd_soc_exit(void)
2458 {
2459 #ifdef CONFIG_DEBUG_FS
2460 debugfs_remove_recursive(debugfs_root);
2461 #endif
2462 platform_driver_unregister(&soc_driver);
2463 }
2464
2465 module_init(snd_soc_init);
2466 module_exit(snd_soc_exit);
2467
2468 /* Module information */
2469 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2470 MODULE_DESCRIPTION("ALSA SoC Core");
2471 MODULE_LICENSE("GPL");
2472 MODULE_ALIAS("platform:soc-audio");
This page took 0.114528 seconds and 5 git commands to generate.